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Preface

Four previous editions of this book were published in 1989, 1992, 1999, and
2001. They were preceded by a German version (Zeh 1984) that was based on
lectures I had given at the University of Heidelberg.

My interest in this subject arose originally from the endeavor to better un-
derstand all aspects of irreversibility that might be relevant for the statistical
nature and interpretation of quantum theory. The quantum measurement pro-
cess is often claimed to represent an ‘amplification’ of microscopic properties
to the macroscopic scale in close analogy to the origin of classical fluctuations,
which may lead to the local onset of a phase transition, for example. This claim
can hardly be upheld under the assumption of universal unitary dynamics, as
is well known from the example of Schrödinger’s cat. However, the classical
theory of statistical mechanics offers many problems and misinterpretations of
its own, which are in turn related to the oft-debated retardation of radiation,
irreversible black holes with their thermodynamical aspects, and – last but
not least – the expansion of the Universe. So the subject offered a great and
exciting ‘interdisciplinary’ challenge. My interest was also stimulated by Paul
Davies’ (1977) book that I used successfully for my early lectures. Quantum
gravity, that for consistency has to be taken into account in cosmology, even
requires a complete revision of the concept of time, which leads to entirely
novel and fundamental questions of interpretation (Sect. 6.2).

Many of these interesting fields and applications have seen considerable
progress since the last edition came out. So, while all chapters have again
been thoroughly revised for this fifth edition in order to take these develop-
ments into account, changes concentrate on Sects. 2.3 (Radiation Damping),
4.3 (Decoherence), 4.6 (Interpretations of Quantum Theory), 5.3 (Expansion
of the Universe) and Chap. 6 (Quantum Cosmology). There are new Sects. 3.5
(on Cosmic Probabilities and History) and 4.3.3 (on Quantum Computers),
while Sect. 5.3 has been subdivided and extended. In general, I have tried
to remove ‘vague’ statements, or to make them more precise – although this
was not always possible because of the complexity or even speculative nature
of some fields. As in previous editions, the focus of the book is on questions
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of interpretation and relations between different fields – not on technical for-
malisms and empirically unfounded or predominantly mathematical ideas and
concepts.

Many friends and colleagues helped me with their advice on various sub-
jects during the preparation of all previous editions. I cannot here repeat all
their names (I hope they are all duly mentioned in the corresponding previous
prefaces), but I wish to thank here my former collaborators Erich Joos and
Claus Kiefer for their enduring support to all editions. Special thanks this
time go to Angela Lahee for her encouragement to prepare a fifth edition (the
first one for the Springer Frontiers Collection), and to Stephen Lyle for editing
it (although he is not responsible for any errors I may have introduced with
numerous last-minute corrections).

I intend to post corrections or revisions to some sections of the book at my
website www.time-direction.de whenever it should turn out to be appropriate.

Heidelberg, H.D. Zeh
April 2007
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Introduction

The asymmetry of Nature under a ‘reversal of time’ (that is, a reversal of mo-
tion and change) appears only too obvious, as it deeply affects our own form
of existence. If physics is to justify the hypothesis that its laws control ev-
erything that happens in Nature, it should be able to explain (or consistently
describe) this fundamental asymmetry which defines what may be called a
direction in time or even – as will have to be discussed – a direction of time.
Surprisingly, the very laws of Nature are in pronounced contrast to this fun-
damental asymmetry: they are essentially symmetric under time reversal. It is
this discrepancy that defines the enigma of the direction of time, while there
is no lack of asymmetric dynamical formalisms or pictures that go beyond the
fundamental empirical laws.

It has indeed proven appropriate to divide the formal dynamical descrip-
tion of Nature into laws and initial conditions. Wigner (1972), in his Nobel
Prize lecture, called this conceptual distinction Newton’s greatest discovery,
since it demonstrates that the laws by themselves are far from determining
Nature. The formulation of these two pieces of the dynamical description re-
quires that appropriate kinematical concepts (formal states or configurations
z, say), which allow the unique mapping (or ‘representation’) of all possible
states of physical systems, have already been defined on empirical grounds.

For example consider the mechanics of N mass points. Each state z is
then equivalent to N points in three-dimensional space, which may be rep-
resented in turn by their 3N coordinates with respect to a certain frame of
reference. States of physical fields are instead described by certain functions
on three-dimensional space. If the laws of Nature contain kinematical elements
(constraints on kinematical concepts that would otherwise be too general, such
as divB = 0 in electrodynamics), one should distinguish them from the dy-
namical laws proper. This is only in formal contrast to relativistic spacetime
symmetry (see Sect. 5.4).

The laws of Nature, thus refined to their purely dynamical content, de-
scribe the time dependence of physical states, z(t), in a general form – usu-
ally by means of differential equations. They are called deterministic if they
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uniquely determine the state at time t from that (and possibly its time deriva-
tive) at any earlier or later time, that is, from an appropriate initial or final
condition. This symmetric dynamical determinism is much more rigorous than
the traditional concept of causality , which requires that every event in Nature
must possess a specific cause (in its past), while not necessarily a specific ef-
fect (in its future). The Principle of Sufficient Reason (or at least its ‘causal
root’1) can be understood in this asymmetric causal sense that would define
an absolute direction of time.

However, only since Newton has uniform motion been interpreted as
‘eventless’ (thus not needing a cause), while acceleration requires a force as
the modern form of causa movens (usually assumed to act in a retarded, but
hardly ever in an advanced manner). From the ancient point of view, ter-
restrial bodies were usually regarded as eventless or ‘natural’ only when at
rest, and celestial ones when moving in circular orbits (later also including
epicycles), or when at rest on the celestial (‘crystal’) spheres. These motions
thus did not require any dynamical causes according to this picture, similar
to uniform motion today. None of the traditional causes (neither physical nor
others) ever questioned the fundamental asymmetry in (or of) time, since
there were no conflicting symmetric dynamical laws yet.

Newton’s concept of a force determining acceleration (the second time
derivative of the ‘state’) forms the basis of the formal Hamiltonian concept of
states in phase space (with corresponding dynamical equations of first order
in time). First order time derivatives of states in configuration space, required
to define momenta, can then be freely chosen as part of the initial conditions.
In its Hamiltonian form, this part of the kinematics is intermingled with dy-
namics, as the definition of canonical momentum depends in general on a
dynamical concept (the Lagrangean).

Newton recognized friction as a source of time asymmetry. While different
motions which may start from one and the same unstable position of rest
would require different initial perturbations as sufficient reasons, friction (if
understood as a fundamental force) could deterministically bring different
motions to the same rest. States at which the symmetry of determinism may
thus come to an end (perhaps asymptotically in time) are called attractors in
some theories.

The term ‘causality’ is unfortunately understood in very different ways. In
physics, it is often synonymous with dynamical determinism, or it may refer to
the relativistic limits for the propagation of causal effects, based on the light
cone structure of spacetime. In philosophy, it sometimes means the existence
of laws of Nature in general. In mathematical physics, dynamical determinism
is often understood asymmetrically as applying only in the ‘forward’ direc-

1 Its ‘logical root’ has nothing to do with time, but is often confused with dynam-
ical causality. For example, logical operations are performed in time by physical
systems, even though they can, in a strict sense, only lead to tautologies, which
are true regardless of any physical operations (see also the end of Sect. 3.3).
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tion of time (thus allowing attractors – see Sect. 3.4). Time-reversal-symmetric
determinism was discovered together with the dynamical laws of mechanics
in situations where friction could be neglected (as in celestial mechanics). An
asymmetric concept of ‘intuitive causality’ that is compatible with (though es-
sentially different from) symmetric determinism will be defined and discussed
in the introduction to Chap. 2.

A subtle but important point here is that the time reversal symmetry of
the concept of determinism does not necessarily require symmetric dynamical
laws. For example, the Lorentz force ev × B, acting on a charged particle and
resulting from a given external magnetic field, changes sign under time reversal
(defined by replacing t by −t).2 Nonetheless, determinism applies equally in
both directions of time. This is possible, since the time reversal asymmetry of
this equation of motion may be compensated for by a simultaneous reversal
of the magnetic field.

Other (more or less physical) compensating symmetry operations are
known (see Atkinson 2006). For example, the time reversal symmetry of the
Schrödinger equation is restored by complex conjugation of the wave function.
This can be described by means of Wigner’s anti-unitary operation T which
leaves the configuration basis unchanged, Tc|q〉 = c∗|q〉 for complex numbers
c. T may be chosen to contain further self-inverse operations, such as multipli-
cation with the matrix β for the Dirac equation. A trivial example is the time
reversal of states in classical phase space, q, p → q,−p. This transformation
restores invariance of the Hamiltonian equations, which would be violated
under a formal time reversal p(t), q(t) → p(−t), q(−t). In quantum theory it
corresponds to the transformation T |p〉 = | − p〉, which is now a consequence
of anti-unitarity when T is applied to the state |p〉 = (2π)−1/2

∫
dq eipq|q〉.

For trajectories of states, z(t), one usually includes the transformation
t → −t in the action of T rather than applying the latter only to the state z:
Tz(t) := zT (−t), where zT := Tz is the ‘time-reversed state’ defined above. In
the Schrödinger picture of quantum theory this is again automatically taken
care of by the anti-unitarity of T when commuted with the time translation
e−iHt for a time reversal invariant Hamiltonian H. In this sense, ‘T invariance’
does indeed mean time reversal invariance. When discussing time reversal, one
usually also presumes invariance under translations in time in order not to
specify an arbitrary origin for the time reversal transformation t → −t.

The time reversal asymmetry characterizing weak forces, which is respon-
sible for K-meson decay, may similarly be compensated for by an additional
CP transformation, where C and P are charge conjugation and spatial re-
flection, respectively. The latter do not just reflect a time reversal elsewhere
2 Any distinction between reversal of time and reversal of motion (or any other

kind of change) would require some concept of absolute or extraphysical time (see
Chap. 1). For example, an asymmetry of the fundamental dynamical laws would
define (or presume) an absolute direction of time – just as Newton’s equations
define absolute time up to linear transformations (which thus do allow a reversal
of sign).
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(such as the inversion of a magnetic field that is caused by the reversal of
external currents). Only if the compensating symmetry transformation repre-
sents an observable, such as CP , and is not the consequence of a time reversal
elsewhere, does one speak of a violation of time reversal invariance of the
dynamics.

The possibility of compensating for a dynamical time reversal by another
symmetry transformation (observable or not) reflects the prevailing symmetry
of determinism. Such ‘symmetric’ violations of time reversal invariance have
therefore nothing to do with irreversibility, which forms the subject of this
book. All known fundamental laws of Nature are symmetric under time re-
versal after compensation by an appropriate symmetry transformation, thus
defining a combined symmetry, say T̂ . For example, T̂ = CPT in particle
physics, while T̂{E(r),B(r)} = {E(r),−B(r)} in classical electrodynamics.
This means that for every solution z(t) of the dynamical laws there is precisely
one time-reversed solution, zT̂ (−t), where zT̂ = T̂ z. This fact is essential for
all statistical arguments regarding irreversibility.

‘Initial’ conditions are usually understood as conditions which fix the in-
tegration constants, that is, which select particular (individual) solutions of
the equations of motion. They could just as well be formulated as final con-
ditions, even though this would not represent the usual operational (hence
asymmetric) application of the theory. These initial conditions may select the
solutions which are ‘actually’ found in Nature. An individual (contingent)
trajectory z(t) is generically not symmetric under time reversal, that is, not
identical with zT̂ (−t). If z(t) is sufficiently complex, the time-reversed pro-
cess is not even likely to occur anywhere else in Nature within reasonable
approximation.

However, most phenomena observed in Nature violate time reversal sym-
metry in a less trivial way if considered as whole classes of phenomena. The
members of some class may be abundant, while the time-reversed class is not
realized at all. Such symmetry violations will be referred to as ‘fact-like’ –
in contrast to the mentioned CP symmetry violations, which are ‘law-like’.
In modern versions of quantum field theory, even the boundary between laws
of Nature and initial conditions gets blurred. Certain parameters which are
usually regarded as part of the laws (such as those characterizing the men-
tioned CP violation) may have arisen by spontaneous symmetry breaking (an
indeterministic irreversible process of disputed nature in quantum theory –
see Sects. 4.6 and 6.1).

In contrast to what is often claimed in textbooks, this asymmetric appear-
ance of Nature cannot be explained by statistical arguments. If the laws are
invariant under time reversal when compensated by another symmetry trans-
formation, there must be precisely as many solutions in the time-reversed class
as in the original one (see Chap. 3).

Since Eddington, classes of phenomena characterizing a direction in time
have been called arrows of time. The most important ones are:
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1. Radiation. In most situations, fields interacting with local sources are ap-
propriately described by means of retarded (outgoing or defocusing) solu-
tions (see Chap. 2). A spherical outgoing wave is observed after a point-like
event that represents a source. This may lead to damping of the source.
One may easily observe ‘spontaneous’ emission (when incoming radiation
is absent – see Item 5), while absorption requires retarded consequences.
Even an ideal absorber leads to retarded shadows (destructive interference
with a retarded field).

2. Thermodynamics. The Second Law dS/dt ≥ 0 is often regarded as a law
of Nature. In microscopic description it has instead to be interpreted as
fact-like (Chap. 3). This arrow is certainly the most general and important
one. Because of its applicability to human memory and other physiological
processes, it may also be responsible for the impression that time itself has
a direction (corresponding to an apparent flow of time – see Chap. 1).

3. Evolution. Dynamical ‘self-organization’ of matter, for example observed
in biological and social evolution, may appear to contradict the Second
Law. However, global entropy always keeps growing if the environment is
properly taken into account (Sect. 3.4).

4. Quantum Mechanical Measurement. The probability interpretation
of quantum mechanics is usually understood as describing a fundamental
indeterminism of the future, although its interpretation and compatibility
with the deterministic Schrödinger equation constitutes a long-standing
open problem. Stochastic quantum ‘events’ are often dynamically described
by a collapse of the wave function – not only in measurements. The
Schrödinger equation itself may describe growing entanglement as an arrow
of time that is analogous to (but different from) statistical mechanics – see
Chap. 4.

5. Exponential Decay. Many unstable physical systems decay exponentially
in time (see Sect. 4.5). Exponential growth is only observed under specific
circumstances in self-organizing systems (Item 3 above).

6. Gravity seems to ‘force’ massive objects to move towards each other with
increasing time. Stars or star clusters contract. However, this is another
prejudice about the causal (time-directed) action of forces. Gravity de-
scribes attraction in both directions of time, since Newton’s laws are of
second order. The asymmetry occurs since we often prepare objects in an
initial state of rest, while the observed contraction of stars against their in-
ternal pressure is controlled by thermodynamic and radiation phenomena.
On the other hand, gravitating objects are characterized by a negative
heat capacity, and classically even by the capacity to contract without
limit in accordance with the Second Law if appropriately prepared (see
Chap. 5). In general relativity this leads to time asymmetric future hori-
zons in spacetime (characterizing black holes), through which objects can
only disappear. Expansion against gravity is observed for the Universe as
a whole – thus indicating an unconventional cosmic initial condition. Since
cosmic expansion does not define a class of phenomena, it has often been
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suggested to represent the ‘master arrow’ from which all others may be
derived (see Sects. 5.3 and 6.2).

In spite of their fact-like nature, these arrows of time, in particular the ther-
modynamical one, have been regarded by some of the most eminent physicists
as even more fundamental than the dynamical laws themselves. For example,
Eddington (1928) wrote:

The law that entropy always increases holds, I think, the supreme
position among the laws of Nature. If someone points out to you that
your pet theory of the Universe is in disagreement with Maxwell’s
equations – then so much the worse for Maxwell’s equations. . . . but if
your theory is found to be against the second law of thermodynamics,
I can give you no hope; there is nothing for it but to collapse in deepest
humiliation.

And Einstein (1949) remarked:

It [thermodynamics] is the only physical theory of universal content
concerning which I am convinced that, within the framework of the
applicability of its basic concepts, it will never be overthrown.

These remarks were hardly meant to express doubts over the derivability of
the thermodynamical arrow of time by statistical means when using those
‘less credible theories’ (see Chap. 3). Rather, they are intended to express their
authors’ conviction in the invariance of the derived thermodynamical concepts
and laws under modifications and generalizations of these theories. However,
this statistical derivation will be shown to require important assumptions
about the initial state of the Universe. If the Second Law is fact-like in this
sense, its violation or reversal must at least be conceivable, and thus cannot
be excluded a priori .

The arrows of time listed above characterize an asymmetric history of
the Universe. This history can be conceived of as a whole, comparable to a
movie film sitting on the desk, or an ordered stack of picture frames (‘states’),
without any selection of a present (that is, of a specific ‘actual’ frame) or
an external distinction between beginning and end. This is called the ‘block
universe view’ (see Price 1996). It may be contrasted with the view of an
evolving history, observed by an external movie viewer as a definer of ‘absolute’
time for the running movie.

It appears questionable whether these different views might possess dif-
ferent power in explaining an asymmetry of the (hi)story described by the
movie, but they are regarded as basically different in this respect by many
philosophers, including also some physicists (Prigogine 1980, von Weizsäcker
1982). The second view is related to the idea that the past is ‘fixed’, while
the future is ‘open’ and ‘does not yet exist’. The asymmetric history is then
regarded as the ‘outcome’ (or the consequence) of this time-directed ‘process
of coming-into-being’. (The abundance of quotation marks indicates how our
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language is loaded with prejudice about the flow of time.) The fact that there
are documents, such as fossils, only about the past, and that we cannot re-
member the future,3 appears as evidence for this so-called ‘structure of time’
or the ‘historical nature’ (Geschichtlichkeit) of the world.

However, an asymmetry in the stack of movie frames on the desk is defined
regardless of any presentation or production of the movie in external time.
Correlations between an individual movie frame and certain others, which
may represent ‘documents’ about the latter, are properties of the set of frames
on the desk. If consistent asymmetric memory relations existed throughout
the whole story, an intrinsic observer, who was part of the story, could know
its content only at the (intrinsically defined) ‘end’. He could nonetheless con-
ceive of a ‘potential’ complete story even within the story, in particular if
he discovered dynamical laws. Existing ‘actually’ only in a specific frame, he
could neither deny nor prove the existence of other frames, although he might
‘remember’ those frames which represent his intrinsic past (even if the movie
were presented backwards). The time he is aware of has to be read from clocks
showing up on the picture frames – not from the watch of an external movie
viewer or from any frame numbers (see also Chap. 1 and Sect. 5.4). The con-
cept of ‘existence’ is here evidently used with various meanings, and the debate
may easily become one about words. Similarly, within our ‘world movie’, con-
cepts like fixed and open, or actual versus potential , can only be meaningful
either as statements about practical abilities of predicting and retrodicting,
or as statements about dynamical models.

The argument that the historical nature of the world be a prerequisite
(in the Kantian sense) for the fact that we can make experience does not
exclude the possibility (or necessity) of explaining it in terms of those laws
and concepts that have been distilled from this experience. They may then
be hypothetically extrapolated to form a ‘world model’, whereby the histor-
ical nature may even turn out not to apply to other spacetime regions (see
Sect. 5.3.3).

In classical physics, the Second Law is usually regarded as the physical
basis of the historical nature of the world. Its statistical interpretation would
then mean that this ‘structure of time’ (that is, its apparent direction) is
merely the consequence of contingent facts which characterize our specific
world. For example, one may explain thermodynamically why there are obser-
vations, but no ‘un-observations’ in which initially present information (mem-
ory about the future) would disappear by means of a controlled interaction
between the observing and observed systems. This un-observation has to be
distinguished from the usual process of forgetting, which represents an infor-
mation loss in the memory device in accordance with an increase of entropy
(see Sect. 3.3).

The concept of ‘retarded’ information would thus arise as a consequence of
thermodynamics (and not the other way round, as is sometimes claimed). The

3 “It’s a bad memory that only works backwards” says the White Queen to Alice.
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inconsistency of presuming either an extra-physical concept of information or
extra-physical operations has often been discussed by means of Maxwell’s de-
mon. In particular, the ‘free will’ of an experimenter should not be misused to
explain the specific (low entropy) initial conditions that he prepares in his lab-
oratory. If the experimenter (or demon) were not required to obey the thermo-
dynamical laws himself, his actions could readily create the thermodynamical
arrow of time observed in his experiments. Nonetheless, the possibility that
conscious beings require new fundamental laws cannot a priori be excluded.

The indeterminism of quantum measurements and other ‘quantum events’
has often been interpreted as evidence for such an extra-physical concept
of (human?) information. This is documented by many statements by im-
portant physicists. For example, Heisenberg argued in the spirit of idealism
that “a particle trajectory is created only by its observation,”4 while von
Weizsäcker claimed that only “what has been observed exists with certainty.”5

One can similarly understand Bohr’s statement: “Only an observed quantum
phenomenon is a phenomenon.” He insisted that a quantum measurement
cannot be analyzed as an objective dynamical process (“there is no quantum
world”). A similar view can be found in Pauli’s letter to Born (Einstein, Born
and Born 1984): “The appearance of a definite position x0 during an observa-
tion . . . is then regarded as a creation existing outside the laws of Nature.”6

Born often expressed his satisfaction with quantum mechanics, as he felt that
his probability interpretation saved free will from the determinism of classical
laws.

The extra-physical time arrow appears in all operational formulations of
quantum theory, such as those describing probabilistic relations connecting
preparations and subsequent measurements – thus restricting quantum the-
ory to laboratory physics performed by humans. Most of these formulations
rely on a given (absolute) direction of time. This should then be reflected by
the dynamical description of quantum measurements and ‘measurement-like
processes’ even in the block universe picture. The impact of such phenomena
(provided they do indeed occur) on the formal physical description should
therefore be precisely located.

Much of the philosophical debate about time is concerned with language
problems, some of them simply arising from the pre-occupied usage of the
tenses, particularly for the verb ‘to be’ (see Smart 1967, or Price 1996). Aris-
totle’s famous (pseudo-)problem regarding the potential truth value of the
claim that there will be a sea battle tomorrow survives not only in Sein und
Zeit , but even in quantum theory in the form of an occasional confusion of
logic with dynamics (‘logic of time’) – see footnote 1. A careful distinction

4 “Die Bahn entsteht erst dadurch, daß wir sie beobachten.”
5 “Was beobachtet worden ist, existiert gewiß .”
6 “Das Erscheinen eines bestimmten Ortes x0 bei der Beobachtung . . . wird dann

als außerhalb der Naturgesetze stehende Schöpfung aufgefaßt .”
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between temporal and logical aspects of actual and ‘counterfactual’ measure-
ments can be found in Mermin (1998).

The prime intention of this book is to discuss the relations between various
arrows of time, and to search for a universal master arrow . To this end, certain
open problems which have often been pragmatically put aside in the tradi-
tional theories will have to be clearly worked out. They may indeed become
essential in more general theories, or have important cosmological implications
(see Chaps. 5 and 6).



1

The Physical Concept of Time

The concept of time has been discussed since the earliest records of philoso-
phy, when science had not yet become a separate subject. It is rooted in the
subjective experience of the ‘passing’ present or moment of awareness, which
appears to ‘flow’ through time and thereby to dynamically separate the past
from the future. This has led to the formal representation of time by the
real numbers, and to the picture of a present as a point that ‘moves’ in the
direction defined by their sign.

The mechanistic concept of time is also based on this representation of time
by the real numbers, but it avoids any subjective foundation: it is defined in
terms of objective motion (in particular that of the celestial bodies). This
concept is often attributed to Aristotle, although he seems to have regarded
such a definition as insufficient.1 A concept of time defined (not merely mea-
sured) by motion may indeed appear as a circular construction, since motion
1 “Time is neither identical with movement nor capable of being separated from it”

(Physics, Book IV). This may sound like an argument for some absoluteness of
time. However, the traditional philosophical debate about time is usually linked
to (and often confused with) the psychological and epistemological problem of the
awareness of time ‘in the soul’, and hence related to the problem of consciousness.
This is understandable, since ancient philosophers could not have anticipated the
role of physico-chemical processes (that is, motions) in the brain as ‘controlling
the mind’, and they were not in possession of reasonable clocks to give time
a precise operational meaning for fast phenomena. According to Flasch (1993),
Albertus Magnus (ca. 1200–1280) was the first philosopher who supported a rig-
orously ‘physical’ concept of time, since he insisted that time exists in Nature,
while the soul merely perceives it: “Ergo esse temporis non dependet ab anima,
sed temporis perceptio.”

Another confusing issue of time in early philosophy, reflected by some of Zeno’s
paradoxes, was the mathematical problem of the real numbers, required to char-
acterize the continuum. Before the discovery of calculus, mathematical concepts
(‘instruments of the mind’) were often thought to be restricted to the natural
numbers, while reality would correspond to the conceptually inaccessible contin-
uum. Therefore, periodic motion was essential for counting time in order to grasp
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is defined as change with (that is, dependence on) time, thus rendering the
metaphor of the flow of time a tautology (see, e.g., Williams 1951). However,
it forms a convenient tool for comparing different motions, provided an appro-
priate concept of simultaneous events is available. In pre-relativistic physics,
this could be operationally defined by their simultaneous observation – later
corrected for the time required for the propagation of light in a presumed
‘ether’. (In German, an instant is called an Augenblick .) The possibility of
comparing different motions, including clocks, indeed provides a sufficient ba-
sis for all meaningful temporal statements. All ‘properties of time’ must then
be abstractions from relative motions and their empirical laws.

Physicists concerned with the concept of time have usually been quite
careful in avoiding any hidden regress to the powerful prejudice of absolute
time. Newton postulated it as a means to formulate his empirically founded
laws, which then in turn justified this concept. More recent conceptions of
time in physics may instead be understood as a complete elimination of ab-
solute time, and hence of absolute motion. This approach is equivalent to the
construction of ‘timeless orbits’, such as r(φ) for motion in a plane, which may
be derived by eliminating t from the time-dependent solutions r(t) and φ(t)
of Newton’s equations. In a similar way, all motions qi(t) in the Universe can
be replaced by ‘timeless’ trajectories qi(q0) in a global configuration space,
where the hand of an appropriate ‘clock’ may be used as q0.

These timeless trajectories may also be described by means of a physically
meaningless parameter λ in the form qi(λ) for all i, where equal values of λ
characterize the simultaneity of different qi’s. Such a parametric form was used
by Jacobi to formulate his variational principle of mechanics (see Sect. 5.4),
since astronomers without precise terrestrial clocks had to define time oper-
ationally as ephemeris time in terms of celestial motions obtained from their
combined efforts (perturbation theory). If Jacobi’s principle is applied to New-
ton’s theory, absolute time can be recovered as a specific parameter λ that
simplifies the equations of motion (Poincaré 1902). The existence of such a
preferred time parameter, and its uniqueness up to linear transformations, is
thus a non-trivial empirical property of Newtonian dynamics. It may then also
be used to define equal time intervals at different times (as done by means of
all conventional clocks, which measure this preferred time).

According to the most radical position about ‘relational time’, even its
topology (ordering) has to be regarded as no more than the consequence of
this choice of an appropriate time parameter . The ‘timeless history’ of the
whole Universe would then be equivalent to an unordered ‘heap of states’ (or
a stack of shuffled movie frames) that can be uniquely ordered and given a

it, not only to provide a measure. Uniform circular motion then appears as a
natural assumption.

Since Newton, and even more so since Einstein, the concept of time in Nature
has almost exclusively been elaborated by physicists. The adjective ‘physical’ in
the title of this chapter is thus not meant as a restriction.
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measure of distance only by the relations between their intrinsic structures
(Barbour 1986, 1994a, 1999). This view will lead to entirely novel aspects in
quantum gravity (see Sect. 6.2). If certain states from the stack (called ‘time
capsules’ by Barbour) contain intrinsically consistent correlations representing
memories, they may give rise to the impression of a flow of time to intrinsic
observers, since the latter would remember properties of those global states
which they interpret as forming their subjective past.

The concept of absolute motion thus shares the fate of the flow of time.
‘Time reversal’ is meaningful only as a relative reversal of motion (for example,
relative to those physiological processes which control the subjective awareness
of time and memory). Anyone who regards this mechanistic concept of time
as insufficient should be able to explain what a reversal of all motion would
mean. Ancient versions of a concept of time based on motion may have been
understood as a ‘causal control’ of all motion on earth by the motions of (or
on) the celestial spheres – an idea of which astrology is still a relic.

According to Mach’s principle (see Barbour and Pfister 1995), the concept
of absolute time is not only kinematically redundant – it should not even play
any dynamical role as a preferred parameter, as it does in Newton’s theory.2

Similarly ‘relativistic’ ideas (although retaining an absolute concept of si-
multaneity) had already been entertained by Leibniz, Huygens, and Berkeley.
They may even have prevented Leibniz from co-discovering Newton’s mechan-
ics, but led him to a definition of time in terms of all motions in the Universe.
In this sense, an exactly periodic universe would describe the recurrence of
the same time. This concept is far more rigorous than its ancient predecessor
in not ascribing any preferred role to the motion of the celestial bodies.

Newton’s mechanistic time, as used in his dynamical laws, specifies neither
a direction in time nor a specific present. One may define a phenomenological
direction by taking into account thermodynamical effects (including friction),
thus arriving at the concept of a thermodynamico-mechanistic time. This con-
cept is then based on the evidence that the thermodynamical arrow of time
always and everywhere points in the same direction. Explaining this fact (or
possibly its range of validity) must be part of the physics of time asymme-
try . As will be explained, it can be understood within physics and cosmology,
whereas physics does not even offer any conceptual means for deriving the
concept of a present that would objectively separate the past from the future
(see also the Epilog).

The concept of a present thus seems to have as little to do with the concept
of time itself as color has to do with light (or with the nature of objects

2 Mach himself was not very clear about whether he intended to postulate what is
now often called his principle, or whether he intended to prove such a principle
meaningless (see Norton 1995). A related confusion between the trivial invari-
ance of a theory under a mere rewriting of the laws in terms of new spacetime
coordinates (‘Kretzschmann invariance’) and the nontrivial invariance of the laws
under such coordinate transformations led to some dispute in early general rela-
tivity (Norton 1989).
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reflecting it). Both the present and color characterize our subjective perception
of time and light, respectively. Just as most information that is contained in
the frequency spectrum of light being observed is lost in the eye or visual
cortex before it may cause any brain activities associated with consciousness,
all information about observed events which are separated in time by perhaps
as much as two or three seconds seems to be combined to form certain neuronal
‘states of being conscious’ (see Pöppel, Schill, and von Steinbüchel 1990). The
moments of awareness might thus even be discrete rather than reflecting the
time continuum in terms of which the corresponding physical brain activities
are successfully described. The time continuum remains a heuristic fiction
– just like all concepts describing ‘reality’. Similarly, the topology of colors
(forming a closed circle), or the perception of different frequency mixtures of
light as representing one and the same color, may readily be understood by
means of physiological structures (see Goldsmith 2006, for example). However,
neither the subjective appearance of colors (such as ‘blue’) nor that of the
present can be derived from physical and physiological concepts. This non-
trivial relationship between reality and the observed phenomena seems to
assume an even more important and quite novel role in quantum descriptions
– see Sects. 4.3 and 6.2.2. In contrast, the direction of the apparent ‘passage’
of time seems to be a consequence of the objective (thermodynamical) arrow
that must also control neurobiological processes, and thus allows memories of
the past to affect those ‘states of being conscious’.

In Einstein’s special theory of relativity, the mechanistic or thermo-
dynamico-mechanistic concept of time may still be applied locally, that is,
along time-like world lines. These proper times, although anholonomous (that
is, path-dependent – as exemplified by the twin paradox), possess the hypo-
thetical absoluteness of Newton’s time, since they are assumed to be defined
(or to ‘exist’) even in the absence of anything that may represent a clock. The
claim of proper time as controlling all motion is formulated in the principle
of relativity . While any simultaneity of spatially separate events represents
no more than a choice of spacetime coordinates, local geometric and physical
objects and properties can be defined ‘absolutely’. An example is the abstract
spacetime metric (to be distinguished from its basis-dependent representation
by a matrix gµν), which defines all proper times and the light cone structure.
Hence, one may define a spacetime future and past relative to every spacetime
point P (see Fig. 1.1), and unambiguously compare their orientations at dif-
ferent spacetime points by means of the path-independent parallel transport
in this flat spacetime. So one may distinguish globally between past and fu-
ture directions, and thus once again introduce a thermodynamico-mechanistic
concept of time.3

3 While superluminal objects (‘tachyons’) may be compatible with the relativistic
light cone structure, they would pose severe problems to thermodynamics or the
formulation of a physically reasonable boundary value problem (see Sect. 2.1).
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Fig. 1.1. (a) Local spacetime structure according to the theory of relativity. Space-
time future and past are defined relative to every event P , and independent of any
choice of reference frame. (b) In conventional units (large numerical value of the
speed of light) the light cone opens widely, so its exterior seems to degenerate into
a space-like hypersurface of ‘absolute’ simultaneity. What we observe as an appar-
ently global present is in fact the backward light cone with respect to the subjective
here-and-now P . Since only non-relativistic speeds are relevant in our macroscopic
neighborhood, this apparent simultaneity then seems also to coincide with the for-
ward light cone, that is, the spacetime border to the ‘open’ future that we (now)
may affect by our ‘free will’ (things we can ‘kick’)

These consequences remain valid in general relativity if one excludes non-
orientable manifolds, which would permit the continuous transport of forward
light cones into backward ones. On the other hand, world lines may begin or
end on spacetime singularities at finite values of their proper times. This
prevents the applicability of Zermelo’s recurrence objection that was raised
against a statistical interpretation of thermodynamics (see Chap. 3). One may
also have to avoid solutions of the Einstein equations which contain closed
time-like curves (world lines which return into their own past without thereby
changing their orientation). While compatible with general relativity, and even
with flat spacetime if non-trivial topologies were considered, they would be
incompatible with the usual assumption that the global past and future of an
event exclude one another.

If local states of matter (such as described by fields) are unique functions
on spacetime, a closed time-like curve must lead back to the same local state
(including all memories and clocks). This would be inconsistent with a per-
sisting thermodynamical arrow and/or ‘free will’ along closed world lines, and
thus eliminate the much discussed murderer of his own grandfather when the
latter was a child. Spacetime ‘travel’ is a misconception and a misleading pic-
ture that may require an external second concept of time – similar to the
picture of a flowing time. Nonetheless, scenarios that would allow time travel
are apparently quite popular even among professional relativists who do not
care about thermodynamics. A ‘spacetime traveler’ would either have to stay
forever on a loop in an exactly periodic manner (hence forming an exactly
isolated reversible system), or to meet his older self already at his first arrival
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at their meeting point in spacetime. This would give rise to severe consistency
problems if all irreversible phenomena (such as the documentation represented
by retarded light) were consistently taken into account – in contrast to the
usual science fiction stories. It is, therefore, not surprising that spacetime ge-
ometries with closed time-like curves seem to be dynamically unstable (and
thus could never arise) in the presence of thermodynamically normal matter
(Penrose 1969, Friedman et al. 1990, Hawking 1992, Maeda, Ishibashi, and
Narita 1998). Closed time-like curves seem to be excluded by the same initial
condition that is responsible for the arrow(s) of time. Other relations between
thermodynamics and spacetime structure will be presented in Chap. 5.

If closed time-like curves are in fact excluded, then our spacetime can
be time-ordered by means of a monotonic foliation. While there have been
speculations about ‘time warps’ in quantum gravity (see Morris, Thorne and
Yurtsever 1988, Frolov and Novikov 1990), their consistent description would
have to take into account the rigorous revision of the concept of time that is a
consequence of this theory (Sect. 6.2). A quasi-classical spacetime would have
to presume the time arrow of decoherence for its justification (see Sects. 4.3
and 6.2.2). In quantum theory, the dynamically evolving state must be strong-
ly entangled, that is, nonlocal (Sect. 4.2). There is then nothing to evolve
locally (along time-like curves in spacetime).

The most important novel aspect of general relativity for the concept of
time is the dynamical role played by spacetime geometry. It puts the geome-
try of space-like hypersurfaces in the position of ‘physical objects’ that evolve
dynamically and interact with matter (see Sect. 5.4). In this way, spatial ge-
ometry itself becomes a physical clock, and the program of Leibniz and Mach
may finally be fully taken into account by completely eliminating any relic of
absolute time. While proper times (defined by means of the abstract metric)
are traditionally regarded as a prerequisite for the formulation of dynamical
laws, they are now consequences of an evolving object (the metric). In gen-
eral relativity with matter, the spatial metric does not remain the exclusive
definer of time as a controller of motion – although geometry still dominates
over matter because of the large value of the Planck mass (see Sect. 6.2.2).
This is reminiscent of Leibniz’s elimination of the special role played by the
celestial bodies, when he defined time in terms of all motion in the Universe.

This physicalization of time in accordance with Mach’s principle (that may
formally appear as its elimination) allows us even to speak of a direction of
time instead of a direction in time – provided the spacetime of our Universe
is clearly asymmetric. The dynamical role of geometry then also permits (and
requires) the quantization of time (Sect. 6.2). Consequently, even the concept
of a history of the Universe as a parametrizable succession of global states has
to be abandoned. The conventional concept of time can at best be derived as
a quasi-classical approximation.

General Literature: Reichenbach 1956, Mittelstaedt 1976, Whitrow 1980,
Denbigh 1981, Barbour 1989, 1999.
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The Time Arrow of Radiation

After a stone has been dropped into a pond, one observes concentrically
diverging (‘defocusing’) waves. Similarly, after an electric current has been
switched on, one finds a retarded electromagnetic field that is coherently
propagating away from its source. Since the fundamental laws of Nature,
which describe these phenomena, are invariant under time reversal, they are
equally compatible with the reverse phenomena, in which concentrically fo-
cusing waves (and whatever may be dynamically related to them – such as
heat) would ‘conspire’ in order to eject a stone out of the water. Deviations of
the deterministic laws from time reversal symmetry would modify this argu-
ment only in detail (see the Introduction). However, the reversed phenomena
are never observed in Nature. In high-dimensional configuration space, the
absence of dynamical correlations which would focus to create local effects
characterizes the time arrow of thermodynamics (Chap. 3), or, when applied
to wave functions, even that of quantum theory (see Sect. 4.3).

Electromagnetic radiation will here be considered to exemplify wave phe-
nomena in general. It may be described in terms of the four-potential Aµ,
which in the Lorenz gauge obeys the wave equation

−∂ν∂νAµ(r, t) = 4πjµ(r, t) , with ∂ν∂ν = −∂2
t + ∆ , (2.1)

using units with c = 1, the notations ∂µ := ∂/∂xµ and ∂µ := gµν∂ν , and Ein-
stein’s convention of summing over identical upper and lower indices. When
an appropriate boundary condition is imposed, one may write Aµ as a func-
tional of the sources jµ. For two well known boundary conditions one obtains
the retarded and the advanced potentials,

Aµ
ret(r, t) =

∫
jµ(r, t − |r − r′|)

|r − r′| d3r′ , (2.2a)

Aµ
adv(r, t) =

∫
jµ(r, t + |r − r′|)

|r − r′| d3r′ . (2.2b)
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These two functionals of jµ(r, t) are related to one another by a reversal of
retardation time |r − r′| – see also (2.5) and footnote 4 below. Their linear
combinations are again solutions of the wave equation (2.1).

At this point, many textbooks argue somewhat mysteriously that ‘for rea-
sons of causality’, or ‘for physical reasons’, only the retarded fields, derived
from the potential (2.2a) according to Fµν

ret := ∂µAν
ret − ∂νAµ

ret, occur in Na-
ture. This condition has therefore to be added to deterministic laws such
as (2.1), which historically did indeed emerge from the asymmetric concept
of causality. This example allows us to formulate in a preliminary way what
seems to be meant by this intuitive notion of causality : correlated effects (that
is, nonlocal regularities, such as coherent waves) must always possess a local
common cause in their past.1 However, this asymmetric notion of causality is
a major explanandum of the physics of time asymmetry. As pointed out in the
Introduction, it cannot be derived from the deterministic laws by themselves.

The popular argument that advanced fields are not found in Nature be-
cause they would require improbable initial correlations is known from statis-
tical mechanics, but totally insufficient (see Chap. 3). The observed retarded
phenomena are precisely as improbable among all possible ones, since they
describe equally improbable final correlations. So their ‘causal’ explanation
from an initial condition would beg the essential question.

Some authors take the view that retarded waves describe emission, ad-
vanced ones absorption. However, this claim ignores the fact that, for exam-
ple, moving absorbers give rise to retarded shadows, that is, retarded waves
which interfere destructively with incoming ones. In spite of the retardation,
energy may thus flow from the electromagnetic field into an antenna. When
incoming fields are present (as is generically the case), retardation does not
necessarily mean emission of energy (see Sect. 2.1).

At the beginning of the last century, Ritz – following simular ideas by
Planck and others – formulated a radical solution of the problem by postu-
lating the exclusive existence of retarded waves as a law . Such time-directed
action at a distance is equivalent to fixing the boundary conditions for the

1 In the case of a finite number of local effects resulting from one local cause in
the past, this situation is often viewed as a ‘fork’ in spacetime (see Horwich 1987,
Sect. 4.8). However, this fork of causality should not be confused with the fork
of indeterminism (in configuration space and time), which points to different (in
general global) potential states rather than to different events (see also footnote 7
of Chap. 3 and Fig. 3.8). The fork of causality (‘intuitive causality’) may also char-
acterize deterministic measurements and the documentation of their results, that
is, the formation and distribution of information. It is related to Reichenbach’s
(1956) concept of branch systems, and to Price’s (1996) principle of independence
of incoming influences (PI3). Insofar as it describes the cloning and spreading of
information, it represents an overdetermination of the past (Lewis 1986), or the
consistency of documents. It is these correlations which let the macroscopic past
appear ‘fixed’, while complete documents about microscopic history would be in
conflict with thermodynamics and quantum theory.
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electromagnetic field in a universal manner. The field would then not describe
any degrees of freedom on its own, but just describe retarded forces.

This proposal, a natural generalization of Newton’s gravitational force,
led to a famous controversy with Einstein, who favored the point of view that
retardation of radiation can be explained by thermodynamical arguments.
Einstein, too, argued here in terms of an action-at-a-distance theory (see
Sect. 2.4). At the end of their dispute, the two authors published a short let-
ter in order to state their different opinions. After an introductory sentence,
according to which retarded and advanced fields are equivalent “in some sit-
uations”, the letter reads as what appears to be also a verbal compromise
(Einstein and Ritz 1909 – my translation):2

While Einstein believes that one may restrict oneself to this case with-
out essentially restricting the generality of the consideration, Ritz re-
gards this restriction as not allowed in principle. If one accepts the
latter point of view, experience requires one to regard the represen-
tation by means of the retarded potentials as the only possible one,
provided one is inclined to assume that the fact of the irreversibil-
ity of radiation processes has to be present in the laws of Nature.
Ritz considers the restriction to the form of the retarded potentials as
one of the roots of the Second Law, while Einstein believes that the
irreversibility is exclusively based on reasons of probability.

Ritz thus conjectured that the thermodynamical arrow of time might be ex-
plained by the retardation of electromagnetic forces because of the latter’s
universal importance for all matter. However, the retardation of hydrodynam-
ical waves (such as sound) would then have to be explained quite differently
– for example, by again referring to the thermodynamical time arrow.

A similar but less well known controversy had already occurred in the
nineteenth century between Max Planck and Ludwig Boltzmann. The former,
at that time still an opponent of statistical mechanics, understood radiation
as a genuine irreversible process, while the latter maintained that the problem
is not different from that in kinetic gas theory: a matter of improbable initial
conditions (Boltzmann 1897). These different interpretations became relevant,
in particular, in connection with the quantum hypothesis: are quanta caused

2 The original text reads: “Während Einstein glaubt, daß man sich auf diesen
Fall beschränken könne, ohne die Allgemeinheit der Betrachtung wesentlich zu
beschränken, betrachtet Ritz diese Beschränkung als eine prinzipiell nicht er-
laubte. Stellt man sich auf diesen Standpunkt, so nötigt die Erfahrung dazu, die
Darstellung mit Hilfe der retardierten Potentiale als die einzig mögliche zu betra-
chten, falls man der Ansicht zuneigt, daß die Tatsache der Nichtumkehrbarkeit
der Strahlungsvorgänge bereits in den Grundgesetzen ihren Ausdruck zu finden
habe. Ritz betrachtet die Einschränkung auf die Form der retardierten Potentiale
als eine der Wurzeln des Zweiten Hauptsatzes, während Einstein glaubt, daß die
Nichtumkehrbarkeit ausschließlich auf Wahrscheinlichkeitsgründen beruhe.”
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by the emission process (as Planck had believed – later called quantum jumps
– see Sects. 4.3.6 and 4.5), or inherent to light itself?

In Maxwell’s classical field theory , the problem does not appear as obvious
as in action-at-a-distance theories, since every bounded region of spacetime
may contain ‘free fields’, which possess neither past nor future sources in
this region. Therefore, one can consistently understand Ritz’s hypothesis only
cosmologically: all fields must possess advanced sources (‘causes’) somewhere
in the Universe. While the examples discussed above demonstrate that the
time arrow of radiation cannot merely reflect the way boundary conditions
are posed, the problem becomes even more pronounced with the time-reversed
question: “Do all fields also possess a retarded source (a sink in time-directed
terms) somewhere in the future Universe?” This assumption corresponds to
the absorber theory of radiation, a T -symmetric action-at-a-distance theory
to be discussed in Sect. 2.4. The observed asymmetries would then require an
unusual cosmic time asymmetry in the distribution of such sources.

2.1 Retarded and Advanced Form
of the Boundary Value Problem

In order to distinguish the indicated pseudo-problem that concerns only the
definition of ‘free’ fields from the physically meaningful question, one has
to investigate the general boundary value problem for hyperbolic differential
equations (such as the wave equation). This can be done by means of Green’s
functions, defined as the solutions of the specific inhomogeneous wave equation
with a point-like source:

−∂ν∂νG(r, t; r′, t′) = 4πδ3(r − r′)δ(t − t′) , (2.3)

and an appropriate boundary condition in space and time. Some of the con-
cepts and methods to be developed below will be applicable in a similar form
in Sect. 3.2 to the Liouville equations (Hamilton’s equations applied to ensem-
bles of states of mechanical systems). Using (2.3), a solution of the general
inhomogeneous wave equation (2.1) may then be written as a functional of its
sources:

Aµ(r, t) =
∫

G(r, t; r′, t′)jµ(r′, t′) d3r′ dt′ , (2.4)

where the boundary condition for G(r, t; r′, t′) determines that for Aµ(r, t),
too. Retarded or advanced solutions are obtained from Green’s functions Gret

and Gadv, which are given by

G ret
adv

(r, t; r′, t′) :=
δ(t − t′ ± |r − r′|)

|r − r′| . (2.5)

The potentials Aµ
ret and Aµ

adv resulting from (2.4) are thus functionals of
sources only on the past or future light cones of their argument, respectively.



2.1 Retarded and Advanced Form of the Boundary Value Problem 21
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Fig. 2.1. Kirchhoff’s boundary value problem, including initial, final and spatial
boundaries. Sources (thick world lines) within the considered region and boundaries
on both light cones (dashed lines) may in general contribute to the electromagnetic
potential Aµ at the spacetime point P

By contrast, Kirchhoff’s formulation of the boundary value problem allows
one to express every specific solution Aµ(r, t) of the wave equation by means
of any Green’s function G(r, t; r′, t′). This can be achieved by using the three-
dimensional Green theorem∫

V

[
G(r, t; r′, t′)∆′Aµ(r′, t′) − Aµ(r′, t′)∆′G(r, t; r′, t′)

]
d3r′ (2.6)

=
∫

∂V

[
G(r, t; r′, t′)∇′Aµ(r′, t′) − Aµ(r′, t′)∇′G(r, t; r′, t′)

]
·dS′ ,

where ∆ = ∇2 is the Laplace operator, and ∂V is the boundary of the spatial
volume V . Multiplying (2.3) by Aµ(r′, t′), and integrating over r′ and t′ from
t1 to t2 – on the right-hand side (RHS) by means of the δ-functions, while
using the Green theorem and twice integrating by parts with respect to t′ on
the left-hand side (LHS), one obtains by further using (2.1):

Aµ(r, t) =
∫ t2

t1

∫
V

G(r, t; r′, t′)jµ(r′, t′) d3r′ dt′

− 1
4π

∫
V

[
G(r, t; r′, t′)∂t′A

µ(r′, t′) − Aµ(r′, t′)∂t′G(r, t; r′, t′)
]
d3r′

∣∣∣∣t2
t1

+
1
4π

∫ t2

t1

∫
∂V

[
G(r, t; r′, t′)∇′Aµ(r′, t′) − Aµ(r′, t′)∇′G(r, t; r′, t′)

]
·dS′ dt′

≡ ‘source term’ + ‘boundary terms’ . (2.7)

if the event P described by r and t lies within the spacetime boundaries.
Here, both (past and future) light cones may contribute to the three terms
occurring in (2.7), as indicated in Fig. 2.1.

The formal T -symmetry of this representation of the potential as a sum of
a source term and boundary terms in the past and future can be broken by
the choice of Green’s functions. When using one of the two forms (2.5), the
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Fig. 2.2. Two representations of the same electromagnetic potential at time t by
means of retarded or advanced Green’s functions. They require data on partial
boundaries (indicated by solid lines) corresponding to an initial or a final value
problem, respectively

spacetime boundary required for determining the potential at time t assumes
specific forms indicated in Fig. 2.2. Hence, the same potential can be written
according to one or the other RHS of

Aµ = source term + boundary terms = Aµ
ret + Aµ

in

= Aµ
adv + Aµ

out . (2.8)

For example, Aµ
in is here that solution of the homogeneous equations which

coincides with Aµ for t = t1. Aµ
ret and Aµ

adv vanish by definition for t = t1
or t = t2, respectively. Any field can therefore be described equivalently by
an initial or a final value problem – with arbitrary boundary conditions. This
result reflects the T -symmetry of the laws, while phenomenological causality
is often used as an ad hoc argument for choosing Gret rather than Gadv.

However, two free boundary conditions in the mixed form of Fig. 2.1 would
in general not be consistent with one another, even if individually incomplete
(see also Sects. 2.4 and 5.3). Retarded and advanced fields formally result-
ing from past and future sources, respectively, do not add independently (as
sometimes assumed to describe a conjectured retro-causation) – they just
contribute to different (or mixed) representations of the same field. In field
theory, no (part of the) field ‘belongs to’ a certain source (in contrast to
specific action-at-a-distance theories). Sources determine only the difference
Aµ

out −Aµ
in – similar to T/i = S−1 in the interaction picture of the S-matrix.

As can be seen from (2.8), this difference is identical to Aµ
ret −Aµ

adv. In causal
language, where Aµ

in is regarded as given, the source ‘creates’ precisely its re-
tarded field that has to be added to Aµ

in in the future of the source (where
Aµ

adv = 0).
Physically, spatial boundary conditions represent an interaction with the

(often uncontrollable) spatial environment. For infinite spatial volume (V =
R

3), when the light cone cannot reach ∂V within finite time t − t1, or in a
closed universe, one loses this boundary term in (2.7), and thus obtains the
pure initial value problem (for t > t1),
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Aµ = Aµ
ret + Aµ

in ≡
∫ t

t1

∫
R3

Gret(r, t; r′, t′)jµ(r′, t′) d3r′ dt′ (2.9)

+
1
4π

∫
R3

[
Gret(r, t; r′, t1)∂t1A

µ(r′, t1) − Aµ(r′, t1)∂t1Gret(r, t; r′, t1)
]
d3r′ ,

and correspondingly the pure final value problem (t < t2),

Aµ = Aµ
adv + Aµ

out ≡
∫ t2

t

∫
R3

Gadv(r, t; r′, t′)jµ(r′, t′) d3r′ dt′ (2.10)

− 1
4π

∫
R3

[
Gadv(r, t; r′, t2)∂t2A

µ(r′, t2) − Aµ(r′, t2)∂t2Gadv(r, t; r′, t2)
]
d3r′ .

The different signs at t1 and t2 are due to the fact that the gradient in the
direction of the outward-pointing normal vector has now been written as a
derivative with respect to t1 (inward) or t2 (outward).

So one finds precisely the retarded potential Aµ = Aµ
ret if Aµ

in = 0. (Only
the ‘Coulomb part’, required by Gauß’s law, must always be present by con-
straint. It can be regarded as the retarded or advanced consequence of the
conserved charge.) In scattering theory, an initial condition fixing the incom-
ing wave (usually described by a plane wave) is called a Sommerfeld radiation
condition. Both conditions are to determine the actual situation. Therefore,
the physical problem is not which of the two forms, (2.9) or (2.10), is correct
(both are), but:

1. Why does the Sommerfeld radiation condition Aµ
in = 0 (in contrast to

Aµ
out = 0) approximately apply in many situations?

2. Why are initial conditions more useful than final conditions?

The second question is related to the historical nature of the world. Answers
to these questions will be discussed in Sect. 2.2.

The form (2.7) of the four-dimensional boundary value problem, charac-
teristic of determinism in field theory, applies to partial differential equations
of hyperbolic type (that is, with a Lorentzian signature −+++). Elliptic type
equations would instead lead to the Dirichlet or von Neumann problems, which
require values of the field or its normal derivative, respectively, on a closed
boundary (which in spacetime would have to include past and future). Only
hyperbolic equations lead generally to ‘propagating’ solutions, which are com-
patible with free initial conditions. They are thus responsible for the concept
of a dynamical state of the field, which facilitates the familiar concept of time.

The wave equation (with its hyperbolic signature) is known to be derivable
from Newton’s equations as the continuum limit of a spatial lattice of mass
points, held at their positions by means of harmonic forces. For a linear chain,
md2qi/dt2 = −k

[
(qi − qi−1 − a)− (qi+1 − qi − a)

]
with k > 0, this is the limit

a → 0 for fixed ak and m/a. The crucial restriction to ‘attractive’ forces
(k > 0) may here appear surprising, since Newton’s equations are always
deterministic, and allow one to pose initial conditions regardless of the type
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or sign of the forces. However, only bound (here oscillating) systems possess
a stable position (here characterized by the lattice constant a). In the same
limit, an elliptic differential equation (with signature ++++) would result
for a lattice of variables qi with repulsive forces (k < 0). This repulsion,
though still representing deterministic dynamics, would cause the particle
distances qi − qi−1 to explode immediately in the limit k → ∞. The unstable
solution qi − qi−1 = a is in this case the only eigensolution of the Dirichlet
problem with eigenvalue 0 (derived from the condition of a bounded final
state). Mathematically, the dynamically diverging solutions simply do not
‘exist’ any more in the continuum limit.

For second order wave equations, a hyperbolic signature forms the basis for
all (exact or approximate) conservation laws, which give rise to the continuity
of ‘objects’ in time (including the ‘identity’ of observers). For example, the free
wave equation has solutions of a conserved form f(z ± ct), while the Klein–
Gordon equation with a positive and variable ‘squared mass’ m2 = V (r, t)
has unitary solutions i∂φ(r, t)/∂t = ±√−∆ + V φ(r, t). This dynamical con-
sequence of the spacetime metric, which leads to such ‘wave tubes’ (see also
Sect. 6.2.1), is crucial for what appears as the inevitable ‘progression of time’
(in contrast to our freedom to move in space). However, the direction of this
apparent flow of time requires additional conditions.

This section was restricted to the boundary value problem for fields in
the presence of given sources. In reality, the charged sources depend in turn
on the fields by means of the Lorentz force. The resulting coupled system
of differential equations is still T -symmetric, while all consequences of the
retardation regarding the actual electromagnetic fields, derived in this and
the following section, remain valid. New problems will arise, though, from
the self-interaction of point charges or elementary charged rigid objects (see
Sect. 2.3).

2.2 Thermodynamical and Cosmological Properties
of Absorbers

Wheeler and Feynman (1945, 1949) took up the Einstein–Ritz controversy
about the relation between the two time arrows of radiation and thermody-
namics. Their work essentially confirms Einstein’s point of view, provided his
‘reasons of probability’ are replaced by ‘thermodynamical reasons’. Statistical
reasons by themselves are insufficient for deriving a thermodynamical arrow
(see Chap. 3.) The major part of Wheeler and Feynman’s arguments were
again based on a T -symmetric action-at-a-distance theory, which is particu-
larly well suited for presenting them in an historical context. From the point
of view of local field theory (that is for good reasons preferred today), this pic-
ture may appear strange or even misleading. The description of their absorber
theory of radiation will therefore be postponed until Sect. 2.4.
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Fig. 2.3. Ideal absorbers do not contribute by means of Gret. (Arrows represent
the formal time direction of retardation)

In field theory, radiation is described by a continuum of variables, which
may themselves require the application of thermodynamical concepts (as is
well known for black body radiation). However, coupled harmonic oscillators
are not ergodic, and so would not approach equilibrium. For this reason,
radiation in a cavity consisting of reflecting walls was usually assumed to
contain a small dust grain of coal in order to allow its spectral distribution to
equilibrate by absorption and re-emission. I will here neglect the presence of
reflecting bodies, and define absorbers (in the ‘ideal’ case assumed to possess
infinite heat capacity) by the following phenomenological properties:

A spacetime region is called an ‘(ideal) absorber’ if any radiation prop-
agating within its boundaries is (immediately) thermalized at the ab-
sorber temperature T (= 0).

The thermalization referred to in this definition is based on the arrow of
time given by the Second Law. For electromagnetic waves this can also be
described by means of a complex refractive index when using the Maxwell
equations. The sign of its imaginary part reflects the thermodynamical arrow.
The definition means that no radiation can propagate within ideal absorbers,
and in particular that no radiation may leave the absorbing region along
forward light cones. This consequence can then be applied to the boundary
value problem as follows (see also Fig. 2.3):

By means of the retarded Green’s function, (ideal) absorbers forming
parts of a spacetime boundary contribute only thermal radiation at
the absorber temperature T (= 0).

Such a boundary condition simplifies the initial value problem considerably.
If the space-like part ∂V of the boundary required for the retarded form of
the boundary value problem depicted in Fig. 2.2 consists entirely of ideally
absorbing walls (as is usually an excellent approximation for the relevant
frequencies in a laboratory or other closed rooms), the condition Aµ

in = 0
applies shortly after the initial time t1 that is used to define the ‘incoming’
fields in (2.7). So one finds precisely the retarded fields (including reflected
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waves) of sources which are present in the laboratory. On the other hand,
absorbers on the boundary would not affect contributions to the Kirchhoff
problem by means of Gadv; in the nontrivial case one has Aµ

out �= 0. Therefore,
in this laboratory situation the radiation arrow is a simple consequence of the
thermodynamical arrow characterizing absorbers.

Do similar arguments also apply to situations outside absorbing bound-
aries, in particular in astronomy? The night sky does in fact appear black,
representing a condition Aµ

in ≈ 0, although the present Universe is transpar-
ent to visible light. Can the darkness of the night sky then be understood in
a realistic cosmological model? For the traditional model of an infinitely old
universe this was impossible, a situation called Olbers’ paradox after one of
the first astronomers who mentioned this problem. The total brightness B of
the sky beyond the atmosphere would then be given by

B = 4π

∫ ∞

0

ρLa(r)r2 dr , (2.11)

where ρ is the number density of sources (mainly the fixed stars), while
La(r) = L̄/r2 is their mean apparent luminosity. In the static and homo-
geneous situation (L̄, ρ = constant) this integral diverges linearly, and the
night sky should be infinitely bright. Light absorption by stars in the fore-
ground would reduce this result to a finite but large value, corresponding to
a sky as bright as the mean surface of a star. It would not help to take into
account other absorbing matter, since this would soon have to be in thermal
equilibrium with the radiation under these conditions.

Olbers’ paradox was resolved by Hubble’s discovery of the expansion of
the Universe, which required a finite age of the order of 1010 years (following a
big bang). An integral of type (2.11) with a finite upper limit would in general
remain bounded. Since all wavelengths λ grow proportional to the expansion
parameter a(t), this leads according to Wien’s displacement law, T ∝ λ−1,
to the reduction of the apparent temperature Ta of all past sources. Stefan
and Boltzmann’s law for thermal radiation, L ∝ T 4, then requires that the
apparent brightness of the stars, La, decreases not only with the geometric
factor r−2, but also with the inverse fourth power of a. In a homogeneous
expanding universe of finite age, the brightness of the sky is then given by

B ∝
∫ τmax

0

ρ(t0 − τ)L̄(t0 − τ)
[
a(t0 − τ)

a(t0)

]4

dτ , (2.12)

where t0 means the present, while τmax ≈ t0 is the age of the transparent uni-
verse. If neither the total number of stars nor their mean absolute luminosity,
L̄, have changed, the integrand is simply proportional to a(t0− τ)/a(t0). This
or similar models lead to a negligible contribution from star light. Indeed, if
our present universe were static, times of the order of 1023 yr, that is, exceed-
ing the Hubble age by a factor of 1013, would be required in the integral (2.11)
to produce a night sky as bright as the surface of a mean star (Harrison 1977).
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Fig. 2.4. The cosmological initial value problem for the electromagnetic radiation.
The thermal contribution of the non-ideal absorber represented by the hot, ionized
matter during the radiation era has now cooled down to the measured background
radiation of 2.7K (which can be neglected for most purposes)

While this conclusion resolves Olbers’ original paradox, it is does not ex-
plain the cosmological condition Aµ

in ≈ 0, since (1) it presumes retardation,
and (2) the nature of sources must have drastically changed during the early
history of the Universe. In its ‘radiation era’, matter was ionized and almost
homogeneous, representing a non-ideal absorber with a temperature of several
thousand degrees (see Fig. 2.4) that can serve as an initial boundary. Because
of the cosmic expansion, the thermal radiation of this absorber has cooled
down to its now observed value of 2.73 K, compatible with the darkness of the
night sky.

The cosmic expansion, which is vital for this low present temperature, is
thus also essential for the non-equilibrium formed by the contrast between cold
interstellar space and the hot stars. The latter are producing their energy by
nuclear reactions under the control of gravitational contraction – see Chap. 5.
The expansion of the Universe has therefore often been proposed as the master
arrow of time. However, it would be inappropriate to use causal arguments to
explain this connection. Even in a presumed contraction era of the Universe,
absorbers would then retain their intrinsic arrow of time. In order to reverse
it, the thermodynamical arrow would have to be reversed, too. The scenario
of fields and phenomenological absorbers in an expanding universe is far too
simple to describe a master arrow. This cosmological discussion will therefore
be resumed in Sects. 5.3 and 6.2.

In a quite different approach, Hogarth (1962) had suggested that the opac-
ity of intergalactic matter (cosmic absorbers) must have changed drastically
during the evolution of the Universe in order to provide a time asymmetry that
would explain the observed retardation of radiation. Inspired by Wheeler and
Feynman’s time-symmetric definition of absorbers (Sect. 2.4), he neglected the
thermodynamical arrow of absorbers. However, even in thermal equilibrium,
a time arrow may survive in the form of correlations between microscopic
variables unless enforced otherwise (see the Appendix for an example).

The above conclusions regarding the retardation of electromagnetic radia-
tion apply accordingly to all kinds of waves in interaction with matter obey-
ing thermodynamics. Only gravitational waves might be sufficiently decoupled
from absorbers, since even the radiation era must have been transparent to
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them. Ritz’s conjecture of a law-like nature of retarded electrodynamics will
therefore be reconsidered and applied to gravity3 in Chap. 5.

2.3 Radiation Damping

This somewhat technical section describes an important application of re-
tarded fields. Except for Dirac’s radiation reaction of (2.22), which will be
used in Sect. 2.4, its results are rarely needed for the rest of the book.

The emission of electromagnetic radiation by a charged particle that is
accelerated by an external force requires the particle to react by losing energy.
Similar to friction, this radiation reaction, described by an effective equation of
motion, must change sign under time reversal. As will be explained, this can be
understood as a consequence of the retardation of the field when acting on its
own source, even though the retardation seems to disappear at the position
of a point source. However, the self-interaction of point-like charges leads
to singularities (infinite mass renormalization) which need care when being
separated from that part of the interaction which is responsible for radiation
damping. While these problems could be avoided if any self-interaction were
eliminated by means of the action-at-a-distance theory (described in Sect. 2.4),
others would arise in their place.

Consider the trajectory of a charged particle, represented by means of its
Lorentzian coordinates zµ(τ) as functions of proper time τ . The corresponding
four-velocity and four-acceleration are vµ := dzµ/dτ and aµ := d2zµ/dτ2,
respectively.4 From vµvµ = −1 one obtains by differentiation vµaµ = 0 and
vµȧµ = −aµaµ. In a rest frame, defined by vk = 0 (with k = 1, 2, 3), one has
a0 = 0.

The four-current density of this point charge is given by

jµ(xν) = e

∫
vµ(τ)δ4

[
xν − zν(τ)

]
dτ . (2.13)

Its retarded field Fµν
ret = 2∂[µA

ν]
ret := ∂µAν

ret−∂νAµ
ret is known as the Liénard–

Wiechert field. The retarded or advanced fields can be written in an invariant
3 The retardation of gravitational waves has been indirectly confirmed by double

pulsars (see Taylor 1994).
4 While an orbit in space or configuration space would merely be passed backwards

under time reversal (t → −t), a worldline in spacetime changes according to
zk(τ) → zk(−τ) and z0(τ) → −z0(−τ) (for k = 1, 2, 3). The reversal of the pa-
rameter τ is now only a consequence of the convention dt/dτ > 0, but physically
meaningless. As the derivative vµ(τ) – and accordingly also the current jµ(τ) –
then get an additional minus sign under time reversal, the potentials Aµ and fields
F µν inherit this transformation property for their respective indices (correspond-
ing to E → E and B → −B). In order to study questions of (ir)reversibility, one
may often better use the simpler TP transformations, zµ(τ) → −zµ(−τ) for all
µ – see the Introduction.
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manner (see, for example, Rohrlich 1965) as

Fµν
ret/adv(x

σ) = ±2e

ρ

d
dτ

v[µRν]

ρ

=
2e

ρ2
v[µuν] +

2e

ρ

{
a[µvν] − u[µvν]au ± u[µaν]

}
, (2.14)

with vµ and aµ taken at times τret or τadv, respectively. In this expression,

Rµ := xµ − zµ
(
τret/adv

)
=: (uµ ± vµ)ρ , (2.15)

with uµvµ = 0 and uµuµ = +1, is the light-like vector pointing from the
retarded or advanced spacetime position zµ of the source to the point xµ

where the field is considered. Obviously, ρ is the distance in space or in time
between these points in the rest frame of the source, while au := aµuµ is the
component of the acceleration in the direction of the unit spatial distance
vector uµ. Retardation or advancement are enforced by the condition of Rµ

being light-like, that is, RµRµ = 0.
On the RHS of (2.14), second line, the field consists of two parts, propor-

tional to 1/ρ2 and 1/ρ. They are called the generalized Coulomb field (‘near-
field’) and the radiation field (‘far-field’), respectively. Since the stress–energy
tensor

Tµν =
1
4π

(
FµαF ν

α +
1
4
gµνFαβFαβ

)
(2.16)

is quadratic in the fields, it then consists of three parts characterized by dif-
ferent powers of ρ. For example, one has

Tµν
ret := Tµν(Fµν

ret ) =
e2

4πρ4

(
uµuν − vµvν − 1

2
gµν

)
+

e2

2πρ3

{
au

RµRν

ρ2
− [

v(µau + a(µ
]Rν)

ρ

}
+

e2

4πρ2
(a2

u − aλaλ)
RµRν

ρ2
, (2.17)

where braces around pairs of indices define symmetrization, so for example,
v(µ Rν) := (vµRν + vνRµ)/2. Here, Tµν is the ν-component of the current of
the µ-component of four-momentum. In particular, T 0k is the Poynting vector
in the chosen Lorentz system, and Tµνd3σν is the flux of four-momentum
through an element d3σν of a hypersurface. If d3σν is space-like (a volume
element), this ‘flux’ describes its energy–momentum (‘momenergy’) content,
otherwise it is the flux through a spatial surface element during an element
of time.

The retarded field caused by an element of the world line of the point
charge between τ and τ +∆τ has its support between the forward light cones
of these two points, that is, on a thin four-dimensional conic shell (see Fig. 2.5).
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Fig. 2.5. The spacetime support of the retarded field of a world line element ∆τ of
a point charge is located between two light cones (co-axial only in the rest frame of
the source). The flux of field momentum crosses light cones in the near-field region
of the charge

The intersection of the cones with a space-like hyperplane forms a spherical
shell (concentric only in the rest frame at time τ , and in the figure depicted
two-dimensionally as a narrow ring). The integral of the stress–energy tensor
over this spherical spatial shell,

∆Pµ =
∫

Tµνd3σν , (2.18)

is the four-momentum of the field on this hyperplane ‘caused’ by the world line
element ∆zµ. In general, this momentum is not conserved along light cones,
since (2.17) contains a momentum flux orthogonal to the cones, due to the
dragging of the near-field by the charge. Therefore, Teitelboim 1970 suggested
a time-asymmetric splitting of the energy–momentum tensor, which leads to
an asymmetric electron dressing – valid only in connection with given Fin.
However, the flux component orthogonal to the cones vanishes in the far-
zone, where Tµν is proportional to RµRν . In this region the integral (2.18)
describes the four-momentum radiated away from the trajectory of the charge
during the interval ∆τ ,

∆Pµ −→
ρ→∞ ∆Pµ

rad =
2
3
e2aλaλvµ∆τ =: �vµ∆τ . (2.19)

The quantity � = 2e2aλaλ/3 is called the invariant rate of radiation. In
the comoving rest frame (vk = 0), one recovers the non-relativistic Larmor
formula,

∆P 0
rad = vµ∆Pµ

rad =
2
3
e2aλaλ∆t =

2
3
e2a2∆t . (2.20)

This result confirms that the energy transfer into radiation in a positive inter-
val of time cannot be negative – a consequence of the presumed retardation.
An accelerated charged particle must lose energy to radiation, regardless of
the direction of the driving external force.

Larmor’s formula led to a certain confusion when it was applied to a
charged particle in a gravitational field. Because of its dependence on ac-
celeration, (2.19) is restricted to inertial frames. In general relativity, inertial
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frames are freely falling ones. According to the principle of equivalence, a
freely falling charge should then not radiate, while a charge ‘at rest’ in a
gravitational field (under the influence of non-gravitational forces) should do
so. This problem was not understood until Mould (1964) demonstrated that
the response of a detector to radiation depends on its acceleration, too (see
also Fugmann and Kretzschmar 1991).

In general relativity, the principle of equivalence is only locally valid (see
Rohrlich 1963). However, a homogeneous gravitational field (as would result
from a homogeneous massive plane) is described by a flat spacetime, and thus
globally equivalent to a rigid field of uniform accelerations aµ on Minkowski
spacetime. This field corresponds to a set of ‘parallel’ hyperbolic trajectories
with constant (in time, but varying between trajectories) accelerations aµaµ.
These trajectories define accelerated rigid frames, since they preserve distances
in comoving frames. Together with their proper times, the trajectories define
the curved Rindler coordinates – see (5.16) and Fig. 5.5 in Sect. 5.2.

The equivalence principle can therefore be globally applied to a homoge-
neous gravitational field. This means that an inertial (freely falling) detector
is not excited by an inertial charge, while a detector ‘at rest’ is. The latter
would remain idle in the presence of a charge being ‘equivalently at rest’ (at
a fixed distance in this case). A detector-independent definition of total radi-
ation also turns out to depend on acceleration (as it should for consistency)
because of the occurrence of spacetime horizons for truly uniform acceleration
(see Boulware 1980 and Sect. 5.2).

The emission of energy according to (2.20) thus requires a deceleration of
the point charge in order to conserve total energy. It should be possible to
derive this consequence directly from the fundamental dynamical equations,
which are governed by the Lorentz force,

Fµ
self(τ) = eFµν

ret

[
zσ(τ)

]
vν(τ) , (2.21)

resulting from the particle’s self-field. However, this expression leads to prob-
lems caused by the fact that the electromagnetic force acts only on the point
charge, where the self-field is singular (its Coulomb part even with 1/ρ2),
while part of the accelerated mass is contained in the energy of the comoving
Coulomb field. Paul Dirac (1938) showed that the symmetric part F̄µν of the
retarded field,

Fµν
ret =

1
2
(Fµν

ret + Fµν
adv) +

1
2
(Fµν

ret − Fµν
adv) ≡: F̄µν + Fµν

rad , (2.22)

is responsible for the infinite mass renormalization, while the antisymmetric
part, Fµν

rad, remains regular, and indeed describes the radiation reaction when
treated properly.

In order to prove the second part of this statement, one has to expand all
quantities in (2.14) up to the third order in terms of the retardation ∆τret =
τret − τ , e.g.,
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vν(τret) = vν(τ + ∆τret) = vν(τ) + ∆τreta
µ(τ) (2.23)

+
1
2
∆τ2

retȧ
µ(τ) +

1
6
∆τ3

retä
µ(τ) + · · · .

All terms which are singular at the position of the point charge cancel from
the antisymmetric field, and one obtains (see Rohrlich 1965, p. 142)

Fµν
rad = −4e

3
ȧ[µvν] . (2.24)

The resulting PT -antisymmetric Lorentz self-force, the Abraham four-vector

Fµ
rad := eFµν

radvν =
2e2

3
(ȧµ + vµȧνvν) =

2e2

3
(ȧµ − vµaνaν) (2.25)

(using aνvν = 0 in the second step), should then describe the radiation re-
action of a point charge. It leads to a nonlinear equation of motion (the
Lorentz–Abraham–Dirac or LAD equation). However, while the second term
on the RHS of (2.25) is in accord with (2.19), the ȧµ term is ill-defined (see
below). Together with the singular mass renormalization term resulting from
F̄µν , it describes the four-momentum transfer from the point charge itself to
its comoving singular near-field.

In a rest frame (with vk = 0 and a0 = 0), one obtains

F0
rad = −2e2

3
a2 , Fk

rad =
2e2

3
dak

dt
. (2.26)

Therefore, the radiation reaction describes non-relativistically a force propor-
tional to the change of acceleration, dak/dt, while its fourth component is the
energy loss according to the non-negative invariant rate of radiation (2.19).
The latter was originally defined by the energy flux through a distant sphere
on the future light cone (Fig. 2.5). However, global conservation laws may be
used only if all their contributions are taken into account. For example, one
would not obtain an analogous conservation of three-momentum for the bare
point charge and its far-field because of the aforementioned momentum flux
orthogonal to the future light cone of the moving charge. For this reason, the
uniformly accelerated charge may radiate with � �= 0 even though the ‘radia-
tion reaction’ Fµ

rad (including its ill-defined term) vanishes in this case, as can
be seen separately for its two non-vanishing components, Fµ

radaµ and Fµ
radvµ.

If the boundary condition Fµν
in = 0 does not hold, the complete electro-

magnetic force acting on a point charge is given by

maµ = Fµ = Fµ
in + Fµ

rad = Fµ
out −Fµ

rad (2.27)

– cf. Sect. 2.1 and (2.22). Terms caused by the symmetric part of the self-field
have now been brought to the LHS in the form of a mass renormalization
∆maµ. Equation (2.27) still exhibits T -symmetry, but the latter may be bro-
ken fact-like by the given initial condition Fµν

in (in contrast to the uncon-
trollable outgoing radiation contained in Fµν

out). The LAD equation, based on
(2.25) and the first RHS of (2.27), may then be written in the form
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m(aµ − τ0ȧ
µ) = Kµ(τ) := Fµ

in −�vµ , (2.28)

where τ0 = 2e2/3mc2 is the time required for light to travel a distance of the
order of the ‘classical electron radius’ e2/mc.

Both terms of (2.28) that result from the radiation reaction (2.25) now
change sign under time reversal (or the interchange of retarded and advanced
fields). While the second one (now on the RHS) is the friction-type radia-
tion damping −�vk, required for the conservation of energy, the one now
appearing on the LHS (called the Schott term) is proportional to the third
time-derivative of the position in an inertial frame. A solution to the LAD
equation (2.28) would thus require three initial vectors as integration con-
stants (the initial acceleration in addition to the usual initial position and
velocity). Evidently, information has been lost by differentiation in the ex-
pansion (2.23). Even for Fµ

in = 0, the LAD equation (2.28) admits runaway
solutions, non-relativistically in the form of an exponentially increasing self-
acceleration, ak(t) = ak(0) exp(t/τ0).

Because of this formal information loss, the LAD equation is not a com-
plete equation of motion. It can only represent a necessary condition for the
motion of the point charge. In the free case, unphysical runaway solutions
could simply be eliminated by fixing the artificial integration constant by the
condition ak(0) = 0. However, this would still lead to runaway as soon as an
external force were turned on, since the formal solution of (2.28) with respect
to aµ is

maµ(τ) = eτ/τ0

[
maµ(0) − 1

τ0

∫ τ

0

e−τ ′/τ0Kµ(τ ′)dτ ′
]

. (2.29)

Therefore, Dirac suggested fixing the initial acceleration in terms of the future
force according to maµ(0) = (1/τ0)

∫∞
0

e−τ ′/τ0Kµ(τ ′)dτ ′. The substitution
τ ′ → τ ′ + τ then leads to Dirac’s equation of motion,

maµ(τ) =
∫ ∞

0

Kµ(τ + τ ′)
e−τ ′/τ0

τ0
dτ ′ . (2.30)

It represents a Newtonian (second order) equation of motion which depends
on a force that acts ahead of time. How could this ‘acausal’ result be derived
using retarded fields alone?

Moniz and Sharp (1977) demonstrated that the pathological behavior of
this ‘classical electron’ is a consequence of a mass renormalization that exceeds
the physical electron mass (so that the bare mass must be negative). If the
point charge is replaced by a rigid charged sphere of radius r0 in its rest frame,
one obtains, by using the now everywhere regular retarded field, an equation
of motion that was first proposed by Caldirola (1956), and later derived by
Yaghjian (1992) as an approximation. It reads

m0a
µ(τ) = Fµ

in(τ) +
2e2

3r0

vµ(τ − 2r0) + vµ(τ)vν(τ)vν(τ − 2r0)
2r0

, (2.31)
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where m0 is the bare mass. The retardation 2r0 in the arguments would
change sign for advanced fields (consistent only in conjunction with given
Fµ

out). Taylor expansion of (2.31) with respect to 2r0, equivalent to (2.23),
and using vµvµ = −1 and its time derivatives leads in first order to a finite
mass renormalization (4/3 of the electrostatic mass), and in second order back
to the LAD equation (see Zeh 1999a). While (2.31) is analogous to a non-
Markovian master equation (see Sect. 3.2), the LAD equation corresponds to
its Markovian limit, valid for slowly varying fields. In this sense, the radiation
reaction has to be calculated from the given history in order to determine the
acceleration (rather than its derivative) towards the future (right derivative).

The self-force acting on the rigid ‘electron’ according to (2.31) is the dif-
ference (because of vµvµ = −1) between a decelerating and an accelerating
friction type force with different retardations. For positive bare and physi-
cal masses it does not lead to runaway, although it may possess complicated
non-analytic solutions, in particular for forces varying on a time scale shorter
than the light travel time within the charged sphere. Dirac’s pre-acceleration
of the center of mass can now be understood as a consequence of the presumed
rigidity of the charged sphere, which requires forces of constraint acting ahead
of time.

The most rigorous elimination of unphysical solutions from the LAD equa-
tion so far was proposed by Spohn (2000) – see also Rohrlich (2001), while the
history of electron theory is discussed in Rohrlich (1997). It seems that the
concept of a non-inertial point charge is inconsistent with classical electrody-
namics, while external forces acting on a charge distribution would disturb its
shape and structure. A quantum ground state of the electron may instead be
protected against deformations by its discrete excitation spectrum. However,
an explicit QED eigenstate would have to include nonlocal quantum entan-
glement between particle and field modes in an essential way (see Sect. 4.2).

General Literature: Rohrlich 1965, 1997, Levine, Moniz and Sharp 1977,
Boulware 1980.

2.4 The Absorber Theory of Radiation

Ritz’s retarded action-at-a-distance theory, mentioned at the beginning of this
chapter, eliminates all electromagnetic degrees of freedom by postulating the
cosmological initial condition Fµν

in = 0 in order to fix all forces of electromag-
netic origin. Since electromagnetic forces would then act only on the forward
light cones of their sources, this theory cannot be compatible with Newton’s
third law, which requires their reactions. However, the reaction to a retarded
action must be advanced.5 In order to warrant energy–momentum conserva-
5 In field theory , sources and fields interact locally in spacetime. For this reason

the self-force (2.25) could not be derived from the flux of field momentum in the
far-zone.
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Fig. 2.6. Different interpretations of the same interaction term of the Hamiltonian
for a pair of particles

tion, an action-at-a-distance theory has to be formulated in a T -symmetric
way, as done by Fokker (1929) by means of his action

I =
∫

(T − V )dt =
∑

i

mi

∫
dτi (2.32)

−1
2

∑
i�=j

eiej

∫∫
vµ

i vjµδ
[
(zν

i − zν
j )(ziν − zjν)

]
dτidτj .

Here, indices i and j are particle numbers. A sum over i �= j defines a double
sum excluding equal indices, while a sum over i(�= j) is meant as a sum
over i only, excluding a given value j. In (2.32), the particle positions zµ

i

and velocities vµ
i have to be taken at the proper time τi of the corresponding

particle, for example zµ
i = zµ

i (τi).
Expanding the δ-function in the potential energy according to

δ(∆zν∆zν) = δ(∆z2
0 −∆z2) =

1
2|∆z|

[
δ(∆z0−|∆z|)+δ(∆z0+ |∆z|)

]
(2.33)

(with ∆zν = zν
i −zν

j ) preserves its symmetric form. By integrating either over
τi or over τj , one obtains, respectively, the first or second of the following
expressions (first two graphs of Fig. 2.6):

ei

2

∫ [
Aµ

ret,j(z
σ
i ) + Aµ

adv,j(z
σ
i )
]
viµdτi ≡ ej

2

∫ [
Aµ

adv,i(z
σ
j ) + Aµ

ret,i(z
σ
j )
]
vjµdτj .

(2.34)
Aµ

ret,j and Aµ
adv,j are the retarded and advanced potentials of the j th particle

according to (2.2a) and (2.2b). However, if the integral is always carried out
with respect to the particle on the backward light cone of the other one, one
obtains, in spite of the preserved T -symmetry of the theory, only contributions
in terms of retarded potentials (third graph):

ei

2

∫
Aµ

ret,j(z
σ
i )viµdτi +

ej

2

∫
Aµ

ret,i(z
σ
j )vjµdτj , (2.35)

and analogously, but time reversed, for the advanced potentials (fourth graph).
Einstein seems to have been referring to this equivalence of different forms of
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the interaction in his letter with Ritz (quoted in the introduction to this
chapter).

However, the Euler–Lagrange equations resulting from (2.32) automati-
cally lead to T -symmetric forces which comply with Newton’s third law:

maµ
i =

ei

2

∑
j(�=i)

[
Fµν

ret,j(z
σ
i ) + Fµν

adv,j(z
σ
i )
]
vi,ν . (2.36)

According to (2.8), this would correspond to the cosmic boundary condition
Fµν

in + Fµν
out = 0 in Maxwell’s theory. Equations (2.36) differ from the empiri-

cally required ones,

maµ
i = ei

∑
j(�=i)

Fµν
ret,j(z

σ
i )vi,ν +

ei

2

[
Fµν

ret,i(z
σ
i ) − Fµν

adv,i(z
σ
i )
]
vi,ν , (2.37)

not only by the replacement of half the retarded by half the advanced forces,
but also by the missing radiation reaction Fµ

rad,i (Dirac’s asymmetric self-
force). While the problem of a mass renormalization has disappeared, (2.36)
seems to be in drastic conflict with reality. Moreover, it contains a complicated
dynamical meshing of the future with the past that does not in any obvious
way permit the formulation of an initial-value problem.

The two equations of motion, (2.36) and (2.37), differ precisely by a force
that would result from the sum of the asymmetric fields of all particles,
Fµν

rad,total =
∑

j(F
µν
ret,j − Fµν

adv,j)/2. Since the retarded and advanced fields ap-
pearing in this expression possess identical sources, their difference solves the
homogeneous Maxwell equations, and thus represents a free field in spite of
the dependence of the retarded and advanced fields on the sources. Therefore,
this sum of differences may be assumed to vanish for all times as a ‘boundary’
condition. As there are no retarded fields at the beginning of the Universe, this
would require

∑
j Fµν

adv,j(tbig bang) = 0 as a very restrictive global constraint
on all sources that will ever arise; it can hardly be exactly valid.

If the condition Fµν
rad,total = 0 did apply, the advanced effects of all charged

matter in the Universe would precisely double the retarded forces in (2.36),
cancel the advanced ones, and imitate a self-interaction that is responsible for
radiation damping. This is an example of the equivalence of apparently quite
different dynamical representations of deterministic theories, such as causal
or teleological, local or global ones.

Instead of referring to a cosmic initial condition, Wheeler and Feynman
(1945) tried to explain the vanishing of the sum of asymmetric fields by the
assumption that the total charged matter in the Universe behaves as an ‘ab-
sorber’ in a sense that is very different from that used in Sect. 2.2. They
required that the symmetric field F̄ resulting from all particles, which would
according to (2.36) determine the force on an additional ‘test particle’, should
vanish for statistical reasons (by destructive interference) in a presumed empty
space surrounding all matter of this ‘island universe’. This assumption,
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j

F̄µν
j :=

∑
j

1
2

[
Fµν

ret,j + Fµν
adv,j

]
−→ 0 , (2.38)

constitutes their cosmic absorber condition. Since the retarded or advanced
fields vanish by definition in the asymptotic past or future, respectively, so
must their time-reversed partner because of (2.38), and hence also their asym-
metric combination. Wheeler and Feynman then concluded by means of the
homogeneous Maxwell equations that the total asymmetric field would vanish
everywhere. This is just the required ‘boundary’ condition.

However, the consistency of this procedure is very questionable. A sim-
ilar problem would arise for an expanding and recollapsing Universe that
were sandwiched between two thermodynamically opposite radiation eras (ab-
sorbers with opposite thermodynamical arrows of time) – see Sect. 5.3. As
explained in Sect. 2.1, the compatibility of double-ended (two-time) boundary
conditions is highly nontrivial – similar to an eigenvalue problem. This con-
sistency problem is particularly severe for a universe that remains optically
transparent and thus preserves information contained in the radiation such as
light (Davies and Twamley 1993).

In contrast to the physical absorbers of Sect. 2.2, the new absorber condi-
tion is symmetric under time reversal. This fact led to many misunderstand-
ings. For example, rather than adding the vanishing antisymmetric term to
(2.36), one might as well subtract it in order to obtain the time-reversed rep-
resentation

maµ
i = ei

∑
j(�=i)

Fµν
adv,j(z

σ
i )vi,ν − ei

2

[
Fµν

ret,i(z
σ
i ) − Fµν

adv,i(z
σ
i )
]
vi,ν . (2.39)

Although it is as correct as (2.37) under the absorber condition, (2.39) de-
scribes advanced actions and a radiation reaction that leads to reverse damp-
ing (exponential acceleration).

Therefore, Wheeler and Feynman’s absorber condition cannot explain the
observed radiation arrow. Neither (2.37) nor (2.39) would describe the local
empirical situation, which requires in general that only a limited number of
‘obvious sources’ contribute noticeably to the retarded sum (2.37). Otherwise,
retardation would never have been recognized. This means that the retarded
contribution of all ‘other’ sources (those which form the true universal ab-
sorber) must interfere destructively (see Fig. 2.7):∑

i∈ absorbers

Fµν
ret,i ≈ 0 ‘inside’ universal absorber . (2.40)

This is possible (except for the remaining thermal radiation) if the absorber
particles approach thermal equilibrium by means of collisions after having
been accelerated by retarded fields. Therefore, one cannot expect∑

i∈ absorbers

Fµν
adv,i ≈ 0 ‘inside’ universal absorber (2.41)
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'absorber'

' inside' 'outside'

∑
i ∈ absorbers

Fret,i ≈ 0
∑
i

(Fret,i + Fadv,i) = 0

Fig. 2.7. T -symmetric (‘outside’) and T -asymmetric (‘inside’) absorber conditions
of a model Universe with action-at-a-distance electrodynamics

to hold in a symmetric way. Since Fµν
ret contributes only on the forward light

cones, Fig. 2.7 reduces to Fig. 2.4.
In order to justify the applicability of (2.37) in contrast to that of (2.39),

one still needs the asymmetric condition that has been derived in Sect. 2.2
from the thermodynamical arrow of time under certain cosmological assump-
tions. This means that any motion of absorber particles is dissipated as heat
after it has been induced. While in field theory the field may be regarded
as ‘matter’ with its own thermodynamical state, action-at-a-distance theory
ascribes thermodynamical properties only to the sources. In the former de-
scription, the relation between electromagnetic and thermodynamical arrows
is just an example of the universality of the thermodynamical arrow (see
Sect. 3.1.2).

With these remarks I also hope to put to rest objections raised by Popper
(1956) against the thermodynamical foundation of the radiation arrow – see
also Price (1996), page 51. The only ‘unusual’ aspect of electromagnetic fields
(when regarded as matter) is their weak coupling, which may greatly delay
their thermalization in the absence of absorbers (see also Sect. 5.3.3). It is this
very property that allows light and radio waves to serve as information media.

Therefore, the time-reversal-symmetric ‘absorber condition’ (2.38) leads
to the equivalence of various forms of electrodynamics, but cannot explain
the time arrow of radiation. In action-at-a-distance theories, there is no free
radiation, while the radiation reaction is the effect of advanced forces ‘caused’
by future absorbers. If the Universe remained transparent for all times in
some direction, an appropriately beamed emitter should not draw any power
according to the absorber theory. As it always seems to do so (Partridge 1973),
the absorber theory may even be ruled out empirically. If similarly applied to
gravitational fields, it might also be in conflict with the observed energy loss
of double pulsars.

General Literature: Wheeler and Feynman 1945, 1949, Hoyle and Narlikar
1995.
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The Thermodynamical Arrow of Time

The thermodynamical arrow of time is characterized by the increase of entropy
according to the Second Law. This law was first postulated by Rudolf Clausius
in 1865 as a consequence of Carnot’s theorem of 1824 when combined with
the just established equivalence of heat with other forms of energy (the First
Law of thermodynamics). It can be written in a general form by means of a
sum of external and internal changes of entropy as

dS

dt
=
{

dS

dt

}
ext

+
{

dS

dt

}
int

,

where

dSext =
dQ

T
and

{
dS

dt

}
int

≥ 0 . (3.1)

Here, S is phenomenologically defined as the entropy of a bounded system –
thereby exploiting reversible processes with (dS/dt)int = 0, while dQ is the
reversible (infinitely slow) inward heat flux through the system’s complete
boundary during a time interval dt. (See also the local form (3.39) of the
Second Law on p. 60.)

Conventionally, the heat flux is not written as a derivative dQ/dt, since
its integral Q(t) would not represent a ‘function of state’ – although it does,
of course, define the time-integrated net flux in the actual process. The first
term of dS/dt in (3.1) vanishes by definition for ‘thermodynamically closed’
systems. Since the whole Universe is defined as an absolutely closed system
(even if infinite), its total entropy, or the mean entropy of co-expanding vol-
ume elements, should according to this law evolve towards its maximum – the
so-called Wärmetod (heat death) of the world. The phenomenological thermo-
dynamical concepts used in (3.1), in particular the temperature, apply only
in situations of partial (local) equilibrium.

Statistical physics is now believed to provide an explanation and potential
generalization of phenomenological thermodynamics – including its Second
Law. While in principle all physical concepts are phenomenological, this term
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is used here to emphasize the presumed existence of conceivably complete
microscopic concepts that await the application of statistical methods.

While statistical considerations are indeed essential for the understanding
of thermodynamical concepts, statistics as a method of counting has nothing a
priori to do with dynamics. Therefore, it cannot by itself explain dynamically
‘irreversible’ processes – characterized by {dS/dt}int > 0. This requires addi-
tional assumptions, which often remain unnoticed, since they appear ‘natural’
to our prejudiced way of thinking in terms of ‘causes’ (exclusively in the past).
These hidden assumptions have therefore to be carefully investigated in order
to reveal the true origin of the thermodynamical arrow.

An attempt to explain this fundamental asymmetry on the basis of the
‘historical nature’ of the world, that is, by using the idea that the past is
‘fixed’ (and therefore neither requires nor allows statistical retrodiction) would
clearly represent a circular argument when starting from nothing but time-
symmetrically deterministic laws. This idea must itself be rooted in the time
asymmetry of the physical world. The existence of reliable knowledge or infor-
mation only about the past corresponds to a time-asymmetric physical relation
between documents and their sources, analogous to the asymmetric ‘causal’
relation between retarded electromagnetic fields and charged currents as their
advanced sources (Sect. 2.1). For example, light contains information about
objects in the more or less recent past. Similarly, all documents represent an
asymmetry in the physical world, and do not simply reflect the way boundary
conditions (such as initial or final conditions) are posed.

In a statistical description, ‘irreversible’ processes are of the form

improbable state −→
t

probable state ,

where the probability ratio is usually a huge number. These probabilities are
defined by the size or measure of certain sets of elementary states (called
‘representative ensembles’ by Tolman 1938), which contain the real state of
the considered system (a point in its microscopic configuration space) as a
member. This measure of probability changes as the state moves along its
trajectory through different such sets. If the representative ensembles are op-
erationally defined, for example by means of macroscopic preparation pro-
cedures, they are often themselves called macroscopic or thermodynamical
‘states’. This terminology has its origin in a description that is unaware of the
microscopic states (or rejects the concept of such a microscopic reality). The
dynamical justification of thermodynamical states is a major objective of a mi-
croscopic foundation of thermodynamics: why are certain sets of microscopic
states ‘representative’ in forming macroscopic states?

Irreversible processes of the above kind would statistically be more abun-
dant than those of the kind

improbable state −→
t

improbable state .

Their overwhelming occurrence in Nature can therefore be understood under
the presumption of improbable initial states. In an operational approach,
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such an assumption would simply be taken for granted: a consequence of
operations to be performed in time. In a cosmological context it requires a
cosmic initial condition. This has occasionally been called the Kaltgeburt (cold
birth) of the Universe, although a low temperature (kT much smaller than
energies of mechanical degrees of freedom) need not be its essential aspect
– see Sect. 5.3. However, this initial assumption appears quite unreasonable
precisely for statistical reasons, since (1) there are just as many processes of
the type

probable state −→
t

improbable state ,

and (2) far more of the kind

probable state −→
t

probable state .

The latter describe equilibrium. Hence, for statistical reasons we should expect
the world to be in the situation of a heat death, while the required improbable
initial condition needs an explanation that does not presume causality.

The first of these two arguments is the ‘reversibility objection’ (Umkehr-
einwand), formulated by Boltzmann’s friend and teacher Johann Joseph
Loschmidt. It is based on the fact that each trajectory has precisely one
time-reversed counterpart.1 If, for example, z(t) ≡ {qi(t), pi(t)}i=1,...,3N de-
scribes a trajectory in 6N -dimensional phase space (Γ -space) according to
the Hamiltonian equations, then the time-reversed trajectory, zT(−t) ≡
{qi(−t),−pi(−t)}, is also a solution of the equations of motion. If the en-
tropy S of a state z can be defined as a function of this state, S = F (z), with
F (z) = F (zT), then Loschmidt’s objection means that for every solution with
dS/dt > 0 there is precisely one corresponding solution with dS/dt < 0. In
statistical theories, F (z) is defined as a monotonic function (conveniently the
logarithm) of the size or measure of the mentioned set of states to which z
belongs. The property F (z) = F (zT) is then a consequence of the symmetry
character of the transformation z → zT, while the stronger objection (2) above
means that there are far more solutions with dS/dt ≈ 0, that is, S(t) ≈ Smax –
simply because this condition characterizes almost all of configuration space.

In order to justify the thermodynamical arrow of time statistically, one
therefore has to either derive the improbable initial conditions from an in-
dependent (time-asymmetric) cosmological assumption, or simply postulate
them in some form. The Second Law is by no means incompatible with deter-
ministic or T -symmetric dynamical laws; it is just extremely improbable and
1 Often, T (or CPT) symmetry of the dynamics is assumed for this argument.

This has misleadingly given rise to the by no means justified expectation that
the difficulties in deriving the Second Law may be overcome by dropping this
symmetry. However, as already pointed out in the Introduction, the crucial point
in Loschmidt’s argument is the time reversal symmetry of determinism itself (not
of its precise form), which is often reflected by the possibility of compensating
time reversal by another symmetry operation (see also Sect. 3.4).
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in conflict with unbiased statistical reasoning. The widespread ‘double stan-
dard’ of readily accepting improbable initial conditions while rejecting similar
final ones has been duly criticized by Price (1996).

Another argument against the statistical interpretation of irreversibility,
the recurrence objection (or Wiederkehreinwand), was raised much later by
Ernst Friedrich Zermelo, a collaborator of Max Planck at a time when the
latter still opposed atomism, and instead supported the ‘energeticists’, who
attempted to understand energy and entropy as fundamental ‘substances’.
This argument is based on a mathematical theorem due to Henri Poincaré,
which states that every bounded mechanical system will return as close as
one wishes to its initial state within a sufficiently large time. The entropy of
a closed system would therefore have to return to its former value, provided
only the function F (z) is continuous. This is a special case of the quasi-
ergodic theorem which asserts that every system will come arbitrarily close to
any point on the hypersurface of fixed energy (and possibly with other fixed
analytical constants of the motion) within finite time.

While all these theorems are mathematically correct, the recurrence objec-
tion fails to apply to reality for quantitative reasons. The age of our Universe
is much smaller than the Poincaré recurrence times even for a gas consist-
ing of no more than a few tens of particles. Their recurrence to the vicinity
of their initial states (or their coming close to any other similarly specific
state) can therefore be excluded in practice. Nonetheless, some ‘foundations’
of irreversible thermodynamics in the literature rely on formal idealizations
that would lead to strictly infinite Poincaré recurrence times (for example
the ‘thermodynamical limit’ of infinite particle number). Such assumptions
are not required in our Universe of finite age, and they would not invalidate
the reversibility objection (or the equilibrium expectation, mentioned above).
However, all foundations of irreversible behavior have to presume some very
improbable initial conditions.

The theory of thermodynamically irreversible processes must therefore ad-
dress two main problems:

1. The investigation of realistic mechanisms which describe the dynamical
evolution away from certain (presumed) improbable initial states. This is
usually achieved in the form of ‘master equations’, which mimic a law-like
T-asymmetry – analogous to Ritz’s retarded action-at-a-distance in elec-
trodynamics. In contrast to electrodynamics, they describe the dynamics
of ensembles, equivalent to an effective stochastic dynamics for the indi-
vidual states (applicable in the ‘forward’ direction of time). These mecha-
nisms should be able to justify the representative ensembles (macroscopic
states) and even describe the emergence of order (Sect. 3.4).

2. The precise nature of the required improbable initial states. This leads
again to the quest for an appropriate cosmic initial condition, similar to
the global condition Aµ

in = 0 in the early Universe that would be able to
explain the radiation arrow (see Sects. 2.2 and 5.3).
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3.1 The Derivation of Classical Master Equations

Statistical physics is concerned with systems consisting of a large number
of microscopic constituents which are known to obey quantum mechanics.
However, quantum theory is still haunted by interpretational problems, in
particular regarding the nature of probabilistic ‘quantum events’. These are
usually understood as representing a fundamental irreversible part of dynam-
ics, that might even be the true source of thermodynamical irreversibility.
In contrast, classical mechanics is deterministic and well defined. Therefore,
classical statistical mechanics will be formulated and discussed in this chap-
ter for conceptual consistency and later comparison with quantum statistical
mechanics – even though it is based on an incorrect microscopic theory. Most
thermodynamic properties of a gas, for example, can in fact be modelled by
a system of interacting classical mass points – see (4.21). While the present
section follows historical routes, a more general and systematic formalism,
that can later also be used in quantum theory, will be presented in Sect. 3.2.

3.1.1 µ-Space Dynamics and Boltzmann’s H-Theorem

The complete dynamical state of a mechanical system of N classical particles
(distinguishable mass points) can either be represented by one point in its
6N -dimensional phase space (‘Γ -space’), or by N numbered points in six-
dimensional ‘µ-space’ (the single-particle phase space). These N points form
a discrete distribution in µ-space. If the particles are not distinguished from
one another, this is exactly equivalent to an ensemble of N ! points in Γ -
space that results from all particle permutations. Because of the large number
of particles forming macroscopic systems (of order 1023), Boltzmann (1866,
1896) used continuous (smoothed) distributions (or phase space densities)
ρµ(p, q) to describe them. This plausible approximation will turn out to have
important consequences.

Two types of argument are in general used to justify it:

1. The formal thermodynamical limit N → ∞. This represents an idealiza-
tion that would lead to infinite Poincaré recurrence times. Mathematical
proofs may then appear rigorous, while in fact they are approximations
– valid only for the early (far from equilibrium) stage of our Universe.
Though often convenient, this procedure may conceal physically impor-
tant aspects, in particular when interchanging the thermodynamical limit
with the limit t → ∞ (physically a quantitative question).

2. Slightly ‘uncertain’ positions and momenta, defining small volume ele-
ments in Γ -space, ∆VΓ = (∆Vµ)N , instead of points. They describe in-
finite ensembles of states, and they may again lead to smooth distribu-
tions, since N ! such volume elements easily overlap even for a dilute gas,
as N !∆VΓ ≈ (N∆Vµ)N according to Stirling’s approximation. Although
uncertainties slightly larger than distances between the particles are suf-
ficient for the smoothing, they will turn out to have drastic dynamical
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consequences for many interacting particles. However, these uncertainties
cannot be based on the quantum mechanical uncertainty relations with
their corresponding phase space cells of size h3N , since equivalent prob-
lems reappear in quantum theory if phase space points are consistently
replaced by wave functions (see Sect. 4.1.1).

The time dependence of an individual point {pi(t), qi(t)} in Γ -space (with
i = 1, . . . , 3N), described by Hamilton’s equations, is equivalent to the si-
multaneous time dependence of all N points in µ-space. Therefore, the time
dependence of an ensemble in Γ -space (represented by a distribution ρΓ ) de-
termines that of the corresponding density ρµ. In contrast to the dynamics in
Γ -space (Sect. 3.1.2), however, this dynamics is not ‘autonomous’: the time
derivative of a non-singular density ρµ is not determined by ρµ. The reason is
that ρΓ cannot be recovered from ρµ in order to determine the latter’s time
derivative from that of the former. The mapping of Γ -space distributions on
µ-space distributions cannot be uniquely inverted, as it destroys information
about correlations between the particles (see also Fig. 3.1 and the subsequent
discussion). The smooth µ-space distribution may, for example, characterize a
‘macroscopic state’ in the sense mentioned in the introduction to this chapter.
Therefore, the envisioned chain of computation

ρµ −→ ρΓ
H−→ dρΓ

dt
−→ ∂ρµ

∂t
, (3.2)

which would be required to derive an autonomous dynamics for ρµ, is broken at
its first link. Boltzmann’s attempt to bridge this gap by statistical arguments
will turn out to be the source of the time direction asymmetry in his statistical
mechanics, and similarly in other formulations of irreversible processes. His
procedure specifies a direction in time in a phenomenologically justified way,
although it was originally meant to represent a general approximation rather
than a modification of the Hamiltonian dynamics. One must then ask under
what circumstances it may be valid.

Boltzmann postulated a stochastic dynamical law of the form

∂ρµ

∂t
=
{

∂ρµ

∂t

}
free+ext

+
{

∂ρµ

∂t

}
collision

. (3.3)

Its first term is defined to describe particle motion under external forces only.
It can be written as a continuity equation in 6-dimensional µ-space:{

∂ρµ

∂t

}
free+ext

= −divµjµ := −∇q·(q̇ρµ) −∇p·(ṗρµ)

= −∇q·
( p

m
ρµ

)
−∇p·(F extρµ) , (3.4)

where jµ is the current density in µ-space. In the absence of particle inter-
actions this equation would describe the dynamics of the ‘phase space fluid’
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exactly. It represents the local conservation of probability in µ-space accord-
ing to the deterministic Hamiltonian equations, which hold separately for
each particle in this case. Each point in µ-space (each single-particle state)
moves continuously on a trajectory that is governed by the external forces
F ext, thereby retaining its individual probability which was determined by
the initial condition for ρµ.

For the second (non-trivial) term, Boltzmann proposed his Stoßzahlansatz
(collision equation), which will be formulated here for simplicity under the
following assumptions:

(1) F ext = 0 ‘no external forces’,
(2) ρµ(p, q, t) = ρµ(p, t) ‘homogeneous distribution’.

The second condition is dynamically consistent for translation-invariant forces.
From these assumptions one obtains {∂ρµ/∂t}free+ext = 0. The Stoßzahlansatz
is then written in the plausible form

∂ρµ

∂t
=
{

∂ρµ

∂t

}
collision

= gains − losses , (3.5)

that is, as a balance equation. Its two terms on the RHS can be explicitly
written in terms of transition rates w(p1p2; p′

1p
′
2) for particle pairs scattered

from p′
1p

′
2 to p1p2. They are usually (in a low density approximation) deter-

mined by the two-particle scattering cross-section, and they have to satisfy
certain conservation laws. Because of this description in terms of rates for
discontinuous changes of momenta, the collisions cannot be described by a
local conservation of probability in µ-space, as in (3.4).

This Stoßzahlansatz (3.5) reads explicitly

∂ρµ(p1, t)
∂t

=
∫ [

w(p1p2;p′
1p

′
2)ρµ(p′

1, t)ρµ(p′
2, t)

− w(p′
1p

′
2; p1p2)ρµ(p1, t)ρµ(p2, t)

]
d3p2d3p′1d

3p′2 . (3.6)

It forms the prototype of a master equation as an irreversible balance equation
based on probabilistic transition rates. Because of their time asymmetry, these
master equations cannot be generally valid approximations. They may hold
for special solutions, which thus characterize an arrow of time. These solutions
cannot even be particularly frequent among all other solutions.

For further simplification, invariance of the transition rates under collision
inversion,

w(p1p2;p′
1p

′
2) = w(p′

1p
′
2;p1p2) , (3.7)

will be assumed. It may be derived from invariance under space reflection and
time reversal, although these two symmetries do not necessarily have to be
separately valid. The Stoßzahlansatz then assumes the form
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∂ρµ(p1, t)
∂t

=
∫

w(p1p2;p′
1p

′
2)
[
ρµ(p′

1, t)ρµ(p′
2, t)

− ρµ(p1, t)ρµ(p2, t)
]
d3p2d3p′1d

3p′2 . (3.8)

In order to demonstrate the irreversibility described by the Stoßzahlansatz , it
is useful to consider Boltzmann’s H-functional

H[ρµ] :=
∫

ρµ(p, q, t) ln ρµ(p, q, t)d3p d3q = N ln ρµ , (3.9)

proportional to the mean logarithm of probability. The mean f̄ of a function
f(p, q) is defined here as f̄ :=

∫
f(p, q)ρµ(p, q)d3p d3q/N , in accordance with

the normalization
∫

ρµ(p, q)d3p d3q = N . Because of this fixed normalization,
the H-functional is large for narrow distributions, but small for wide ones.
An ensemble of discrete points (or δ-distributions), for example, would lead
to H[ρµ] = ∞, while a constant distribution on a region of volume Vµ, ρµ =
N/Vµ, gives H[ρµ] = N(lnN − lnVµ). Note that H is defined only up to
an additive constant that depends on the choice of a unit volume element of
phase space in (3.10).

One may now derive Boltzmann’s H-theorem,

dH[ρµ]
dt

≤ 0 , (3.10)

by differentiating H[ρµ] with respect to time, while using the collision equation
in the form (3.8):

dH[ρµ]
dt

= V

∫
∂ρµ(p1, t)

∂t

[
ln ρµ(p1, t) + 1

]
d3p1

= V

∫
w(p1p2;p′

1p
′
2)
[
ρµ(p′

1, t)ρµ(p′
2, t) − ρµ(p1, t)ρµ(p2, t)

]
× [

ln ρµ(p1, t) + 1
]
d3p1d3p2d3p′1d

3p′2 . (3.11)

The last expression may be conveniently reformulated by using the symme-
tries under collision inversion given by (3.7), and under particle permutation,
w(p1p2;p′

1p
′
2) = w(p2p1;p′

2p
′
1). (Otherwise this combined symmetry would

be required to hold for short chains of collisions, at least.) Rewriting the inte-
gral in (3.11) as a symmetric sum of the four equivalent permutations of the
integration variables, one obtains

dH[ρµ]
dt

=
V

4

∫
w(p1p2;p′

1p
′
2)
[
ρµ(p′

1, t)ρµ(p′
2, t) − ρµ(p1, t)ρµ(p2, t)

]
×
{

ln
[
ρµ(p1, t)ρµ(p2, t)

]− ln
[
ρµ(p′

1, t)ρµ(p′
2, t)

]}
d3p1d3p2d3p′1d

3p′2 ≤ 0 .

(3.12)
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This integrand is manifestly non-positive, since the logarithm is a monotoni-
cally increasing function of its argument. This completes the proof of (3.10),
which would apply to any monotonic function, not just the logarithm.

In order to recognize the relation between the H-functional and entropy,
one may consider the Maxwell distribution ρM, given by

ρM(p) :=
N

V

exp(−p2/2mkT )√
(2πmkT )3

. (3.13)

Its H-functional H[ρM] has two important properties:

1. It represents a minimum for given energy , E =
∫

ρµ(p)[p2/2m]d3p ≈∑
i p2

i /2m. A proof will be given in a somewhat more general form in
Sect. 3.1.2. (Statistical reasoning unconstrained by a given energy value
would predict infinite energy, since the phase space volume grows non-
relativistically as its (3N/2) th power.) ρM must therefore represent an
equilibrium distribution (with maximum entropy) under the Stoßzahl-
ansatz if the transition probabilities are assumed to conserve energy.

2. One obtains explicitly

H[ρM] = V

∫
ρM(p) ln ρM(p)d3p

= −N

(
ln

V

N
+

3
2

lnT + constant
)

. (3.14)

This expression may be compared with the entropy of a mole of a
monatomic ideal gas according to phenomenological thermodynamics:

Sideal(V, T ) = R

(
lnV +

3
2

lnT

)
+ constant′ , (3.15)

with another constant that may depend on the particle number N ac-
cording to its derivation. The second constant may then be chosen such
that

Sideal = −kH[ρM] =: Sµ[ρM] , (3.16)

where k = R/N .

The entropy of an ideal gas can thus be identified with the measure of the
width of the molecular distribution in µ-space. The Stoßzahlansatz success-
fully describes the evolution of this distribution towards a Maxwell distribu-
tion with its parameter T that determines the conserved total energy. This
Lagrange parameter – see (3.19) – is thereby recognized as the temperature.

This important success seems to be the origin of the ‘myth’ of the statistical
foundation of the thermodynamical arrow of time. However, statistical argu-
ments applied to a gas can neither explain why the Stoßzahlansatz is a good
approximation in one and only one direction of time, nor tell us whether Sµ is
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always an appropriate definition of entropy. It will indeed turn out to be in-
sufficient when correlations between particles become essential, as is the case,
for example, for real gases or solid bodies. Taking them into account requires
more general concepts, which were first proposed by Gibbs. His approach will
also allow us to formulate the exact ensemble dynamics in Γ -space, although
it cannot yet explain the origin of the thermodynamical arrow of time (that
is, of the low-entropy initial conditions).

3.1.2 Γ -Space Dynamics and Gibbs’ Entropy

In the preceding section, Boltzmann’s smooth phase space density ρµ was jus-
tified by means of small uncertainties in particle positions and momenta. It
describes an infinite number (a continuum) of possible single-particle states,
for example each particle represented by a small volume element ∆Vµ. An ob-
jective (‘real’) state would instead be described by a point (or a δ-distribution)
in Γ -space, or by a sum over N δ-functions in µ-space. This would then lead
to an infinite value of Boltzmann’s H-functional, or negative infinite entropy.

However, the finite value of Sµ[ρµ], derived from the smooth µ-space dis-
tribution, is not just a measure of this arbitrary smoothing procedure (for
example representing the size of the volume elements ∆Vµ). If N points are
replaced by small but overlapping volume elements, this leads to a smooth
distribution ρµ whose width reflects that of the discrete (real) distribution
of particles. Therefore, Sµ characterizes the real physical state. The formal
‘renormalization of entropy’, which is part of this smoothing procedure, adds
an infinite positive contribution to the infinite negative entropy corresponding
to a point in such a way that the finite result Sµ[ρµ] is physically meaningful.
The ‘representative ensemble’ obtained in this way defines a finite measure of
probability (in the sense of the introduction to this chapter) for the N ! points
in Γ -space. It depends only slightly on the precise smoothing conditions, pro-
vided the discrete µ-space distribution is already smooth in the mean.

The ensemble concept introduced by Josiah Willard Gibbs (1902) dif-
fers from Boltzmann’s at the very outset. He considered probability densities
ρΓ (p, q) with

∫
ρΓ (p, q)dp dq = 1 – from now on writing p := p1, . . . , p3N ,

q := q1, . . . , q3N and dp dq := d3Npd3Nq for short, which are meant to describe
incomplete information (‘ignorance’) about microscopic degrees of freedom.
For example, a probability density may characterize a macroscopic (incom-
plete) preparation procedure. Boltzmann’s H-functional is then replaced by
Gibbs’ formally analogous extension in phase η :

η[ρΓ ] := ln ρΓ =
∫

ρΓ (p, q) ln ρΓ (p, q)dp dq . (3.17)

It leads generically to a finite ensemble entropy SΓ := −kη[ρΓ ]. For a probabil-
ity density that is constant on a phase space volume element of size ∆VΓ (while
vanishing elsewhere), one has η[ρΓ ] = − ln ∆VΓ . The entropy SΓ = k ln ∆VΓ
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is a logarithmic measure of the size of this volume element: it does not char-
acterize a real state, as Boltzmann’s entropy was supposed to do.

For a smooth distribution of statistically independent particles, ρΓ =∏N
i=1

[
ρµ(pi, qi)/N

]
, one nevertheless obtains

η[ρΓ ] =
N∑

i=1

∫ [
ρµ(pi, qi)/N

]
ln
[
ρµ(pi, qi)/N

]
d3pid3qi

=
∫

ρµ(p, q)
[
ln ρµ(p, q) − lnN

]
d3p d3q = H[ρµ] − N lnN . (3.18)

In this important special case one thus recovers Boltzmann’s statistical en-
tropy Sµ (with all its advantages) – except for the term kN lnN ≈ k lnN !
that has to be interpreted as the mixing entropy of the gas with itself. It is
absent in Boltzmann’s approach, since his µ-space distribution does not distin-
guish between particle permutations even though they define different states.
While merely an additive constant in systems with fixed particle number, this
self-mixing entropy leads to observable consequences at variance with experi-
mental results in situations where the particle number may vary dynamically.
Large particle numbers would then acquire far too large statistical weights. In
particular, the specific volume V/N in (3.14) would then be replaced by the
total volume V . This does even appear consistent (though empirically wrong),
since particles forming an ideal gas are independent of one another, so each
one is constrained only to the total volume V .

Since empirically not required, this self-mixing entropy was generally over-
looked in Boltzmann’s approach, although it had already been known as a
problem to Maxwell. It can be resolved only by applying Gibbs’ ensemble
concept to quantum states defined in the occupation number representation
for field modes (field quantization).2 Only after borrowing this result from
quantum field theory may one identify Boltzmann’s entropy with an ensemble
entropy (representing incomplete knowledge) for non-interacting ‘particles’.
2 The popular argument that this self-mixing entropy has to be dropped simply be-

cause of the indistinguishability of particles is wrong, since conceptually different
(even though operationally indistinguishable) states would have to be counted
separately for statistical purposes. Classical states differing by a permutation of
particles would dynamically retain their individuality. The use of µ-space distri-
butions, such as in Boltzmann’s statistical mechanics, is also inconsistent from a
classical point of view, unless these probability densities were multiplied by the
weight factors N ! again. The concepts of indistinguishability and identity are dif-
ferent in principle (see also Saunders 2005 and references therein for a discussion).
The identity of states with interchanged ‘particles’ can be understood in terms
of quantum fields – see also (4.21), since the permutation of two identical wave
packets at different places would represent an identity operation (Zeh 2003). Even
the difference N ln N − ln N ! ≈ N − ln N , usually neglected in these arguments,
can be understood: it counts states with different particle numbers which must
contribute to open systems that permit particle exchange, described by a grand
canonical distribution with given chemical potential (see p. 71).
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Furthermore, SΓ is maximized under the constraint of fixed mean en-
ergy, Ē =

∫
H(p, q)ρΓ (p, q)dp dq, by the canonical (or Gibbs’) distribution

ρcan := Z−1 exp
[−H(p, q)/kT

]
. The latter can be derived from a variational

procedure with the additional constraint of fixed normalization of probability,∫
ρΓ (p, q)dpdq = 1, that is, from

δ

{
η[ρΓ ] + α

∫
ρΓ (p, q)dp dq + β

∫
H(p, q)ρΓ (p, q)dp dq

}
(3.19)

=
∫ [

ln ρΓ (p, q) + (α + 1) + βH(p, q)
]
δρΓ (p, q)dp dq = 0 ,

with Lagrange parameters α and β for fixed normalization and energy. The
solution is

ρcan = exp
{
− [

βH(p, q) − α − 1
]}

=: Z−1 exp
[− βH(p, q)

]
, (3.20)

and one recognizes β = 1/kT and the partition function (sum over states)
Z :=

∫
e−βH(p,q)dp dq = e−α−1. By using the Ansatz ρ = eχ+∆χ with

eχ := ρcan, an arbitrary (not necessarily small) variation ∆χ(p, q), the above
constraints, and the general inequality ∆χe∆χ ≥ ∆χ, one may even show
that the canonical distribution represents an absolute maximum of this en-
tropy. In statistical thermodynamics (and in contrast to phenomenological
thermodynamics), entropy is thus a more fundamental concept than tem-
perature, which applies only to special (canonical or equivalent) probability
distributions, while a formal entropy is defined for all ensembles.

One can similarly show that SΓ is maximized by the microcanonical en-
semble ρmicro ≡ δ

(
E − H(p, q)

)
if constrained by the condition of fixed en-

ergy , H(p, q) = E. Although essentially equivalent for most applications, the
canonical and microcanonical distributions characterize two different situa-
tions: systems with and without energy exchange with a heat bath.

For non-interacting particles, H =
∑

i

[
p2

i /2m + V (qi)
]
, one obtains from

(3.20) a factorizing canonical distribution ρΓ (p, q) =
∏

i

[
ρµ(pi, qi)/N

]
, as

already considered in (3.18), with a µ-space distribution given by ρµ(p, q) ∝
N exp

{
− [

p2/2m+V (q)
]
/kT

}
. This is a Maxwell distribution multiplied by

the barometric formula. However, the essential advantage of the canonical Γ -
space distribution (3.20) over Boltzmann’s is its ability to describe equilibrium
correlations between particles. This has been demonstrated in particular by
the cluster expansion of Ursell and Mayer (see Mayer and Mayer 1940), in more
recent terminology called an expansion by N -point functions, and technically
a predecessor of Feynman graphs. However, the distribution (3.20) must not
include macroscopic degrees of freedom (such as the position and shape of a
solid body). In the case of a rotationally symmetric Hamiltonian, for example,
the solid body in thermodynamical equilibrium would otherwise have to be
physically characterized by a symmetric distribution of all its orientations in
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space rather than by a definite orientation. Similarly, its center of mass would
always have to be expected close to the minimum of an external potential
(see also Fröhlich 1973). These macroscopic variables are dynamically robust
rather than behaving ergodically. In order to calculate a thermodynamically
meaningful representative ensemble according to (3.19), one has to impose
additional constraints to fix their values (see Sect. 3.3.1).

Gibbs’ extension in phase η thus appears superior to Boltzmann’s H-
functional (3.9). Unfortunately, the corresponding ensemble entropy SΓ has
two (related) defects, which render it entirely unacceptable for representing
physical entropy: (1) in stark contrast to the Second Law it remains constant
under exact (Hamiltonian) dynamics, and (2) it is obviously not an additive
(or extensive) quantity, that would define an entropy density .

In order to confirm the first statement, one may formulate the exact en-
semble dynamics in Γ -space in analogy to (3.4) by using the 6N -dimensional
continuity equation

∂ρΓ

∂t
+ divΓ (ρΓ vΓ ) = 0 . (3.21)

It describes the conservation of probabilities for volume elements moving
through Γ -space by forming a bunch of trajectories. The 6N -dimensional ve-
locity vΓ may be replaced by means of the Hamiltonian equations,

vΓ ≡ (ṗ1, . . . , ṗ3N , q̇1, . . . , q̇3N ) =
(
−∂H

∂q1
, . . . ,− ∂H

∂q3N
,
∂H

∂p1
, . . . ,

∂H

∂p3N

)
.

(3.22)
So when rewriting (3.21) by means of the identity

divΓ (ρΓ vΓ ) = ρΓ divΓ vΓ + vΓ ·∇Γ ρΓ ,

one may use the Liouville theorem,

divΓ vΓ = − ∂2H

∂p1∂q1
−· · ·− ∂2H

∂p3N∂q3N
+

∂2H

∂q1∂p1
+· · ·+ ∂2H

∂q3N∂p3N
≡ 0 , (3.23)

which describes an incompressible ‘fluid’ in Γ -space. One thus obtains the
Liouville equation,

∂ρΓ

∂t
= −vΓ ·∇Γ ρΓ =

3N∑
n=1

(
∂H

∂qn

∂ρΓ

∂pn
− ∂H

∂pn

∂ρΓ

∂qn

)
=
{
H, ρΓ

}
, (3.24)

where {a, b} defines the Poisson bracket for two functions a and b. This equa-
tion represents the exact Hamiltonian dynamics for ensembles ρΓ (p, q, t) under
the assumption of individually conserved probabilities.

From this analogy with an incompressible fluid in space one may expect
the ensemble entropy SΓ (the measure of ‘extension in phase’) to remain con-
stant in time. This can indeed be confirmed by differentiating (3.17), inserting
(3.24), and repeatedly integrating by parts:
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dSΓ

dt
=
∫

(ln ρΓ + 1)ρ̇Γ dp dq

=
∫

(ln ρΓ + 1)
3N∑
n=1

(
∂H

∂qn

∂ρΓ

∂pn
− ∂H

∂pn

∂ρΓ

∂qn

)
dp dq

= −
∫ 3N∑

n=1

(
∂H

∂qn

∂ ln ρΓ

∂pn
− ∂H

∂pn

∂ ln ρΓ

∂qn

)
ρΓ dpdq

= −
∫ 3N∑

n=1

(
∂H

∂qn

∂ρΓ

∂pn
− ∂H

∂pn

∂ρΓ

∂qn

)
dpdq = 0 . (3.25)

A more instructive proof may be obtained by multiplying the Liouville equa-
tion (3.24) by the imaginary unit i in order to cast the dynamics into the form
of a Schrödinger equation,

i
∂ρΓ

∂t
= i

{
H, ρΓ

}
=: L̂ρΓ . (3.26)

The operator L̂ (acting on probability densities) is called the Liouville opera-
tor . In accordance with this analogy one may use the formal solution ρΓ (t) =
exp(−iL̂t)ρΓ (0), valid if ∂L̂/∂t = 0 (see Prigogine 1962). The Liouville oper-
ator is Hermitean with respect to the inner product 〈ρΓ , ρΓ

′〉 :=
∫

ρ∗Γ ρ′Γ dpdq

(that is, 〈ρΓ , L̂ρ′Γ 〉 = 〈L̂ρΓ , ρ′Γ 〉), as can again be shown by partial integra-
tion. This means that the Liouville equation conserves these inner products.
In particular, for ρ′Γ = ln ρΓ , one has

d
dt

〈ρΓ , ln ρΓ 〉 =
d
dt

ln ρΓ = 0 , (3.27)

since the Liouville operator, when applied to a function f(ρΓ ), satisfies the
same Leibniz chain rule L̂f(ρΓ ) = (df/dρΓ )L̂ρΓ as the time derivative.

The norm corresponding to this inner product, ‖ρΓ ‖2 = 〈ρΓ , ρΓ 〉 =∫
ρ2

Γ dpdq = ρΓ , is then also dynamically invariant. It represents a linear
measure of extension in phase (a linear ensemble entropy3), and thus has to
be distinguished from the probability norm

∫
ρΓ dpdq = 1̄ = 1. The conser-

vation of these measures under a Liouville equation confirms in turn that the
Γ -space volume is an appropriate measure for non-countable sets of states
(Ehrenfest and Ehrenfest 1911): the thus defined ‘number’ of states does not
change under an appropriately defined determinism. A more fundamental jus-
tification of this measure can be derived from the conservation of probabilities
of discrete quantum states (see Sect. 4.1).
3 See Wehrl (1978) for further measures, which are, however, not always monoton-

ically related to one another. The conventional logarithmic measure is usually
preferred because of the resulting additivity of the entropies of statistically inde-
pendent subsystems.
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The conservation of ensemble entropy, implied by using the exact dynam-
ics, is unacceptable in a statistical foundation of physical entropy. Therefore,
Gibbs introduced a more subtle concept of entropy, that was motivated by his
famous ink drop analogy : A bit of ink dropped into a glass of water is assumed
to behave as an incompressible fluid when the water is stirred. Although its
volume must remain constant, the whole glass of water will soon appear homo-
geneous in light blue. Only a microscopic examination would reveal that the
ink had simply rearranged itself into many thin tubes, which are everywhere
dense in spite of occupying only a volume of the initial size of the droplet.

Therefore, Gibbs defined his new entropy SGibbs by means of a coarse-
grained distribution ρcg, obtained by averaging over small (but fixed) 6N -
dimensional volume elements ∆Vm (m = 1, 2, . . .) which cover the whole Γ -
space:

ρcg(p, q) =
1

∆Vm

∫
∆Vm

ρ(p′, q′)dp′dq′ =:
∆pm

∆Vm
, for p, q ∈ ∆Vm . (3.28)

The resulting ensemble entropy is then given by

SGibbs := −kη[ρcg] = −k
∑
m

∆pm ln
∆pm

∆Vm
. (3.29)

As already mentioned in connection with the smoothing of Boltzmann’s µ-
space distributions, the justification of this procedure by means of the quan-
tum mechanical uncertainty relations, that is, by coarse-graining over phase
space cells of size h3N , may be tempting, but would clearly be inconsistent with
classical mechanics. The consistent quantum mechanical treatment (Chap. 4)
leads again to the conservation of ensemble entropy (now for ensembles of
wave functions rather than Γ -space points). ‘Quantum cells’ of size h3N can
be justified only as convenient units of phase space volume in order to ob-
tain the same normalization of entropy as in the classical limit of quantum
statistical mechanics, where ensemble entropy vanishes for pure states, which
correspond to phase space ‘cells’ – see (4.21). However, these quantum cells do
not define uncertain initial conditions which might explain quantum indeter-
minism (as often claimed); ensemble entropy is conserved under Hamiltonian
and Schrödinger dynamics.

The increase in Gibbs’ entropy can be understood according to the clas-
sical ink drop analogy. While the volume of the compact ink droplet is only
slightly increased by moderate coarse-graining, that of a dense web of thin
tubes (obtained by stirring) is considerably enlarged. Even though the coarse-
graining itself is artificial, its efficiency depends on the shape of the volume
to which it is applied. This is similar to using Boltzmann’s smooth µ-space
densities, which characterize properties of the discrete particle distributions.
Since there evidently exist far more droplet shapes with a large surface than
compact ones, the former have to be regarded as more probable. For statistical
reasons one should hardly ever find a compact droplet (which is confirmed for
three-dimensional ‘droplets’ in the absence of any surface tension).
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However, there remains an essential difference between a droplet of ink
in water and a dynamical volume element in phase space. While the exten-
sion and shape of a droplet are real physical properties, the real state of a
classical mechanical system is represented by a point in phase space. Coarse-
graining of the ink drop may be likened to Boltzmann’s smoothing procedure
in-so-far as it preserves properties of the discrete particle distribution, while
Gibbs’ entropy for a real state p, q, SGibbs = f(p, q) := k ln ∆Vm0 (resulting if
p, q ∈ ∆Vm0), would be entirely artificial. This difference would be reduced if
individual classical state were identified with N ! points in Γ−space.

Gibbs’ procedure is therefore usually applied to presumed phase space
densities, which can only represent incomplete information. His entropy then
measures the enlargeability by coarse-graining of a certain state of knowledge
– not by coarse-graining of a real physical state. Its increase, dSGibbs/dt ≥ 0,
under a deterministic (information-conserving) dynamical law describes the
transformation of macroscopic information, assumed to be present initially ,
into fine-grained information, that is then regarded as ‘irrelevant’ and dy-
namically neglected (Sect. 3.2). However, this procedure may be in conflict
with the idea of entropy as an objective physical quantity that is independent
of any information held by an observer. This fundamental problem will be
addressed again in Sect. 3.3 and later chapters.

Similar to the problem that arose for µ-space densities in (3.2), the coarse-
graining cannot be uniquely inverted, since it destroys information. The in-
tended chain of calculation,

ρcg −→ ρ
L̂−→ ∂ρ

∂t
−→ ∂ρcg

∂t
, (3.30)

is again broken at its first link. A new autonomous dynamics has therefore
been proposed for ρcg, in analogy to the Stoßzahlansatz , by complementing
the Hamiltonian dynamics with a dynamical coarse-graining, applied in small
but finite time steps ∆t:

{
∂ρcg

∂t

}
master

:=

[
e−iL̂∆tρcg

]cg
− ρcg

∆t
. (3.31)

In this form it may also be regarded as a variant of a ‘unifying principle’
that was proposed as a stochastic process by R.M. Lewis (1967). Instead of
dynamically applying Gibbs’ coarse-graining in (3.31), Lewis suggested max-
imizing the entropy in each dynamical step under the constraint of certain
fixed ‘macroscopic’ quantities (see also Jaynes’ theory in Sect. 3.3.1).

Equation (3.31) defines reasonable dynamics if the corresponding probabil-
ity increments ∆∆pm – see (3.28) – are proportional to ∆t for small but finite
time intervals ∆t, thus describing transition rates between the cells ∆Vm. This
important condition will be discussed in a more general form in Sect. 3.2, and
later for deriving the Pauli equation (4.18). Master equations such as (3.31)
ensure a monotonic entropy increase. Their approximate validity requires that
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Fig. 3.1. Transformation of information about particle momenta into information
about correlations between them as the basis of the H-theorem (symbolic, for non-
central collisions)

the arising microscopic (fine-grained) information remains dynamically irrele-
vant for the evolution of the coarse-grained distribution. Except in the case of
equilibrium, this cannot simultaneously be true in different directions of time.

The meaning of Boltzmann’s Stoßzahlansatz (3.6) can be similarly un-
derstood, as it neglects all particle correlations, which are thus regarded as
fine-grained information, after they have formed in collisions. It is again based
on the assumption that the interval ∆t is finite and large compared to colli-
sion times. The effect of an individual collision on the phase space distribution
may be illustrated in two-dimensional momentum space (Fig. 3.1): a collision
between two particles with small momentum uncertainties ∆p1 and ∆p2 leads
deterministically to a correlating (deformed) volume element of the same size
∆VΓ as the initial one. (In a realistic description, momenta would also be cor-
related with particle positions.) Subsequent neglect of the arising correlations
will then enlarge this volume element (∆V ′

Γ > ∆VΓ ). However, neglecting
such statistical correlations evidently has no effect on a phase space point .

The question as to the precise mathematical conditions under which cer-
tain systems are indeed ‘mixing’ in the sense of the plausible ink drop analogy
(in a stronger version referred to as K-systems after Kolmogorov) is rigorously
investigated, though under idealized conditions (such as ideal isolation), in er-
godic theory (see Arnol’d and Avez 1968, or Mackey 1989). Most non-ergodic
systems are pathological in forming sets of measure zero, or in being unstable
against unavoidable perturbations. In general, the quantitative question for
the time-scale of mixing between different regions in phase space is physically
far more relevant than exact formal theorems which apply only at infinite
times. Regions which don’t mix with others over long times may define robust
(usually macroscopic) properties, that do not have to represent constants of
the motion. On the other hand, certain non-ergodic aspects have been claimed
to apply under quite general circumstances (Yoccoz 1992), but no physically
relevant interpretation of these formal dynamical properties has ever been
given.

The strongest mixing is required for the finest conceivable coarse-graining.
This is given by its nontrivial limit ∆VΓ → 0 for the size of grains, which
defines a weak convergence for measures on phase space. It would again lead to
infinite Poincaré recurrence times for isolated systems. However, this is neither
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required in a universe of finite age, nor would it be realistic, since quantum
theory limits the entropy capacity available in the form of unlimited fine-
graining of classical phase space. For this quantum mechanical reason there
can be no ‘overdetermination’ of the microscopic past in spite of the validity
of microscopic causality (see footnote 1 of Chap. 2 and the end of Sect. 5.3).
However, it is important to note that all concepts of mixing are T -symmetric.
In order to explain the time asymmetry of the Second Law (‘irreversibility’),
they would have to be applied dynamically in a specific direction of time.

Dynamical coarse-graining as in (3.31) may also be based on an incom-
pletely known Hamiltonian. An ensemble of Hamiltonians defines a stochastic
dynamical model when used for calculating ‘forward’ in time. Even very small
uncertainties in the Hamiltonian may be sufficient to completely destroy fine-
grained information within a short time interval. Borel (1924) estimated the
effect of a gravitational force that would arise here on earth by the displace-
ment of a mass of the order of a few grams by a few centimeters at the distance
of Sirius. He thereby pointed out that this would lead to a completely differ-
ent microscopic state for the molecules forming a gas in a vessel under normal
conditions within seconds. Although distortions of the individual molecular
trajectories are extremely small, they would be amplified in each subsequent
collision by a factor of the order of l/R, the ratio of the mean free path over
the molecular radius. This extreme sensitivity to the environment describes
in effect a local microscopic indeterminism.4 In many situations, the micro-
scopic distortions may even co-determine macroscopic effects (thus inducing
an effective macroscopic indeterminism), as discussed, in particular, in the
theory of chaos (‘butterfly effect’).

The essence of Borel’s argument is that macroscopic systems, aside from
the whole Universe, may never be regarded as dynamically isolated – even
when thermodynamically closed in the sense of dSext = 0. The dynamical
coarse-graining that is part of the master equation (3.31) may indeed be as-
cribed to perturbations by the environment – provided the latter obey causal-
ity, that is, can be treated stochastically in the forward direction of time. This
important dynamical assumption is yet another form of the intuitive causality
discussed at the beginning of Chap. 2 as a major manifestation of the arrow of
time. The representative ensembles used in statistical thermodynamics may
therefore be understood within classical physics as those which arise (and
are maintained) by this stochastic nature of unavoidable perturbations, while
‘robust’ properties can be regarded as macroscopic.

While the intrinsic dynamics of a macroscopic physical system transforms
coarse-grained into fine-grained information, interactions with the environ-
ment thus transform the resulting fine-grained information very efficiently
into practically useless correlations with distant systems. The sensitivity of

4 While the effect of Borel’s gravitational distortion is drastically reduced for quan-
tized interactions, other environmental effects (such as decoherence) then become
important in producing an effective local indeterminism (see Sects. 4.3.4 and 5.3).
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the microscopic states of macroscopic systems to such interactions with their
environments strongly indicates that simultaneously existing opposite arrows
of time in different regions of the Universe would be inconsistent with one an-
other. This universality of the arrow of time seems to be its most important
property. Time asymmetry has therefore been regarded as a global symmetry
breaking . However, such a conclusion would not exclude the far more probable
situation of thermal equilibrium.

Lawrence Schulman (1999) has challenged the usual assumption of a uni-
versal arrow of time by suggesting explicit counterexamples. Most of them are
indeed quite illustrative in emphasizing the role of initial of final conditions,
but they appear unrealistic in our Universe (see Zeh 2005b). The situation
is similar to the symmetric boundary conditions suggested by Wheeler and
Feynman in electrodynamics, and discussed in Sect. 2.4. Local final conditions
at the present stage of the Universe or in the near future can hardly be retro-
caused by a low entropy condition at the big crunch (see also Casati, Chirikov
and Zhirov 2000), but may be essential during a conceivable recontraction era
of the Universe (see Sect. 5.3).

In order to reverse the thermodynamical arrow of time in a bounded sys-
tem, it would not therefore suffice to “go ahead and reverse all momenta”
in the system itself, as ironically suggested by Boltzmann as an answer to
Loschmidt. In an interacting Laplacean universe, the Poincaré cycles of its
subsystems could in general only be those of the whole Universe, since their
exact Hamiltonians must always depend on their time-dependent environ-
ment.

Time reversal including thermodynamical aspects has been achieved even
in practice for very weakly interacting spin waves (Rhim, Pines and Waugh
1971). The latter can be regarded as isolated systems to a very good approx-
imation (similar to electromagnetic waves in the absence of absorbers), while
allowing a sudden sign reversal of their spinor Hamiltonian in order to sim-
ulate time reversal (dt → −dt). These spin wave experiments demonstrate
that a closed system in thermodynamical equilibrium may preserve an arrow
of time in the form of hidden correlations. When a closed system has reached
macroscopic equilibrium, it appears T -symmetric, although its fine-grained
information determines the distance and direction in time to its low-entropy
state in the past (see also the Appendix for a numerical example). In con-
trast to such rare almost-closed systems, generic ones are strongly affected by
Borel’s argument, and cannot be reversed by local manipulations.

3.2 Zwanzig’s General Formalism of Master Equations

Boltzmann’s Stoßzahlansatz (3.6) for µ-space distributions and the master
equation (3.31) for coarse-grained Γ -space distributions can thus be under-
stood in a similar way. They describe the transformation of special macro-
scopic states into more probable ones, whereby the higher information con-
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tent of the former is transformed into macroscopically irrelevant information.
There are many other master equations based on the same strategy, and de-
signed to suit various purposes. Zwanzig (1960) succeeded in formalizing them
in a general and instructive manner that also reveals their analogy with re-
tarded electrodynamics as another manifestation of the arrow of time – see
(3.40)–(3.49) below.

The basic concept of Zwanzig’s formalism is defined by idempotent map-
pings P̂ , acting on probability distributions ρ(p, q):

ρ → ρrel := P̂ ρ , with P̂ 2 = P̂ and ρirrel := (1 − P̂ )ρ . (3.32)

Their meaning will be illustrated by means of several examples below, before
explaining the dynamical formalism. If these mappings reduce the information
content of ρ to what is then called its ‘relevant’ part ρrel, they may be regarded
as a generalized coarse-graining . In order to interpret ρrel as a probability
density again, one has to require its non-negativity and, for convenience,∫

ρreldpdq =
∫

ρdpdq = 1 , (3.33)

that is, ∫
ρirreldp dq =

∫
(1 − P̂ )ρdp dq = 0 . (3.34)

Reduction of information means

SΓ [P̂ ρ] ≥ SΓ [ρ] (3.35)

(or similarly for any other measure of ensemble entropy).
Using this concept, Lewis’ master equation (3.31), for example, may be

written in the generalized form{
∂ρrel

∂t

}
master

:=
P̂ e−iL̂∆tρrel − ρrel

∆t
. (3.36)

It would then describe a monotonic increase in the corresponding entropy
S[ρrel]. In contrast to Zwanzig’s approach, to be described below, phenomeno-
logical master equations such as Lewis’s unifying principle have often been
meant to describe a fundamental indeterminism that would replace reversible
Laplacean determinism.

In most applications, Zwanzig’s idempotent operations P̂ are linear and
Hermitean with respect to the inner product for probability distributions de-
fined above (3.27). In this case they are projection operators, which preserve
only some ‘relevant component’ of the original information. If such a projec-
tion obeys (3.33) for every ρ, it must leave the equipartition invariant, P̂1 = 1,
as can be shown by writing down the above-mentioned inner product of this
equation with an arbitrary distribution ρ and using the hermiticity of P̂ .
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Zwanzig’s dynamical formalism may also be useful for non-Hermitean or
even non-linear idempotent mappings P̂ (see Lewis 1967, Willis and Picard
1974). These mappings are then not projections any more: they may even
create new information. A trivial example for the creation of information
is the nonlinear mapping of all probability distributions onto a fixed one,
P̂ ρ := ρ0 for all ρ, regardless of whether or not they contain a component
proportional to ρ0. The physical meaning of such generalizations of Zwanzig’s
formalism will be discussed in Sects. 3.4 and 4.4. In the following we shall
consider information-reducing mappings.

Zwanzig’s ‘projection’ concept is deliberately kept general in order to per-
mit a wealth of applications. Examples introduced so far are coarse-graining,
P̂ cgρ := ρcg, as defined in (3.28), and the neglect of correlations between
particles by means of µ-space densities:

P̂µρ(p, q) :=
N∏

i=1

ρµ(pi, qi)
N

,

with

ρµ(p, q) :=
N∑

i=1

∫
ρ(p, q)δ3(p − pi)δ3(q − qi)dp dq . (3.37)

(As before, boldface letters represent three-dimensional vectors, while p, q
is a point in Γ -space.) The latter example defines a non-linear though
information-reducing ‘Zwanzig projection’. Most arguments applying to lin-
ear operators P̂ remain valid in this case when applied to the linearly re-
sulting µ-space distributions ρµ(p, q) (which do not live in Γ -space) rather
than to their products P̂µρ(p, q) (which do). In quantum theory, this ap-
proach is related to the Hartree or mean field approximation. Boltzmann’s
‘relevance concept’, which, when written as a Zwanzig projection, would map
real states onto products of smooth µ-space distributions, can then be written
as P̂Boltzmann = P̂µP̂cg. An obvious generalization of P̂Boltzmann can be defined
by a projection onto two-particle correlation functions. In this way, a complete
hierarchy of relevance concepts in terms of n-point functions (equivalent to a
cluster expansion) can be defined.

A particularly important concept of relevance, that is often not even no-
ticed, is locality (see, e.g., Penrose and Percival 1962). It is required in order to
define entropy as an extensive quantity – in accordance with the phenomeno-
logical equation (3.1) and with the concept of an entropy density s(r), such
that S =

∫
s(r)d3r. The corresponding Zwanzig projection of locality may be

symbolically written as
P̂localρ :=

∏
k

ρ∆Vk
. (3.38)

The RHS here is meant to describe the neglect of all statistical correlations
beyond a distance defined by the size of volume elements ∆Vk. The probabil-
ity distributions ρ∆V k

would here be defined by integrating over all external
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degrees of freedom. The volume elements have to be chosen large enough to
contain a sufficient number of particles in order to preserve dynamically rele-
vant short range correlations (as required for real gases, for example). In order
to allow volume elements ∆Vk with physically open boundaries, their prob-
ability distributions ρ∆V k

in (3.38) have to admit variable particle number
(density fluctuations) – as in a grand canonical ensemble.

Locality is presumed, in particular, when writing (3.1) in its differential
(local) form as a ‘continuity inequality’ for the entropy density s(r, t),

∂s

∂t
+ divjs ≥ 0 , (3.39)

with an entropy current density js(r, t). This form allows the definition of
phenomenological entropy-producing (hence positive) terms on the RHS in
order to replace the inequality by an equation (see Landau and Lifschitz 1959
or Glansdorff and Prigogine 1971). An example is the source term κ(∇T )2/T 2

in the case of heat conduction, where κ is the heat conductivity.
The general applicability of (3.39) demonstrates that the concept of physi-

cal entropy is always based on the neglect of nonlocal correlations. Therefore,
the production of entropy can be usually understood as the transformation
of local information into nonlocal correlations (as depicted in Fig. 3.1). This
description is in accordance with the conservation of ensemble entropy (deter-
minism) and with intuitive causality. The Second Law thus depends crucially
on the dynamical irrelevance of microscopic correlations for the future (as as-
sumed in the Stoßzahlansatz , for example). Since this ‘microscopic causality’
cannot be observed as easily and directly as the causal correlations which de-
fine retardation of macroscopic radiation, its validity under all circumstances
has been questioned (Price 1996). However, it is not only indirectly confirmed
by the success of the Stoßzahlansatz , but also (in its quantum mechanical
form – see Sect. 4.2) by the validity of a Sommerfeld radiation condition (see
Sect. 2.1) for microscopic scattering experiments, or by the validity of expo-
nential decay (Sect. 4.5).

The Zwanzig projection of locality is again ineffective on real states, which
are always local in the sense of defining the states of all their subsystems.
Therefore, applying P̂local to an individual state (a δ-function or sum of them)
would not lead to a non-singular entropy SΓ . This will drastically change in
quantum mechanics, because it is kinematically non-local (Chap. 4).

As already mentioned on p. 55, coarse-graining as a relevance concept may
also enter in a hidden form, corresponding to its nontrivial limit ∆VΓ → 0,
by considering only non-singular measures on phase space (thus excluding
δ-functions). This strong idealization may be mathematically signalled by the
‘unitary inequivalence’ of the original Liouville equation and the master equa-
tions resulting in this limit (see Misra 1978 or Mackey 1989).

Further examples of Zwanzig projections will be defined throughout the
book, in particular in Chap. 4 for quantum mechanical applications, where
the relevance of locality leads to the important concept of decoherence. Dif-
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ferent schools and methods of irreversible thermodynamics may even be dis-
tinguished according to the concepts of relevance which they are using, and
which they typically regard as ‘natural’ or ‘fundamental’ (see Grad 1961).

However, the mere conceptual foundation of a relevance concept (‘paying
attention’ only to certain aspects) is insufficient for justifying its dynamical
autonomy in the form of a master equation (3.36) – see the Appendix for an
explicit example. Locality is usually dynamically relevant in this sense because
of the locality of all interactions. This dynamical locality is essential even for
the very concept of physical systems, including those of local observers as the
ultimate referees for what is relevant.

Zwanzig reformulated the exact Hamiltonian dynamics for ρrel regardless
of any specific choice of P̂ instead of simply postulating a phenomenological
master equation (3.36) in analogy to Boltzmann or Lewis. It can then in
general not be autonomous5, that is, of the form ∂ρrel/∂t = f(ρrel), but has
to be written as

∂ρrel

∂t
= f(ρrel, ρirrel) (3.40)

in order to eliminate ρirrel by means of certain assumptions. The procedure
is analogous to the elimination of the electromagnetic degrees of freedom by
means of the condition Aµ

in = 0 when deriving a retarded action-at-a-distance
theory (Sect. 2.2). In both cases, empirically justified boundary conditions
which specify a time direction are assumed to hold for the degrees of freedom
that are to be eliminated.

To this end the Liouville equation i∂ρ/∂t = L̂ρ is decomposed into its
relevant and irrelevant parts by multiplying it by P̂ or 1− P̂ , respectively:

i
∂ρrel

∂t
= P̂ L̂ρrel + P̂ L̂ρirrel , (3.41a)

i
∂ρirrel

∂t
= (1 − P̂ )L̂ρrel + (1 − P̂ )L̂ρirrel . (3.41b)

This corresponds to representing the Liouville operator by a matrix of oper-
ators

L̂ =

(
P̂ L̂P̂ P̂ L̂(1 − P̂ )

(1 − P̂ )L̂P̂ (1 − P̂ )L̂(1 − P̂ )

)
. (3.42)

Equation (3.41b) for ρirrel, with (1 − P̂ )L̂ρrel regarded as an inhomogeneity,
may then be formally solved by the method of the variation of constants
(interaction representation). This leads to

ρirrel(t) = e−i(1−P̂ )L̂(t−t0)ρirrel(t0) − i
∫ t−t0

0

e−i(1−P̂ )L̂τ (1 − P̂ )L̂ρrel(t − τ)dτ ,

(3.43)
5 In mathematical physics, ‘autonomous dynamics’ is often defined as the absence

of any explicit time dependence in the dynamics – regardless of whether it is
fundamental or caused by a time-dependent environment.
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as may be confirmed by differentiation.
If t > t0, (3.43) is analogous to the retarded form (2.9) of the boundary

value problem in electrodynamics. In this case, τ ≥ 0, and ρrel(t − τ) may be
interpreted as an advanced source for the ‘retarded’ ρirrel(t). Substituting this
formal solution (3.43) into (3.41a) leads to three terms on the RHS, viz.,

i
∂ρrel(t)

∂t
= I + II + III (3.44)

≡ P̂ L̂ρrel(t) + P̂ L̂e−i(1−P̂ )L̂(t−t0)ρirrel(t0) − i
∫ t−t0

0

Ĝ(τ)ρrel(t − τ)dτ .

The integral kernel of the last term,

Ĝ(τ) := P̂ L̂e−i(1−P̂ )L̂τ (1 − P̂ )L̂P̂ , (3.45)

corresponds to the retarded Green’s function of Sect. 2.1.
Equation (3.44) is exact and, therefore, cannot yet describe time asym-

metric dynamics. Since it forms the first step in this derivation of master
equations, it is known as a pre-master equation. The meanings of its three
terms are illustrated in Fig. 3.2. The first one describes the internal dynam-
ics of ρrel. In Boltzmann’s µ-space dynamics (3.3), it would correspond to
{∂ρµ/∂t}free+ext. It vanishes if P̂ L̂P̂ = 0 (as is often the case).6

The second term of (3.44) is usually omitted by presuming the absence of
irrelevant initial information: ρirrel(t0) = 0. If relevant information happens
to be present initially, it can then be dynamically transformed into irrelevant
information. (Because of the asymmetry between P̂ and 1 − P̂ , irrelevant
information would have to be measured by −SΓ [ρ] + SΓ [ρrel] rather than by
−SΓ [ρirrel].)

The vital third term is non-Markovian (non-local in time), as it depends
on the whole time interval between t0 and t. Its retarded form (valid for
t > t0) is compatible with the intuitive concept of causality. This term be-
comes approximately Markovian if ρrel(t − τ) varies slowly for a small ‘re-
laxation time’ τ0 during which Ĝ(τ) becomes negligible for reasons to be
discussed. In (3.44), Ĝ(τ) may then be regarded to lowest order as being
proportional to a δ-function in τ . This assumption is also contained in Boltz-
mann’s Stoßzahlansatz , where it means that correlations arising by scattering
6 Since the (indirectly acting) non-trivial terms contribute only in second and higher

orders of time, the time derivative defined by the master equation (3.36) would
then vanish in the limit ∆t → 0. This corresponds to what in quantum theory
is known as the quantum Zeno paradox (Misra and Sudarshan 1977), also called
watched pot behavior or the watchdog effect . It describes an immediate loss of
information from the irrelevant channel (or its dynamically relevant parts – see
later in the discussion), such that it has no chance of affecting its relevant coun-
terpart any more. Fast information loss may be caused by a strong coupling to
the environment, for example. Since this efficiency depends on the energy level
density (Joos 1984), the Zeno effect is relevant mainly in quantum theory.
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relevant channel

irrelevant channel

I

II
III

t0 t = t t

rirrel 0(t )

r trel( )

Fig. 3.2. Retarded form of the exact dynamics for the relevant information ac-
cording to Zwanzig’s pre-master equation (3.24). In addition to the instantaneous
direct interaction I, there is the contribution II arising from the ‘incoming’ irrele-
vant information, and the retarded term III in analogy to electromagnetic action at
a distance, resulting from ‘advanced sources’ in the whole time interval between t0
and t (cf. the left part of Fig. 2.2)

are irrelevant for the forward dynamics of ρrel. In analogy to retarded electro-
magnetic forces, this third term of the pre-master equation then assumes the
form of an effective direct interaction between the relevant degrees of freedom
(though instantaneous in this nonrelativistic treatment). In electrodynamics,
the charged sources would represent the ‘relevant’ variables, while their ef-
fective interactions act ‘at a distance’. In statistical physics, this ‘interaction’
describes the dynamics of ensembles.

The Markovian approximation may be understood by means of assump-
tions which simultaneously explain the applicability of the initial condition
ρirrel ≈ 0 at all times – provided it holds in an appropriate form in the very
distant past. This is again analogous to the condition in electrodynamics that
Aµ

in either vanishes or can be well understood in terms of a limited number of
known or at least plausible sources at all times.

Consider the action of the operator (1 − P̂ )L̂P̂ appearing on the RHS
of the kernel (3.45). Because of the structure of a typical Liouville operator,
it transforms information from ρrel only into specific parts of ρirrel. In the
scattering theory of complex objects, similar formal parts are called doorway
states (Feshbach 1962). For example, if the Hamiltonian contains no more
than two-particle interactions, L̂P̂µ creates two-particle correlations. Only the
subsequent application of the propagator exp[−i(1 − P̂ )L̂τ ] is then able to
produce states ‘deeper’ in the irrelevant channel (many-particle correlations
in this case) – see Fig. 3.3. Recurrence from the depth of the irrelevant channel
is related to Poincaré recurrence times, and may in general be neglected (as
exemplified by the success of Boltzmann’s collision equation). If the relaxation
time, now defined as the time required for the transfer of information from
the doorway ‘states’ into deeper parts of the irrelevant channel, is of the order
τ0, say, one may assume Ĝ(τ) ≈ 0 for τ � τ0, as required for the Markovian
δ-function approximation Ĝ(τ) ≈ Ĝ0δ(τ).

Essential for the validity of this approximation is the large information
capacity of the irrelevant channel (similar to that of the electromagnetic field
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relevant channel

t0 t = t t

doorway channel

deep states

Fig. 3.3. The large information capacity of the irrelevant channel and the specific
structure of the interaction together enforce the disappearance of information into
the depth of the irrelevant channel if an appropriate initial condition holds

in Chap. 2, but far exceeding it). For example, correlations between particles
may describe far more information than the single-particle distribution ρµ. A
fundamental cosmological assumption,

ρirrel(t0) = 0 , (3.46)

at a time t0 in the finite past (similar to the cosmological Aµ
in = 0 at the big

bang) is therefore quite powerful – even though it is a probable condition. Any
irrelevant information formed later from the initial ‘information’ contained in
ρrel(t0) (that is, from any specification of the initial state) may be expected
to remain dynamically negligible in (3.44) for a very long time. It would be
essential, however, for calculating backwards in time under these conditions.

The assumption ρirrel ≈ 0 has thus to be understood in a dynamical sense:
any newly formed contribution to ρirrel must remain irrelevant in the ‘forward’
direction of time. The dynamics for ρrel may then appear autonomous (while
it cannot be exact). For example, all correlations between subsystems seem
to require advanced local causes, but no similar (retarded) effects. Otherwise
they would be interpreted as a conspiracy , the deterministic version of causae
finales.

Under these assumptions, one obtains from (3.44), as a first step, the non-
Markovian dynamics

∂ρrel(t)
∂t

= −
∫ t−t0

0

Ĝ(τ)ρrel(t − τ)dτ . (3.47)

The upper boundary of the integral can here be replaced by a constant T that
is large compared to τ0, but small compared to any (theoretical) recurrence
time for Ĝ(τ). If ρrel(t) is now assumed to remain constant over time intervals
of the order of the relaxation time τ0, corresponding to an already prevailing
partial (e.g., local) equilibrium, one obtains the time-asymmetric Markovian
limit:

∂ρrel(t)
∂t

≈ −Ĝretρrel(t) , (3.48)

with
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relevant channel

Dt

doorway channel

deep states

Fig. 3.4. The master equation represents ‘alternating dynamics’, usually describing
a monotonic loss of relevant information

Ĝret :=
∫ T

0

Ĝ(τ)dτ . (3.49)

A similar nontrivial limit of vanishing retardation (τ0 → +0) led to the LAD
equation with its asymmetric radiation reaction in Sect. 2.3. The integral
(3.49) could be formally evaluated when inserting (3.45), but it is usually
more conveniently computed after this operator has been applied to a specific
ρ(t). (See the explicit evaluation for discrete quantum mechanical states in
Sect. 4.1.2.)

The autonomous master equation (3.48) again describes alternating dy-
namics of the type (3.36) (see Fig. 3.4). Irrelevant information is disregarded
after short time intervals ∆t (now representing the relaxation time τ0). If
P̂ only destroys information, the master equation describes never-decreasing
entropy:

dSΓ [ρrel]
dt

≥ 0 . (3.50)

This corresponds to a positive operator Ĝret (as can most easily be shown by
means of the linear measure of entropy).

A phenomenological probability-conserving Markovian master equation for
a system with ‘macroscopic states’ described by a (set of) ‘relevant’ variable(s)
α, that is, ρrel(t) ≡ ρ(α, t) (see also Sects. 3.3 and 3.4) can be written in the
general form

∂ρ(α, t)
∂t

=
∫ [

w(α, α′)ρ(α′, t) − w(α′, α)ρ(α, t)
]
dα′ . (3.51)

The transition rates w(α, α′) here define the phenomenological operator Ĝret

by means of its integral kernel Ĝret(α, α′) =−w(α, α′)+δ(α, α′)
∫

w(α, α′′)dα′′.
They often satisfy a generalized time inversion symmetry,

w(α, α′)
σ(α)

=
w(α′, α)
σ(α′)

, (3.52)

where σ(α) may represent the density of the (‘irrelevant’) microscopic states
with respect to the variable α – that is, σ := dn/dα, where n is the number
of microscopic states as a function of α. In this case one may again derive an
H-theorem, in analogy to (3.12), for the generalized H-functional
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Hgen[ρ(α)] :=
∫

ρ(α) ln
ρ(α)
σ(α)

dα = ln p . (3.53)

The final form on the RHS is appropriate, since the mean probability p(α)
for individual microscopic states and for given ρ(α) is then p(α) = ρ(α)/σ(α).
The entropy defined by −kHgen is also known as the relative entropy of ρ(α)
with respect to the measure σ(α). The latter is often introduced ad hoc as
part of a phenomenological description.

Under the approximation w(α′, α) = f(α)δ′(α − α′) one now obtains the
deterministic ‘drift’ limit of the master equation (3.51) – usually representing
the first term of (3.44). It defines the first order of the Kramers–Moyal expan-
sion for w(α, α′), equivalent to an expansion of ρ(α′, t) in terms of powers of
α′−α at α′ = α. The second order, w(α′, α) = f(α)δ′(α−α′)+g(α)δ′′(α−α′),
leads to the Fokker–Planck equation as the lowest non-trivial approximation
that leads to an irreversible equation (see de Groot and Mazur 1962, Röpke
1987). In this respect, it is analogous to the LAD equation as the lowest non-
trivial order in the Taylor expansion of the Caldirola equation (2.31). A master
equation is generally equivalent to a (stochastic) Langevin equation for indi-
vidual macroscopic trajectories α(t) which may form a dynamical ensemble
represented by ρ(α, t).

In contrast to the Liouville equation (3.26), the master equation (3.48) or
(3.36) cannot be unitary with respect to the inner product for probability dis-
tributions defined above (3.27). While total probability must be conserved by
these equations, that of the individual trajectories cannot (see also Sect. 3.4).
Information-reducing master equations describe an indeterministic evolution,
which in general only determines an ever-increasing ensemble of different po-
tential successors for each macroscopic state (such as a point in α-space).7

As discussed above, this macroscopic indeterminism is compatible with mi-
croscopic determinism if that information which is transformed from relevant

7 The frequently used picture of a ‘fork’ in configuration space, characterizing a
dynamical indeterminism, may be misleading, since it seems to imply unique
predecessors. This would be wrong, as can be recognized, for example, in an
equilibrium situation. In the case of a stochastic dynamical law that is defined on a
finite set of states, a state must in general also have different possible predecessors,
corresponding to an inverse fork. Inverse forks by themselves would represent
a pure forward determinism (a ‘semigroup’, that may describe attractors). All
these structures are meant to characterize the dynamical law . They are neither
properties of the (f)actual history (which is assumed to evolve along a definite
trajectory regardless of the nature of the dynamical law), nor of an evolving
ensemble that represents a specific state of knowledge.

However, only dynamically unique predecessors may give rise to recordable
histories (consisting of ‘facts’ that are redundantly documented). The historical
nature of our world is thus based on a uniquely determined or even overdeter-
mined macroscopic past – see also footnote 1 of Chap. 2, Fig. 3.8, and Sect. 3.5.
A macroscopic history that was completely determined from its macroscopic past
would be in conflict with the notion of an (apparent) free will.
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to irrelevant in the course of time no longer has any relevant (macroscopic)
effects for all future times of interest. The validity of this assumption depends
on the dynamics and on the specific initial conditions (3.46).

Time-reversed (‘anti-causal’) effects could only be derived from an ap-
propriate final condition by applying the corresponding approximations to
(3.44) for t < t0. It is an empirical fact that such a condition, analogous to
Aµ

out = 0 in electrodynamics, does not describe our observed Universe. An
exact boundary condition ρirrel(t0) = 0 at some accessible time t0 would for
similar statistical reasons lead to a non-decreasing entropy for t > t0, but to
non-increasing entropy for t < t0, hence to an entropy minimum at t = t0
unless S(t0) = Smax.

While the (statistically probable) assumption (3.46) led to the master
equation (3.48), it would not necessarily characterize an arrow of time. With-
out an improbable initial condition ρrel(ti), the approximate validity of the
equality sign in (3.50) would be overwhelmingly probable. Retarded action-
at-a-distance electrodynamics would be trivial, too (and equivalent to its ad-
vanced counterpart) if all sources were already in thermal motion (such as
the sources forming absorbers). It is the low entropy initial condition for ρrel

which is responsible for the dynamical formation of that ‘irrelevant’ informa-
tion which would be highly relevant for correctly calculating ρrel(t) backwards
in time.

The main conclusions derived in this and the previous section can thus be
summed up as follows:

1. The ensemble entropy SΓ does not represent physical entropy, since (a)
it would be minus infinity for a real physical state (one or N ! points in
phase space), (b) it is otherwise not additive for composite systems (in
particular, it is not an integral over an entropy density), and (c) it remains
constant under deterministic dynamics (in contrast to the Second Law).
For indeterministic dynamical laws, it would have to increase, starting
from its given value, in both directions of time (except when already at
its maximum value). This demonstrates that ensemble entropy is not a
physical quantity (see also Kac 1959).

2. Coarse-grained (or ‘relevant’) entropy, when defined as a function of the
deterministically evolving microscopic state that is assumed to represent
reality, would most probably fluctuate in time close to its maximum value.
However, it may increase for a very long time – far exceeding the present
age of the Universe if this had begun in an appropriate state of extremely
low entropy (see Sect. 5.3). While a Zwanzig projection (describing gener-
alized coarse-graining) can be arbitrarily chosen for convenience in order
to derive an appropriate master equation, the cosmic initial condition
must be specified as a condition characterizing the real Universe.

3. Only a relevance concept that includes locality is able to describe entropy
as an extensive quantity.
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4. Any coarse-grained entropy could be forced never to decrease by an appro-
priate modification of the corresponding ensemble dynamics – as in (3.36).
This may represent either new physics or an approximation to the situa-
tion described in the second part of item 2 (where the second possibility
is assumed to apply).

General Literature: Jancel 1963, Balian 1991.

3.3 Thermodynamics and Information

3.3.1 Thermodynamics Based on Information

As explained in the previous sections, Gibbs’ probability densities or ensem-
bles ρΓ represent incomplete information about the real state, which would in
classical mechanics be described by a singular point in phase space. Similarly,
Zwanzig’s projection operators P̂ (defining a generalized coarse-graining) were
justified by the incomplete observability of macroscopic systems. The entropy
and other parameters characterizing these ensembles, such as a temperature,
therefore appear fundamentally observer-related (objectively unmotivated).
While Gibbs’ ensembles refer in principle to actual knowledge, Boltzmann’s
distributions may be based on an objectivized limitation of knowledge, char-
acterizing a certain class of potential observers, such as those able to recognize
only the mean particle density ρµ for a gas.8 For similar reasons, the coarse-
graining P̂ is kept fixed as a reference system, and not comoving accord-
ing to the dynamics. The concept of information appears here extraphysical,
although observers or other carriers of information have to be regarded as
physical (in particular thermodynamical) systems, too (see Sect. 3.3.2).

Jaynes (1957) generalized Gibbs’ statistical methods by rigorously apply-
ing Shannon’s (1948) information concept. Shannon’s formal measure of infor-
mation for a probability distribution {pi} on a set of elements characterized
by the index i,

I :=
∑

i

pi ln pi ≤ 0 , (3.54)

is evidently defined in analogy to Boltzmann’s H, and therefore also called
negentropy . However, as a measure of information, it corresponds more closely
to Gibbs’ extension in phase η. This measure is often normalized relative
to its value for minimum information, pi = p

(0)
i , where p

(0)
i = 1/N if i =

1, . . . , N , unless different statistical weights for the ‘elements’ i arise from a
more fundamental level of description – cf. (3.53):
8 The term ‘objectivized’ presumes the basically subjective (observer-related) sta-

tus of what is to be objectivized. In contrast, the term ‘objective’ is in physics
often used synonymously with the term ‘real’, and then means the assumed or
conceivable existence of an object or its state regardless of its observation.
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Irel = I(pi|p(0)
i ) :=

∑
i

pi ln(pi/p
(0)
i ) = lnN +

∑
i

pi ln pi ≥ 0 . (3.55)

This renormalized measure of information may remain finite even when I
diverges in the limit N → ∞. Under an appropriate modification it can then
also be applied to a continuum.

Jaynes thus based his approach on the idea that the microscopic state
of a macroscopic system can never be completely known. Instead, a small
though varying number of macroscopic variables, which are functions of the
microscopic state, α(p, q), are approximately ‘given’. Therefore, he introduced
specific representative ensembles, ρα(p, q) or ρᾱ(p, q), which are defined to
possess minimal information about all other variables (maximal ensemble en-
tropy SΓ [ρ]) under the constraint of either fixed values α, or fixed mean values
ᾱ :=

∫
α(p, q)ρ(p, q)dp dq. This entropy thus becomes a function of α or ᾱ, de-

fined as S(ᾱ) := SΓ [ρᾱ], for example. This generalization of Gibbs’ approach
has turned out to be useful in many applications, while the macroscopic vari-
ables α remain to be chosen ad hoc.

As mentioned already in Sect. 3.1.2, an entropy concept based on the actu-
ally available information would be in conflict with the usual interpretation of
entropy as an observer-independent physical quantity that can be objectively
measured. On the other hand, its dependence on a certain basis of information
may be quite meaningful. For example, the numerical value of SΓ [ρ] depends
in a reasonable way on whether or not ρ contains information about actual
density fluctuations, or about the isotopic composition of a gas. The prob-
ability pfluct(α) for the occurrence of some quantity α in thermodynamical
equilibrium was successfully calculated by Einstein in his theory of Brownian
motion from the expression

pfluct(α) =
exp

[
S(α)/k

]
exp

{
S[ρcan]/k

} , (3.56)

thus exploiting the interpretation of entropy as a measure of probability. The
probability for other quantities to be found immediately after the observation
of this fluctuation would then have to be calculated from the ‘conditioned’
ensemble ρα rather than from ρcan.

Similarly, a star cluster (that is, a collection of macroscopic objects) pos-
sesses meaningful temperature and entropy S �= 0 from the point of view
that the motion of the individual stars is regarded as ‘microscopic’. The same
statistical considerations as used for molecules then show that their velocity
distribution must be Maxwellian. At the other extreme, one could (in classical
physics) conceive of an external Lapacean demon as a super-observer of the
individual molecules in a gas. Entropy would indeed depend here on the avail-
able or accessible information. Its objectivity in thermodynamics can then
only be understood as representing a common basis of information shared by
us human observers. This perspective must be caused by our specific situation
as physical systems.
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In order to consistently regard ensembles as representing actual informa-
tion, one would have to take into account all physical processes which affect
the information carrier rather than just those in the system itself. Such a def-
inition would certainly be inappropriate for the concept of physical entropy.
For example, thermodynamical entropy does not depend on whether or how
accurately the temperature has been measured; it is simply understood as a
function of temperature.

Let α(p, q) represent a set of such quantities that are assumed to be ‘given’,
possibly up to certain uncertainties ∆α – see the model used in (3.51). The
Hamiltonian H(p, q) is in general just one of them. Subsets of microscopic
states p, q corresponding to values of α within intervals α0 < α(p, q) <
α0 + ∆α, define subvolumes of Γ -space. The widths ∆α may be those of
Jaynes’ representative ensembles for given mean values ᾱ, since any finer res-
olution would regard fluctuations as being relevant, unless α were a constant
of the motion. For a single parameter α, these volume elements can be writ-
ten as ∆Vα := (dV/dα)∆α, with V (α0) :=

∫
α(p,q)<α0

dpdq. In N -particle
phase space, the size of the interval ∆α is often quite irrelevant, since con-
tributions to the volume integral for a compact region α(p, q) < α0 may be
strongly concentrated just below the surface defined by the value α0 because
of the geometry of such high-dimensional spaces. The term ln∆α can then be
neglected under the logarithm, ln∆Vα, that defines the entropy S(α).

One may now define a new useful Zwanzig projection P̂macro by averaging
over subsets defined by such volume elements ∆Vα:

P̂macroρ(p, q) :=
∆pα

∆Vα
(3.57)

:=
1

∆Vα

∫
∆Vα

ρ(p′, q′)dp′dq′ , for p, q ∈ ∆Vα .

If discrete values αi are defined for convenience by means of ‘macroscopic
steps’ αi + ∆α = αi+1, the integral for SΓ [P̂macroρ] splits into two sums:

SΓ [P̂macroρ] = −k

∫
P̂macroρ ln(P̂macroρ)dp dq

= −k
∑

i

∆Vαi

∆pαi

∆Vαi

ln
∆pαi

∆Vαi

= −k
∑

i

∆pαi ln ∆pαi +
∑

i

∆pαik ln ∆Vαi . (3.58)

[Note the relation to the concept of relative information (3.53) or (3.55) – see
also Schlögl 1966.] The first term in the last line describes the entropy corre-
sponding to the lacking macroscopic information described by the probabili-
ties ∆pαi . The second term is the mean physical entropy with respect to this
macroscopic ensemble. The physical entropy, S(α) := k ln ∆Vα ≈ SΓ [ρα], thus
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measures the size of Jaynes’ representative ensembles ρα, or, in Planck’s lan-
guage, the number of complexions, that is, the number of microscopic states
which may represent it. In the special case α(p, q) := H(p, q) one obtains
the entropy of the canonical ensemble as a function of the mean energy. If
∆α = ∆E is chosen infinitesimal, one obtains the entropy of the microcanon-
ical ensemble, relevant for thermodynamically closed systems.9

Although the first term on the RHS of (3.58) is usually much smaller than
the second one, it is essential for a complete and consistent discussion of in-
formation processing and measurement (see Sect. 3.3.2). A simple example of
such a partitioning of the ensemble entropy into physical entropy and entropy
of lacking information is provided by the particle number in a grand canonical
ensemble, Z−1 exp

[− (H − µN)/kT
]
. This particle number is assumed to be

‘given’ (although in general not known) once the vessel that was in equilib-
rium with a particle reservoir characterized by the chemical potential µ has
been closed. Thereafter, the system is represented by a canonical ensemble
with fixed particle number N , while the relative contribution of that part of
the original ensemble entropy which has now become entropy of lacking infor-
mation about the exact particle number N is of the order ln N/N (Casper and
Freier 1973). This contribution to the entropy is often neglected by using the
‘approximation’ N ! ≈ NN . The argument demonstrates, however, that this
different choice of ensembles is dynamically justified (by their robustness), and
that the difference between the number of permutations, N !, of a fixed number
N of particles and the factor NN arising from the grand canonical ensemble
with mean particle number N is meaningful – see (4.21) and cf. footnote 2.

The concept of physical entropy, defined above, no longer depends on ac-
tual information, since the choice of ‘macroscopic’ subsets, characterized by
functions of state α(p, q), is motivated by their dynamical stability. In gen-
eral, variables α characterizing ‘robust’ subsets of phase space that are densely
populated by a trajectory (in the sense of quasi-ergodicity) within reasonably
short times are regarded as macroscopic quantities. This quasi-ergodicity de-
pends on a ‘measure of distance’ in Γ -space that cannot be invariant under
canonical transformations. The macroscopic variables α are instead assumed
to vary slowly and controllably – even under the influence of normal perturba-
tions, or during their observation. These robust quantities define approximate
constants of the motion or adiabatically changing collective variables. Since
this concept of robustness is based on quantitative aspects, it cannot usually
be defined with mathematical rigor. For example, the positions and shapes of
droplets that are formed in a condensation process, or even more so those of
the walls of the vessel, are evidently robust properties, although they do not
represent exact constants of the motion.

9 The infinite renormalization which is required for the corresponding concept of
an entropy density as a function of α is due to the fact that the entropy for a
continuous quantity has no lower bound, so that the measure of information may
grow beyond all limits – see the remarks following (3.55).
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A microscopic trajectory q(t) determines all macroscopic trajectories α(t)
defined as functions of this state: α(t) := α

(
p(t), q(t)

)
. As discussed in

Sect. 3.1.2, the macroscopic dynamics α(t) is then in general not autonomous,
since trajectories starting from the same α(t0) may evolve into different α(t1)
– depending on the microscopic initial state p(t0), q(t0). This macroscopic
indeterminism is essential for fluctuations or certain phase transitions.

The determinism of a dynamical model (such as Laplacean mechanics)
is defined by the mathematical existence of a unique mapping of appropriate
initial (or final) states onto complete trajectories. This concept of determinism
is independent of the availability of an (analytic or algorithmic) procedure for
explicitly constructing these trajectories in terms of conventional coordinates
(‘integrability’). It is therefore also independent of any practical limitation to
their computability, which forms the basis of Kolmogorov’s (1954) entropy,
and is often used in the definition of chaos (see Schuster 1984, or Hao-Bai-Lin
1987). In classical mechanics, the deterministic dynamical mapping of initial
conditions onto trajectories is a consequence of Newton’s equations under non-
singular conditions (see Bricmont 1996 for his lucid criticism of the popular
misuse of the concept of chaos in this connection).

Trajectories could in principle be described in terms of the constants of
the motion. The latter could then be used as new coordinates or ‘co-evolving
grids’ (see Appendix B of Zurek 1989). Such constants of the motion are often
denied to exist, since they are not analytically related to conventional coordi-
nates. However, this does not mean that they would not exist in any absolute
sense. It was indeed one of the great lessons from the theory of relativity that
physics and spacetime geometry (‘reality’) are independent of the choice of
coordinates, while the ancient Greeks were not even able to overcome Zeno’s
paradox of Achilles and the tortoise by a transformation to more appropri-
ate ‘coordinates’ of description. We should similarly be able to conceptually
overcome all mathematical problems in the construction of canonical trans-
formations, and instead rely on the assumption of a coordinate-free ‘reality’
(at least in classical mechanics).

These mathematical difficulties may nonetheless reflect the complex and
non-trivial physical relation between the Universe and its ‘observing parts’.
Observers are evidently not in any simple way related to the constants of the
motion – the reason why we feel ‘time change’.10 Some authors have related
the problems of a universe that contains its observers (physical self-reference)
to Gödel’s undecidability theorems, which apply to logical systems that allow
formal self-reference (see Wheeler 1979). However, one cannot argue that
the existence or meaning of an observer-independent reality is excluded just
because of the observers’ limited capabilities. This insufficient argument has
even been used as an explanation of ‘quantum uncertainty’ (Popper 1950, Born
1955, Brillouin 1962, Cassirer 1977, Prigogine 1980). There is a fundamental

10 “Time goes, you say? Ah no! Alas, time stays, we go.” (Austin Dobson – discov-
ered in Gardner 1967.)
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difference between the impossibility of ever knowing the precise classical state
of the Universe and the incompatibility of its existence with certain empirical
facts. While the former is often derived precisely by using (thus presuming)
classical concepts as describing reality, the latter is a consequence of crucial
experiments on which quantum theory is based.

3.3.2 Information Based on Thermodynamics

Macroscopic indeterminism, such as described by Einstein’s fluctuations in
(3.56), may give rise to a transient decrease in physical entropy S(α) in accor-
dance with microscopic determinism. It requires the transformation of lacking
irrelevant into lacking relevant information. The latter would not be lacking
any more if the fluctuation were observed, or, similarly, after the measure-
ment of a microscopic variable, as depicted by the first step of Fig. 3.5. In
these cases, the physical realization of information by observers or other in-
formation carriers has to be properly taken into account.

As is well known since the discussion of Maxwell’s demon, any change or
use of information must be described physically, with all its thermodynamical
consequences. Maxwell had assumed his demon to operate a microscopic slid-
ing door between two compartments of a vessel in such a way that only fast
molecules may enter the first compartment, while only slow ones are allowed
to leave it. His actions must then lead to a temperature and pressure differ-
ence, thus admitting the construction of a perpetuum mobile of the second
kind.

The demon must here invest its knowledge about trajectories of individ-
ual molecules. However, Smoluchowski (1912) objected that a demon who
acts physically would itself have to obey the Second Law: its operations must
be described (thermo-)dynamically. In phenomenological terms, any lowering
of the entropy of the gas must at least be balanced by a corresponding in-
crease of the demon’s entropy. If the demon were assumed to be a finite and
thermodynamically closed system, its increasing Brownian motion would then
ultimately prevent it from acting properly (by letting its ‘hands tremble’, or
as a result of its deteriorating information about the molecules).

Szilard (1929) derived a fundamental information-theoretical consequence
from this situation. By exploiting the idea of Maxwell’s demon, he concluded
that an ‘intelligent being’ must use up an amount of information of measure

∆I =
∆S

k
, (3.59)

in order to lower the entropy of some system by ∆S. This equivalence would
also be compatible with the ensemble interpretation of entropy, or Einstein’s
probabilities (3.56).

Szilard’s main argument used a model ‘gas’ consisting of a single molecule
in a vessel of volume V . Statistical aspects are introduced by means of many
collisions of the molecule with the walls, leading to thermal equilibration
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Fig. 3.5. Entropy relative to the state of information during a classical measure-
ment. In the first step in the figure, the state of the observer changes depending
on that of the system. The second step represents the subsequent resetting of the
‘observer’ or device (Bennett 1973), required if the process is to be exactly repeated
for a second measurement. Areas represent sets of microscopic states of the sub-
systems (while those of uncorrelated combined systems would be represented by
their direct products). The lower case letters a and b characterize the property to
be measured; and 0, A and B the corresponding ‘memory states’ of the observer,
while A′ and B′ are their respective effects in the thermal environment, required for
a deterministic reset. The ‘physical entropy’ (defined to add for subsystems) mea-
sures the phase space of all microscopic degrees of freedom, including the property
to be measured. Because of this presumed additivity, the physical entropy neglects
statistical correlations (dashed lines, which indicate sums of direct products of sets)
as being ‘irrelevant’ in the future – hence Sphysical ≥ Sensemble. I is the amount
of information held by the observer. S0 is at least k ln 2 in this simple case of two
equally probable values a and b. (From Chap. 2 of Joos et al. 2003)

between the molecule’s average motion and a surrounding heat bath (see
Fig. 3.6). A piston is then inserted sideways (without using energy) in order to
separate two partial volumes V1 and V2. This partition of the volume is robust
in the sense of Sect. 3.3.1. According to (3.58), this procedure transforms part
of the (physical) entropy of the ‘gas’ into entropy of lacking information. If
the experimenter knows (only) in which partial volume i = 1, 2 the molecule
resides, corresponding to a Shannon measure ∆Ii = ln[(V1 + V2)/Vi], he is
able to retrieve the mechanical energy

∆Ai =
∫ V1+V2

Vi

pdV =
∫ V1+V2

Vi

kT

V
dV = −kT ln

Vi

V1 + V2
(3.60)

by moving the piston into the empty volume, and slowly raising a weight, for
example. The molecule’s mean kinetic energy may thereby remain constant by
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T

Fig. 3.6. Szilard’s Gedanken engine completely transforms thermal energy into
mechanical energy by using information

the reversible extraction of heat from the external reservoir with temperature
T . This process lowers the entropy of the reservoir by

∆Si = −∆Ai

T
= k ln

Vi

V1 + V2
= −k∆Ii , (3.61)

in accordance with (3.59).
According to Smoluchowski, one could avoid referring to knowledge or

information by using a ‘mechanical rectifier’ (such as a ratchet) that causes
the piston to move in the appropriate direction. This rectifier would ultimately
have to perform thermal motion large enough to make it useless, corresponding
to the demon’s trembling hands (see also Feynman, Leighton and Sands 1963,
Vol. I, p. 46-1). So one has to conclude that utilizing knowledge for making
decisions (for example in the brain) is equivalent to the operation of a rectifier.
It is here essential that the rectifier cannot be reset to its initial state without
getting rid of entropy – usually in the form of heat (Bennett 1987). For this
reason the mechanism cannot work reversibly in a closed system.

Brillouin (1962), when elaborating on ideas originally presented by Ga-
bor in lectures given in 1952 (see Gabor 1964), emphasized that Szilard’s
‘intelligent being’ has to acquire information. Since this process must also be
compatible with the Second Law, Brillouin postulated his negentropy principle

∆S′ − k∆I ≥ 0 , (3.62)

which meant that any information gain ∆I has to be accompanied by some
process of dissipation that leads to a production of thermodynamical entropy
∆S′ in the information medium (usually light). He thereby referred to the lat-
ter’s quantum aspect (photons), which limits its information capacity. Because
of the minimum information required according to Szilard, the construction
of a perpetuum mobile of the second kind would then again be excluded.
However, because of the above example of a directly coupled mechanical rec-
tifier, no explicit reference to an information medium seems to be required.
According to Bennett (1973), it is the increase in physical entropy by the
reset mechanism in Fig. 3.5, ∆Sphys = k ln 2 if V1 = V2, that compensates its
decrease in (3.61).

All non-phenomenological arguments are based here on two assumptions:
(1) Global determinism, which requires that an ensemble of N different states
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(or N ensembles of equal measure) must have N different successors, which
have to be counted by the total ensemble entropy. Different states may evolve
into the same final state only by means of an appropriate interaction with
their environment, that transfers this difference to the latter (for example, in
the form of heat). (2) Intuitive causality, which asserts that uncontrollable
‘perturbations’ by the environment can only enlarge the ensemble. It gives
rise to inequalities such as (3.62) rather than equations. If thermodynamical
concepts apply, a transfer of entropy ∆S must be accompanied by a transfer
of energy according to ∆Q = T∆S. This relation has also led to the interpre-
tation of entropy as a measure of degradation of energy .

The equivalence of information and negative entropy suggests that any
(tautological) information processing (for example in a computer) can in prin-
ciple be performed reversibly. However, arithmetic operations are often logi-
cally irreversible in the sense that two factors cannot be recovered from their
product. (In a mechanical computer this operation may indeed require fric-
tion.) This led to the conjecture that a minimum amount of entropy k ln 2 has
to be produced for each bit of information in each elementary calculational
step (Landauer 1961). It was refuted by Bennett (1973 – see also Bennett
and Landauer 1985). However, in their discussion the logically lost informa-
tion (‘garbage bits’) – even if randomized – is still regarded as macroscopic or
‘relevant’ in the thermodynamical sense. For this reason, the entropy creation
is deferred to the reset or clearing of the memory, which is required for the
computer to perform its calculational steps more than once (see the second
step of Fig. 3.5). These considerations will lead to quite novel consequences
for quantum computers (see Sect. 4.3.3).

All these arguments support the interpretation that information has to be
physically realized (and therefore to be compatible with the laws of thermo-
dynamics), rather than representing an extraphysical concept that has to be
independently postulated for a statistical foundation of thermodynamics. On
the other hand, mathematical theorems do not represent information (as, for
example, assumed by Landauer 1996). Logic deals exclusively with tautologies
(‘analytical judgements’) – as complicated as they may appear to our limited
intelligence.

General Literature: Denbigh and Denbigh (1985), Bennett (1987), Leff and
Rex (1990).
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3.4 Semigroups and the Emergence of Order

In physical systems, ‘ordered’ states are characterized by low entropy. Or-
der may appear in the form of simple structures (such as regular lattices)
or complex ones (organisms). For example, the rectifier discussed in the pre-
vious section as replacing Maxwell’s demon must display ordered dynamical
behavior. The emergence of order from disorder in Nature, also called self-
organization of matter , may appear to contradict the Second Law with its
general trend towards disorder and chaos. This has often been misunderstood
as a ‘discrepancy between Clausius and Darwin’. However, the fundamental
phenomenological equation (3.1) allows entropy to decrease locally . A nega-
tive first term would allow physical entropy to flow into the environment. If
this environment is not in complete thermal equilibrium, and characterized
by at least two different temperatures, T1 and T2, a local loss of entropy,
dSext = dQ1/T1 + dQ2/T2 < 0, would not even require any net loss of heat,
dQ1 + dQ2 < 0. (Here differentials are always meant to refer to positive time
increments dt.) This local decrease of entropy is thus not in conflict with its
global increase according to the Second Law – see also Sect. 5.3.

In statistical terms, the number of states in a dynamically representative
ensemble (see Sect. 3.1.2) may decrease locally in accordance with determinism
and intuitive causality, provided the ensemble characterizing the state of the
environment increases accordingly – precisely as during the ‘reset’ of a memory
device, indicated in Fig. 3.5. In this Laplacean description, the outcome of
evolution would be determined by the microscopic initial state of the whole
Universe.

An important special case is a steady state of non-equilibrium, character-
ized by dS = dSint + dSext = 0 in spite of non-vanishing entropy production,
dSint > 0 (Bertalanffi 1953). It may support ordered states as dissipative
structures. The standard example, known as Bénard’s instability , describes
convective heat transfer through a thin horizontal layer of a liquid in the
form of spatially ordered convection cells, which optimize the process of ther-
mal equilibration between two reservoirs at different temperatures. In a fi-
nite universe, this stationary situation can only represent a transient local
phenomenon. The emergence of structure is often connected with symmetry
breaking (in particular of translational symmetry), related to a phase transi-
tion. In a deterministic description, an initial microscopic fluctuation would
thereby become unstable and be amplified to a macroscopic scale. In quantum
theory, it may also require an indeterministic collapse of the wave function
(see Sect. 4.1.2).

For similar reasons, Boltzmann suggested that biological processes here
on earth are facilitated by the temperature difference between the sun (with
its 6000 K surface temperature) and the dark Universe (at 2.7 K, as we know
today). At the distance of the earth, the solar radiation has an energy density
much lower than that of a black body with the same spectrum (tempera-
ture). Since photon number is not conserved (in general not even a robust



78 3 The Thermodynamical Arrow of Time

quantity), a canonical distribution exp(−H/kT ) in the occupation number
representation determines not only the spectral distribution as a function of
temperature, but also the intensity (photon density). A gas with conserved
particle number would instead allow one independently to choose the mean
density – either by fixing the particle number by closing the vessel, or by
fixing the chemical potential (in a grand canonical ensemble) by connecting
the vessel to a particle reservoir. In contrast, a photon from the sun can be
transformed very efficiently into many soft photons, which together possess
much higher physical entropy.

Although order appears to be an objective property, an absolute concept
of order that is not simply defined by means of phenomenological entropy is
as elusive as an objective concept of information or relevance (see Denbigh
1981, p. 147, or Ford 1989). For reasons already mentioned in Sect. 3.3.1, the
definition of order in terms of computability would depend on the choice of
‘relevant coordinates’. For example, the obvious order observed in a crystal
lattice is not invariant under general canonical transformations. How, then,
may the order of an organism be conceptually distinguished from the ‘chaotic’
correlations arising from molecular collisions in a gas?

Many self-organizing systems include chemical reactions. They are phe-
nomenologically described by irreversible rate equations, which define the
dynamics of concentrations X, Y, . . . These concentrations are ‘macroscopic’
variables, called α in Sects. 3.2 and 3.3.1. In statistical terms, rate equations
can be derived from a generalized Stoßzahlansatz that includes rearrangement
collisions between different kinds of molecules, which are usually assumed to
be already in thermal equilibrium with one another. These rate equations are
therefore special master equations (as derived in Sect. 3.2) for these ‘relevant’
degrees of freedom X, Y, . . .

Rate equations determine trajectories in the configuration space of concen-
trations.11 For closed systems, these trajectories may eventually approach that
point in their configuration space which describes equilibrium. Reversible de-
terminism must come to an end at such attractors (see Fig. 3.7a), although this
may require infinite time. A mechanical example of an attractor in the pres-
ence of friction is the phase space point characterized by v := dx/dt = 0 and
V (x) = Vmin. The corresponding equation of motion, mdv/dt = −av − ∇V ,
neglects any stochastic response from the energy-absorbing microscopic de-
grees of freedom, which is in principle required by the fluctuation–dissipation
theorem. Similar to the LAD equation of Sect. 2.3, this equation is, therefore,
deterministic, even though it is asymmetric under time reversal.

Points in the space of macroscopic variables X, Y or x, v (‘macroscopic
states’ α, in general) describe the physical states incompletely. They repre-
sent large subspaces of the complete Γ -space (that may realistically even have
to include the environment). Volume elements of the same size in macroscopic

11 As the rate equations are of first order in time, this macroscopic configuration
space is often called a phase space.
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Fig. 3.7. Standard representation of an attractor (a) and a limit cycle (b) as ex-
amples of phenomenologically irreversible dynamics in the configuration space of
macroscopic variables α ≡ X, Y

‘phase space’ may correspond to very different ensemble measures. These vol-
ume elements are therefore in general not dynamically conserved. For exam-
ple, the immediate vicinity of an equilibrium ‘state’ X0, Y0 – such as v = 0,
V (x) = Vmin in the mechanical example – covers almost the whole Γ -space
of the completely described system (or some subspace that is defined by con-
served quantities).

In the specific mechanical example with friction, the modified macroscopic
phase space measure dxdv/v nonetheless happens to be dynamically invari-
ant. Time reversal is here compensated for by a transformation v → 1/v to
restore a formal T -symmetry of macroscopic determinism (in formal analogy
with the examples mentioned in the Introduction). This leads to a conserved
generalized H-functional – cf. (3.53) and (3.55), viz.,

Hgen :=
∫

ρ(v, x) ln
[|v| ρ(v, x)

]
dv dx , (3.63)

which defines a ‘reference density’ ρ0 = |v|−1 as an effective equilibrium mea-
sure on this macroscopic phase space.

In the situation of a steady state non-equilibrium, macroscopic trajectories
described by other effective irreversible equations of motion may approach
certain closed curves, which do not correspond to maximum entropy. They are
called limit cycles, and may represent dissipative structures, which represent
order (see Fig. 3.7b and Glansdorff and Prigogine 1971).

Open systems are often described by means of phenomenological semi-
groups, defined as dynamical maps acting on ensembles in finite time steps.
These maps can be understood as time-integrated Markov operators Gret,
and are thus applicable again only in the ‘forward’ direction of time (in con-
trast to the reversible group of time translations, valid for dynamically closed
systems). Mathematically, ensembles may even be regarded as the fundamen-
tal kinematical objects of the theory, without any explicit definition of their
elements, which would describe microscopic reality. ‘Determinism’ is then un-
derstood as a mere forward determinism for these formal ensembles. Maps are
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called irreversible if they form genuine semigroups, that is, if they cannot be
uniquely inverted as maps on ensembles.

This irreversibility of maps does not correspond to a dynamical indeter-
minism for elementary states: it usually represents resets or attractors phe-
nomenologically – that is, without explicitly taking into account microscopic
degrees of freedom. In order to describe a reset, the master equation (3.48)
has to be based on a non-Hermitean Zwanzig projector that ‘creates’ rel-
evant information. In a globally deterministic context, its microscopic real-
ization would then have to contain some way of getting rid of entropy (as
discussed in Sect. 3.3.2).12 As can be seen from the second step of Fig. 3.5, the
reset transforms local information into nonlocal correlations (also depicted
in Fig. 3.1). This transformation describes a production of physical entropy ,
while the ensemble entropy is conserved. The absence in Nature of correla-
tions which would allow the inverse process and thus lead to a reduction of
physical entropy is responsible for the irreversibility of the semigroup.

As these semigroups are defined to act on ensembles, regarded as abstract
objects, their inversion does not in general represent a reversal of the micro-
scopic dynamics (‘time reversal’). For the same reason, their forward deter-
minism is not equivalent to microscopic determinism. A dynamical map may
not be invertible as a map even though the underlying dynamical transfor-
mation of microscopic states can be reversed.

Individual indeterminism and attractors are illustrated on a finite set of
states in Fig. 3.8. An asymmetric dynamical indeterminism (b) is represented
by diverging forks (see footnote 7), while an attractor is characterized by con-
verging (or ‘inverse’) forks (c). An everywhere defined indeterminism must
apply symmetrically (a). On a continuum of states, one would first have to
define a measure, usually according to its invariance under the assumed fun-
damental deterministic dynamics of the completely described closed system.
(This may represent a problem if determinism is to be given up fundamen-
tally.) Semigroups are often studied on discrete state spaces, where measures
of states are trivial. A popular example is the model of ‘deterministic cellular
automata’ (see Kauffman 1991). Their merging trajectories (representing at-
tractors) then replace the shrinking phase space in the continuum model with
friction that led to the generalized H-functional (3.63).

Forward-deterministic dynamical maps are often defined by means of non-
linear transformations. A popular (though not very physical) one-dimensional
toy model of a semigroup is the Bernoulli shift , defined by the mapping

12 Therefore, mathematical physicists have proposed a new definition of entropy that
would always allow the entropy of an open system to grow under a semigroup, even
if its physical entropy decreased – see Mackey (1989). For example, the relative
entropy – cf. (3.53) and (3.55)], defined for an open system with respect to a
canonical distribution with temperature of an external heat bath, would increase
even when the temperature of the system is lowered (as it is in the case of a
cooler heat bath). Such a formal redefinition of entropy is certainly physically
misleading, even though it may be useful for certain purposes.
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(a) (b) (c) (d)

Fig. 3.8. Dynamical transformations of states on a discrete and finite ‘phase space’
consisting of only four states: (a) T -symmetric indeterminism (representing an in-
completely determined Hamiltonian, for example); (b) asymmetric indeterminism,
representing a law-like increase of ensemble entropy (cannot be defined everywhere
on finite sets); (c) attractors (cannot be inverted as a map defined on all ensem-
bles); (d) discrete caricature of a Frobenius–Perron map (see text). The symmetric
indeterminism (a) would appear asymmetric – similar to (b) – when applied to a
low-entropy initial ensemble (such as an individual state) in a given direction of time.
It would then describe the usual increase of ensemble entropy by uncontrollable ‘per-
turbations’. The distinction between (b) and (c) requires an absolute direction of
time

α → 2α mod 1 on the interval (0, 1]. (Its α-measure would be invariant under
translations in α if chosen as ‘fundamental dynamics’.) The dynamical in-
crease of this ‘phase space volume’ element dα by multiplication by the factor
2 in this map could be uniquely inverted on the infinite continuum, although
it represents an indeterminism in the sense of the measure. However, the sec-
ond term, mod 1, characterizes a semigroup as in Fig. 3.8c. Both dynamical
parts are combined here in order to form a Frobenius–Perron map, defined
everywhere on the interval in spite of representing a semigroup (symbolically
indicated for the discrete case of Fig. 3.8d). The forward indeterminism, ob-
vious in the discrete case, is often overlooked on the continuum, where the
topology-conserving stretching of ‘phase space’ α may appear deterministic
without a measure. The ‘topological time asymmetry’ (mod 1) contained in
the Frobenius–Perron map may be phenomenologically useful, as it is able to
describe the formation of macroscopic diversity. Realistic attractors must be
of mixed type in order to comply with the fluctuation–dissipation theorem.

Many similar dynamical maps are discussed in the literature. They are (at
most) of phenomenological value, and have little explanatory power from a
fundamental statistical point of view. Their investigators often seem to regard
the underlying individual microscopic reality as irrelevant. The ensembles be-
ing mapped dynamically are then treated as real states of physical objects.
This must, of course, lead to confusion from a fundamental point of view.
Statistical theories based on dynamical maps are occasionally even used for a
‘minimal’ interpretation of quantum mechanics (see Sect. 4.4). The misuse of
purely formal ensembles as describing physical states is thereby reversed by
identifying wave functions (that is, elementary quantum mechanical states)
with ensembles. However, the conclusion that quantum phenomena cannot
be explained in any such ‘simple way’ was already drawn by Bohr before the



82 3 The Thermodynamical Arrow of Time

advent of matrix and wave mechanics (when his theory with Kramers and
Slater had failed – see Jammer 1974).

The formation of structure is often related to a spontaneous symmetry
breaking that may indeed have its origin in the fundamental quantum inde-
terminism (see Chap. 4 and Sect. 6.1). This may be the reason why the de-
scription of thermodynamical systems far from equilibrium (where structure
may form) usually remains phenomenological (see Glansdorff and Prigogine
1971). The onset of structure may then be described by means of unstable fluc-
tuations in certain quantities α, whose probabilities can be calculated from
Einstein’s formula (3.56). An instability would arise for them when the sec-
ond derivative ∂2S/∂α2 at a stationary point of S(α) becomes negative, for
example by an adiabatic change in an external parameter. In this way, new
robust quantities in the sense of Sect. 3.3.1 (see also Sect. 4.3.2) may emerge,
while physical entropy is transformed into entropy of the corresponding lack-
ing information, defined according to (3.58).

General Literature: Glansdorff and Prigogine 1971, Haken 1978, Cross and
Hohenburg (1993).

3.5 Cosmic Probabilities and History

I shall close this chapter with a brief discussion of an objection against the
probability interpretation of entropy when applied to the whole Universe and
its evolution. It was first raised by Bronstein and Landau (1933), and later
in a more explicit form by von Weizsäcker (1939) – see also Feynman (1965),
but it may also be affected by some recent developments in cosmology.

The present state of the Universe does not only possess an entropy Sα(now)

that is much smaller than its equilibrium value Sequil; it also contains doc-
uments which strongly indicate that the entropy has always been increasing
during the past, dSα(t)/dt > 0 for t < ttoday. One may now compare the prob-
ability that these documents (including our private memories) have indeed
formed in such a historical process with the probability for their formation in
a mere chance fluctuation. In the former case one has

Sα(yesterday) < Sα(now) � Sequil . (3.64)

However, if Einstein’s measure of probability in terms of entropy (3.56) were
applicable to the Universe, the formation of its present state in a chance
fluctuation – as improbable as it may appear – would be far more probable
than a state with much lower entropy in the distant past. This objection
evidently undermines Boltzmann’s explanation of the thermodynamical arrow
of time as arising from a grand fluctuation that occurred in an eternal universe
(see also Sect. 5.3), since this fluctuation could be replaced by a far smaller
one when its size is measured in terms of entropy.
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This probability argument requires that the left inequality (3.64) is valid
not only with respect to physical (local) entropy, but also for an appropri-
ate ensemble entropy that takes into account all those non-local correlations
which represent the convincing consistency of documents. Their existence in
a historical universe is related to Lewis’ ‘overdetermination of the past’ (see
footnote 1 of Chap. 2).13 While the improbability of the present solar system,
for example, as having occurred in a chance fluctuation would be ‘moderate’
compared to that for a corresponding whole universe, the former would then
have to contain consistent though unexplainable documents about the lat-
ter. David Hume’s fundamental insight that we can never predict anything
with certainty (not even that the sun will rise again) applies to the past as
well – even if we did not question the general validity of the dynamical laws.
Strictly speaking, we cannot be sure about the existence of any facts that we
seem to remember. The reliability of memories and documents is in principle
as doubtful as that of predictions; only the subjective local present cannot be
questioned. Hence, even Kant’s premise that we are making experience cannot
be taken for granted. Not what has been observed, only our (perhaps deceiv-
ing) ‘memory’ that we are aware of now is beyond doubt. Saint Augustine
concluded in a similar way in his Confessiones that the past and the future
‘exist’ only in the present – namely as memory and expectation ‘in the soul’.
This long-standing philosophical debate seems to be deeply affected (though
not overcome) by thermodynamical and statistical considerations.

However, Saint Augustine’s epistemologically rigorous concept of reality
is obviously too restrictive for the construction of a ‘world model’, which
must in principle always remain hypothetical (Poincaré 1902, Vaihinger 1911).
The probabilistic objection raised above, even if formally correct, will thus
hardly be accepted as demonstrating that causality is an illusion, based on an
accident. Einstein’s probabilities (3.56) for the occurrence of non-equilibrium
states α, motivated by the statistical interpretation of entropy, can indeed
be justified only for those macroscopic properties α which have a chance of
occurring repeatedly within relevant times (‘quasi-ergodically’) on a generic
trajectory – that is, for properties which are not robust on relevant timescales
(hence not for stable macroscopic properties).

Physical cosmology can fortunately be derived from the more economical
hypothesis of a universe of finite age. A homogeneous (structureless) low en-
tropy initial state appears more acceptable in this sense than a complex state
with a similarly low value of entropy. Probabilities for later states can then
be calculated as probabilities for histories (products of successive conditioned
probabilities). For example, the folding of protein chains is usually calculated
along trajectories of monotonically increasing entropy (according to a master
equation). Final configurations not accessible through such histories would
thus be excluded even when possessing relatively large entropy. (Quantum

13 States containing consistent (though possibly deceiving) documents were called
time-capsules by Barbour (1994a) – see Sect. 6.2.2.
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mechanically, there is always a non-vanishing but extremely small tunneling
probability for their occurrence.) Most probable under the initial condition are
those final states that are accessible through the most probable histories. This
picture explains consistent documents. The thus conditioned probability for
an observable world such as ours having evolved somewhere in the Universe
would even grow with its size (in contrast to the global initial probability).
This argument may lend support to many kinds of ‘multiverses’ (see Tegmark
et al. 2006), which are reasonable conceptions when extrapolated from the
observable universe by means of empirically founded laws or symmetries.

Whether the situation of a universe which contains scientists observing
it can be regarded as probable in this sense, or whether additional ‘weakly
anthropic’ selection criteria are required14, has hardly ever been estimated in
a reliable and unbiased way. Only at a tremendously later age of our universe
could a state of maximum entropy be reached via improbable intermediate
states or through quantum mechanical tunnelling (Dyson 1979), such that
unconditioned probabilistic arguments apply. The cosmologically very early
time that we are living at may thus remain the major improbable fact.

A ‘plausible’ low-entropy initial state of the Universe will be considered
in Sect. 5.3. Its discussion requires quantum theory. Quantum indetermin-
ism, whatever its correct interpretation (see Sect. 4.6), may even allow the
assumption of a unique ‘initial’ state of the Universe (with a very small en-
tropy capacity) – see Chap. 6. However, it may be worth noticing that the
outcome of evolution (including ourselves) must already have been contained
as a possibility in the huge configuration space that represents the fundamen-
tal kinematical concepts – regardless of all probability arguments.

14 The weak anthropic principle states that we are encountering a rare local situa-
tion (such as a planet like Earth or a special universe in a multiverse), since we
could not exist somewhere else, while the strong principle requires that the whole
Universe or Multiverse must fulfill very specific conditions in order to allow our
existence as observers. It has even been claimed to possess ‘predictive power’.
The border line between the weak and the strong principle is shifting in modern
cosmology. (See Barrow and Tipler 1986, and Sect. 6.1.)
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The Quantum Mechanical Arrow of Time

The dynamics of probability distributions on classical phase space, discussed
under various aspects in Chap. 3, may be formally translated into quantum
mechanics by means of the canonical quantization rules. Many authors of
standard textbooks therefore maintain that the foundation of irreversibility
in quantum mechanics is identical to that in classical physics. There could
then only be quantitative differences arising from different spectral properties
of the ‘corresponding’ Liouville operators. However, this approach to statisti-
cal quantum mechanics completely ignores the fundamental interpretational
differences of concepts that formally correspond to one another (such as proba-
bility distributions and density operators – see Sect. 4.2). It therefore conceals
essential aspects of quantum theory which may be important for irreversibility
in general (recall the general discussion in the Introduction):

1. The quantum mechanical probability interpretation represents an inde-
terminism of controversial origin. Most physicists seem to regard it as an
objective dynamical indeterminism (see Fig. 3.8), and some even as rep-
resenting a fundamental arrow of time that would go beyond dynamics.
Others have instead suggested that one may explain the unpredictabil-
ity of quantum mechanical measurement results in terms of conventional
statistical arguments, viz., by means of thermal fluctuations that are re-
lated to the amplification process which leads to macroscopic outcomes.
If, however, this question is circumvented by interpreting the wave func-
tion as representing ‘human knowledge as an intermediate level of real-
ity’ (Heisenberg 1956), this may exclude any possibility of a dynamical
analysis, while Maxwell’s demon, discussed in Sect. 3.3.2, would return
through the quantum back door. Therefore, the foundation of irreversibil-
ity seems to be intimately related to the interpretation of quantum theory
(see Sects. 4.3 and 4.6). In order to clarify this situation as far as possible,
one first has to analyze the dynamical formalism as it is actually used ,
and thus empirically justified.
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2. The quantum theory is kinematically nonlocal . For example, the generic
many-particle wave function ψ(r1, r2, . . . , rN ), which represents a ‘pure’
quantum state, describes quantum correlations that are not due to incom-
plete information (even though they may lead to statistical correlations
in measurements). Similarly, a state of quantum field theory is given by a
wave functional of fields which are defined all over space. This ‘entangle-
ment’ is a direct consequence of the superposition principle. In quantum
theory, the state of the whole does not define states of its parts . This
is in fundamental contrast to the completely determined many-particle
state of classical mechanics: a point in phase space (that is, a definite
state) remains a point when projected onto a subsystem. The kinemati-
cal indeterminacy of the parts in quantum theory describes a non-trivial
‘wholeness’ of Nature, which cannot, as in classical physics, be interpreted
as a mere dynamical interconnectedness (that may lead to statistical cor-
relations in an incomplete description). Quantum nonlocality is not just a
‘spooky action at a distance’ that would affect hidden local states. More-
over, the absence of well defined subsystem states has nothing to do with
Heisenberg’s uncertainty (or ‘indeterminacy’) relations, which signal the
limited validity of classical concepts for describing physical states. They
apply even when the true and deterministically evolving quantum states
are certain (‘pure’).

Consequences of these basic differences between classical and quantum statis-
tical physics will be discussed after their formal analogy has been set up in
Sect. 4.1.

4.1 The Formal Analogy

4.1.1 Application of Quantization Rules

The formal transition from classical to quantum statistical mechanics can
be based on the ‘canonical quantization rules’, which replace functions of
state a(p, q) by ‘corresponding’ operators A = a(P, Q), and Poisson brackets
between them by commutators. For example, the Liouville equation (3.26)
transforms as

i
∂ρΓ

∂t
= i{H, ρΓ } =: L̂ρΓ −→ i

∂ρ

∂t
= [H, ρ] =: L̂ρ . (4.1)

It is then called the quantum Liouville or von Neumann equation. The clas-
sical probability densities ρΓ (p, q) are thus replaced by density operators ρ.
The caret is here used to distinguish the new operators, which act on the
quantum mechanical Hilbert space operators (such as density operators),
from these Hilbert space operators themselves. In the formal analogy, the
new ‘superoperators’ (as they are sometimes called) correspond to the op-
erators that were defined in Sect. 3.1.2 as acting on probability densities.
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The Hilbert space operators form a new Hilbert space if an inner product
〈〈ρ1, ρ2〉〉 := Trace{ρ†1ρ2} is defined for them in analogy to the inner prod-
uct 〈ρΓ1, ρΓ2〉 =

∫
ρ∗Γ1(p, q)ρΓ2(p, q) dp dq for classical probability densities

on Γ -space – see the text above (3.27).
Furthermore, all mean values ā of functions of state a(p, q), defined with

respect to probability densities ρΓ (p, q), are replaced by expectation values
〈A〉 of corresponding ‘observables’ A :

ā :=
∫

a(p, q)ρΓ (p, q) dp dq −→ 〈A〉 := Trace{Aρ} . (4.2)

Since (4.2) implies

ln ρ −→ 〈ln ρ〉 = Trace{ρ ln ρ} , (4.3)

the quantum mechanical entropy functional corresponding to the ensemble
entropy SΓ becomes von Neumann’s entropy ,

S[ρ] := −kTrace{ρ ln ρ} . (4.4)

However, in spite of this formal analogy, a density operator can no longer be
interpreted as representing an ensemble of states that would define ensembles
of values for all functions of state (see below).

The dynamics of the statistical operators, defined by the right-hand equa-
tion of (4.1), is unitary, with a formal solution

ρ(t) = U(t)ρ(0)U†(t) , (4.5)

and U(t) = exp(−iHt) for time-independent Hamiltonians. This dynamical
form warrants conservation of von Neumann entropy (4.4) under the von
Neumann equation,

Trace
{
ρ(t) ln ρ(t)

}
= Trace

{
U(t)ρ(0)U†(t)U(t) ln ρ(0)U†(t)

}
= Trace

{
ρ(0) ln ρ(0)

}
. (4.6)

Since classical determinism (the conservation of probabilities along individual
trajectories) may also be described in the form of a unitary time-dependence
of probability distributions [see (3.26)], the formal argument in (4.6) may also
be applied to classical ensemble dynamics.

The square of the Hilbert space norm of a density operator,

‖ρ‖2 := 〈〈ρ, ρ〉〉 = Trace{ρ2} = 〈ρ〉 , (4.7)

defines a linear measure of negentropy (see footnote 3 of Chap. 3). It is also
conserved under the unitary dynamics (4.1). The corresponding linear entropy
is often defined as Slin = 〈(1 − ρ)〉 (such that 0 ≤ Slin < 1). In contrast
to this linear entropy, which uses the Hilbert space norm of operators, the
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probability norm, Trace{ρ} = 〈1〉 = 1, characterizes a Banach space of trace
class operators (those with non-vanishing trace). It is preferentially used in
open systems quantum mechanics (Sect. 4.4), since total probability must be
conserved even under phenomenological stochastic equations of motion that
describe an increase in ensemble entropy.

In further formal analogy to classical ensemble mechanics, any coarse-
grained (or relevant) information measured by Trace{(P̂ ρ) ln(P̂ ρ)} is in gen-
eral not conserved under a unitary transformation. The Zwanzig projection
operators P̂ are once again idempotent operators on the Hilbert space of den-
sity operators, with the additional properties Trace{P̂ ρ} = 1 and positive P̂ ρ
for all ρ – just as in Sect. 3.2.

Statistical operators (density operators) ρ may be represented by vari-
ous ensembles of wave functions ψα with probabilities pα in the form ρ =∑

α |ψα〉pα〈ψα| (see Sect. 4.2). In the diagonal form of ρ, where the eigen-
states ψα form an orthonormal set, ‖ρ‖2 is given by the sum

∑
α p2

α. Its
conservation (or that of 〈ln ρ〉 =

∑
pα ln pα) thus reflects the individual con-

servation of these diagonal elements in the moving basis ψα(t) – in analogy to
the conservation of a comoving phase space volume in deterministic classical
mechanics.

Matrix elements of the density operator with respect to a random basis
{φn},

ρmn =
∑
α

〈φm|ψα〉pα〈ψα|φn〉 =
∑
α

cαmpαc∗αn (4.8)

if ψα =
∑

m cαmφm, are in general small for m �= n because of random phases
of the coefficients in the sum over α. Pauli (1928) referred to this random
phase approximation when he neglected off-diagonal matrix elements while
deriving his master equation (4.18) below. However, they may in general be
small individually in spite of amounting to a significant effect as a whole. In
contrast, the complete neglect of off-diagonal elements in a certain basis,

P̂diagρmn := ρmmδmn , (4.9)

defines the most important Zwanzig projection of quantum statistical me-
chanics. It regards these off-diagonal elements (or any interference between
the states of this basis) as ‘irrelevant’ for all practical purposes, although it
does not assume them to vanish. So it has nothing to do with the usual diago-
nalization of Hermitean operators in their eigenrepresentation. The inequality

Trace
{
P̂diagρ ln(P̂diagρ)

}
=
∑

n

ρnn ln ρnn ≤ Trace
{
ρ ln ρ

}
=
∑
mn

ρmn(ln ρ)nm

(4.10)
is called Klein’s lemma – see (3.35). It is a consequence of the fact that P̂diag

is a genuine projection operator (see Sect. 3.2).
An obvious (weaker) generalization of (4.9) is

P̂semidiagρ :=
∑

n

PnρPn , (4.11)
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where {Pn} (no caret!), with PmPn = Pmδmn, is a complete set of projection
operators on mutually orthogonal subspaces of the Hilbert space of quantum
states. In quantum field theory, projections on ‘unitarily inequivalent’ separa-
ble subspaces of Hilbert space, sometimes even regarded as ‘distinct Hilbert
spaces’, are often chosen for this purpose. However, these decompositions of
non-separable Hilbert spaces are no less arbitrary than any other P̂semidiag

(though often useful in the case of large numbers of effective degrees of free-
dom). If imposed axiomatically, the relevance concept (4.11) may represent
a superselection rule (Wick, Wightman and Wigner 1952, Jauch 1968, Hepp
1972). This observation suggests that proposed superselection rules are simi-
larly based on some dynamical robustness like the ‘thermodynamically macro-
scopic’ variables of Chap. 3 that are usually assumed as ‘given’ – a possibility
that will be further investigated and confirmed in Sect. 4.3.

4.1.2 Master Equations and Quantum Indeterminism

The Hamiltonian of a quantum mechanical system is often written in the form
H = H0 + H1 in order to derive a master equation in terms of a perturba-
tion expansion with respect to H1. However, the main purpose of this split
Hamiltonian is to define a relevance concept of type (4.9) or (4.11) by means
of the eigenbasis of H0. It may then (but need not) be further used for a time-
dependent perturbation expansion with respect to the off-diagonal elements
of H in this representation.

The dynamics of the ‘relevant’ part P̂diagρ is the dynamics of the diagonal
elements of ρ. According to (4.1) one has in any representation (now writing
P̂diag = P̂ for short)

i
dρmm

dt
=
∑

n

(Hmnρnm − ρmnHnm)

≡
∑

n(�=m)

(Hmnρnm − ρmnHnm) =̂ P̂ L̂(1 − P̂ )ρ . (4.12)

Since the diagonal matrix elements of ρ do not contribute to the RHS, the first
term of Zwanzig’s pre-master equation (3.44), representing P̂ L̂P̂ , vanishes for
this relevance concept. The terms remaining in (4.12) describe the coupling
to the ‘irrelevant’ off-diagonal elements, and demonstrate that the diagonal
elements are dynamically autonomous only in the trivial case (see footnote 6
of Chap. 3 regarding the quantum Zeno effect). Because of the formal analogy,
the rest of Zwanzig’s method can then be applied, provided the required ap-
proximations are valid. The propagator exp

[− i(1 − P̂ )L̂τ
]
, occurring in the

operator Ĝret of the Markovian approximation (3.48), defines here a closed
but highly non-trivial dynamics of the off-diagonal elements of ρmn.

Pauli’s master equation can now be obtained from (3.48) and (3.45) by
using a perturbation expansion in terms of the off-diagonal elements of the
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Hamiltonian for calculating Ĝret =
∫ T

0
Ĝ(τ)dτ . These off-diagonal elements

are thus assumed to be small, although the master equation would become
trivial if they vanished exactly (that is, for H = H0). This last remark em-
phasizes the dynamical role of the relevance concept.

Now consider the last three factors of the RHS of the integral kernel (3.45)
applied to ρ :

(1 − P̂ )L̂P̂ ρ = (1 − P̂ )
[
H, P̂ρ

]
=̂ Hmn(ρnn − ρmm) with m �= n . (4.13)

This expression depends only on the off-diagonal elements of H. The projec-
tion 1 − P̂ is ineffective, as P̂ L̂P̂ = 0. Similarly, one has for the first three
factors of the RHS of (3.45), when applied to any matrix X :

P̂ L̂(1 − P̂ )X =̂
∑

k( �=m)

(HmkXkm − XmkHkm) . (4.14)

Hence, Ĝret is of second and higher orders in the off-diagonal elements of
H. When neglecting higher orders according to Pauli, one has to express the
remaining propagator exp

[− i(1− P̂ )L̂τ
]

in (3.45) solely in terms of diagonal
elements of H, Hmm =: E

(0)
m . This means

e−i(1−P̂ )L̂τX =̂ e−i
(
E(0)

m −E(0)
n

)
τXmn , (4.15)

and one obtains

P̂ L̂(1 − P̂ )e−i(1−P̂ )L̂τ (1 − P̂ )L̂P̂ ρ =̂ (4.16)∑
n

|Hmn|22 cos
[(

E(0)
m − E(0)

n

)
τ
]
(ρmm − ρnn) .

This result corresponds to a Born approximation in terms of the off-diagonal
elements of the Hamiltonian. The time integral required to obtain Ĝret ac-
cording to (3.49) leads to the resonance factor∫ T

0

cos
[(

E(0)
m − E(0)

n

)
τ
]
dτ =

sin
[(

E
(0)
m − E

(0)
n

)
T
](

E
(0)
m − E

(0)
n

) , (4.17)

familiar from time-dependent perturbation theory. In the limit T → ∞, this
quotient becomes a δ-function times π, and (3.48) can be written (Pauli 1928)

dρmm

dt
= 2π

∑
n

|Hmn|2δ
(
E(0)

m − E(0)
n

)
(ρnn − ρmm) =:

∑
n

Amn(ρnn − ρmm) .

(4.18)
This Pauli equation is similar to other master equations, such as (3.51), while
the coefficients Amn, defined on the RHS, are transition rates in analogy
to Boltzmann’s w(p1p2,p

′
1p

′
2) of Sect. 3.1.1. If H1 contains only two-particle
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interactions, the sum over n may indeed be written as a sum over particle
pairs. According to the above definition, the coefficients Amn conserve energy
and satisfy the symmetry under collision inversion, Amn = Anm [see (3.7)].
Therefore, the Pauli equation conserves total probability,

∑
n dρnn/dt = 0.

The explicit form of the Pauli equation (4.18) may be used to discuss its
range of validity, which must be limited by the approximations used when
deriving the general master equation (3.48). It depends here on the spectrum
of the Hamiltonian, which is often discrete for quantum systems. Nonetheless,
Poincaré recurrence times can be neglected in practice for macroscopic quan-
tum systems. Their energy spectra are usually so dense that they do not lead
to any observable differences compared to a continuous spectrum. Quantum
systems may even exhibit ‘classical chaos’ (Habib, Shizume and Zurek 1998).
On the other hand, even a continuous spectrum would not by itself justify
an arrow of time (as is often claimed). The negligibility of recurrences for all
times of interest – whether they exist in principle or not – applies in both
directions of time. The physical importance of the difference between discrete
and continuous spectra seems to be grossly overemphasized in mathematical
foundations of irreversibility.

However, the energy δ-function occurring in (4.18) is meaningful only in-
side an integral over energy E, or, as an approximation, under a sum over m.
Therefore, Pauli combined groups of states with almost equal energies to form
‘cells’ (subspaces) representing a coarse-graining in order to apply a random
phase approximation in the corresponding sums (see also van Kampen 1954).
Erich Joos (1984) was able to show that the off-diagonal elements ρmn between
states from such macroscopically different subspaces disappear by interaction
with the environment (‘decoherence’ – see Sect. 4.3). This dynamical argument
justifies Pauli’s conceptual cells and his random phase ‘approximation’.

When applied to a single initial state with ρ00(0) = 1, Pauli’s equation
(4.18) assumes the form of Fermi’s Golden Rule in the Born approxima-
tion. Replacing the sum over initial states n in (4.18) by an energy inte-
gral and a sum over all remaining quantum numbers β, that is,

∑
n · · · −→∑

β

∫
σβ(E) . . .dE with a partial density of states σβ(E), and similarly sub-

stituting m −→ E′, α for the final states, one obtains for the energy-integrated
diagonal elements of final states α �= 0, ραα :=

∫
ρE′α,E′ασα(E′)dE′:

dραα

dt
= 2π|Hα0(E)|2σα(E) . (4.19)

Here, Hα0(E) := HαE,0E , while α represents a ‘decay channel’.
Although this Golden Rule (4.19) can thus be derived as an approximation

from the unitary dynamics (4.12), it is mainly used to calculate probabilities
for decay and other non-unitary ‘quantum events’ – conventionally described
by a collapse of the wave function – see Sect. 4.6. (Coherent exponential decay
according to the Schrödinger equation will be discussed in Sect. 4.5.) In con-
trast, Boltzmann’s probabilistic transition rates w(p1p2,p

′
1p

′
2) refer to ensem-

bles of individually deterministic collision trajectories (distinguished by their
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impact parameters). This different interpretation is facilitated by the fact that
the formal concept of a density operator is already based on a probability in-
terpretation (see Sect. 4.2). Nobody has ever been able to construct a model
that would consistently explain the wave function as representing an ensem-
ble of ‘hidden variables’. (Bohm’s theory, that presumes Schrödinger’s wave
function, will be discussed in Sect. 4.6.) In particular, the entropy (4.4) does
not contain any contribution that might represent the missing information
corresponding to such an ensemble (as in Fig. 3.5 for classical measurements).

Pauli’s equation does indeed resemble Born’s original formulation of the
probability interpretation (Born 1926). Born used it to describe ‘quantum
jumps’ between Schrödinger’s stationary eigenstates of Hamiltonians H0 that
characterize isolated microscopic systems (such as atoms).1 In quantum field
theory, a similar splitting of the Hamiltonian is used to define the interaction
picture. The special role attributed to the eigenstates of H0 as representing the
‘real’ physical states, dynamically connected by discrete jumps, was histori-
cally motivated by their correspondence with Bohr’s discrete atomic electron
orbits. Quantum jumps (or a ‘collapse of the wave function’) are, of course,
incompatible with deterministic trajectories in Hilbert space, that is, with
time-dependent wave functions evolving according to a Schrödinger equation.
The system Hamiltonians H0 are thus assumed not to contain any interaction
that would be responsible for stochastic transitions. This early attempt to
objectivize the probability interpretation (or the observables used therein) by
a dynamical process is therefore based on an essential approximation. (Recall
the trivial result obtained for the Pauli equation in the exact energy basis!)

The general structure of the Pauli equation is preserved even when the
perturbation expansion in terms of the off-diagonal elements of H (in a cer-
tain basis) is not used. This improved equation is known as Van Hove’s ‘exact’
master equation (Van Hove 1957). It represents the master equation for the
Zwanzig projection (4.9) without any further approximation. In particular, if
the chosen basis of relevance (the eigenbasis of H0) is the independent particle
basis, the matrix elements Hmn appearing in the Pauli equation have to be
replaced by the elements of a T -matrix, usually defined as T := (S − 1)/2πi,
where S is the exact two-particle scattering matrix. This procedure presumes
the negligibility of simultaneous many-particle collisions (just as Boltzmann’s
Stoßzahlansatz ). However, the adjective ‘exact’ for Van Hove’s equation is
misleading even for a dilute gas, as it refers only to the calculation of Ĝret,

1 While Born may not have been using his concepts quite consistently in these early
days of quantum mechanics, in his third (here quoted) paper on the probability
interpretation he discussed probabilities for jumps between stationary wave func-
tions – not probabilities for the occurrence of classical properties (such as particle
positions). In scattering or decay ‘events’ he referred to plane waves as stationary
states, which he then associated with particle momenta according to de Broglie’s
relation. One year before the formulation of the uncertainty relations this was
not recognized as being in conflict (in principle) with the position measurement
at the detector.
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but not to the derivation of the master equation (3.48) in its preferred basis
of relevance. Similarly to the choice of subspaces in (4.11), Born’s probabil-
ity interpretation, when applied to measurements, depends on the choice of
appropriate ‘observables’.

In analogy to the classical H-theorem (3.10), one may again show that the
entropy corresponding to the Zwanzig projection P̂ diag never decreases under
the Pauli or Van Hove equation:

dS[P̂diagρ]
dt

= −k
d
(∑

ρmm ln ρmm

)
dt

≥ 0 . (4.20)

Evidently, this entropy depends crucially on the chosen basis for diagonaliza-
tion, that is, on the specific concept of relevance used in this master equation.

Because of the formal analogy, the classical canonical distribution,
ρcan(p, q) = Z−1 exp

[ − H(p, q)/kT
]
, now becomes a canonical density op-

erator, ρcan = Z−1 exp(−H/kT ). It can be derived precisely as in (3.19) by
maximizing the entropy S[ρ] under the constraint of fixed mean energy and
probability norm. The so-called ‘new statistics’ (Bose or Fermi statistics) in
terms of apparent particles is obtained when evaluating this canonical den-
sity operator in terms of quantum states of free fields – conveniently in the
occupation number representation. Only when expressed in terms of particle
states does it appear as a new method for counting them. The success of
quantum statistics is indeed one of the strongest arguments against particles
(in their original sense of pointlike objects in space, distinguishable by their
trajectories) as a fundamental kinematical concept.

This conclusion, that fields rather than particles have to be quantized even
for fields that never appear classically (such as spinor fields – see Zeh 2003), is
also supported by the absence of Gibbs’ self-mixing entropy (see footnote 2 of
Chap. 3). The empirically correct measure on phase space, d3Np d3Nq/h3NN !,
may then be obtained, for example, in the partition function Z for a grand
canonical ensemble, pE,N (µ, T ) = exp

[ − (E − µN)/kT
]
. If this expression

is evaluated by means of the familiar textbook approximation in the occupa-
tion number representation |{nk}〉 for spatial wave modes (often incorrectly
regarded as ‘single-particle’ wave functions) with wave numbers k = p/� on
a large space volume V , one obtains for dilute gases – where N =

∑
k nk and

E =
∑

k εknk, with εk = p(k)2/2m and εk − µ � kT :

Z(µ, T ) =
∑
{nk}

exp

[
−
∑

k

(εk − µ)nk

kT

]

≈
∑
N

V N

h3NN !
exp

(
Nµ

kT

)∫
exp

(
−

N∑
i=1

p2
i

2mkT

)
d3Np

≈
∑
N

[
V

h3N
exp

( µ

kT

)∫
exp

(
− p2

2mkT

)
d3p

]N

. (4.21)
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The factorials N ! ≈ NN in the denominator are here required (as already
known to Planck in 1900) in order to compensate for the sum over all permu-
tations of the N momenta pi in this N -fold integral, since they all represent
the same oscillator quantum states for the various wave modes. The latter are
described by wave numbers k which formally correspond to momenta p. The
density matrix, and therefore the partition function, now factorize in terms of
wave modes k rather than in terms of particle numbers, while the factorials
do not have to be introduced ad hoc (as done by Satyendra Nath Bose in
order to justify his photon concept).

General Literature: Jancel 1963.

4.2 Ensembles Versus Entanglement

Quantum wholeness is analyzable.

In the previous section, we derived the von Neumann equation from the Li-
ouville equation by using the formal quantization rules. The dynamics of the
density matrix, obtained in this way, is unitary. Therefore, it conserves S[ρ],
while the Pauli (or Van Hove) equation, albeit apparently derived from the
von Neumann equation as an approximation, may seem to be superior, as it is
able to describe quantum indeterminism and an increase in ensemble entropy,
in particular in quantum measurements.

The Liouville equation itself was obtained in Sect. 3.1.2 by applying Hamil-
ton’s (that is, Newton’s) equations to ensembles that represent incomplete
knowledge about classical states. Since quantization of the Hamiltonian dy-
namics of mechanical systems leads to the Schrödinger equation, one may as
well first quantize and then consider ensembles of its solutions ψα(t) with cor-
responding probabilities pα, now describing incomplete knowledge about the
wave function (see Fig. 4.1). This procedure may offer deeper insight into the
meaning of the density matrix than its formal foundation of Sect. 4.1.1.

According to this ensemble interpretation, probabilities pα rather than the
density matrix ρ(q, q′) correspond conceptually to the probability distribution
ρΓ (p, q). The meaning of the density matrix can only be appreciated when
considering ensemble expectation values of observables A, that is, mean values
of expectation values with respect to different wave functions ψα :

〈A〉 :=
∑
α

pα〈ψα|A|ψα〉 = Trace{Aρ} =
∑

n

an〈φn|ρ|φn〉 , (4.22)

with
A :=

∑
n

|φn〉an〈φn| and ρ :=
∑
α

|ψα〉pα〈ψα| .

The symbol 〈A〉 denotes here a twofold mean: with respect to the ensem-
ble of quantum states ψα with their probabilities pα, and with respect to
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Hamilton Liouville

Schrödinger von Neumann

incomplete knowledge

quanti-
zation

Fig. 4.1. Two routes from classical mechanics to the von Neumann equation

the quantum mechanical indeterminism of measurement results an with their
probabilities |〈φn|ψα〉|2, valid for given quantum states ψα. In this way, the
concept of a density matrix depends on the probability interpretation of the
wave function – though not yet on any specific form in terms of ensembles2

(see Sect. 4.6).
An ensemble interpretation of the density matrix according to ρ =∑

α |ψα〉pα〈ψα|, used in (4.22), does not require the members ψα of the en-
semble of wave functions to be mutually orthogonal; they may even form an
overcomplete set. The ensemble can therefore not be recovered from the den-
sity matrix. Von Neumann’s entropy (4.4) describes an ensemble entropy of
the form S[ρ] = −k

∑
pα ln pα only for the specific ensemble consisting of the

orthonormal eigenstates of ρ.
Just as for classical statistical mechanics, the conservation of entropy re-

flects dynamical determinism (now for wave functions) – provided the Hilbert
state norm is conserved, too. This requires not only determinism, but also
the unitarity of the Schrödinger equation (not just that of the von Neumann
equation). The reason is that the formal density matrix cannot distinguish
between the norm and probability pα of a wave function.

It should also be emphasized here that this formalism applies as well to
wave functionals characterizing quantum field theory (that is, wave functions
for a continuum of variables). ‘Backward running’ world lines in Feynman
graphs are mere symbols for certain terms which appear in a relativistic per-
turbation expansion that is used for calculating the unitary propagation of
wave functionals (general superpositions) with respect to an arbitrary but
given time coordinate. These terms represent integrals over field modes (usu-
ally plane waves) – not over particle variables. Feynman’s approach has turned
out to be useful even beyond S-matrix theory, which is restricted to describing
interactions between asymptotically free objects.

The mapping of general ensembles of wave functions onto those which diag-
onalize the density matrix is an information-reducing idempotent operation

2 If the elements of the probability interpretation are themselves wave functions (as
in Born’s original formulation, mentioned in footnote 1, or as in collapse theories),
the ensemble consisting of all possible outcomes of all conceivable measurements
would be quite different from the initial ensemble (which may consist of one pure
state, for example). Nonetheless, probabilities for all these outcomes are implicitly
postulated by the phenomenological rules used in (4.22).
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on these ensembles, similar to a Zwanzig projection. Nonetheless, one may
rederive the von Neumann equation (4.1) from the ensemble interpretation
under the further assumption that all wave functions defining the ensemble
satisfy the same Schrödinger equation i∂ψα/∂t = Hψα. However, presuming
the exact Hamiltonian to be ‘given’ is hardly consistent when regarding states
as incompletely known. Even in classical physics, the precise Hamiltonian
would depend on the (even less known) microscopic state of the environment
(see Borel’s argument in Sect. 3.1.2).

Instead of representing an ensemble of wave functions, the density matrix
may also describe the local (or ‘reduced’) perspective of entangled quantum
systems, which are generically of the form

ψ(x, y) =
∑
m,n

dmnφm(x)Φn(y) . (4.23)

For spatially separate subsystems, this entanglement defines quantum nonlo-
cality . For example, it is responsible for the violation of Bell’s inequality (Bell
1964) or its stronger variants (Greenberger, Horne, Shimony and Zeilinger
1990), and it explains so-called quantum teleportation in a way which demon-
strates that nothing has to be teleported: it must rather be prepared in advance
as a component of an entangled state (see Zeh 2005c or Timpson 2005).

All measurements performed on a subsystem – corresponding to the states
φ(x), say – of an entangled system can be characterized by the expectation
values for all its subsystem observables Aφ :

〈Aφ〉 := Trace{Aφρtotal} = Traceφ{Aφρφ} . (4.24)

Here, the ‘reduced density matrix’ ρφ is defined as a partial trace,

ρφ := TraceΦ{ρtotal} . (4.25)

The total density matrix ρtotal may well be a pure state, ρtotal := |ψ〉〈ψ|.
The new density matrix ρφ would then be explicitly given in terms of the
expansion coefficients dmn of the total state (4.23) as

(ρφ)mm′ := 〈φm|ρφ|φm′〉 =
∑

n

dmnd∗m′n , (4.26)

rather than in terms of probabilities pα, which would instead lead to (4.8).
Both types of density matrices are Hermitean and positive by construc-

tion. They can therefore be diagonalized in the form ρφ =
∑

n |φ̃n〉pn〈φ̃n|,
with non-negative eigenvalues pα, in their eigenbasis {φ̃n}. This diagonal form
defines a formal (or apparent) ensemble of orthonormal states. Although the
LHS of (4.26) is thus identical with a density matrix describing an ensem-
ble of (orthogonal or other) states, it is evident from the RHS that it does
not represent one. Therefore, the ‘apparent ensemble’ or ‘improper mixture’
(d’Espagnat 1966) must not be used in an attempt to explain the probability
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interpretation (4.24) on which it is based. The density matrix formalism is
blind to the measurement problem (see below and Sect. 4.6).

For an entangled state such as (4.23), the eigenbases of the subsystem
density matrices define the Schmidt canonical form,

ψ(x, y) =
∑

k

√
pkφ̃k(x)Φ̃k(y) . (4.27)

In contrast to the general representation (4.23) this is a single sum (Schmidt
1907, Schrödinger 1935). Phase factors for the coefficients

√
pk have here been

absorbed into the phase-ambiguity in the definition of the orthonormal states
φ̃k or Φ̃k. For given subsystems, this representation (and hence its time de-
pendence – see Kübler and Zeh 1973) is determined by the state ψ(t) of the
total system – except for accidental degeneracy of the pk’s.

The neglect of all correlations between two subsystems describes a specific
loss of information, and so defines a new (nonlinear) Zwanzig projection,

P̂sepρ := ρφ ⊗ ρΦ . (4.28)

A stronger Zwanzig projection of locality, P̂ localρ =
∏

k ρ∆Vk
, where the vol-

ume elements ∆Vk form a complete set of local subsystems, would lead to
a density matrix that factorizes, as in (3.38), in terms of these volume ele-
ments. It is again required in order to obtain the approximate concept of an
entropy density s(r). In contrast to this local picture, indistinguishable parti-
cles cannot be used to define subsystems that might give rise to a ‘substantial
picture’. Therefore, the formal correlations between particles which describe
symmetrization or antisymmetrization of the wave function does not repre-
sent any entanglement. These pseudo-correlations are merely an artifact from
the use of classical particle concepts – see (4.21).

As a consequence of the nonlocality of quantum states, and in funda-
mental contrast to classical physics, the entropies S[P̂sepρ] or S[P̂localρ] of a
completely defined (pure) quantum state are nontrivial: generically they do
not vanish, since states of subsystems are not defined (rather than merely be-
ing unknown). Apparent ensembles, which are defined for them, may even be
regarded as the representative ensembles used in statistical thermodynamics
(see Chap. 3). However, one may now wonder (1) why microscopic systems
are often found in pure states (such as eigenstates of their Hamiltonians H0),
and (2) why the macroscopic world is successfully described by means of given
classical concepts rather than in terms of their superpositions.

A local concept of relevance that, in contrast to P̂ sep, preserves all ‘statis-
tical’ correlations (those based on incomplete information), while removing all
quantum correlations (entanglement), may be defined by using the Schmidt
canonical representation in the form

P̂classical(|ψ〉〈ψ|) :=
∑

k

pk|φ̃k〉〈φ̃k| ⊗ |Φ̃k〉〈Φ̃k| . (4.29)
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Quantum correlations would here require a double sum over k and k′ (in a
non-Schmidt basis a sum over two pairs of indices). The RHS can be regarded
as describing incomplete information about a presumed product state.

Quantum entanglement in bipartite systems has also been studied for
‘mixed states’ of the total system (Werner 1989, Peres 1996). Its consequences
may be suppressed in such a mixture either by the presumed averaging over
the ensemble of pure states that defines this mixed state, or by tracing out the
entangled environment that gave rise to a reduced state for the total system.
However, it would be quite inappropriate to define physical states as ‘not’ or
‘less entangled’ (as implicitly done by means of effective measures of entangle-
ment) just because this entanglement cannot be confirmed by measurements
in this situation.

A random pure state (4.23) would not lead to the ‘statistical’ result
ρirrel ≈ 0 – as used in (3.46) – for the relevance concept (4.28), since only
the improbable factorizing states do not contain any correlations. (The reader
may wish to skip the rest of this somewhat technical paragraph.) For example,
the linear entropy according to (4.7), given by Slin = 1 −∑

kk′ |ρkk′ |2 if nor-
malized to vanish for a pure state, assumes its maximum in a Hilbert space of
finite dimension D, Smax

lin = 1− 1/D, for the maximal mixture ρkk′ = δkk′/D.
For pure states in the tensor product of two Hilbert spaces with dimensions
M and N (hence with D = MN), one obtains for the mean linear subsystem
entropy, defined below (4.7), in either subsystem (Lubkin 1978):

S̄sub
lin = 1 − M + N

D + 1
< 1 − 1

M
and < 1 − 1

N
. (4.30)

This entanglement entropy vanishes only for M = 1 or N = 1. Since the
linear information Ilin := 1 − Slin factorizes for products of density matrices
(rather than being additive as would its logarithmic measure), its value for
the total system is given by Ilin[P̂sepρpure] = (Isub

lin )2, as the entropies of the
subsystems must be equal for a pure total state – see (4.27). For D � 1 one
has, according to (4.30),

Īlin[P̂sepρpure] ≈ (M + N)2

MN
Imin
lin ,

so that Īlin[P̂sepρpure] ≈ (M/N)Imin
lin for M � N , with Imin

lin = 1 − Smax
lin =

1/MN (characterizing maximal mixtures). While ρirrel = (1− P̂sep)ρ vanishes
in a random mixture

∑
α |ψα〉pα〈ψα|, the mean information for pure total

states,
∑

α pαIlin

[
(1− P̂sep)|ψα〉〈ψα|

]
, does not. Since the irrelevant informa-

tion is measured by I[ρ]− I[P̂sepρ], rather than by I
[
(1− P̂sep)ρ

]
, the random

pure state (with Slin[ρ] = Smin
lin = 0) must possess large local entropy Slin[P̂ ρ],

and therefore has to carry its information predominantly in ρirrel.
Similar relations hold for the logarithmic entropy (Page 1993, Foong and

Kanno 1994). It is impossible to reach Smax for M �= N for a pure total state.
Because of Iφ = IΦ, the local information about the larger system cannot be
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entirely transformed into correlations. However, every (small) subsystem of
the completely described quantum universe would essentially possess maxi-
mum entropy for a random global state.

If the total wave function ψ evolves according to a Schrödinger equation,
the reduced density matrix does not in general obey a von Neumann equation.
While its exact dynamics can still be explicitly formulated (Kübler and Zeh
1973, Pearle 1979), it remains entangled with the rest of the total system.
Indeed, the reduced density matrix ρφ, multiplied by the unit operator in
Φ-subspace, defines a further (linear) Zwanzig projection,

P̂subρtotal := ρφ ⊗ 1Φ . (4.31)

Phenomenological irreversible master equations for ρφ (instead of a von
Neumann equation) are known as ‘open systems’ quantum dynamics (see
Sect. 4.4). They are often derived by presuming an uncorrelated environmen-
tal heat bath (Favre and Martin 1968, Davies 1976). This assumption of lack-
ing initial quantum correlations is similar to Boltzmann’s chaos assumption.
Master equations should therefore explain the canonical ensembles describing
heat baths rather than presuming their existence. Open systems have also
been described by means of path integrals (Feynman and Vernon 1963).

As already mentioned, both expectation values, (4.22) and (4.24), which
were used to derive the concept of a density matrix, depend on the probabil-
ity interpretation. Von Neumann (1932) introduced a model interaction in an
attempt to describe ideal measurements (or ‘measurements of the first kind’)
dynamically . It is defined by the unitary transformation φnΦ0 →

t
φnΦn, where

φn is an eigenstate of an observable A =
∑

n |φn〉an〈φn|, while Φ0 and Φn

are the initial state of the apparatus and its final ‘pointer positions’, respec-
tively. This dynamics describes a fork of causality in the classical configuration
space on which the wave function is defined (see footnote 1 of Chap. 2). The
observable A is thus defined by this interaction, whereby its eigenvalues an,
characterize the ‘pointer scale’. If the microscopic system is initially in one
of the eigenstates of A, it does not change during such an ideal measure-
ment, while the apparatus evolves into the corresponding pointer state Φn. In
quantum optics, such measurements are also called ‘quantum non-demolition
measurements’, since photons are usually absorbed when being measured. In
the case n = 1, 2 and Φ0 = Φ1 they are identical to ‘controlled-not gates’ –
much discussed in the theory of quantum computing.

However, for a general initial state,
∑

n cnφn, one now obtains for the same
interaction, and for the same initial state Φ0 of the apparatus,(∑

n

cnφn

)
Φ0 −→

t

∑
n

cnφnΦn =: ψfinal . (4.32)

If the pointer states Φn are mutually orthogonal, too, both sides of (4.32) are
Schmidt-canonical. The RHS is now an entangled state, while an ensemble of
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different measurement results (that is, of states φnΦn with probabilities |cn|2),
would require the fork of causality to be replaced by a fork of indeterminism.
(The formal ‘plus’ characterizing the superposition would have to become an
‘or’.) This discrepancy represents the quantum measurement problem, that
would be obscured in a phenomenological description by means of reduced
density matrices for the subsystems only. The density matrices resulting from
these two types of forks are identical, since there is no way of distinguishing
these different situations operationally by a local measurement. As emphasized
before, this argument does not explain the fork of indeterminism that lies at
the heart of the probability interpretation.

This measurement problem prevails regardless of the complexity of the
measurement device (that might give rise to thermodynamically irreversible
behavior), and regardless of any perturbations caused by, and in the environ-
ment, since the states Φ may be assumed to describe this complexity com-
pletely, and even to include the whole ‘rest of the Universe’. The popular
argument that quantum mechanical indeterminism might, in analogy to the
classical situation, be caused by thermal fluctuations that occur during a mea-
surement process (see Sect. 3.3 or Peierls 1985, for example) is incompatible
with universal unitarity. It would instead require the existence of an initial en-
semble of microscopic states which in principle had to determine the outcome.
However, the ensemble entropy of the RHS of (4.32) does not represent an
ensemble that would allow the measurement to be interpreted as in Fig. 3.5.

If both systems in (4.32) are microscopic, the dynamics representing the
fork of causality can even be reversed in practice (the measurement could be
‘undone’) in order to demonstrate that all components still exist. This reversal
leads to observable consequences that may depend on all existing components,
including their relative phases. This excludes the interpretation of (4.32) as
a dynamical fork of indeterminism (a fork between mere possibilities), even
though von Neumann’s fork of causality is defined in terms of wave packets
on a classical configuration space. Therefore, the transition from quantum to
classical (Sect. 4.3) can be understood only if it explains why the fundamental
arena for wave functions often appears as a space of classical configurations.

The interaction (4.32) is an example for the generic case of quantum me-
chanical subsystems which are not individually obeying unitary dynamics.
Similar arguments would apply to the ensemble dynamics of systems with
classical correlations (that is, if ρ = P̂ classicalρ). In this case, the effective
subsystem Hamiltonian Hφ, say, would depend on the state Φk of the com-
plementary system by means of a partial expectation value,

H
(k)
φ (t) := 〈Φk(t)|H|Φk(t)〉Op , (4.33)

where H was defined to act on the tensor product of φ and Φ. There can be no
Hamiltonian Hφ valid for the whole ensemble any more. This is equivalent to
the induced Hamiltonians of interacting classical mechanical systems, which
are given by
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Hφ(p1 . . . qn, t) := H
(
p1 . . . qn; pn+1(t) . . . qN (t)

)
. (4.34)

Here, particle numbers 1, . . . , n are meant to characterize the considered sub-
system ‘φ’, while all others (n+1, . . . , N) represent the ‘environment’. Each el-
ement of the ensemble would then satisfy another Hamiltonian or Schrödinger
equation – in contrast to the assumptions leading to the Liouville or von Neu-
mann equation. Nonetheless, for each element of an ensemble representing
incomplete knowledge, the subsystem evolution would be determined in this
classical case. Neglecting the statistical correlations dynamically by using P̂sep

in a master equation would amount to applying the whole resulting ensemble
of sub-Hamiltonians (in the forward direction of time) to each individual ele-
ment of the ensembles of states of the subsystems. However, only under the
unstable assumption ρ = P̂classicalρ (that is, without any entanglement) would
the quantum mechanical situation simply be equivalent to the classical one of
(4.34), or as in Sect. 3.1.2.

It should be kept in mind, therefore, that the local concepts of relevance,
P̂sep, P̂ local and P̂classical, appear ‘natural’ only to our classical prejudice. In
the unusual situation of controllable entanglement (as in EPR/Bell type ex-
periments), quantum correlations may become relevant by means of the re-
localization of superpositions even for local observers. Dynamical locality, as
described by means of point interactions in field theory, merely warrants the
dynamical consistency of these concepts of relevance, or gives rise to the ap-
proximate validity of autonomous master equations for P̂localρ.

General Literature: d’Espagnat 1976, 1983.

4.3 Decoherence

Novel ideas in science are at first completely ne-
glected, then fiercely attacked, and finally regarded
as well known.

Konrad Lorenz

In Sect. 3.1 we saw how molecular collisions produce statistical correlations,
which describe ‘irrelevant’ information. Although other relevance concepts
may also be appropriate for describing irreversible phenomena, the formation
of statistical correlations seems to be the most important one in classical de-
scription. In a gas, these correlations arise by means of a momentum transfer
between molecules, eventually leading to a Maxwell distribution – the distri-
bution of highest entropy for given mean energy if correlations are neglected.

If one specific ‘molecule’ happens to possess macroscopic mass (such as a
bullet flying through the gas), its recoil may approximately be neglected in
collisions with molecules – except for the resulting friction, whose importance
depends on the density of the gas. The bullet may then remain in a non-
equilibrium state of almost free motion for some time. On the other hand,
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collisions drastically affect the microscopic molecules. Although their states
after scattering must strongly depend on the bullet’s position at collision time,
this dependence cannot be regarded as representing information about it if
the molecular motions are already chaotic. In contrast, light scattered off the
bullet does carry information, as we may easily confirm by using our eyes. The
reason is that light interacts weakly or coherently with matter, and remains
in a state far from equilibrium if absorption can be neglected (see Chap. 2).

The effect of an individual molecule or photon on a macroscopic object
may thus be neglected in classical description, but this conclusion has to
be radically revised in quantum mechanics. The quantum interaction can be
described as an ideal (though uncontrollable) ‘measurement’ of the bullet’s
position and shape by the molecule in the sense of von Neumann. If the bullet
were initially in a superposition of different positions, as one would have to ex-
pect for an object in a generic quantum state, this would lead to an entangled
state as in (4.32). In this case, the initial superposition becomes dislocalized
(it is at no place any more). This is called ‘decoherence’ if the dislocalization
is irreversible in practice.3 (Reversible dislocalization of a superposition – such
as in a Stern-Gerlach device – may be regarded as ‘virtual decoherence’.) It
turns out that real decoherence is not only unavoidable for all macroscopic
objects, but even the most abundant and most important irreversible process
in Nature (Zeh 1970, 1971, 1973, Leggett 1980, Zurek 1981, 1982a, Joos and
Zeh 1985).

In general, decoherence is not pure, but accompanied by a distortion
of the system under consideration (recoil). For an environmental heat bath
this would be required by the fluctuation–dissipation theorem, which leads
to ‘quantum Brownian motion’ – a combination of decoherence, dissipation
and fluctuation. However, the quantitative relation between these phenomena
depends on actual parameters, such as temperature and mass ratios. Since
fluctuation and dissipation may so become arbitrarily small, ‘ideal’ measure-
ments by the environment are appropriate for studying ‘pure decoherence’
as a genuine quantum phenomenon. Chaotic molecules then contribute to
decoherence just as ordered light. Evidently it is the physical effect on the
environment that is essential – not any transfer of information. ‘Quantum
information’ is here no more than a misleading renaming of entanglement.

Decoherence is also important for strongly interacting microscopic sys-
tems, such as individual molecules in a gas, although it is then far from being
pure (recoil is essential). Instead of quasi-classical behavior, one now obtains
quasi-stochastic dynamics – as successfully used in the Stoßzahlansatz . Inter-
acting microsystems constituting solids can often be approximated by coupled
harmonic oscillators (Caldeira and Leggett 1985). While solutions are then
analytically available, they are also known to possess certain pathological
properties. In particular, they are non-ergodic.

3 The term decoherence has often been misused in the literature. See Sect. 3.4.3 of
Joos et al. (2003) on ‘True, False and Fake Decoherence’.
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Applying the terminology used in the previous section, decoherence may
be understood as the justification of a specific P̂ semidiag for a given subsys-
tem by presuming the relevance of locality, as described by the corresponding
P̂ sub – see (4.31). If this P̂semidiag turns out to be dynamically valid under all
normal circumstances, its eigenspaces characterize ‘quasi-classical’ properties
or superselection rules (Zeh 1970, Zurek 1982a). Classical concepts emerge
approximately in the form of apparent ensembles of narrow wave packets
through unavoidable and practically irreversible interaction with the envi-
ronment. They do not have to be presumed as an independent fundamental
ingredient, required for an interpretation of the formalism (as done in the
Copenhagen interpretation). From a pragmatic point of view, which does not
distinguish between proper and improper mixtures, this would already be suf-
ficient to solve the measurement problem. In a consistent description of reality
in terms of wave functions, however, one must assume either a genuine col-
lapse to be triggered by decoherence in some way, or appropriately redefine
conscious observers within an Everett interpretation (see Sect. 4.6).

The interaction (4.32) was introduced by von Neumann to describe the
controllable measurement of a microscopic system φ by an appropriate device
(with ‘pointer’ states Φn). Its fact-like time asymmetry, leading from factor-
izing to entangled states, could be reversed with sufficient effort if both sub-
systems were microscopic (‘recoherence’ or ‘erasure of measurement results’).
For genuine quantum measurements, the pointer states Φn must be macro-
scopic. They are then ‘measured’ in turn by their uncontrollable environment,
and thus become irreversibly quasi-classical. This explains why measurements
which lead to macroscopic pointer positions cannot be undone.

It is this universality and unavoidability of entanglement with the natu-
ral environment that seems to have been overlooked for the first 50 years of
quantum theory. All attempts to describe macroscopic objects quantum me-
chanically as being isolated, and therefore by means of a Schrödinger equation,
were thus doomed to failure – even when including environment-induced dy-
namical terms that might describe a distortion. Decoherence is different, and
extremely efficient, since it does not require an environment that disturbs the
system. The distortion of the environment by the system affects the density
matrix of the system, too, because of quantum nonlocality, but on a much
shorter time scale than thermal relaxation or dissipation (Joos and Zeh 1985,
Zurek 1986).

Some examples of decoherence will now be discussed in detail.

General Literature: Joos et al. 2003, Zeh 2005c, Schloßhauer 2006.

4.3.1 Trajectories

Imagine a two-slit interference experiment with bullets or small dust particles,
described by quantum mechanics. Then not only their passage through the
slits, but their whole path would be ‘measured’ by scattered molecules or
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photons. No interference fringes could ever be observed for such macroscopic
objects – even if the resolution of the registration device were fine enough.

In this respect, macroscopic objects are similar to alpha ‘particles’ in a
Wilson chamber, which interact strongly with gas molecules by means of
their electric charge. For all these objects, their unavoidably arising entan-
glement with their environment leads to a reduced density matrix that can
be represented by an ever-increasing ensemble of narrow wave packets fol-
lowing slightly stochastic trajectories (see also Mott 1929). This result is not
restricted to the quantum description of motion in space: propagating wave
packets in the configuration space of macroscopic variables may similarly ex-
plain their apparent ‘histories’. For spatial motion the argument also demon-
strates that the concept of an S-matrix does not apply to macroscopic objects,
since it presumes asymptotically free states.

Several very instructive interference experiments have recently been per-
formed with mesoscopic molecules that are in the transition region between
isolated quantum and classical behavior. Various mechanisms of decoherence,
including the emission of thermal radiation from internal molecular degrees
of freedom, can be studied for them in detail (Arndt et al. 1999, Hornberger,
Hackermüller and Arndt 2005).

For a continuous variable, such as position, decoherence competes with the
dispersion of the wave packet that is reversibly described by the Schrödinger
equation. Even the scattering rate of photons, atoms, or molecules off small
dust particles in intergalactic space suffices to destroy any coherence that
would define spreading wave packets for their centers of mass (see Fig. 4.2).
If the wavelengths of the abundant scatterers are larger than the width of
the wave packet, an otherwise free ‘particle’ is dynamically described by the
master equation (Joos and Zeh 1985)

i
∂ρ(x, x′, t)

∂t
=

1
2m

(
∂2

∂x′2 − ∂2

∂x2

)
ρ − iλ(x − x′)2ρ . (4.35)

It can be derived from a universal Schrödinger equation by assuming the dy-
namical irrelevance of all correlations with the environment after they have
formed, and by neglecting recoil (see also Chap. 3 and Appendix 1 of Joos et
al. 2003). The coefficient λ is here determined by the rate of scattering and
its efficiency in orthogonalizing states of the environment. In the small wave-
length limit, a single collision is usually sufficient to destroy any coherence
beyond the wavelength. The decoherence rate is then simply given by the
scattering rate (that is, the product of the flux of environmental particles and
the total cross-section). Even the interpretation of the wave mechanical scat-
tering process as consisting of individual collision events can be explained by
further decoherence of superpositions of different ‘collision times’ in a process
that is actually smooth (see Sect. 4.3.6).

So one does not have to postulate a fundamental semigroup in order to
describe open quantum systems (Sect. 4.4). If the environment forms a heat
bath, (4.35) describes the infinite-mass limit of quantum Brownian motion
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Fig. 4.2. Time dependence of the coherence length l(t) for the center of mass of
a small dust grain of 10−14 g with radius 10−5 cm under continuous measurement
by thermal radiation. The six curves represent two initially pure Gaussian wave
packets, differing by their initial widths l(0), and three different temperatures T of
the radiation. T = 0 describes the free dispersion of the wave packet according to
the Schrödinger equation, which holds otherwise as an approximation for a limited
time only. Scattering of atoms and molecules is in general far more efficient than
that of thermal photons – even in intergalactic space. Brownian motion becomes
relevant only when the coherence length approaches the de Broglie wavelength λth.
From Joos and Zeh (1985)

(see Caldeira and Leggett 1983, Zurek 1991, Hu, Paz and Zhang 1992, Omnès
1997). This demonstrates that, even for entirely negligible recoil (which would
be responsible for noise and friction), there remains an important effect that
is based on quantum nonlocality.

Apparent classical properties thus emerge from the wave function, and
are maintained, by a process that cannot be reversed. In particular, particle
aspects (such as tracks in a bubble chamber) arise in the form of macroscopic
phenomena (bubbles) which are observed at certain positions in space because
of their decoherence. Similarly, the disappearance of interference between par-
tial waves in a Welcher Weg measurement (Scully, Englert and Walther 1991)
does not require any wave–particle ‘complementarity’. Furthermore, no super-
luminal tunnelling (see Chiao 1998) may occur according to a consistent quan-
tum description, since all parts of a wave packet propagate (sub-)luminally,
while its group velocity does not represent the propagation of any physical
objects.

Master equations for open systems can also be derived by means of the
decoherence functional (Feynman and Vernon 1963, Mensky 1979). Feynman’s
path integral is thereby used as a tool for calculating the propagation of a
global density matrix, while the environment is again continuously traced out
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when getting entangled with the considered system. The intuitive picture of
an ensemble of paths (representing different possible trajectories) is justified
only if this superposition of paths decoheres into narrow wave packets. A
‘restriction’ of the path integral by the presence of absorbers (Mensky 2000)
would be equivalent to a corresponding reduction of the (total) wave function.

All quasi-classical phenomena, including those representing apparently re-
versible (friction-free) mechanics, rely conceptually on irreversible decoher-
ence. This requires the continuous production of objective physical entropy
(increasing entanglement), which may be macroscopically negligible, but is
large in terms of bits. If the quasi-classical trajectories are chaotic, this entropy
production may be controlled by the classical Lyapunov exponent (Zurek and
Paz 1994, Monteoliva and Paz 2000), even though the entanglement entropy
does not require any (initial) uncertainties that would grow in the direction
of calculation, as assumed in the classical theory of chaos (see Sect. 3.1.2).

General Literature: Joos’s Sect. 3.2 of Joos et al. (2003), Hornberger, Hack-
ermüller, and Arndt (2005).

4.3.2 Molecular Configurations as Robust States

Chirality of molecules, such as right- or left-handed sugar, represents a dis-
crete elementary variable controlled by decoherence. Although a chiral state
is described by a certain wave function, it is not an energy eigenstate, which
would have to be a parity eigenstate, that is, a symmetric or antisymmetric
superposition of both chiralities (see Zeh 1970, Primas 1983, Woolley 1986).
The reason is that it is chirality (not parity) that is continuously ‘measured’,
for example by scattered air molecules – in analogy to position rather than mo-
mentum being measured for a macroscopic ‘mass point’. For sugar molecules
under normal conditions, the decoherence time scale is of the order of 10−9 s
(Joos and Zeh 1985), while the tunneling time between different chirality
states is extremely long.

As a consequence, each individual molecule in a bag of sugar retains its
chirality, while a parity state – if it had come into existence in a mysterious
or expensive way – would almost immediately ‘collapse’ into an apparent
ensemble of two chirality states (with equal probabilities). Parity would thus
not be conserved for sugar molecules, while chirality is always confirmed when
measured twice (although it is not a constant of the motion).

This robustness against decoherence seems to characterize properties that
we usually regard as ‘elements of classical reality’, such as spots on the photo-
graphic plate or other ‘pointer states’ of a measurement device. Discrete states
may even be protected against otherwise possible transitions (tunneling) by
the quantum Zeno effect . For continuous variables, the concept of robustness
is compatible with a (regular) time dependence according to a master equa-
tion, as described in the previous section for the quasi-classical center of mass
motion of macroscopic objects. Since entropy production by interaction with
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the environment is lowest for a density matrix that is already diagonal in
terms of robust states, this property has been called a ‘predictability sieve’,
and proposed as a definition of classical states (Zurek, Habib and Paz 1993).

Dynamical robustness is also essential for the physical concept of mem-
ory or information storage, such as in DNA, brains or computers. Even
‘states-of-being-conscious’ (see Chap. 1) seem to be quasi-classical in this sense
(Tegmark 2000) – at least inasmuch as they are able to communicate. In con-
trast to such robust properties, which can be assumed to exist regardless of
their actual measurement, potentially measurable quantities have been called
‘counterfactuals’. Their superpositions, which would themselves describe indi-
vidual physical states, must not be assumed to describe ensembles of definite
(really existing though unknown) properties. Such different concepts of real-
ity (operational or phenomenological versus hypothetical though consistent
and economically chosen) can thus be analyzed and understood in terms of
decoherence, which is thereby assumed to represent a physical process in a
consistent (nonlocal) quantum reality, while elements of phenomenological
(classical) reality ‘emerge’ (or become ‘factual’) only under certain environ-
mental conditions. If these conditions may change, such as for microscopic
systems under different measurements, the emerging concepts naturally vary
between ‘complementary’ modes of description.

Chemists know furthermore that atomic nuclei or strongly bound ions as
constituents of large molecules have to be described classically (for example
as quasi-rigid configurations, which may vibrate or rotate in a time-dependent
manner), while the electrons have to be described by stationary or adiabati-
cally comoving wave functions. This asymmetric behavior is often attributed,
by means of a Born–Oppenheimer approximation, to their large mass ratio.
However, this argument is insufficient, since this approximation applies as
well to small molecules that are found in discrete energy eigenstates, which
are completely described by stationary wave functions, giving rise to discrete
rotational and vibrational energy bands rather than quasi-classical states.

The formation of time-dependent (particle-like) wave packets for the
atomic nuclei in large molecules can instead be understood once again by
means of decoherence (Joos and Zeh 1985). For example, the positions of
nuclei are usually permanently monitored by scattering of lighter molecules
that form the environment. But why only the nuclei (or ions), and why not
very small molecules? The answer requires a quantitative investigation in each
individual case, and the result depends on a delicate balance between inter-
nal dynamics and interaction with the environment, whereby the density of
states plays a crucial role (Joos 1984). This may then lead approximately to
either (a) unitary evolution (including stationary states), (b) a master equa-
tion, or (c) freezing of the motion (quantum Zeno effect). Much numerical
work remains to be done for such complex systems, while simple ones may be
described by an effective master equation, such as (4.35), for example.

General Literature: Joos’s Sect. 3.2.4 of Joos et al. 2003.
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4.3.3 Quantum Computers

Digital computers are based on robust binary states, carrying ‘bits’ of in-
formation. Even neural networks can be described to some extent by states
of cells having ‘fired’ or not, while DNA is based on four different ‘letters’,
each one therefore representing two bits. Chiral molecules also represent bits,
although they would not be very convenient for information handling.

Just as chiral states may be robust because of their decoherence, so are all
macroscopic constituents that are used in classical computers. However, on a
microscopic scale there also exist quantum bits (or ‘qubits’), which may occur
in all conceivable superpositions of their two basic states. In some cases, such
as photon polarizations or spinors that may form spin lattices, they may even
be assumed to be isolated from the environment to a good approximation.
Such isolated qubits form the essential constituents of quantum computers.
Because of their greater variety of possible states (for example spin-up and
spin-down in any direction of space), and the possibility of getting entangled,
they offer quite novel possibilities for computing (see Shor 1994).

The problem here is that completely isolated systems, required for a uni-
tary evolution, could hardly be manipulated or read as wished for a usable
computer. On the other hand, any uncontrollable effect of the collective state
of an n-qubit system on the environment would immediately destroy (that is,
irreversibly dislocalize) the crucial superposition that forms the state of this
system as a whole. This vulnerability of quantum computers against decoher-
ence grows exponentially with their size, so that macroscopic quantum com-
puters may have to be excluded by superselection rules, similarly to macro-
scopic superpositions in general. Superpositions containing a large number of
entangled electrons that have been prepared and observed in the laboratory
(Mooij et al. 1999, Friedman et al. 2000) are facilitated by ‘freezing out’ most
of the degrees of freedom in a degenerate state – in stark contrast to what
would be required for the complexity of a a quantum computer.

In an attempt to overcome this problem, various correction codes have
been proposed (see Bouwmeester, Ekert, and Zeilinger 2000). They are con-
ventionally based on some concept of multiple redundancy (an internal kind
of back-up), that would have to further enlarge the number of qubits. How-
ever, while redundancy may be used as a protection against distortions of the
computer by the environment, decoherence is a distortion of the environment
by the computer. It can only be corrected for inasmuch as the environment
remains controllable – certainly not a very realistic assumption. Usable quan-
tum computers may therefore be excluded in practice for some time to come
(see also Haroche and Raimond 1996). It would be quite inconsistent, though,
to study the possibility of quantum computers even in principle, while at the
same time denying the reality of all components of a quantum superposition
or wave function – as appropriately emphasized by David Deutsch (1997).
Decoherence, too, is the consequence of such an assumption.
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In order to give rise to a classical computer, each bit would have to be deco-
hered after each calculational step. This would produce precisely the minimum
amount of entropy of k ln 2 that was conjectured to be required by Landauer
for other reasons (see the end of Sect. 3.3), but then refuted by Bennett in
a classical deterministic setting. This entropy production would thus again
(have to) be avoided in quantum computers according to the deterministic
Schrödinger equation, which is valid only for isolated systems.

General Literature: Bouwmeester, Ekert, and Zeilinger (2000).

4.3.4 Charge Superselection

Gauss’ law, q = (1/4π)
∫

E·dS, tells us that every local electric charge requires
a certain flux of electric field lines through a sphere surrounding it at any
distance. For a superposition of different charges, one would therefore obtain
an entangled quantum state of charges and fields,∑

q

cqψ
total
q =

∑
q

cqχqΨ
field
q =

∑
q

cqχqΨ
near
q Ψ far

q

=:
∑

q

cqχ
dressed
q Ψ far

q , (4.36)

where χq represents the bare charge, while Ψfield
q = Ψnear

q Ψ far
q is the state

vector of its correlated electrostatic field, symbolically written as a tensor
product of a near field and a far field (see Sect. 2.3). The dressed (physical)
charged particle would then be described by a density operator of the form

ρlocal =
∑

q

|χdressed
q 〉|cq|2〈χdressed

q | , (4.37)

provided that the states of the far field for different charge q are mutually
orthogonal (uniquely distinguishable). The charge is thus decohered by its
own Coulomb field, and no charge superselection rule has to be postulated (see
Giulini, Kiefer and Zeh 1995). The formal decoherence of the bare charge by
its near field remains unobservable, since experiments can only be performed
with dressed charges.

While this result explains the observed charge superselection rule, one may
ask what it means locally. What if an electric charge is accompanied by a neg-
ative one at a different place? Or at what distance and on what time scale
would the superposition of two different locations of a point charge (such as
those of an electron during an interference experiment) be decohered by the
quantum state of the corresponding dipole field. A classical retarded Coulomb
field would contain causal information about the precise path of its source par-
ticle. However, interference between different paths of an electron has been
demonstrated to exist at least over distances of the order of millimeters (Nick-
laus and Hasselbach 1993). This indicates that the Coulomb field contributes
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to decoherence only by its monopole component, sufficient to explain charge
superselection.

This conclusion can indeed be understood in terms of quantum theory,
since photons with diverging wavelength (which may be regarded as represent-
ing static fields) cannot distinguish different charge positions – even though
the number of such virtual photons would diverge in a Coulomb field. Static
dipole (or higher) multipole moments do not possess any far fields. Therefore,
only the ‘topological’ Gauss constraint ∂µFµ0 = 4πj0 contributes to the de-
coherence of the physical particle by the Coulomb field. Any time-dependence
(including a retardation) must then be described in terms of transverse pho-
tons, represented by the vector potential A (with divA = 0 in the Coulomb
gauge). In this picture, only the spatial distribution of electric field lines –
not their total flux – forms dynamical degrees of freedom that have to be
quantized. Charge decoherence has therefore been regarded as ‘kinematical’,
although it might as well be assumed to be dynamically caused by the retarded
field of the (conserved) charge in its past – or equivalently by the advanced
field resulting from its future. Note, however, that a kinematical Coulomb
constraint is in conflict with the concept of a physical Hilbert space that is
spanned by direct products of local states.

Dipoles and higher moments (which can define position differences for
a point charge), can thus be measured by the environment either through
emission (or scattering) of transverse (‘real’) photons, or by the irreversible
polarization of nearby matter (Kübler and Zeh 1973, Anglin and Zurek 1996).
The latter effect has now been experimentally confirmed (Sonnentag and Has-
selbach 2005). In general, this decoherence is not ‘pure’, but related to energy
transfer, although the recoil caused by emission of soft photons may be neg-
ligible. The (often virtual) decoherence of individual charged particles within
solid bodies is discussed in Imry (1997).

The emission of photons would require the charge to be accelerated . For ex-
ample, a transient dipole of charge e and maximum distance d, caused by spa-
tially separating opposite charges for a time interval t, requires accelerations
a of the order d/t2. According to Larmor’s classical formula (see Sect. 2.3),
the intensity of radiation is then at least 2e2a2/3. In order to resolve the po-
sition difference, the emitted radiation has to consist of photons with energy
greater than �c/d (that is, wavelengths smaller than d). The probability that
information about the dipole is radiated away by at least one photon is then
very small: of order αZ2(d/ct)3, where α is the fine structure constant and Z
the charge number. In more realistic cases, such as interference experiments
with electrons, stronger accelerations may occur, but they would in general
still cause negligible decoherence.4 Decoherence of the position of a charged

4 This limitation of the information capacity of an electromagnetic field by its
quantum nature must also give rise to an upper bound for the validity of Borel’s
argument of Sect. 3.1.2.
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particle is therefore dominated by scattering of photons, and by interaction
with charged or polarizable matter.

The gravitational field of a point mass is similar to the Coulomb field
of a point charge. Superpositions of different mass should therefore be deco-
hered by the quantum state of the monopole contribution of spatial curvature,
and thus give rise to a mass superselection rule. However, superpositions of
different energies (hence masses) evidently exist, since they form the time-
dependent states of local systems. This situation may not yet be sufficiently
understood.

The Coulomb field would vanish globally if the total charge of the Universe
were zero (see Giulini, Kiefer and Zeh 1995). This would eliminate the need
for a Gauss constraint for the Universe. The gravitational counterpart of this
global consequence is the absence of time from a closed Universe in quantized
general relativity (the Hamiltonian constraint – see Sect. 6.2).

General Literature: Kiefer’s Sect. 4.1.1 and Giulini’s Chap. 6 of Joos et al.
2003.

4.3.5 Quasi-Classical Fields and Gravity

Not only are the quantum states of charged particles decohered by their fields
– quantum states of fields may in turn be decohered by the currents on which
they act. In this case, ‘coherent states’, that is, Schrödinger’s time-depen-
dent but dispersion-free Gaussian wave packets for the amplitudes of classical
wave modes (eigenmodes of coupled oscillators), have been shown to be robust
for similar reasons as electric charges, chiral molecules or the wave packets
describing the center of mass motion of quasi-classical objects (Kübler and
Zeh 1973, Kiefer 1992, Zurek, Habib and Paz 1993, Habib et al. 1996). This
explains why macroscopic states of neutral boson fields appear as classical
fields, and why superpositions of macroscopically different ‘mean fields’ or
different vacua (Sect. 6.1) are never observed.

Coherent harmonic oscillator states, which form states of minimum Heisen-
berg uncertainty, can be defined (for each wave mode k) as eigenstates |αk〉 of
the non-Hermitean annihilation (or energy-lowering) operators ak with their
complex eigenvalues αk (that is, ak|αk〉 = αk|αk〉). These Gaussian wave pack-
ets are centered at a time-dependent classical field amplitude αk(t) = α0

keiωt,
where Re(αk) and Im(αk) represent the electric and magnetic field strengths,
formally equivalent to the position and momentum of a mechanical oscillator.
Since the interaction between the field and its charged sources is usually linear
in the field operators ak or a†

k, these coherent states form an (overcomplete)
robust ‘pointer basis’: they create minimal entanglement with their ‘environ-
ment’ (that consists here of charged sources that happen to be present).

In contrast to these superpositions of many different photon numbers (or
oscillator quantum numbers), single-photon states resulting from the decay
of different individual atoms (or even the n-photon states resulting from the
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decay of a different number n of atoms) are unable to interfere with one
another, since they are entangled with mutually orthogonal final states of the
sources. Two incoherent components of a one-photon state may then appear as
‘different’ photons (using Dirac’s language), although the photons themselves
are indistinguishable. A quasi-classical collective state of the source, however,
would hardly change (judged in terms of the Hilbert space inner product) when
emitting a photon. It is thus able to produce the coherent superpositions of
different photon numbers discussed above (see also Kiefer 1998).

Although the coherent states behave macroscopically, superpositions of
different ones, c1|α1〉+c2|α2〉 (called ‘Schrödinger cat states’), have been pro-
duced and maintained for a short time as one-mode laser fields in a cavity
(Monroe et al. 1996). These mesoscopic superpositions must decohere, simi-
larly to a Schrödinger cat, although on a time scale that is slow enough to
allow this decay of coherence to be monitored as a function of time. In this
way, decoherence was for the first time confirmed experimentally as a smooth
process in accord with the Schrödinger equation (Davidovich et al. 1996, Brune
et al. 1996).

Arguments similar to those used in quantum electrodynamics (QED) ap-
ply to quantum gravity (Joos 1986, Kiefer 1999 – for applications to quantum
cosmology see Chap. 6). Quantum states of matter and geometry must be
entangled, and give rise to mutual decoherence. The classical appearance of
spacetime geometry is thus no reason not to quantize gravity. The beauty of
Einstein’s theory can hardly be ranked so much higher than that of Maxwell’s
to justify its exemption from quantization. An exactly classical gravitational
field interacting with a quantum particle would be incompatible with the un-
certainty relations – as has been known since the early Bohr–Einstein debate.
The reduced density matrix for the metric must therefore be expected to rep-
resent an apparent mixture of different quasi-classical curvature states. Since
the observer cannot avoid being correlated to them, spacetime curvature al-
ways appears to be classically given – see Sects. 4.6 and 6.2.

Moreover, the entropy and thermal radiation (of all fields) characterizing
a black hole or an accelerated Unruh detector (Sects. 5.1 and 5.2) are con-
sequences of the entanglement between relativistic vacua on two half-spaces
separated by a horizon (each one forming the environment of the other). This
entanglement entropy measures the same type of ‘apparent’ ensemble as the
entropy produced according to the master equation (4.35) for a macroscopic
mass point. The disappearance of coherence behind a horizon has nonetheless
occasionally been regarded as a fundamental violation of unitarity, and even
as the ultimate source of irreversibility (see Sects. 4.4, 5.1 and 6.2). This ap-
pears neither justified nor required (see Kiefer, Müller and Singh 1994, Kiefer
2007, Zeh 2005a).

General Literature: Kiefer’s Chap. 4 of Joos et al. 2003, Kiefer 2004.
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4.3.6 Quantum Jumps

Quantum objects are often observed by means of flashes on a scintillation
screen or ‘clicks’ of a counter. These macroscopic phenomena are then inter-
preted as caused by pointlike objects, passing through the observing instru-
ment during a short time interval, while this is in turn understood as evidence
for a discontinuous ‘decay event’ (for example, of an atomic nucleus). A rate
equation for such events is equivalent to a master equation, while a constant
relative rate would describe exponential decay of the source. Discrete quan-
tum jumps between two energy eigenstates have even been observed for single
atoms in a cavity by permanently monitoring their energy, thus enforcing
decoherence between energy eigenstates (Nagourney, Sandberg and Dehmelt
1986, Sauter et al. 1986, Pegg, Loudon and Knight 1986, Gleyzes et al. 2006).
Therefore, formal creation and annihilation operators are often misunderstood
as defining discrete events, even though they occur in a Hamiltonian that con-
stitutes a Schrödinger equation.

This Schrödinger equation would describe a state vector that smoothly
develops components with different particle numbers, or a wave function that
leaks out of an unstable system (such as a quantum ‘particle’ in a potential
well). This contrast between discrete events and the Schrödinger equation is
clearly the empirical root of the probability interpretation of the wave function
in terms of events and particles. A wave function can exponentially decay only
in a limited region of space (for example within an expanding sphere for a
limited time – see Sect. 4.5). This wave function is a superposition rather than
an ensemble of different decay times. Their interference and the dispersion
of the corresponding outgoing wave lead to deviations from an exponential
decay law. Although these deviations are too small to be observed for decay
into infinite space, interference between different decay times has often been
confirmed in other situations, not least as ‘coherent state vector revival’ for
photons emitted into cavities with reflecting walls (Rempe, Walther and Klein
1987).

In Sect. 4.3.1, the appearance of particles following tracks in a cloud cham-
ber has been explained in terms of an apparent ensemble of narrow wave pack-
ets arising by means of decoherence. Similar arguments may as well explain
apparently discrete events. Even if quantum objects remain isolated before
being detected, they would be decohered in the detector – usually on a very
short time scale. Therefore, the same decoherence that describes localization in
space also explains localization in time. Jumps between discrete energy levels,
observed under continuous measurement, represent apparently discrete ‘decay
histories’, which can be explained by Mott-type quantum correlations between
successive measurements of short but finite individual duration (including the
decoherence of their outcomes). Neither particles nor genuine quantum jumps
are required as fundamental concepts in quantum theory (Zeh 1993, Paz and
Zurek 1999). Whenever decay fragments (or the decaying object) interact ap-
propriately with their environment, interference between two partial waves
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describing a decayed state and a not yet decayed state disappears on a very
short (though finite) decoherence time scale, thus giving rise to an apparent
ensemble of decay times. This time scale is in general much shorter than the
time resolution of measurements.

If the decay status is thus permanently ‘monitored’ by the environment, a
set of identical decaying objects is thus more appropriately described by a rate
equation than by a Schrödinger equation (Sect. 4.5. This rate equation leads
to an exact exponential law, since it excludes any interference between differ-
ent decay times. Similarly, decay products emitted in superpositions of suffi-
ciently different energies are absorbed into mutually orthogonal final states of
the environment. Microscopic systems with their discrete energy levels must
therefore decohere into eigenstates of their own Hamiltonians. This explains
why the atomic world is characterized by stationary states, and von Neumann
spoke of an Eingriff (intervention) required for their change.

So it seems that this situation of continuously monitored decay has led
to the myth of quantum theory as a stochastic theory for fundamental quan-
tum events (see Jadczyk 1995). Bohr (1928) remarked that “the essence” (of
quantum theory) “may be expressed in the so-called quantum postulate, which
attributes to any atomic process an essential discontinuity, or rather individu-
ality . . . ” (my italics). This statement is in conflict with many microscopic and
mesoscopic quantum phenomena that have since then been observed. Heisen-
berg and Pauli similarly emphasized their preference for matrix mechanics
because of its (evidently misleading) superiority in describing discontinuities.
Ole Ulfbeck and Aage Bohr (2001) recently emphasized the unpredictable oc-
currence of ‘clicks in the counter’, while denying the existence of any quantum
events in the source that would precede them. This comes close to the con-
sequences of decoherence, but rather than taking into account entanglement
with the environment the authors conclude that “the wave function then loses
its meaning”. According to the decoherence theory, the underlying entangle-
ment processes are always smooth, and described by a Schrödinger equation.
The short decoherence time scales lead to the impression of quantum jumps
between energy eigenstates, for example, while narrow wave packets are inter-
preted as particles or classical variables (even though the certainty of classical
properties has to be restricted by the uncertainty relations in order to comply
with the Fourier theorem).

While the description of all physical phenomena in terms of time-dependent
entangled wave functions now appears as a consistent picture, an important
question remains: how should the probabilities, which were required to jus-
tify the concept of a density matrix in Sect. 4.2, be understood if they are
not probabilities for quantum jumps or for the occurrence of measurement
results in the form of fundamental ‘events’. This discussion will be resumed
in Sect. 4.6.

General Literature: Joos’s Sect. 3.4.1 of Joos et al. 2003.
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4.4 Quantum Dynamical Maps

Open systems can be phenomenologically described by means of semigroups
– thus postulating an arrow of time. In quantum theory, they possess some
novel aspects in comparison to their classical counterparts (Sect. 3.4). For
example, these ‘quantum dynamical maps’ have been used to formalize von
Neumann’s ‘first intervention’ (the reduction of the wave function) as part of
the dynamics (Kraus 1971). This is possible, since semigroups can not only
describe the transition of pure states into ensembles, but also the ‘selection’ of
an individual element from them (see below). Otherwise they are equivalent
to an entropy-enlarging Zwanzig-type master equation with respect to the
corresponding P̂ sub. Although ‘irrelevant’ correlations with the environment,
which would arise according to the unitary global dynamics, now represent
quantum entanglement, they are usually not distinguished from classical sta-
tistical correlations when it comes to applications.

This confusion of concepts is equivalent to a popular but insufficient ‘naive’
interpretation of decoherence, which pretends to derive genuine ensembles.
Quantum dynamics is occasionally even defined in terms of semigroups, as-
sumed to act on the density matrix as a fundamental kinematical object char-
acterizing quantum systems. (Hence the term ‘statistical operator’ for the
density operator.) However, this ‘minimal statistical interpretation’ entirely
neglects the difference between genuine and apparent ensembles, and thus all
consequences of entanglement beyond the considered systems (quantum non-
locality). Even the superposition principle has been claimed to be derivable
in this formalism (Ludwig 1990), although it is then simply reintroduced in a
hidden form (for example by changing the laws of statistics in an unjustified
way).

Semigroups are certainly mathematically elegant and powerful. Therefore,
they would form candidates for new theories if conventional (Hamiltonian)
quantum theory should prove wrong empirically as a universal theory. The
question is whether mathematical elegance already warrants physical rele-
vance or is merely convenient within a certain approximation. To quote Lind-
blad (1976): “It is difficult, however, to give physically plausible conditions
. . . which rigorously imply a semigroup law of motion for the subsystem. . . .
Applications . . . have led some authors to introduce the semigroup law as the
fundamental dynamical postulate for open (non-Hamiltonian) systems.” Such
a law would fundamentally introduce an arrow of time (see also Sect. 4.6), but
it would depend on the choice of ‘systems’ – and may be at variance with
certain experiments which confirm quantum nonlocality.

The simplest quantum systems (such as spinors) are described by a two-
dimensional Hilbert space. Their density matrix may be written by means of
the Pauli matrices σi (i = 1, 2, 3) in the form

ρ =
1
2
(1 + σ · π) , (4.38)
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where the (mathematically) real polarization vector π = Trace{σρ} – that
is, the expectation value of all spin components – completely defines ρ as a
general Hermitean 2× 2 matrix of trace 1. The latter is in turn equivalent to
a (genuine or apparent) ensemble of spinors. The length of π is a measure of
the purity of the ‘mixed state’ ρ, since Trace{ρ2} = (1 + π2)/2, with π2 ≤ 1.
A pure state corresponds to a unit polarization vector, while an arbitrary
density matrix (a general ‘state’ in the language of mathematical physics) is
characterized by the mean value π =

∑
α pαπα of all unit vectors πα in an

ensemble of spinors that may represent this density matrix.
A general trace-preserving linear superoperator P̂ acting on ρ must be

defined on 1 and σ in order to be completely defined:

P̂1 := 1 + π0·σ , P̂σ := A · σ , (4.39)

with a real vector π0 and a linear vector transformation A. P̂ is idempotent
(a Zwanzig ‘projector’) if A2 = A and π0·A = 0 (A = 0, for example). If
π0 �= 0, P̂ creates new information – even from the unit matrix (see Sect. 3.2).

Dynamical combination of the projection P̂ with a Hamiltonian evolution
(which would describe a rotation of π) in the form of a master equation leads
to the Bloch equation for the vector π(t),

dπ

dt
= ω × (π − π0) −

∑
i

γi(πi − πi
0)ei , (4.40)

in a certain vector basis {ei} (see Gorini, Kossakowski and Sudarshan 1976).
Values of γi < 0 or |π0| > 1 would violate the positivity of the density
matrix at some t > 0, and thus have to be excluded.5 The second term on
the RHS describes anisotropic ‘damping’ towards π0. This formal creation of
information (which is contained in the vector π0) may represent very different
physical situations, such as equilibration with an external heat bath of given
(possibly lower) temperature, or evolution towards a certain measurement
result. The density matrix defined by the polarization vector π0 is often called
a reference state, while the relative entropy with respect to it [see (3.55)]
never decreases under the Bloch equation – even when the physical entropy
of the local spinor system does. Hermiticity of P̂ (corresponding to a genuine,
entropy-raising projection operator) would require π0 = 0 and A = A†, that
is, a projection of the vector π onto a specific component.

If the two-dimensional Hilbert space describes something other than spin,
such as isotopic spin, a K, K̄ system, or fermion occupation numbers, the

5 As mentioned in Sect. 4.2, all subsystem density matrices remain positive un-
der global Hamiltonian dynamics, and even under a collapse of the global state
vector. This property of ‘complete positivity’ has to be separately postulated for
phenomenological quantum dynamical maps (see Kraus 1971), thus further illus-
trating the fact that these maps cannot be regarded as representing fundamental
physics.
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polarization vector lives in an abstract three-dimensional space that usually
cannot simply be ‘rotated’ in practice. The abstract formalism can also be gen-
eralized to n-dimensional Hilbert spaces. For this purpose the Pauli matrices
have to be replaced by the (n2 − 1) Hermitean generators of the correspond-
ing group SU(n), while the real ‘coherence vectors’ (the generalizations of
the polarization vector π) now live in the vector space spanned by them. For
example, SU(3) gives rise to the ‘eight-fold way’. The most important new
property then is that there are more than one (in fact, n−1) commuting Her-
mitean generators. They may contain a nontrivial subset that is decohered
under all realistic environmental conditions, and thus may form the center of
a phenomenological set of observables (the set of ‘classical observables’ – see
Sect. 4.3). For example, maps of density matrices of dimension n = 4 which
happen to completely decohere with respect to a certain basis may reproduce
the classical maps of Figs. 3.8a, c and d.

In the infinite-dimensional Hilbert space of quantum mechanics, the Wigner
function

W (p, q) :=
1
π

∫
e2ipxρ(q + x, q − x)dx

≡ 1
2π

∫∫
δ

(
q − z + z′

2

)
eip(z−z′)ρ(z, z′)dz dz′

= Trace{Σp,qρ} , (4.41)

where the third line is written in analogy to π = Trace{σρ}, assumes the role
of the coherence vector π. Evidently,

Σp,q(z, z′) :=
1
2π

eip(z−z′)δ

(
q − z + z′

2

)
(4.42)

is a generalization of the Pauli matrices (with the vector index replaced by
p, q). On a finite q-interval of length L, Σp,q would require an additional term
−(1/2πL)eip(z−z′) in order to warrant tracelessness.

The Wigner function is thus a continuous set of expectation values of
these generalized Pauli matrices. They form the components (one for each
phase space point) of a generalized coherence vector. This ‘vector’ character-
izes the density matrix ρ completely – just as in (4.38) and regardless of its
interpretation. Although it does not represent a probability density on phase
space, as illustrated by its possibly negative values, one may calculate all ex-
pectation values in the form of a mean value for a classical function of state
f(p, q), viz., 〈F 〉 =

∫
f(p, q)W (p, q)dp dq. However, a ‘quasi-classical’ Gaußian

wave packet, for example, is a coherent quantum mechanical superposition of
position or momentum eigenstates in spite of its (in this case) non-negative
Wigner function.

Lindblad (1976) was indeed able to generalize the Bloch equation to
infinite-dimensional Hilbert spaces. He wrote it (in a form that applies to
the density matrix) as
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i
∂ρ

∂t
= [H, ρ] − i

2

∑
k

(
L†

kLkρ + ρL†
kLk − 2LkρL†

k

)
, (4.43)

with arbitrary generators Lk in Hilbert space. It describes a creation of infor-
mation, that is, a local decrease of the corresponding von Neumann entropy, if
and only if some generators do not commute with their Hermitean conjugates
L†

k. This can be shown by applying the non-Hamiltonian terms of (4.43) to the
unit matrix ρ = 1, which describes no information. Otherwise this equation
describes information loss (a genuine Zwanzig projection).

This can also be seen by means of the general representation of a Zwanzig
projector on density operators in quantum mechanical Hilbert space, P̂ ρ =∑

k VkρV †
k . It is similar to the square root of a positive operator, written in

its eigenbasis. If L†
k = Lk, the non-Hamiltonian Lindblad terms assume the

form of a double commutator, L2ρ + ρL2 − 2LρL =
[
L, [L, ρ]

]
. For L =

√
2λx

one recovers (4.35), that is, decoherence in the x-basis, precisely as derived
from unitary interaction with the environment.

In this way one may, in particular, describe transitions of pure states
into formal ensembles of measurement results with their corresponding Born
probabilities. However, ‘damping’ towards a definite pure state (a semigroup
proper in the sense of Fig. 3.8c), would require the second term of (4.40) with
a unit vector π0. It allows one to describe the evolution into a (freely chosen)
definite measurement outcome. This dynamics can then readily be combined
with a stochastic formalism that is defined to select the possible final states
of a measurement in accordance with the Born rules (Bohm and Bub 1966,
Pearle 1976, Gisin 1984, Belavkin 1988, Diósi 1988). If applied continuously,
such as by means of the Itô process, this formalism describes a genuine collapse
as a smooth but indeterministic process (Pearle 1989, Ghirardi, Pearle and
Rimini 1990). If this modification of the Schrödinger equation were correct, it
should in principle be observable, although it would usually be camouflaged
by environmental decoherence (Joos 1986, Tegmark 1993).

Many explicit collapse models of this kind have been proposed in the lit-
erature. Some remain ambiguous about their true intentions (that is, whether
they are meant fundamental or phenomenological), or simply disregard the
difference between genuine and apparent ensembles (proper and improper
mixtures). In particular, the quantum state diffusion model (Gisin and Per-
cival 1992) presumes that reduced density matrices can be ‘untangled’ into
genuine ensembles (with only one of their members assumed to represent re-
ality). However, this would again be equivalent to a modification of the global
Schrödinger equation (Diósi and Kiefer 2000).

General Literature: Alicki and Lendi 1987, Diósi and Lukács 1994, Sta-
matescu’s Chap. 8 of Joos et al. 2003.
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4.5 Exponential Decay and ‘Causality’ in Scattering

There are only a few absolutely stable ‘particles’ (elementary quantum ob-
jects), while all others are known as decaying on vastly different time scales.
In quantum theory, they may be described formally by means of complex en-
ergies. For a Schrödinger type time dependence e−iEt, a negative imaginary
part, E = E0 − iγ with γ > 0, would lead to an exponentially decreasing
wave function. This does not just describe probabilities for different decay
times, since all parts of the wave function form one coherent superposition
(see below and Sect. 4.3.6). Even though microscopic, these objects have to be
regarded as open quantum systems. For example, an excited atom is coupled
to an initial vacuum (or a photon heat bath of zero temperature). Unbounded
space represents an ‘absorber’ of infinite capacity for the decay fragments.

The decaying system may also be described by means of an S-matrix for
the decay fragments, where unstable states show up as poles in the complex
energy or momentum plane. This S-matrix must represent the fundamental
(time-symmetric) dynamics. Exponential decay then seems to characterize
a fundamental direction in time (see Prigogine 1980, for example), similar
to Ritz’s retarded electrodynamics (Chap. 2). Since there are no energy eigen-
states with complex eigenvalues (sometimes called ‘Gamow vectors’) in Hilbert
space, this situation has even led to the proposal of ‘rigged Hilbert spaces’
(Böhm 1978). However, decaying systems may well be described in conven-
tional quantum mechanical terms, where the exponential time dependence
applies only approximately in a limited spacetime region.

Exponential decay of an arbitrary quantity A would be the consequence
of a constant loss rate, described by

dA

dt
= −λA , (4.44)

with λ > 0. The absolute rate of change, dA/dt, is then completely determined
by A itself. This asymmetry under time reversal may be the consequence of
a special initial condition, similar to that characterizing irreversible master
equations. In particular, if A is a conserved quantity, any back-flow, must
be negligible. This condition represents a fact-like T-asymmetry that may be
explained by assuming a sufficiently large and initially empty reservoir (com-
parable to the ‘irrelevant channel’ used in Sect. 3.2). If recurrence times are
sufficiently large, the exponential law (4.44) may remain an excellent approx-
imation, describing the decaying object for a very long time.

This disappearance of a ‘substance’ A from a given subsystem or region in
space is an entirely classical model. However, the time dependence (4.44) is
best known from radioactive decay in quantum theory, where A represents the
non-decay probability . It is then regarded as the standard example of quan-
tum indeterminism – usually understood as fundamental and law-like. This
interpretation of (4.44) would mean that decay events occur at unpredictable
though definite instants in time.
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The decay law (4.44) defines an elementary master equation (3.48) with
a Green’s function Ĝret simply given by the decay rate λ (see Sect. 4.1.2).
Its foundation on time-symmetric fundamental dynamics (such as a universal
Schrödinger equation) requires quite analogous assumptions, for example the
negligibility of any back-flow into ‘doorway states’ that are directly coupled to
A (see Fig. 3.4). Therefore, a conserved quantity has to disappear fast enough
from such doorway states into ‘deeper’ (dynamically more distant) states,
which must form a large reservoir.

A simple model is provided by the T -symmetric finite reaction chain

dAn

dt
= −(λn + λn−1)An + λnAn+1 + λn−1An−1 , (4.45)

with n = 0, . . . , N , λ−1 = λN = 0, and the (improbable) initial condition
An�=0 ≈ 0. n = 1 represents here the doorway channel of Sect. 3.2. For λ0 �
λn�=0, one obtains

dA0

dt
≈ −λ0A0 , (4.46)

as long as A1 � A0. This requires only λt � N , rather than λt � 1, since all
An�=0 will relax into partial equilibrium An�=0 ≈ A1 on a short time scale (or
just propagate away for N → ∞).

Exponential decay can similarly be described by a deterministic wave equa-
tion on a continuum, where the small transition rate λ0 is replaced by a po-
tential barrier. It is irrelevant that the Schrödinger equation does here not
describe the conserved quantity (‘probability’) itself. An overall time depen-
dence according to a complex energy eigenvalue, ψ(t) ∝ exp[−i(E0 − iγ)t],
would not be compatible with unitarity, but it may well represent an approx-
imation that is valid in a bounded though growing spacetime region (Khalfin
1958, Petzold 1959, Peres 1980a) – similar to the reaction chain (4.45). Distant
regions in space form a large reservoir.

In scattering theory, unstable states correspond to poles of the S-matrix
Snn′(k), analytically continued into the complex plane, at points k = k1 −
ik2 in the lower right half-plane (k1 > 0 and k2 > 0), where k is the wave
number, k2 = k2

1 − k2
2 − 2ik1k2 = 2mE. In the restricted spacetime region,

where exponential behavior is observed after the incoming waves producing
the decaying system have ceased, the wave function is dominated by the Breit–
Wigner part (i.e., the pole contribution). This requires a (positive) time delay
during the scattering process, which must be described by the relevant partial
wave ψl(r, t)Ylm(θ, φ). Its radial factor ψl(r, t) may be expanded in terms of
energy eigenstates, ψ

(k)
l (r, t) := φk,l(r)e−iω(k)t, in the form

ψl(r, t) =
∫ ∞

0

fl(k)ψ(k)
l (r, t)dk

−→
r→∞

∫ ∞

0

fl(k)
e−ikr − (−1)lSl(k)eikr

r
e−iω(k)tdk , (4.47)
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where Sl(k) = e2iδl(k) is the corresponding diagonal element of the S-matrix.
For sufficiently large values of t, the factor e−iω(k)t oscillates rapidly with k.

This leads to destructive interference under the integral, except in regions of r
and t where the phase kr+ω(k)t (for the incoming wave), or kr−ω(k)t+2δl(k)
(for the outgoing one), is almost independent of k over the width of the wave
packet fl(k) (which may be centered at k0, say). For the outgoing wave, for
example, this requirement means

d
dk

[
kr − ω(k)t + 2δl(k)

]∣∣∣
k0

≈ 0 =⇒ r ≈ dω(k0)
dk0

t − 2
dδl(k0)

dk0
. (4.48)

A noticeable delay compared to propagation with the group velocity dω/dk
requires a large value of dδl/dk, such as in the vicinity of a complex pole of δl.
For sufficiently large times t, but not too large distances r from the scattering
center, and for initial momentum packets much wider than the size of the
imaginary part k2, only the pole contribution remains. For this one may write

Sl(k) = e2iδl(k) ≈ k − k1 − ik2

k − k1 + ik2
, (4.49)

and hence k0 = k1 for the surviving wave packet that represents the decaying
state. In this spacetime region, the contribution of the pole to (4.49) is given
by its residue, whence

ψl(r, t) −→
t→∞ −(−1)lfl(k1)

∫ ∞

0

k − k1 − ik2

k − k1 + ik2

ei
[
kr−ω(k)t

]
r

dk

≈ (−1)l2πk2fl(k1)
ei
[
k1r−ω(k1)t

]
r

exp
[
k2

(
r − dω(k1)

dk1
t

)]
(4.50)

(assuming k2 � |k1|). In the last factor one recognizes the ‘imaginary part of
the energy’, γ = k2dω(k1)/dk1.

A positive delay (a ‘retardation’) of the scattered wave at the resonance
requires

dδl

dk
≈ − d

dk

(
− arctan

k2

k − k1

)
=

k2

(k − k1)2 + k2
2

> 0 . (4.51)

The pole must therefore reside in the lower half-plane. This condition is often
referred to as causality in scattering , since the retardation specifies a direction
in time related to intuitive causality (Chap. 2). This position of the poles is
also used for deriving dispersion relations in T - or TCP -symmetric quantum
field theory. However, no time direction can be specified by the structure of
the S-matrix, since the latter is a consequence of the time-reversal-invariant
Hamiltonian. Exponential decay is a fact-like asymmetry that would be re-
versed, using the same S-matrix, for scattering states with a time-reversed
boundary condition. So one would have to force the outgoing wave rather
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than the incoming one to form a wave packet of limited duration. This would
require the former decay products to arrive in the form of advanced coherent
and exponentially growing waves over a very long span of time. A similar fact-
like asymmetry, also caused by boundary conditions, occurred for the retarded
radiation reaction of extended charges (2.31). The time arrow of exponential
decay is thus determined by the boundary condition used in (4.47), rather
than by the position of poles in the S-matrix.

The investigation of wave packets for non-relativistic particles decaying
into free space beyond the pure pole contribution (Petzold 1959, Winter 1961,
Peres 1980a) shows that deviations from the exponential law are essential not
only at and just after formation of the decaying object, but also for very large
times. In the extreme limit (when the decaying wave function has become un-
observably small), exponential decay would be replaced by a power law. This
consequence is in conflict with the interpretation of decay as a stochastic emis-
sion of particles (see Sect. 4.3.6). It must instead be understood as a coherent
back-flow according to the dispersion of the outgoing wave. Although repre-
senting a very small effect in absolute terms, this deviation from exponential
decay is even further reduced whenever the decay products interact with sur-
rounding matter. In the usual case of strong coupling to the environment (such
as absorption or decoherence), the exponential law remains an excellent ap-
proximation as long as the thermodynamical arrow characterizing absorbers
remains valid. On the other hand, decay by emission of weakly interacting
photons inside reflecting walls of a cavity has been confirmed to lead to the
predicted deviations from exponential decay. It may even cause a ‘coherent re-
vival’ of the decaying state (see Rempe, Walther and Klein 1987, Haroche and
Kleppner 1989), but has also been observed in other situations (Wilkinson et
al. 1997). Deviations from exponential decay depend crucially on the density
of available final states. For example, coherent decay into a single final state
is well known to lead to harmonic oscillation (complete periodic back-flow).

The Breit–Wigner contribution (4.50) describes a non-normalizable (even
exponentially increasing) wave function. This result is an artifact of the pure
pole approximation. The normalized state is correctly described by the wave
packet fl(k) in (4.47), which has been replaced by a constant in (4.50). In an
exact treatment, its square-integrable tails warrant normalizability even for
large t by correcting the pure Breit–Wigner contribution.

In the general case, the scattering process would have to be described by
a normalized time-dependent density matrix,

ρlm,l′m′(r, r′; t) −→
r→∞

∫ ∞

0

∫ ∞

0

ρlm,l′m′(k, k′)
e−ikr − (−1)lSl(k)eikr

r

×eik′r′ − (−1)l′S∗
l′(k

′)e−ik′r′

r′
e−i

[
ω(k)−ω(k′)

]
tdk dk′ , (4.52)

where ρlm,l′m′(k, k′) is determined by the preparation procedure. After com-
pletion of the direct scattering process, and in the case of a resonance in the
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l0-wave, this leads approximately to

ρlm,l′m′(r, r′; t) −→
t→∞ δll0δl′l0ρl0m,l0m′(k1, k1) (4.53)

×
∫ ∞

0

∫ ∞

0

k − k1 − ik2

k − k1 + ik2

k′ − k1 + ik2

k′ − k1 − ik2

ei(kr−k′r′)

rr′
e−i

[
ω(k)−ω(k′)

]
tdk dk′ ,

in the relevant spacetime region. This approximation describes once again a
pure Breit–Wigner wave packet (or at most a mixture of magnetic quantum
numbers in the case of rotational symmetry).

Hence, there are no exactly exponential states (Gamow vectors) which
would require or justify the ‘rigging’ of the Hilbert space of quantum me-
chanics. Similarly, there are no exact energy eigenstates in reality, since their
infinite exponential tails according to exp(−√−2mEr) can never form com-
pletely within finite time. If exact energy eigenstates did occur by means of
instantaneous quantum jumps, they would lead to superluminal effects (as has
even been found surprising – see Hegerfeldt 1994). Even non-relativistically,
stable and decaying states must form dynamically, that is, in accordance with
a time-dependent Schrödinger equation, and hence with the time–energy un-
certainty relation. Relativistically, an exactly bounded spatial support for a
quantum state requires small (usually unobservable) uncertainties in energy
and particle number, related to the Casimir effect or the Unruh radiation
(see Sect. 5.2). Neglecting this consequence of quantum field theory (by ar-
guing solely in terms of single-particle states, for example) leads to inconsis-
tencies which illustrate the danger of remaining mathematically exact while
not distinguishing between hypothetically fundamental and phenomenological
(approximately valid) concepts – see also Sect. 4.3.2.

Radioactive decay is investigated in practice by means of ensembles of
many objects in identical internal states (unstable nuclei, say). If these objects
are distinguishable, for example by their position, their total state may be
described as a direct product. According to the Schrödinger equation, each
factor state will then evolve into a superposition of its initial state (with an
exponentially decreasing amplitude) and a direct product of its final state and
outgoing waves for the emitted objects. The precise time-dependent form of
all components depends on what happens to the decay fragments (whether
they are reflected, absorbed, or propagate into infinite space).

If the emitted particles (now assumed not to be reflected somewhere) are
regarded as part of the environment of the decaying system, and thus traced
out, the remaining N -atom density matrix describes a time-dependent ap-
parent ensemble of different direct products. An ensemble variable n(t) < N
may here count the number of undecayed nuclei at each value of t (that is,
in an ensemble of objects rather than potential states). The formal probabil-
ities of these states in their apparent ensemble, pn(t), must then reflect the
time-dependence of the Schrödinger amplitude, for example p0(t) = e−2Nγt.
(In general, components with the same number n, but different individual
decayed nuclei, also decohere from one another – see Sects. 4.3.5 and 4.3.6.)
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This apparent ensemble of discrete numbers is dynamically approximately
described by a master equation. Therefore, it is formally equivalent to an en-
semble of solutions of a stochastic (Langevin-type) equation that essentially
describes individual discrete ‘histories’ n(t) – here in the form of ‘descending
staircase functions’. In terms of a universal Schrödinger equation, the number
of undecayed nuclei n is a ‘robust’ property in the sense of Sect. 4.3.2 if decay
can be assumed to be irreversible (in particular when monitored by detectors).
The various dynamically robust branches of the wave function, arising by the
fast but smooth action of decoherence, describe individual histories for integer
numbers n(t), which represent successions of almost discrete quantum jumps
at certain times t1, t2, . . . (as discussed in Sect. 4.3.6). Similar staircase func-
tions have now also been observed for decaying photons in a cavity (Gleyzes
et al. 2006) – thus directly confirming Fig. 3.30 of Joos et al. (2003). However,
deviations from exact steps can always be calculated if the interaction with
the environment is known (Joos 1984): quantum theory is not a stochastic
theory for quantum jumps.

4.6 The Time Arrow in Various Interpretations
of Quantum Theory

The truth could not be worth much
if everybody was a bit right.

Physicists who completely agree about all applications of quantum mechan-
ics often differ entirely about its interpretation, and even on the question of
whether there remain any meaningful problems beyond the mere formalism
(see Fuchs and Peres 2000). Although most of them would agree that quan-
tum theory allows no more than probabilistic predictions, they often derive
irreversible master equations, which describe an increase in entropy, from the
deterministic and time-symmetric Schrödinger equation, using special initial
conditions as in classical statistical physics (see Sect. 4.1.2). However, a dy-
namical probability interpretation must be relevant for the arrow of time – re-
gardless of whether it is based on a fundamental stochastic (time-asymmetric)
law or on an incompleteness of the theory (hidden variables) that refers to
an unknown future. Its consequences cannot be avoided just by adding new
words. For example, quantum theory is often called ‘deterministic but acausal’
– while this statement is then justified by the ‘uncertainty’ of classical prop-
erties (such as particle positions or momenta), which just do not apply to
quantum states. Most physicists seem to disregard this consistency problem
in an act of Verdrängung .

The deepest roots of these conceptual inconsistencies seem to arise from
the fundamental difference between Heisenberg’s and Schrödinger’s ‘pictures’
(see Zeh 2004). While Heisenberg maintained classical concepts in principle
(suggesting only a limitation of the ‘certainty’ of their values), Schrödinger
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described microscopic physical states by wave functions, which can be re-
garded as certain. The classical configuration space on which they are usually
defined would thereby replace three-dimensional space as a new ‘arena of dy-
namics’ rather than describing potential states .6 Whether wave functions or
‘observables’ (which formally replace the classical variables in the Heisenberg
picture) carry the dynamical time-dependence is merely a consequence of the
chosen picture.7

Although both pictures are equivalent when used to calculate formal ex-
pectation values for isolated systems, they describe the time arrow of quantum
measurements in different ways. Most physicists seem to subscribe to one or
the other picture (or perhaps a variant thereof) when it comes to interpre-
tations (‘probabilities for what?’). Typically, in the Schrödinger picture one
regards the collapse of the wave function as a dynamical process, while in
the Heisenberg picture it is viewed as an (extraphysical) increase of ‘human
knowledge’. I hope that keeping this difference in mind for the rest of this sec-
tion may help to avoid some misunderstandings that often lead to emotional
debate. One should therefore concentrate on what is actually done when the
theory is successfully applied – though not in a merely pragmatic way. Which
concepts are fundamentally required , rather than being approximately justi-
fied, or even mere tradition and prejudice?

Any meaningful concept of incomplete information or knowledge has
to refer to an ensemble of possible states. For example, physical entropy,
which quantifies irreversibility, is in quantum statistical mechanics defined by
means of von Neumann’s functional of the density matrix (4.4). According to
Sect. 4.2, it measures the size of (genuine or apparent) ensembles of mutually
orthogonal (hence operationally distinguishable) wave functions. While only
genuine ensembles represent incomplete information, the time-dependence of
the density matrix determines that of local entropy in general. Conservation
of global von Neumann entropy reflects the unitarity of the von Neumann
equation (when applicable) – equivalent to the unitarity and determinism of
the Schrödinger equation. No ensemble of classical or any other (unknown)

6 The identity of configuration space and space in single particle quantum mechan-
ics is a consequence of the exceptional kinematics of mass points. This has led to
a popular confusion of single-particle wave functions with spatial fields, and to
the misnomer of a ‘second quantization’ in quantum field theory – see Zeh (2003).

7 This contrast between the Heisenberg and the Schrödinger pictures has to be
distinguished from the ‘dualism’ between two competing classical concepts (par-
ticles and fields) that is part of one (the Copenhagen) interpretation. In classical
theory, particle positions and field strengths characterize different physical ob-
jects, which are both constituents of general physical systems. A dualism (or
‘complementarity’), apparently required to characterize quantum objects, should
more correctly be understood as a conceptual inconsistency, often attributed to
a ‘lacking microscopic reality’. However, this conceptual dualism applies only to
the ‘phenomenological reality’ (see Sect. 4.3.2). A critical account of the origin of
these conceptual problems can be found in Beller (1996, 1999).
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Fig. 4.3. Quantum measurement of a superposition (|a〉 + |b〉)/√2 by means of a
collapse process, here assumed to be triggered by the macroscopic pointer position.
The initial entropy S0 is smaller by one bit than in Fig. 3.5 (and may in principle
vanish), since there is no initial ensemble ‘a or b’ for the property to be measured.
Dashed lines before the collapse now represent quantum entanglement. (Compare
the ensemble entropies with those of Fig. 3.5!) The collapse itself is often divided
into two steps – see (4.54) below: first increasing the ensemble entropy by replacing
the superposition by an ensemble, and then lowering it by reducing the ensemble
(applying the ‘or’ – for macroscopic pointers only). The total increase of ensemble
entropy, evident in the final diagram, is a consequence of the first step of the collapse.
It brings the entropy up to its classical initial value of Fig. 3.5. The reset here
illustrates also why decoherence is usually irreversible even when a measurement
result is ‘erased’ (and even without a collapse – in which case the final ensemble
entropy would again be S0). From Chap. 2 of Joos et al. (2003)

variables representing the potential values of observables is ‘counted’ by von
Neumann’s entropy. Figure 3.5, characterizing classical measurements, cannot
therefore be applied to quantum measurements. In terms of quantum states it
has to be replaced by Fig. 4.3, which includes a collapse of the wave function.
The transition from a superposition to an ensemble (depicted by the second
step) affects the final value of von Neumann’s ‘ensemble’ entropy (that would
be reduced by a mere increase of information, as in the first step of Fig. 3.5).
For similar reasons there can be no ‘postselection’ (no retarded increase of
information about the past) by a quantum measurement, as suggested by
Aharonov and Vaidman (1991): there is nothing to ‘select’ from in the ab-
sence of an ensemble of hidden variables.

A wave function and a set of classical configurations are kinematically
used in Bohm’s quantum theory (Bohm 1952, Bohm and Hiley 1993). This
theory is often praised for exactly reproducing all predictions of conventional
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quantum theory in a deterministic way. However, this is not surprising, since
it leaves Schrödinger’s wave function entirely unchanged, while the assumed
trajectories for classical states, which would determine all observed quan-
tities according to this model, have to remain unobservable and in drastic
conflict with classical intuition (‘surrealistic’) in order to reproduce the em-
pirically confirmed quantum probabilities by means of their postulated sta-
tistical distribution. Because of the ‘phenomenological’ wave–particle dualism
(see Sect. 4.3.2), it also remains controversial in this theory whether the clas-
sical configurations must contain photon positions or electromagnetic fields
(Holland 1993).

Although wave functions and trajectories in configuration space are equally
assumed to be real in this theory,8 they are treated quite differently. While
the former are usually regarded as ‘given’, the latter are always represented
by an ensemble (without thereby contributing to the entropy). Their initial
probability distribution in this ensemble, which has to be regarded as in-
complete information, is postulated to comply with the Born rule. Since the
Bohm trajectories themselves remain unobservable, they can be said to serve
as no more than artificial and empirically unfounded selectors for the ‘active’
branch of the global wave function, to which the actual trajectory would be
confined according to its dynamics. For example, entropy is calculated, in
the form S[P̂ |ψ〉〈ψ|] with an appropriate Zwanzig projection P̂ , from such a
component ψ – as though the wave function had been reduced by a real col-
lapse (see Sect. 5 of Dürr, Goldstein and Zanghi 1993). While this description
requires the same fact-like time asymmetry of the global wave function as de-
coherence, the selection of subsets of trajectories defines an external arrow of
time. A justification of this different treatment of wave functions and Bohm
trajectories is not at all obvious (see Zeh 1999b).

Similarly to Bohm’s theory, collapse theories (Pearle 1976, Ghirardi, Ri-
mini, and Weber 1986) and the Everett interpretation (Everett, 1957) also
assume the wave function to represent a real physical object. This is in con-
trast to genuine hidden variables theories, which intend to derive or explain
the wave function from some (hoped-for) more fundamental level of descrip-
tion. These latter theories are affected by various no-go theorems (such as
Bell’s theorem) if they are assumed to be local. Otherwise, however, it is hard
to see what could be gained from them in comparison to the global wave
function itself as a nonlocal object.

While collapse theories propose stochastic modifications of the Schrödinger
equation, the Everett interpretation is based on the concept of ‘splitting ob-

8 “No one can understand this theory until he is willing to think of ψ as a real
objective field rather than just a ‘probability amplitude’ ” (Bell 1981). This
statement may apply to quantum theory in general – quite in contrast to an
analogous statement about Bohm’s trajectories, which are empirically unfounded
and thus have no more than ‘religious’ status. A stochastic theory can always be
deterministically completed by means of unobservable variables: any by definition
unobservable (pseudo-)random number generator will do.
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servers’ – a quite natural consequence in a kinematically nonlocal theory if
observers have to remain local for dynamical reasons (see also Chap. 6). This
splitting is facilitated by means of decoherence, defined as the dislocaliza-
tion of superpositions (Sect. 4.3). Because of the locality of interactions, this
process describes an effective dynamical decoupling (called a ‘branching’) of
the global wave function into components that are characterized by different
quasi-classical (robust and quasi-local) properties – including those of systems
that can be regarded as observers. This decoherence has turned out to be the
most efficient and most ubiquitous irreversible process in Nature.

While decoherence eliminates the basic motivation for the Heisenberg–
Bohr interpretation (that presumes genuine classical concepts, and their val-
ues as ‘coming into being’ during fundamental irreversible events outside the
laws of physics – see Pauli’s remark towards the end of the Introduction),
this aspect of decoherence may not have been duly appreciated even by some
authors who significantly contributed to it (Omnès 1988, 1992, Gell-Mann
and Hartle 1990, 1993 – see also Omnès 1998). Apparently guided by the
Heisenberg picture, they investigate consequences of decoherence for certain
‘consistency conditions’ (originally proposed by Griffiths 1984), which are as-
sumed to regulate the applicability (or different kinds of ‘truth’) of varying
classical concepts within variable presumed uncertainties (‘coarse graining’)
at selected discrete times. However, environmental decoherence allows one to
derive quasi-classical concepts in terms of wave packets (all that is needed) –
close to what Schrödinger had originally in mind. Their apparent ensembles,
formally described by the density matrix, obey master equations – such as
(4.35), and in this way consistently define quasi-classical ‘histories’.

In contrast to Bohm’s or Everett’s theories, consistent histories usually pre-
sume an absolute quantum arrow (see Hartle 1998 and footnote 2 of Chap. 5)
– just as collapse models do. Their selection by a formal ‘consistency’ require-
ment may indeed be inconsistent itself (Kent 1997), while master equations
derived by means of decoherence are never assumed to hold exactly. Consis-
tent histories have also been claimed to be equivalent to stochastic trajectories
of wave functions, in the ‘quantum state diffusion model’ assumed to exist for
all systems (Diósi et al. 1995, Brun 2000 – see Sect. 4.4). However, this would
be in conflict with the empirically confirmed quantum nonlocality.

On the other hand, the concept of apparent ensembles of wave functions in
decoherence theory, or the density matrix in general, are based on a probabil-
ity interpretation (as explained in Sect. 4.2), while the question ‘probabilities
for (or information about) what?’ has not yet been answered on a fundamental
level. Many quantum phenomena seem to favor the answer: new wave func-
tions (such as narrow wave packets). For example, a spot on the photographic
plate (regarded as a measurement ‘pointer’) has to be described in terms of
local molecular wave functions – not in terms of any classical variables. The
strongest support yet for such an interpretation may come from an analysis
of the decoherence of neuronal states in the brain (Tegmark 2000, see also
Zeh 2000). These quasi-classical neuronal states may form the final link (or
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the ultimate pointer basis) in a chain of observational interactions that are
all describable in terms of a global wave function.

The superposition of such quasi-classical observer states, which would re-
sult like Schrödinger cats from the unitary dynamics, was evidently the reason
for postulating a collapse of the wave function as a real dynamical process
(von Neumann’s ‘first intervention’).9 It may be formulated in two steps (see
Fig. 4.3):

|ψ〉〈ψ| =
∑
mn

|φm〉cmc∗n〈φn|︸ ︷︷ ︸ −→
∑

n

|φn〉|cn|2〈φn|︸ ︷︷ ︸ −→ |φn0〉〈φn0 |︸ ︷︷ ︸ ,

with S = 0 −→ S ≥ 0 −→ S = 0 .

(4.54)

They represent (1) the transition from a pure state into an ensemble (char-
acterized by an increase in von Neumann’s ensemble entropy), and (2) the
selection of a specific state from this ensemble (thus lowering the ensemble
entropy as depicted by the first step of Fig. 3.5). The first step can be rep-
resented by a master equation that describes a loss of information, while the
complete stochastic process (4.54) corresponds to a quantum Langevin equa-
tion (a Langevin equation for wave functions – see Sect. 4.4). Since the com-
plete process describes an individual physical evolution, it has to be used when
calculating the changing physical entropy according to (3.58). The master
equation describes the dynamics of an ensemble that represents entanglement
and lacking information about the stochastically evolving wave function.

If macroscopic properties α, say, are again regarded as ‘always given’ (as
in Sect. 3.3.1), physical entropy can be characterized by a function S(α) =
k lnNα, similar to the last term of (3.58), where Nα is now the dimension
of the subspace representing a fixed value (or small interval) of α. The time
dependence of this entropy,

S(t) = S
(
α(t)

)
, (4.55)

is then determined by the macroscopic dynamics α(t), which in general in-
cludes a succession of collapse ‘events’, each one a dynamical projection onto
a subspace corresponding to definite macroscopic properties. This means that
the stochastic collapse is part of the macroscopic dynamics α(t). It is dynam-
ically objectivized by the process of decoherence that describes an appar-
ent collapse. In contrast to classical Hamiltonian dynamics, which determines
the time dependence of any macroscopic quantity, α(t) := α(p(t), q(t)) – see
Sect. 3.3.1, the Schrödinger equation does not determine α(t). Therefore, the

9 Despite frequent claims to the contrary, the dynamical collapse was never part of
the Copenhagen interpretation, although quantum jumps have traditionally been
used as an argument against a wave function representing reality. The collapse is
then claimed to represent ‘just a normal increase of information’, even though an
ensemble representing such incomplete information is excluded.
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dynamics (4.32) cannot describe the transformation of entropy into lacking in-
formation in accordance with the negentropy principle (3.62). In other words,
not even macroscopically different states have to possess different predecessors
(‘sufficient reasons’) in quantum theory. Such causal predecessors, if they ex-
isted, would have to be counted by the initial ensemble entropy as in Fig. 3.5.

Would the collapse, if used in this way as part of the dynamics of wave
functions, now specify an arrow of time that could perhaps even be responsible
for irreversible thermodynamics? The ensemble entropy (4.4) would increase
only during the auxiliary first step of the collapse (describing ignorance about
the outcome). For entangled systems, for example those occurring after an
interaction of type (4.32), an individual (‘real’) collapse,

ψ =
∑

n

cnφnΦn −→
t

φn0Φn0 , (4.56)

does not alter the ensemble entropy. However, it specifies an arrow as it
transforms the entangled state into a factorizing one. Therefore, the additive
(‘physical’) entropy decreases in this process after it may have correspondingly
increased during the interaction (4.32), since

S
[
P̂sep|ψ〉〈ψ|

] ≥ S
[
P̂sep|φn0Φn0〉〈φn0Φn0 |

]
= 0 . (4.57)

A collapse has never been confirmed empirically as a dynamical process.
It has nonetheless to be taken into account regardless of its interpretation
before (or, at least, when) the observer becomes aware of the macroscopic
pointer position. As he thereby becomes himself quantum correlated with the
pointer state Φn0 , the corresponding ‘state-of-being-conscious’ in his brain
also becomes a pure state as a consequence (if not the origin) of this collapse.
This ‘observer state’ (whatever it may be in detail) can thus be used for
postulating a psycho-physical parallelism in accordance with von Neumann‘s
intentions (see also London and Bauer 1939). There is thus no need for genuine
classical (or other) variables anywhere in-between the observed microscopic
system and the brain of the observer. Spontaneous localization of the pointer
position in an apparatus would not lead to a pure state-of-being-conscious.
Instead, one could regard the neuronal system as the true measurement device,
while treating the whole outside world as one quantum system. Although
this description of observations by conscious beings remains vague in detail,
it is all that is in principle required for a physical formulation in terms of
quantum states. While a ‘real’ collapse is usually assumed to occur as soon as
certain phase relations have become irreversibly dislocalized, this assumption
is merely convenient, as it comes close to reproducing a classical description.

Does the entropy-reducing collapse, wherever it may occur (or simply
be applied), then have to be regarded as a quantum mechanical revival of
Maxwell’s demon, which could classically be exorcized in Sect. 3.3.2? Lubkin
(1987) demonstrated that, just as in the classical case, this entropy decrease
according to the collapse cannot be utilized in a cyclic process that would al-
low the construction of a perpetuum mobile of the second kind. However, the
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Fig. 4.4. Dynamics of the wave function in the case of retarded (conventional) and
advanced (acausal) collapse. In contrast to classical waves, the choice of the usual
(‘retarded’) interpretation of the collapse is a matter of pure convention

collapse may have important entropy-reducing consequences in a non-cyclic
cosmic evolution (see Sect. 6.1).

It appears furthermore noteworthy that the usual form of the collapse is
based on an extension of intuitive causality (Chap. 2) to a region where by as-
sumption it cannot be confirmed. For example, the expression |〈φ′

k|φn(∆t)〉|2,
with φn(∆t) := exp(−iH∆t)φn, defines the probability of finding the state
φ′

k in an appropriate measurement at time t2 = t1 + ∆t, provided the system
was found in the state φn in a previous measurement (of the first kind) at
time t1. This interpretation assumes the wave function to collapse into the
state φn during the first measurement, and then to evolve unitarily according
to the Hamiltonian H until it is measured again. An equivalent (though un-
conventional) time-reversed interpretation may be obtained from the identity
of the above matrix element with 〈φ′

k(−∆t)|φn〉. This means that the wave
function may as well be assumed to collapse during the first measurement
in an ‘acausal’ manner from an ‘advanced’ state φn into φ′

k(−∆t), which will
then unitarily evolve into the state φ′

k = φ′
k(0) just before the second measure-

ment starts (Penrose 1979). These two versions of the collapse are indicated in
Fig. 4.4. The second one is counterintuitive, since the observed system would
have to ‘know in advance’ what kind of measurement will be performed, and
when. Its exclusion is therefore an application of intuitive causality , similar to
the exclusion of advanced fields, while the equivalence of the two descriptions
is based on the T-symmetry of the formal quantum probabilities (Aharonov,
Bergmann and Lebowitz 1964).

In contrast to the advanced electromagnetic fields (Sect. 2.4), which can
be excluded empirically by means of small test charges, our preference for the
causal version of the collapse is purely conventional. However, macroscopic
registration devices, described by states Φ, that are continuously monitored by
the environment in accordance with the time arrow of increasing entanglement
or quantum causality, have to be assumed to possess quasi-classical states at
all times. In this case, their states during two successive measurements must
be described by Φ0(t) for t < t1, by Φn(t) for t1 < t < t2, and by Φnk(t) for
t > t2, where the number of indices corresponds to the increasing number of
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Unconventional interpretation:

Fig. 4.5. Behavior of the total state (including that of the measurement device)
under the unconventional assumption of advanced collapse and ‘continuous mea-
surement’ of the pointer position, described by the state Φ. Only the wave function
of the microscopic system φ, but not that of the macroscopic pointer, depends on
the convention

registered (robust) measurement results (see also Bläsi and Hardy 1995). This
holds even in the acausal collapse version – as indicated in Fig. 4.5.

All these ambiguities can be avoided if the Schrödinger equation is not
modified at all. For a wave function that is assumed to describe reality com-
pletely, this leads to the Everett interpretation. There is then no law-like
quantum arrow of time – but how can measurements lead to any definite and
irreversible results?

Everett’s interpretation is based on the Schrödinger picture: “This paper
proposes to regard pure wave mechanics as a complete theory” (Everett 1957,
see also Zeh 1970, 1973). So there are no longer any observables to be in-
troduced as further fundamental ingredients of the theory, as required in the
Heisenberg picture. (The pragmatic equivalence of both pictures is in any case
questionable for open, that is, locally non-Hamiltonian systems.) In particular,
the ‘many-worlds interpretation’, which assumes many simultaneous histories
formed by classical properties (DeWitt 1971, Deutsch 1997), or an ensemble
of Feynman paths in classical configuration space (Sokolovsky 1998), misin-
terprets Everett’s proposal by presuming classical concepts. A superposition
of Feynman paths would be identical to a time-dependent wave function as
an individual dynamical state.

The ultimate observer states (χobs
n , say), which differ in general in separate

‘branches’ of the wave function, need not necessarily represent quasi-classical
states. Everett concluded from the Schrödinger equation that all components
of (4.32) continue to exist in one superposition,

∑
ψ(n)χobs

n (“All components
are actual”). His point is that they can be experienced only separately because
of their separate observer states χobs

n , which are here postulated on empirical
grounds to represent subjective awareness. Evidently, no local observer state is
defined in the global Everett wave function. This interpretation answers von
Neumann’s quest for a psycho-physical parallelism in quantum mechanical
terms without introducing a collapse (see Zeh 1970, 1979, 2000, Squires 1990,
Lockwood 1996).

Since configuration space assumes the role of space as the arena of reality
in all versions of the Schrödinger picture, the fork of indeterminism that seems
to characterize probabilistic quantum theory is reinterpreted in the Everett
interpretation as a fork of causality (see footnote 1 of Chap. 2). All observer
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states χobs
n (with different n) must be remembering the same pre-measurement

history. To all of them, the rest of the world is thereafter described by their
different ‘relative states’ ψ(n) (their co-factor states, which these observers
may renormalize for convenience). The formal ‘plus’ of a superposition is ob-
jectively reduced to an effective ‘and’ by the irreversible dislocalization of
superpositions, while the ‘or’ is observer-related (‘subjective’) – though ob-
jectivized with respect to correlated components of different observers.

Only if both factors of all components of the Everett wave function were de-
fined to be mutually orthogonal would the sum of their products,

∑
ψ(n)χobs

n ,
resemble the Schmidt representation (4.27) (Kübler and Zeh 1973, Zeh 1973,
Albrecht 1992, 1993). This representation depends furthermore on the precise
borderline between observer and the rest of the world. However, the essential
(and objective) aspect of decoherence is the irreversible dynamical spreading
of a superposition over many local subsystems Φ(k) (possibly including ob-
servers) in the form

∑
n cnφn

∏
k Φ

(k)
n – thereby propagating in accordance

with the relativistic spacetime structure.
As ‘the other’ robust components which must form according to the Schö-

dinger equation are not observable to ‘us’, the assumption of their existence
is operationally meaningless (see Sect. 4.3.2 about the concept of ‘operational
reality’). The Everett interpretation is therefore indistinguishable from an
appropriately chosen collapse interpretation. In the Everett interpretation this
equivalence requires the additional assumption that components only branch
with increasing time, but in practice never (re)combine according to

∑
n

cnφnΦn −→
t

(∑
n

cnφn

)
Φ0 . (4.58)

Because of the T -symmetric Schrödinger dynamics, the absence of this process
requires quite generally that no suitable (conspiratorial) components n �= n0

exist on the LHS according to the initial condition for the global wave function.
This demonstrates also that the wave function cannot merely describe possi-
bilities (in contrast to wave functions that could have arisen in a stochastic
process, for example). The law-like arrow of the collapse is thus replaced by a
fact-like arrow. This ‘quantum causality’ is formally analogous to Boltzmann’s
Stoßzahlansatz , which requires that correlations are irrelevant in practice after
being formed in collisions.

One may postulate an appropriate cosmic initial condition for this purpose
by requiring that all existing nonlocal quantum correlations, such as those on
the LHS of (4.58), are retarded, that is, have been caused somewhere during
the past history of the quantum Universe. At the big bang (t = 0, say) one
would thus have to assume a completely uncorrelated state, that is, a wave
function of a form like

ψ(t → +0) = lim
∆Vk→0

∏
k

ψ0
∆Vk

, (4.59)
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where ψ∆Vk
are local states on appropriate small volume elements ∆Vk. This

kind of state is invariant under the corresponding Zwanzig projection P̂ local

by definition. However, the assumption (4.59) appears ‘natural’ only to our
causal prejudice (thus applying the double standard in Price’s terminology).
In contrast to its classical counterpart of initially absent (or future-irrelevant)
correlations, this condition is not of a statistical nature (meaningful only for
an ensemble that describes incomplete information), but a condition on the
objective state of the quantum Universe. It would explain both the absence of
quantum recoherence and the applicability of thermodynamical master equa-
tions.

Even though the Everett branches are sufficiently defined by means of
decoherence (that is, by the dislocalization of superpositions – Sect. 4.3), this
does not yet define any probabilities for them, as they are required by the Born
rules. The branches are all assumed to exist once (with different albeit as yet
physically meaningless norms). Everett’s original claim that the probability
interpretation is a consequence of the formalism was based on the density
matrix, and so must be circular (see Sect. 4.1.2). Graham (1970) therefore
considered series of N equivalent measurements (N subsequent branchings –
similar to series of decay events discussed at the end of Sect. 4.5). He was then
able to demonstrate that the total norm of all those of the resulting Everett
branches which represent series of outcomes that differ significantly from the
Born rule must become extremely small, and vanish in the limit N → ∞ (see
also Jammer 1974). While this result permits an elegant formulation of the
probability postulate (by assuming merely that we happen to live in an Ev-
erett branch of not extremely small norm), this assumption is still completely
equivalent to what is to be derived.10

Therefore, the probability measure has to be regarded as an empirical in-
put to the theory (just like the Schrödinger dynamics, for example). The norm
is a plausible candidate for this measure, because it is dynamically conserved
under the Schrödinger equation. While stochastic collapse models postulate
quantum probabilities as part of their dynamics, the Everett interpretation
must equivalently assume that ‘we’ are living in a branch that has been se-
lected by chance in accordance with the Hilbert space norm.

General Literature: Jammer 1974, Busch, Lahti and Mittelstaedt 1991,
d’Espagnat 1995, Schloßhauer 2004, Zeh 2005.

10 This may be illustrated by the example of results obtained for N subsequent
measurements distinguishing between spin states |+〉 and |−〉 in N identical initial
superpositions a|+〉 + b|−〉. Since the number of branches which contain n ‘spin-
ups’, say, is then statistically given by the binomial coefficient

(
N
n

)
regardless of the

values of the coefficients a and b, the distribution of measurement outcomes n over
many such series of N measurements, pN (n), would form a Poisson distribution
centered at the required value if and only if the probability for each branch is
assumed to be given by its norm |a|2n|b|2(N−n). This is precisely Born’s probability
rule. (Example provided by Erich Joos.)
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The Time Arrow of Spacetime Geometry

In the framework of general relativity, gravity is a consequence of spacetime
curvature. Its dynamical laws (Einstein’s field equations) are again symmetric
under time reversal. However, if their actual global solution, that is, the ob-
served spacetime, is asymmetric (such as a forever expanding universe), this
must affect the dynamics of all matter. While this was well known, it came
as a surprise during the early 1970s that strongly gravitating systems possess
thermodynamical properties, thus indicating an intimate connection between
two seemingly very different fields of physics.

Gravitating systems are already thermodynamically peculiar in Newton’s
theory, since they possess negative heat capacity, resulting from the universal
attractivity of this force. In particular, attractive forces which depend homo-
geneously on the minus second power of distance, such as gravity and Coulomb
forces, lead according to the virial theorem to the relation

Ekin = −1
2
Epot = −E , (5.1)

between the mean values of kinetic and potential energies, and therefore be-
tween them and the total energy. This virial theorem is valid for mean values
over a (quasi-)period of the motion, or approximately (in the case of semi-
stable states) for mean values defined over sufficiently large intervals of time.
In quantum theory, mean values have to be replaced by expectation values
on proper (normalizable) energy eigenstates. The theorem can then be conve-
niently proved using Fock’s ansatz ψ(λr1, . . . , λrN ) and the homogeneity of
T and V in a variational procedure, δ

(〈ψ|T + V |ψ〉/〈ψ|ψ〉) = 0, with respect
to λ. So it must also hold for expectation values on density matrices whose
non-diagonal elements can be neglected in the energy basis. (For relativistic
generalizations of the virial theorem see Gourgoulkon and Bonazzola 1994.)

The anti-intuitive negative sign relating kinetic and total energy in (5.1)
means, for example, that satellites are accelerated by friction when they enter
the earth’s atmosphere, and that stars heat up by radiating energy away. This
second example is valid only as far as the quantum mechanical zero-point
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energy does not dominate Ekin = Trace{ρT} – as it would in white dwarf
stars or solid bodies. Early astrophysicists believed instead that stars always
cool down in the course of time. The virial theorem also means that the heat
flow from hot to cold objects which are governed by gravity causes a thermal
inhomogeneity to grow.

To construct an example, first consider a monatomic ideal gas in two
vessels under different conditions, but under exchange of energy (heat),
δU1 = −δU2, and particles, δN1 = −δN2. Their partial entropies according
to (3.14) are given by

Si = kNi

(
3
2

lnTi − ln ρi + C

)
, (5.2)

with i = 1, 2 distinguishing the two vessels. Since the internal energy, U =
Ekin, is here U = (3/2)NkT , the total change of entropy becomes for fixed
volumes Vi, or for fixed densities ρi = Ni/Vi,

δStotal = δS1 + δS2 =
(

1
T1

− 1
T2

)
δU1 + k

(
3
2

ln
T1

T2
− ln

ρ1

ρ2

)
δN1 . (5.3)

This expression describes entropy changes δS1 and δS2 with opposite signs,
which cancel only in thermodynamical equilibrium (T1 = T2 and ρ1 = ρ2). In
this situation without gravity, an entropy increase in accordance with the Sec-
ond Law requires a reduction of thermal and density inhomogeneities (except
for the transient thermo-mechanical effect , that is, a thermally induced pres-
sure difference that is caused by the temperature dependence of the second
term).

However, the density of a gravitating star is not a free variable that can be
kept fixed (as in the laboratory). A typical star, assumed for simplicity to be
in thermal equilibrium, may to a very good approximation also be described
as an ideal gas. Its temperature and volume are then related by means of the
virial theorem according to

NT ∝ U = Ekin ∝ −Epot ∝ N2

R
∝ N2

V 1/3
, (5.4)

that is, V ∝ N3/T 3. The entropy (5.2) of a star is therefore

Sstar = kN

(
3
2

lnT − lnN + lnV + C

)
= kN

(
−3

2
lnT + 2 lnN + C ′

)
. (5.5)

In the second line, the signs of ln T and lnN are reversed. The total entropy
change of a star embedded in an interstellar gas, δSstar +δSgas, becomes after
again using the virial theorem in the form Estar = −Ustar ,
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δStotal =
(

1
Tstar

− 1
Tgas

)
δEstar + k ln

[
C ′′N2

starρgas

(TstarTgas)3/2

]
δNstar . (5.6)

While heat must still flow from the hot star into cold interstellar space in
order to comply with the Second Law, this leads now to a further increase of
the star’s temperature, and the accretion of matter – provided the ‘star’ is
already sufficiently massive. Thermal and density inhomogeneities thus grow
in the generic astrophysical situation, although there are also ‘pathological’
objects with non-periodic motion, such as gravitationally collapsing spherical
matter shells or pressure-free dust spheres, for which the virial theorem does
not hold.

These arguments show that the evolution of normal stars is dynamically
controlled by thermodynamics rather than by gravity itself. If the thermo-
dynamical arrow of time did change direction in a recontracting universe (as
suggested by Gold 1962 – see Sect. 5.3), stars and other gravitating objects
would have to re-expand by means of advanced incoming radiation in spite of
their attractive forces.

A homogeneous universe must therefore describe an unstable state of very
low entropy (though a ‘simple’ state in the sense of Sect. 3.5). So one may
ask whether the evolution of matter into inhomogeneous clumps under grav-
itational forces represents an entropy capacity that is sufficient to explain
the observed global thermodynamical arrow of time. The apparently required
Kaltgeburt of the Universe might then be replaced by a homogeneous birth,
since inhomogeneous local contraction leads to the formation of strong tem-
perature and density gradients.

In order to estimate the improbability (negentropy) of a homogeneous
universe, one has to know the maximum entropy that can be gained by grav-
itational contraction. Conceivable limits of contraction are:

• Quantum degeneracy (primarily of electrons) is essential for the stability
of solid gravitating bodies and white dwarf stars. By emitting heat, these
objects cool down rather than further heating up.

• Repulsive short range forces are important in neutron stars, for example.
• Gravitation itself may lead to black holes even in Newton’s theory. Any

radiation with bounded velocity cannot escape from the surface of a suffi-
ciently dense and massive object. If this velocity bound is as universal as
gravity (as in the theory of relativity), the further fate of matter inside this
critical surface remains completely irrelevant to an external observer. This
surface defines an event horizon for him. Matter disappearing behind the
horizon is irreversibly lost except for its long range forces, such as gravity
itself. In particular, it can no longer participate in the thermodynamics of
the Universe.

Such non-relativistic black holes were discussed by Laplace as early as 1795,
and before him by J. Mitchel at Cambridge. In general relativity, black holes
are described by specific spacetime structures. This leads to the further con-
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sequence that neither of the first two mentioned limits to gravitational con-
traction may prevent an object of sufficiently large mass (that could always
be reached by further accretion of matter) from collapsing into a black hole.
Repulsive forces would give rise to a positive potential energy, that must even-
tually dominate as a source of gravity, while the increasing zero point pressure
of a degenerate Fermi gas would force the fermions into effective bosons that
may form a further contracting condensate.

Therefore, only black holes define a realistic upper limit for entropy pro-
duction by gravitational contraction of matter from the point of view of an
external observer. But what is the value of the entropy of a black hole? This
question cannot be answered by investigating relativistic stars, that is, equi-
librium systems, since the essential stages of the collapse proceed irreversibly.
However, a unique and finite answer is obtained from a quantum aspect of
black holes, viz., their Hawking radiation (Sect. 5.1).

Since in general relativity the spatial curvature represents a dynamical
state (see Sect. 5.4), it may itself carry entropy. Its dynamics is described by
Einstein’s field equations

Gµν = 8πTµν , (5.7)

in units with G = c = 1, where Tµν is the energy–momentum tensor of matter.
They define an initial (or final) value problem, since they are essentially of
hyperbolic type (see Sect. 2.1). The Einstein tensor Gµν is a linear combina-
tion of the components of the Ricci tensor Rµν := Rλ

µλν , that is, the trace
of the Riemann curvature tensor. Forming this trace is analogous to forming
the d’Alembertian in the wave equation (2.1) for the electromagnetic poten-
tial from its matrix of second derivatives ∂ν∂λAµ. Aside from nonlinearities
(that are responsible for the self-interaction of gravity), the Riemann curva-
ture tensor is similarly defined by the second derivatives of the metric gµν ,
which thus assumes the role of the gravitational potential (analogous to Aµ in
electrodynamics). In both cases, the trace of the tensor of derivatives is deter-
mined locally by the sources, while its trace-free parts represent the degrees
of freedom of the vector or tensor field, respectively, which can therefore be
freely chosen initially (as an incoming field).

Penrose (1969, 1981) used this freedom to conjecture that the trace-free
part of the curvature tensor (the Weyl tensor) vanished when the Universe
began. This situation describes a ‘vacuum state of gravity’, that is, a state of
minimum gravitational entropy, and a space as flat as is compatible with the
sources. It is analogous to the cosmic initial condition Aµ

in = 0 for the electro-
magnetic field discussed in Sect. 2.2 (with Gauss’s law as a similar constraint).
Gravity would then represent a retarded field, requiring ‘causes’ in the form
of advanced sources. Since Penrose intends to explain the thermodynamical
arrow, too, from this initial condition (see Sect. 5.3), his conjecture revives
Ritz’s position in his controversy with Einstein (see Chap. 2) by applying it
to gravity rather than to electrodynamics.
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In the big bang scenario, the beginning of the Universe is characterized
by a past time-like curvature singularity (where time itself began). Penrose
used this fact to postulate his Weyl tensor hypothesis on all past singularities,
since this would allow only one of them: a uniform big bang. In the absence
of an absolute direction of time, the past would then be distinguished from
the future precisely and solely by this asymmetric boundary condition and its
consequences (again introducing a ‘double standard’). If the Weyl tensor con-
dition could be derived from some other assumptions that did not arbitrarily
select a time direction, it would have to exclude inhomogeneous future singu-
larities as well. This may again lead to dynamical consistency problems, but
it would not rule out collapsing objects to appear as black holes to external
observers (see Sects. 5.1 and 6.2.3).

5.1 Thermodynamics of Black Holes

In order to discuss the spacetime geometry of black holes, it is convenient to
consider the static and spherically symmetric vacuum solution, discovered by
Schwarzschild and originally expected to represent a point mass. In terms of
spherical spatial coordinates, this solution is described by the metric

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2) . (5.8)

Here, r measures the size of a two-dimensional sphere – though not the dis-
tance from r = 0. This metric form is singular at r = 0 and r = 2M , but the
second singularity, at the Schwarzschild radius r = 2M , is merely the result of
an inappropriate choice of these coordinates. The condition r = 2M describes
a surface of fixed area A = 4π(2M)2 (using Planck units G = c = � = kB = 1)
in spite of moving outwards at speed of light. In its interior (that is, for
r < 2M) one has gtt = 2M/r−1 > 0 and grr = (1−2M/r)−1 < 0. Therefore,
r and t interchange their physical meaning as spatial and temporal coordi-
nates. This internal solution is not static, while the genuine singularity at
r = 0 represents a time-like singular boundary rather than the space point
expected by Schwarzschild.

Physical (time-like or light-like) world lines, that is, curves with ds2 ≤ 0,
hence with (dr/dt)2 ≤ (1 − 2M/r)2 → 0 for r → 2M , can only approach the
Schwarzschild radius parallel to the t-axis (see Fig. 5.1). Therefore, the interior
region r < 2M is physically accessible only via t → +∞ or t → −∞, albeit
within finite proper time. These world lines can be extended regularly into
the interior when t goes beyond ±∞. Their proper times continue into the
physically finite future (for t > +∞) or past (for t < −∞) with the new time
coordinate r < 2M . There are therefore two internal regions (II and IV in the
figure), with their own singularities at r = 0 (at a finite distance in proper
times). These internal regions must in turn each have access to a new external
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Fig. 5.1. Extension of the Schwarzschild solution from ‘our world’ beyond the two
coordinate singularities at r = 2M , t = ±∞. Each point in the diagram represents a
2-sphere of size 4πr2. A consistent orientation of forward light cones (required from
the continuation of physical orbits, such as those represented by dashed lines) is
indicated in the different regions. There are also two genuine curvature singularities
with coordinate values r = 0

region, also in their past or future, respectively, via different Schwarzschild
surfaces at r = 2M , but with opposite signs of t = ±∞. There, proper times
have to decrease with growing t. These two new external regions may then
be identified with one another in the simplest possible topology (region III
appearing twice in the figure).

This complete Schwarzschild geometry may be described by means of the
regular Kruskal–Szekeres coordinates u and v, which eliminate the coordi-
nate singularity at r = 2M . In the external region I they are related to the
Schwarzschild coordinates r and t by

u =
√

r

2M
− 1 er/4M cosh

(
t

4M

)
, (5.9a)

v =
√

r

2M
− 1 er/4M sinh

(
t

4M

)
. (5.9b)

The Schwarzschild metric in terms of these new coordinates reads

ds2 =
32M2

r
e−r/2M (−dv2 + du2) + r2(dθ2 + sin2 θ dφ2) , (5.10)

where r = r(u, v) is determined by inverting (5.9a) and (5.9b). It is evidently
regular for r → 2M and t → ±∞, where u and v may remain finite. The
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Fig. 5.2. Completed Schwarzschild solution represented in terms of Kruskal coordi-
nates. Forward light cones now appear everywhere with a 45◦ opening angle around
the +v-direction. Horizons are indicated by dense-dotted lines, possible orbits as
dashed lines. Although the future horizon, say, moves in the outward direction with
the speed of light from an inertial point of view, it does not increase in size. The cen-
ter of the Kruskal diagram defines an ‘instantaneous sphere’ as a symmetry center,
even though it does not specify a specific external time t0

Kruskal coordinates are thus chosen in such a way that future light cones
everywhere form an angle of 45◦ around the +v-direction (see Fig. 5.2). Sector
I is again the external region outside the Schwarzschild radius (‘our world’).
One also recognizes the two distinct internal regions II and IV (connected only
through the ‘asymptotic sphere’ at t = ±∞ that corresponds to the origin
of the figure) with their two separate singularities r = 0. Both Schwarzschild
surfaces are light-like, and thus represent one-way passages for physical orbits.
Their interpretation as past and future horizons is now evident. Sector III
represents the second asymptotically flat ‘universe’. (It is not connected with
the original one by a rotation in space, since u is not restricted to positive
values like a radial coordinate.)

This vacuum solution of the Einstein equations is clearly T -symmetric,
that is, symmetric under reflection at the hyperplane v = 0 (or any other
hyperplane t = constant). Therefore, it does not yet represent a black hole, and
it would not be compatible with the Weyl tensor hypothesis. In the absence of
gravitational sources, the Ricci tensor must vanish according to the Einstein
equations (5.7), while a non-zero or even singular curvature tensor can then
only be due to the Weyl tensor.
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Fig. 5.3. Geometry of a Schwarzschild black hole (a) which forms by the gravita-
tional collapse of a spherically symmetric mass, and its time-reverse (b) – usually
called a white hole

A black hole is instead defined as an asymmetric spacetime structure that
arises dynamically by the gravitational collapse of matter from a regular
initial state. For example, if the in-falling geodetic sphere indicated by the
dashed line passing through sectors I and II of Fig. 5.2 represents the collapsing
surface of a spherically symmetric star, the vacuum solution is valid only
outside it. The coordinates u and v can then be extended into the interior
only with a different interpretation (see Fig. 5.3a, where u = 0 is chosen as the
center of the collapsing star). This black hole is drastically asymmetric under
time reversal, as it contains only a future horizon and a future singularity.

Because of the symmetry of the Einstein equations, a time-reversed black
hole – not very appropriately called a white hole (Fig. 5.3b) – must also rep-
resent a solution. However, its existence in Nature would be excluded by the
Weyl tensor hypothesis. If it were the precise mirror image of a black hole, the
white hole could describe a star (perhaps with planets carrying time-reversed
life) emerging from a past horizon. This would be inconsistent with an arrow
of time that is valid everywhere in the external region. If a white hole were
allowed to exist, we could receive light from its singularity, although this light
would be able to carry retarded information about the vicinity of the singu-
larity only if our arrow of time remained valid in this region. This seems to be
required for thermodynamical consistency, but might be in conflict with such
a local initial singularity (see Sect. 5.3).

Similar to past singularities, space-like singularities – so-called naked sin-
gularities – could also be visible to us. They, too, were assumed to be absent
by Penrose. However, this ‘cosmic censorship’ assumption cannot generally be
imposed directly as an initial condition. Rather, it has to be understood as
a conjecture about the nature of singularities which may form dynamically
during a collapse from generic initial value data which comply with the Weyl
tensor hypothesis. Although counterexamples (in which naked singularities
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form during a gravitational collapse from appropriate initial conditions) have
been explicitly constructed, they seem either to form sets of measure zero
(which could be enforced by imposing exact symmetries that may be thermo-
dynamically unstable in the presence of quantum matter fields), or to remain
hidden behind black hole horizons (see Wald 1997, Brady, Moss and Myers
1998). The first possibility is similar to pathological solutions in mechanical
systems that have been shown to exist as singular counterexamples to ergodic
behavior. This similarity may already indicate a relationship between these
aspects of general relativity and statistical thermodynamics.

The Schwarzschild–Kruskal metric may be generalized as a Kerr–Newman
metric, which describes axially symmetric black holes with non-vanishing an-
gular momentum J and charge Q. This solution is of fundamental importance,
since its external region characterizes the final stage of any gravitationally col-
lapsing object. For t → +∞ (although very soon in excellent approximation
during a stellar collapse) every black hole may be completely described by the
three parameters M,J and Q, up to translations and Lorentz transformations.

This result is known as the no-hair theorem. It means that black holes
cannot maintain any external structure (‘no hair’), since the collapsing star
must radiate away all higher multipoles of energy and charge, while conserved
quantities connected with short-range forces, such as lepton or baryon number,
disappear behind the horizon. A white hole would therefore require coherently
incoming (advanced) radiation in order to ‘grow hair’. For this reason, white
holes seem to be incompatible with the radiation arrow of our world . A general
correlation between the time arrow of horizons and that of radiation has been
derived in the form of a ‘consistency condition’ for certain de Sitter-type
universes by Gott and Li (1997). Their model (though not representative for
our world) is remarkable in possessing different arrows of time in different
spacetime regions separated by an event horizon.

If the internal region of a black hole is regarded as irrelevant for exter-
nal observers, the gravitational collapse effectively violates baryon and lepton
number conservation. Even the entropy carried by collapsing matter would
disappear from this point of view – in violation of the Second Law. Con-
servation laws would eventually have to be violated objectively at the future
singularity if all physical properties were assumed to disappear from existence
there. According to rather moderate assumptions, such a singularity must al-
ways arise behind any future horizon that comes into being (see Hawking and
Ellis 1973).

Spacetime singularities would have particularly dramatic consequences in
quantum theory because of the latter’s kinematical nonlocality (see Sect. 4.2).
Consider a global quantum state, propagating on space-like hypersurfaces (‘si-
multaneities’), which define an arbitrary foliation of spacetime, that is, a time
coordinate t. If these hypersurfaces met a singularity somewhere, not only the
state of matter on this singularity, but also its entanglement with the rest of
the Universe would be lost. While classical correlations occur only in statis-
tical ensembles, quantum states would objectively cease to exist also on the
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non-singular part of the Universe unless the global state evolved ‘just in time’
into the factorizing form ψ = ψsingularityψelsewhere whenever it approached
a singularity. This would represent a very strong final condition. Therefore,
several authors have concluded that quantum gravity must violate CPT in-
variance and unitarity, while this suggestion has led to a number of proposals
for a gravity-based dynamical collapse of the wave function (Wald 1980, Pen-
rose 1986, Károlyházy, Frenkel and Lukácz 1986, Diósi 1987, Ellis, Mohanty
and Nanopoulos 1989, Percival 1997, Hawking and Ross 1997). According to
these proposals, the existence of future singularities would explain the first
step of (4.54).

However, this dynamical indeterminism of global quantum states would
not only be inconsistent with canonical quantum gravity (see Sect. 6.2). It
may also be avoided in quantum field theory on a classical spacetime if the fo-
liation defining a time coordinate were chosen never to encounter a singularity.
For example, the Schwarzschild–Kruskal metric could be foliated according to
Schwarzschild time t in the external region, and according to the new time
coordinate r < 2M for t > ∞ (see Fig. 5.1). This choice, which leaves the
entire black hole interior in the ‘global future’ of external observers for all
times, is facilitated by the fact that this interior never enters their past, and
therefore cannot be regarded as causing anything on them – no matter how
long they wait (Zeh 2005a).

A general singularity-free foliation is given by York time, which is defined
by hypersurfaces of uniform extrinsic spatial curvature scalar K (see Qadir
and Wheeler 1985). A foliation that excludes singularities also appears ap-
propriate because consequences of an elusive unified theory are expected to
become relevant close to them. Many hypothetical theories have been pro-
posed, which replace the singular big bang by other scenarios. Among them
are oscillating universes or inflationary ‘bubble universes’ in an eternal inho-
mogeneous superuniverse. It is questionable, though, whether the traditional
concept of time can be maintained in a situation where (quasi-)classical gen-
eral relativity breaks down (see Sect. 6.2).

The conceivable salvation of global unitarity by excluding future singu-
larities is quite irrelevant for local observers who remain outside the event
horizon, since the reality accessible to them can be completely described by
a reduced density matrix ρext in the sense of a Zwanzig projection P̂ sub –
see (4.28) – regardless of how their local reference frame is globally extrapo-
lated to form a complete foliation. The non-unitary dynamics of these reduced
density matrices has the same origin as it did for quantum mechanical subsys-
tems of Sect. 4.3: nonlocal entanglement. Thereby, the horizon appears as a
maximal boundary separating subsystems of interest. One may therefore ap-
propriately describe the phenomenological properties of black holes (including
their Hawking radiation – see below) without referring to the singularity or
the precise nature of quantum gravity. This ‘effective non-unitarity’ of black
holes reflects the usual time arrow of decoherence (see Chap. 4 and Sect. 6.2.3).
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Fig. 5.4. Extraction of rotational energy from a black hole by means of the Penrose
mechanism, using a booster in the ergosphere close to the horizon

From the point of view of an external observer, the information about
matter collapsing under the influence of gravity becomes irreversibly irrele-
vant, except for the conserved quantities M,J and Q. However, the mass of a
Kerr–Newman black hole is not completely lost (even if Hawking radiation is
neglected). Its rotational and electromagnetic contributions can be recovered
by means of a process discovered by Penrose (1969) – see Fig. 5.4. It requires
boosting a rocket in the ‘ergosphere’, that is, in a region between the Kerr–
Newman horizon, r+ := M +

√
M2 − Q2 − (J/M)2, and the ‘static limit’,

r0(θ) := M +
√

M2 − Q2 − (J/M)2 cos2 θ. In this ergosphere, the cyclic coor-
dinate φ is time-like (gφφ < 0) as a consequence of extreme relativistic frame
dragging. Because of the properties of this metric, ejecta from the booster
which fall into the horizon may possess negative energy with respect to an
asymptotic frame (even though this energy is locally positive). The mass of
the black hole may thus be reduced by reducing its angular momentum. Sim-
ilar arguments hold with respect to electric charge if the ejecta carry charged
particles with an appropriate sign.

The efficiency of this process for extracting energy from a black hole is lim-
ited – precisely as it is for a heat engine. According to a geometro-dynamical
theorem (Hawking and Ellis 1973), the area A of a future horizon (or the sum
of several such horizon areas) may never decrease. For all known processes
which involve black holes, this can be formulated in analogy to thermody-
namics as (Christodoulou 1970)

dM = dMirrev + Ω dJ + ΦdQ , (5.11)

where the ‘irreversible mass change’ dMirrev ≥ 0 is defined by the change of
total horizon area, dMirrev = (κ/8π)dA – in analogy to TdS. Here, κ is the
surface gravity , which turns out to be constant on each horizon, while Φ is
the electrostatic potential at the horizon, and Ω the angular velocity defined
by the dragging of inertial frames at the horizon. The last two terms in (5.11)
describe work done reversibly on the black hole by adding angular momentum
or charge. All quantities are defined relative to an asymptotic rest frame,
where they remain regular even when they diverge locally on the horizon. For
a Schwarzschild metric, the surface gravity is κ = 1/4M . The quantities Φ
and Ω are also constant on the horizon, in analogy to other thermodynamical
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equilibrium parameters, such as pressure and chemical potential, which appear
in the expression for the work done on a thermodynamical system in the form
µdN − pdV .

These similarities led to the proposal of the following Laws of Black Hole
Dynamics, which form an analogy to the Laws of Thermodynamics (see
Bekenstein 1973, Bardeen, Carter and Hawking 1973, Israel 1986):

0. The surface gravity of a black hole must approach a uniform equilibrium
value κ(M, Q, J) on a black hole horizon for t → ∞.

1. The total energy of black holes and external matter, measured from asymp-
totically flat infinity, is conserved.

2. The total horizon area, A :=
∑

i A(Mi, Qi, Ji), never decreases:

dA

dt
≥ 0 . (5.12)

3. It is impossible to reduce the surface gravity to zero by a finite number of
physical operations.

Other versions of the Third Law of thermodynamics may not possess a direct
analog in black holes because of the latters’ negative heat capacity. In partic-
ular, the surface area A does not vanish with vanishing surface gravity in a
similar way as the entropy does with vanishing temperature.

Bekenstein conjectured that these analogies are not just formal, but in-
dicate genuine thermodynamical properties of black holes. He proposed not
only a complete equivalence of thermodynamical and spacetime-geometrical
laws and concepts , but even their unification. In particular, in order to ‘legal-
ize’ the transformation of thermodynamical entropy into black hole entropy
A (when dropping hot matter into a black hole), he required that instead of
the two separate Second Laws, dS/dt ≥ 0 and dA/dt ≥ 0, there is only one
Unified Second Law

d(S + αA)
dt

≥ 0 , (5.13)

with an appropriate constant α (in units of kBc3/�G). Its value remains un-
determined from the analogy, since the term (κ/8π)dA, equivalent to TdS,
may equally well be written as (κ/8πα)d(αA). The black hole temperature
Tbh := κ/8πα is classically expected to vanish, since the black hole would
otherwise have to emit heat radiation proportional to AT 4

bh according to Ste-
fan and Boltzmann’s law. The constant α should therefore be infinite, and so
should the black hole entropy Sbh := αA.

Nonetheless, Bekenstein suggested a finite value for α (of the order of
unity in Planck units). This was confirmed by means of quantum field the-
ory by Hawking’s (1975) prediction of black hole radiation. His calculation
revealed that black holes must emit thermal radiation according to the value
α = 1/4. This process may be described by means of ‘virtual particles’ with
negative energy tunnelling from a virtual ergosphere into the singularity (York
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1983), while their entangled partners with positive energy may then propa-
gate towards infinity. (Again, all energy values refer to an asymptotic frame
of reference.) The probabilities for these processes lead precisely to a black
body radiation with temperature

Tbh =
κ

2π
, (5.14)

with κ in units of �/ckB , and therefore to the black hole entropy1

Sbh =
A

4
. (5.15)

The mean wavelength of the emitted radiation is of order
√

A.
A black hole not coupled to any quantum fields (α = ∞) would possess

zero temperature and infinite entropy, corresponding to an ideal absorber in
the sense of Sect. 2.2. This result would also be obtained for classical black body
radiation, that is, for classical electromagnetic waves in thermal equilibrium
– reflecting the historically important infrared catastrophe for classical fields
(Gould 1987).

According to (5.14), a black hole of solar mass would possess a temperature
of no more than Tbh ≈ 10−6 K. In the presence of a cosmic background radia-
tion of 2.7 K, it would therefore absorb far more energy than it emits (even in
the complete absence of interstellar dust). Only black holes with mass below
3×10−7 solar masses could effectively lose mass under the present conditions
of the Universe (Hawking 1976). Black holes that have formed by gravitational
collapse (that is, with a mass above 1.4 solar masses) require a further expan-
sion and cooling of the Universe by a factor of almost 107 or more in order
to be able to disappear by radiation. ‘Black-and-white holes’ in equilibrium
with a heat bath would not possess any horizon, but according to classical
general relativity require a spatial singularity at r = 0, which corresponds to
a negative singular mass – signalling the need for quantum gravity (Zurek and
Page 1984).

In vacuo (at T = 0), a black hole would eventually completely decay into
thermal radiation. The resulting entropy can be estimated to be somewhat
larger than that of the black hole (Zurek 1982b). Since the future horizon and
the singularity would thereby also disappear, this process seems to represent
a genuine global indeterminism – known as the ‘information loss paradox’.
It is remarkable, though, that no conservation laws would be violated in a
Schwarzschild foliation. The diverging time dilation close to the horizon pre-
vents all matter from ever reaching the horizon on these simultaneities, which
define a global history that covers the complete external world.

1 It is important to realize that this result is quite independent of the nature of
existing fields. Therefore, it cannot be used to support any specific theory, such
as M-theory, by its explicit confirmation.
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Various ‘absolute’ resolutions of the information loss paradox have been
proposed in the context of quantum gravity (see also Sect. 6.2.3). Conven-
tional unitary quantum theory requires that the entropy of the radiation is
the consequence of a Zwanzig projection which regards entanglement between
decay fragments as irrelevant. In a complete nonlocal description, photons,
gravitons, neutrinos and other radiation fields would all have to be entangled
to form a pure total state (Page 1980), while the latter can for all practical
purposes be assumed to be a thermal mixture. However, similar quantum cor-
relations between the constituents of incoming (advanced) radiation would be
dynamically relevant for a white hole to ‘grow hair’.

The description of black holes by a probabilistic ‘super-scattering matrix’
$ (as suggested by Hawking 1976) can thus be explained by means of deco-
herence in a similar manner as the apparent collapse of the wave function (see
Demers and Kiefer 1996, Kiefer 2004). However, an S-matrix of any kind is
not a realistic tool for describing black holes – just as it would not be appro-
priate for describing any macroscopic objects, since they can never approach
an asymptotic state of perfect isolation. Unitarity would then imply the su-
perposition of many different Everett branches (in quantum gravity including
different spacetimes), while symmetries and conservation laws may be broken
within individual branches. In contrast, microscopic ‘holes’ – if they exist –
would not possess the classical properties ‘black’ or ‘white’, which are formally
analogous to the chirality of molecules (Sect. 4.3.2), but would instead have
to be described by their T -symmetric or antisymmetric superpositions.

General Literature: Bekenstein 1980, Unruh and Wald 1982.

5.2 Thermodynamics of Acceleration

While the time arrow of black holes is defined by their (quasi-)classical space-
time structure, Hawking radiation requires quantum fields on them. It is a
consequence of quantum nonlocality, facilitated by the presence of an event
horizon as a separator between different ‘subsystems’. However, the relevance
(or even existence) of this horizon depends on the worldlines of observers
or detectors, which define comoving local frames of reference. A black hole
horizon is relevant for observers in its flat asymptotic spacetime, or for those
staying at a fixed distance, while it would not exist for observers freely falling
in. Would their detectors then register any Hawking radiation?

Homogeneous gravitational fields are known to be equivalent to uniformly
accelerated frames of reference. They do not require any spacetime curvature,
but can be transformed away by means of accelerated (curved) spacetime co-
ordinates. A massive plane, for example, is equivalent to a discontinuity of
inertial frames, separating the half-spaces on both sides of the plane by a
uniform relative acceleration in the direction orthogonal to the plane. Must
an accelerated detector in vacuo therefore be expected to register thermal
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Fig. 5.5. Horizons in Minkowski spacetime are defined for uniformly accelerated
local observers (dashed world lines) by the asymptotes of their hyperbolic world
lines, which are described by the equation ρ := (x2 − t2)/4 = constant. Proper
acceleration depends on the specific world line. Distances d between two parallel
observers remain constant in their comoving rest frames, thus defining global rigid
frames in regions I and III

radiation ‘equivalent’ to (5.14)? For a uniformly accelerated observer in flat
Minkowski spacetime, there would indeed be a past and a future horizon,
represented by the asymptotes of his hyperbolic relativistic world line (see
Fig. 5.5). He shares these horizons with a whole family of ‘parallelly accel-
erated’ observers (who require different accelerations in order to remain on
parallel hyperbolae – equivalent to two observers at different fixed distances
from a black hole). These observers also share their comoving rest frames, and
thus define an accelerated global rigid frame in keeping fixed distances d in
spite (or rather because) of their different accelerations. The same kinematical
situation had to be discussed for uniformly accelerated charges and detectors
of classical electromagnetic waves in Sect. 2.3.

The two-dimensional Minkowski diagram of Fig. 5.5 appears similar to the
Kruskal–Szekeres diagram (Fig. 5.2), although it is singularity-free, as each
point in Fig. 5.5 represents a flat R

2 (with coordinates y, z) rather than a 2-
sphere. Therefore, points in regions I and III are now related by a π-rotation
around the t-axis. If the acceleration had begun at a certain finite time (t = 0,
say), no past horizon would exist (in analogy to a black hole – see Fig. 5.3a).
The world lines of this family of local observers can be used to define a new
spatial coordinate ρ(x, t) that is constant for each of them, and may be con-
veniently scaled by ρ(x, 0) = x2/4. Together with a new time coordinate
φ(x, t) that is related to proper times τ along the world lines according to
dτ =

√
ρ dφ, and the coordinates y and z, it defines the Rindler coordinates

of flat spacetime. In region I of Fig. 5.5, they are related to the Minkowski
coordinates by
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x = 2
√

ρ cosh
φ

2
and t = 2

√
ρ sinh

φ

2
. (5.16)

The proper accelerations a(ρ) along ρ = constant are given by a = (2
√

ρ)−1,
while the resulting non-Minkowskian representation of the Lorentz metric,

ds2 = −ρdφ2 + ρ−1 dρ2 + dy2 + dz2 , (5.17)

describes a coordinate singularity at ρ = 0 that is analogous to r − 2M = 0
for the Schwarzschild solution. The Minkowski coordinates can therefore be
compared with the Kruskal coordinates u and v of Fig. 5.2, while the Rindler
coordinates are analogous to the Schwarzschild coordinates.

The Rindler coordinates are also useful for describing the uniformly accel-
erated point charge of Sect. 2.3 and its relation to a co-accelerated detector.
The radiation propagating along the forward light cone of an event on the
accelerated world line of the charge must somewhere hit the latter’s future
horizon (see Fig. 5.5), and asymptotically completely enter region II. How-
ever, from the point of view of a co-accelerated (uniformly Lorentz-rotated)
observer with the same comoving simultaneities φ = constant, which all in-
tersect the horizon at the origin, the radiation would never reach the horizon
at φ = ∞.

This explains why the accelerated charge radiates from the point of view of
an inertial observer, but not for a co-accelerated one (Boulware 1980). While
Dirac’s invariant radiation reaction (2.25) vanishes for uniform acceleration,
the definition of radiation is based on the distinction between near fields and
far fields by their dependence on different powers of distance according to
(2.14), and therefore depends on the acceleration of the reference frames.
Even though global inertial frames are absolutely defined in special relativity,
it is the relative acceleration between source and detector that is relevant
for the resulting effects. For a uniformly accelerated charge in region I, time
reversal symmetry has the consequence that its total retarded field is identical
with its advanced field in this whole sector (except on the horizons), while
elsewhere one has either just the retarded outgoing fields in region II, or just
the advanced incoming fields in region IV (or a superposition of these two
cases) – depending on the boundary conditions.

Unruh (1976) was able to show that an accelerated detector in the inertial
vacuum of a quantum field must register an isotropic thermal radiation of all
existing fields, corresponding to the temperature

TU :=
a

2π
=

a�

2πckB
. (5.18)

This is precisely what had to be expected from (5.14) according to the princi-
ple of equivalence, and from the analogy with Mould’s (1964) result for classi-
cal radiation. For a generalization of (5.18) to other trajectories see Louko and
Satz (2006). However, the response of a detector appears as an objective fact.
It cannot just be a matter of spacetime perspective or definition (such as the
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distinction between near field and far field in different coordinate systems):
wave functions live on configuration space.

The result (5.18) can be understood when representing the inertial Min-
kowski vacuum |0M〉 in terms of ‘Rindler modes’, that is, wave modes which
factorize in the Rindler coordinates (with frequencies Ω with respect to the
time coordinate φ). If Minkowski plane wave modes ei(kx−ωt) are expanded in
terms of such Rindler modes, this leads to a Bogoljubow transformation for
the corresponding ‘particle’ creation operators:

a+
k −→ b+

Ωs :=
∑

k

(αΩs,ka+
k + βΩs,kak) .

Here, the index s = I or III specifies two Rindler modes (both with time de-
pendence e−iΩφ) which vanish in the regions III or I of Fig. 5.5, respectively.
On flat simultaneities through the origin (φ = const.), they are complete on
the corresponding half-spaces with x > 0 or x < 0, respectively. These Bo-
goljubow transformations combine creation and annihilation operators, since
the non-linear coordinate transformations (5.16) do not preserve the sign of
frequencies. These signs distinguish particle and antiparticle modes in the
usual interpretation, such that the two terms of the Fourier representation
of field operators, Φ(r, t) ∝ ∫ {

exp
[
i(kx + ωt)

]
ak + exp

[
i(kx − ωt)

]
a+

k

}
dk,

are not separately transformed. (Recall that ‘particle creation’ operators are
just raising operators for harmonic oscillator quantum numbers characterizing
quantum states of field modes.)

In terms of the Rindler modes, the Minkowski vacuum becomes an entan-
gled state in the form of a BCS ground state of superconductivity (Bardeen,
Cooper and Schrieffer 1957):

|0M〉 =
∏
Ω

(√
1 − e−4πΩ

∑
n

e−2πΩn|n〉Ω,I|n〉Ω,III

)
, (5.19)

where |n〉Ω,s = (n!)−1/2(b+
Ωs)

n|0R〉 are the Rindler particle occupation num-
ber eigenstates (see also Gerlach 1988). The Rindler vacuum |0R〉, defined by
bΩs|0R〉 = 0 for all Ω and s, is therefore different from the Minkowski vac-
uum. It must also be a pure state in the Minkowski representation, while its
reduced density matrix on the half spaces x > 0 or x < 0 describes a ther-
mal mixture. This demonstrates that the concepts of quantum ‘particles’ and
their vacua are not invariant under non-Lorentzian transformations. While
the actual quantum state may be regarded as absolutely defined (‘real’), its
interpretation in terms of ‘particles’ depends on the local choice of simultane-
ities – conveniently identified with the comoving rest frames of a detector. For
example, the Rindler basis characterizes detectors accelerated relative to in-
ertial frames, while a specific ‘vacuum’ would represent an actual (physically
meaningful) state. This distinction between physical states and their various
representations is obscured in the Heisenberg picture.
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Equation (5.19) is the Schmidt canonical representation (4.27) of nonlocal
quantum correlations between the two sectors I and III of Fig. 5.5 (which
together are spatially complete for hyperplanes intersecting the origin at
x = t = 0). It illustrates the kinematical nonlocality of a relativistic Minkowski
vacuum. The diagonal elements represent a canonical distribution with dimen-
sionless formal temperature 1/4π – compatible with the dimensionless time
coordinate φ. Since proper times along the world lines ρ, y, z = constant are
given by dτ =

√
ρ dφ = (2a)−1 dφ, energies are given by 2anΩ. The (ρ-

dependent) temperature is therefore T = a/2π – in accordance with (5.18).
Disregarding quantum correlations with the other half-space thus leads to the
apparent ensemble of states representing a heat bath. As one needs measure-
ment times ∆t larger than (aΩ)−1 to measure a frequency Ω, the acceleration
has to remain approximately uniform for more than this interval of time in
order to mimic the presence of an event horizon for this mode.

While the result (5.18) might have been expected from the principle of
equivalence, it is more general than (5.14), since it is independent of gravity
(spacetime curvature). In general, the equivalence principle holds only locally.
Its exceptional global applicability is a consequence of the specific field of
uniform accelerations depicted in Fig. 5.5 (see also Sect. 2.3). Therefore, Un-
ruh radiation cannot in general be globally equivalent to Hawking radiation.
While the whole future light cone of an event on the world line of a uniformly
accelerated object must asymptotically intersect the latter’s horizon for an
inertial observer (as discussed above), only part of the future light cone of an
event in the external region of a black hole will ever enter its internal region.
For an observer approaching a black hole, the horizon will eventually cover his
whole celestial sphere because of the bending of light rays. (He would have to
speed towards the remaining ‘hole in the sky’ in order not to be swallowed.)
Such spacetime-geometric aspects of boundary conditions also determine the
specific ‘actual vacuum’ (Unruh 1976). Only in the immediate neighborhood
of the horizon can the freely falling observer be completely equivalent to the
inertial one in flat spacetime, and thus precisely experience a vacuum. While
the Unruh radiation is isotropic and T -symmetric, the Hawking radiation ob-
served by a non-inertial detector at a fixed distance from a black hole specifies
a direction in space as well as in time by its non-vanishing energy flux coming
from the black hole.

A real (and in principle observable) accelerated QED vacuum could be
produced by a uniformly accelerated ideal mirror (Davies and Fulling 1977).
A mirror at rest, representing a plane boundary condition to the field, leads
to the removal of an infinite number of field modes (those not matching the
boundary condition). This in turn leads to an infinite energy renormalization
(defining a ‘dressed mirror’) by subtracting their zero point energies. This
dressing would not be additive for two or more parallel mirrors at fixed dis-
tances, while the adiabatic variation of their distances defines the finite and
observable Casimir effect (a force between them). An accelerated mirror, act-
ing as an accelerated boundary, produces a quantum field state that would be
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experienced as a vacuum by a co-accelerated detector, but as a thermal bath
by an inertial one. A uniformly accelerated mirror would completely deter-
mine this QED state on the concave side of its spacetime hyperbola in Fig. 5.5,
while the convex side offers the freedom of additional boundary conditions in
regions II or IV (similar to the classical field of a uniformly accelerated charge).
According to the equivalence principle, an ‘ideal graviton mirror’ would even
redefine (completely ‘drag’) inertial frames.

All these thermodynamic consequences of acceleration or curvature are
too small to be confirmed with presently available techniques. However, they
were drawn by combining two well established theories (general relativity and
quantum field theory), and they appear necessary for consistency (see Unruh
and Wald 1982). So they can hardly be regarded as merely hypothetical.

General Literature: Birrell and Davies 1983.

5.3 Expansion of the Universe

Since Hubble’s discovery of 1923, we have known that the Universe is expand-
ing. This is often regarded as a confirmation of general relativity, since it can
be described by Friedmann’s solutions of the Einstein equations of 1922. How-
ever, a very similar dynamical universe could have been derived in Newton’s
theory, although this nonrelativistic model would have to specify an inertial
center. Evidently, applying the laws of mechanics and gravity to the whole
Universe met even stronger reservations than applying them to the celestial
objects a few hundred years earlier, when Kepler and his contemporaries were
surprised to discover that planets can ‘fly like the birds’ rather than being
guided by the crystal spheres.

Since a static universe would not be stable under gravity, Einstein quite
artificially introduced his ‘cosmological constant’ in order to make his theory
compatible with what he believed to be empirically correct. A similar novel
kind of repulsive global force would have been required in Newton’s theory
for this purpose. In an open Newtonian universe these consequences might at
most be obscured, but not avoided (Bondi 1961). Without such a repulsive
force, Newton’s theory, too, would have required the Universe to expand or
to contract (depending on the initial conditions), and this would have led to a
big bang or a big crunch, respectively, or both. However, in contrast to general
relativity, a singularity could then be avoided by appropriate repulsive forces
that become relevant at very high densities.

In Einstein’s theory, a homogeneous and isotropic universe is described by
the Friedmann–Robertson–Walker (FRW) metric,

ds2 = −dt2 + a(t)2
{

dχ2 + Σ2(χ)
[
dθ2 + sin2 θ dφ2

] }
, (5.20)

with Σ(χ) = sinχ, sinhχ, or χ, depending on the sign of the spatial curvature,
k = +1, −1 or 0, respectively. The Friedmann time coordinate t in (5.20)
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describes the proper time for objects which are at rest in these coordinates
(‘comoving clocks’). This metric may remain valid close to the big bang (for
a = 0) in accordance with the Weyl tensor hypothesis. It can be generalized
by means of a multipole expansion on the Friedmann sphere (see Halliwell and
Hawking 1985, and Sect. 5.4). This general-relativistic form has the advantages
of not requiring a special ‘center at rest’, and of allowing a finite universe
without a boundary (for positive curvature).

The exact FRW metric (5.20) depends only on the expansion parameter
a(t). The latter’s dynamics, derived from the Einstein equations (5.7) with
an additional cosmological constant, assumes the form of an ‘energy integral’
with a fixed vanishing value of the energy:

1
2

(
1
a

da

dt

)2

=
1
2

(
dα

dt

)2

= −V (α) . (5.21)

The logarithm of spatial extension, α = ln a, which formally sends the big bang
to minus infinity, will prove convenient on several occasions. The Friedmann
potential V (α) is given by the energy density of matter ρ(a), the cosmological
constant Λ, and the spatial curvature k/a2, in the form

V (α) = −4πρ(eα)
3

− Λ

3
+ ke−2α . (5.22)

One would have obtained essentially the same equation (without curvature
term and cosmological constant, but with variable energy) from Newton’s
dynamics for the radius of a gravitating homogeneous sphere of matter.

The energy density ρ may depend on a in various ways. In the matter-
dominated epoch it is proportional to the inverse density, a−3. During the
radiation era – less than 10−4 of the present age of the universe – it decreased
according to a−4, since all wavelengths expand with a. Much earlier (for ex-
tremely high matter density), quite novel phenomena must be expected to
have affected the relativistic equation of state, here described by ρ(a). Ac-
cording to some theories, for example, the vacuum state of matter passed
through one or several phase transitions (see Sect. 6.1). Similar to a conden-
sation process, this situation may be characterized by a constant function of
state, ρ(a) = ρ0. The matter term in the potential V would then simulate
a cosmological constant – albeit only for a limited time (see Fig. 5.6). In the
‘Planck era’, that is, for values of a of order unity, quantum gravity must
become essential (see Sect. 6.2).

Different eras, described by such analytic equations of state ρ(a), possess
different solutions a(t). For example, a dominating (fundamental or simulated)
cosmological constant would lead to a ‘de Sitter era’ with a(t) = ce±Ht and
a ‘Hubble constant’ H = ȧ/a = α̇. For a matter- or radiation-dominated uni-
verse, one has a(t) = c′t2/3 or a(t) = c′′t1/2, respectively, while for low matter
densities the curvature term may dominate. Recent observations indicate that
our Universe is approximately flat (negligible curvature term), while an effec-
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Fig. 5.6. Schematic behavior of the ‘potential energy’ for the dynamics of ln a in
the case of positive spatial curvature. Since only regions with positive kinetic energy
E − V = −V > 0 are allowed, turning points of the cosmic expansion would arise
at values of V = 0. An upper turning point would lead to recontraction, while a
lower turning point describes a ‘bouncing’ universe (without big bang or big crunch
singularities)

tive positive cosmological constant of unknown origin (‘dark energy’) already
contributes two thirds of the potential V (a).

5.3.1 Instability of Homogeneity

While the Friedmann model is an exact solution of the Einstein equations,
and apparently a reasonable approximation to the very large scale behavior
of the real Universe, it is not stable against density fluctuations (as discussed
in the introduction to this chapter and in Sect. 5.1). This local instability can-
not be compensated by a global force, such as a cosmological constant. It is
in fact successfully used to explain the formation of stars, galaxies, galaxy
clusters, possibly larger structures, and eventually black holes in the present
Universe. Thereby, the assumed initial symmetries of the Friedmann universe
must be dynamically broken. In classical physics, density fluctuations would
be microscopically determined (Sect. 3.4). In quantum theory they may also
result from an indeterministic (genuine or apparent) collapse of the wave func-
tion, induced by decoherence (see Calzetta and Hu 1995, Kiefer, Polarski and
Starobinsky 1998, and Sect. 6.1). A similar quantum effect is known to limit
the retardation of symmetry-breaking phase transitions (their hysteresis). The
onset of these primordial structures of the Universe is now believed to be ob-
served in the cosmic background radiation.

The arrow of time characterizing these irreversible processes is thus again
based on an improbable (but ‘simple’) cosmic initial condition: homogeneity.
When Boltzmann (1896) discussed the origin of the Second Law in the context
of an infinite and eternal universe, he had to conclude that we, here and now,
are living in the aftermath of a gigantic cosmic fluctuation. Its maximum
(that is, a state of very low entropy) must have occurred in the distant past
in order to explain the existence of fossils and other documents in terms of
causal history and evolution (see Sect. 3.5).
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How improbable is the novel initial condition of homogeneity that Boltz-
mann did not even recognize as an essential assumption? We may calculate
its probability by means of Einstein’s relation (3.56) if we know the entropy
of the most probable state. The entropy of a non-degenerate homogeneous
physical state in local equilibrium is proportional to the number of particles,
N . All other parameters enter this expression only logarithmically – as ex-
emplified for the ideal gas in (3.14). In the present Universe, the number of
photons contained in the 2.7 K background radiation exceeds that of massive
particles by a factor 108. The entropy of a finite ‘standard universe’ of 1080

baryons (now often regarded as no more than a ‘bubble’ in a much larger
or infinite universe) would therefore possess an entropy of order 1088 plus
a small but important contribution resulting from gravitating objects. Most
of this entropy must therefore have been produced in the early Universe by
the creation of photons and other particles, which are strongly entangled in a
chaotic way.

However, the present entropy is far from its maximum that would be
achieved by the production of black holes. In Planck units, the horizon area
of a neutral and spherical black hole of mass M is given by A = 4π(2M)2. Its
entropy according to (5.15) thus grows with the square of its mass,

Sbh = 4πM2 . (5.23)

Merging black holes will therefore produce an enormous amount of entropy. If
the standard universe of 1080 baryons consisted of 1023 solar mass black holes
(since Msun ≈ 1057mbaryon), it would already possess a total entropy of order
10100, that is, 1012 times its present value. If most of the matter eventually
formed a single black hole, this value would increase by another factor of 1023.
The probability for the present, almost homogeneous universe is therefore a
mere

phom ≈ exp(1088)
exp(10123)

= exp(1088 − 10123) ≈ exp(−10123) (5.24)

(Penrose 1981), indistinguishable in this approximation from the much smaller
probability at the big bang. Gravitational contraction thus offers an enormous
further entropy capacity to assist the formation of structure and complexity.

This improbable initial condition of homogeneity as an origin of thermody-
namical time asymmetry is different from attempts (see Gold 1962) to derive
this arrow from a homogeneous expansion of the Universe in a causal man-
ner (see Price 1996 and Schulman 1997 for critical discussions). While it is
true that non-adiabatic expansion of an equilibrium system may lead to a re-
tarded non-equilibrium, this would equally apply to non-adiabatic contraction
in our causal world. The growing space (and thus phase space, representing
increasing entropy capacity) cannot form the master arrow of time, since it
is insufficient to explain causality (the absence of any advanced correlations).
Non-adiabatic compression of a vessel would lead to retarded pressure waves
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emitted from the walls, but not to a reversal of the thermodynamical arrow.
The entropy capacity of gravitational contraction is far more important than
homogeneous expansion, but probably not very relevant for the very early
stages of the Universe.

There are other examples of using causality in thermodynamical argu-
ments rather than deriving it in this cosmic scenario. For example, Gal-Or
(1974) discussed retarded equilibration due to the slow nuclear reactions in
stars. Even though nuclear fusion controls the time scale and energy produc-
tion during most stages of stellar contraction, it presumes a strong initial
non-equilibrium.

5.3.2 Inflation and Causal Regions

The finite age of an expanding universe that starts from an initial singularity
(a big bang) leads to the consequence that the backward light cones of two
events may not overlap. These events would then not be causally connected.
A sphere formed by the light front originating in a point-like event at the big
bang, where a(0) = 0, is therefore called a causality horizon. Its radius s(t)
at Friedmann time t is given by

s(t) =
∫ t

0

a(t)
a(t′)

dt′ . (5.25)

In a matter- or radiation-dominated universe, this integral would converge for
t′ → 0, and thus define a finite horizon size. Only parts of the Universe may
then be causally connected – excluding even readily observable distant pairs
of objects that strongly indicate a simultaneous origin.

In particular, the homogeneity of the universe on the large scale would
thereby remain causally unexplained. This horizon problem was the major
motivation for postulating a phase transition of the vacuum or another mech-
anism of quantum fields that would lead to a transient cosmological constant,
and thus to an early de Sitter era. In an exponentially expanding universe, the
big bang singularity could in principle be shifted arbitrarily far into the past
– depending on the duration of this era. However, in an extremely short time
span (of the order of 10−33 s), the universe, and with it all causality horizons,
would have been inflated by a huge factor that was sufficient for the sources
of the whole now observable cosmic background radiation to be causally con-
nected (Linde 1979). On the other hand, since causality horizons started with
zero radius, this would explain the initial absence of nonlocal correlations and
entanglement, provided they were assumed to require a causal origin.

Measurements of the cosmic background radiation indicate that an infla-
tion era did in fact occur. Since the corresponding repulsive force counteracts
gravity, it has also been conjectured to have driven the universe into a state
of homogeneity in a causal manner. This cosmological no-hair conjecture is
supported by a theorem of Hawking and Moss (1982). However, this theo-
rem remains insufficient for the required purpose, since the global effect of
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a cosmological constant cannot generally force local gravitating systems, in
particular black holes, to expand into a state of homogeneity. Proofs of the
cosmic no-hair theorem had therefore to exclude positive spatial curvature.
(Expanding white holes would require acausally incoming advanced radiation,
as explained in Sect. 5.1.)

Since a cosmological constant that was simulated by a phase transition
of the vacuum would depend on the local density, it may at least overcom-
pensate the effect of gravity until strong inhomogeneities begin to form. This
may partly explain the homogeneity of the observed part of our universe.
It can be described by saying that the Weyl tensor ‘cooled down’ as a con-
sequence of this spatial expansion – similar to the later red-shifting of the
primordial electromagnetic radiation. While these direct implications of the
expansion of the universe define reversible phenomena, equilibration during
the radiation era or during the phase transition would be irreversible in the
statistico-thermodynamical sense (based on microscopic causality).

This explanation of homogeneity is incomplete as it has to presume the
absence of strong initial inhomogeneities (abundant initial black holes, in par-
ticular). In order to work in a deterministic theory, it would furthermore
require the state that precedes inflation to be even less probable than the
homogeneous state after inflation.

Similar inflationary scenarios have been discussed in various hypothetical
models of quantum cosmology (see Caroll and Chen 2004, and Chap. 6).

5.3.3 Big Crunch and a Reversal of the Arrow

These questions may also be discussed by means of a conceivable recontract-
ing universe. A consistent analysis of the arrow of time for this case is helpful
regardless of what will happen to our own Universe. Would the thermody-
namical arrow have to reverse direction when this universe starts recontract-
ing towards the big crunch after having reached maximum extension? The
answer would have to be ‘yes’ if the cosmic expansion represents the master
arrow, but it is often claimed to be ‘no’ on the basis of causal arguments if
they are continued into this region. For example, some authors argued that
the background radiation would reversibly heat up during contraction (blue-
shifting), while the temperature gradient between interstellar space and the
fixed stars would first have to be inverted in order to reverse stellar evolution
long after the universe had reached its maximum extension. However, this ar-
gument presupposes the overall validity of the ‘retarded causality’ in question,
that is, the absence of future-relevant correlations in the contraction phase.
It would be justified if the relevant initial condition held at only one ‘end’ of
this otherwise symmetric cosmic history. The absence or negligibility of any
anti-causal events in our present epoch seems to indicate either that our Uni-
verse is thermodynamically asymmetric in time, or that it is still ‘improbably
young’ in comparison to its total duration.
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Paul Davies (1984) argued in a similar causal manner that there can be
no reversed inflation leading to a homogeneous big crunch, since correlations
which would be required for an inverse phase transition have to be excluded for
being extremely improbable. Instead of a homogeneous big crunch one would
either obtain locally re-expanding ‘de Sitter bubbles’ forming an inhomoge-
neous ‘bounce’, or inhomogeneous singularities at variance with a reversed
Weyl tensor condition, or both. This probability argument fails, however, if
the required correlations are caused in the backward direction of time by a
final condition that was thermodynamically a mirror image in time of the
initial one (see also Sect. 6.2.3). Similarly, if the big bang was replaced by a
non-singular homogeneous bounce by means of some kind of ‘Planck potential’
(Fig. 5.6), entropy must have decreased prior to the bounce. In particular, de-
coherence would have to be replaced by recoherence in all contraction eras.
In this case, an observer complying with the Second Law would always expe-
rience an expanding universe; the sign of the dynamical time parameter used
in this description is merely formal (see Sect. 5.4).

On the other hand, a low entropy big bang and an equivalent big crunch
may lead to severe consistency problems, since the general boundary value
problem (Sect. 2.1) allows only one complete (initial or final) condition. Al-
though the requirement of low entropy is not a complete boundary condition,
statistically independent two-time conditions would lead to the square of the
already very small probability of (5.24), that is,

ptwo-time = p2
hom ≈ [

exp(−10123)
]2 ≈ exp(−10123.301) . (5.26)

The RHS appears as a small correction to (5.24) only because of this double-
exponential form, although an element of phase space corresponding to (5.26)
could now easily be much smaller than a Planck cell (see Zeh 2005b). A two-
time boundary condition of homogeneity may thus be inconsistent with ‘er-
godic’ quantum cosmology (that would have to include the repeated formation
and decay of black holes, which contribute most of phase space).

The consistency of general two-time boundary conditions has been inves-
tigated for simple deterministic systems (see Cocke 1967 and Schulman 1997).
Davies and Twamley (1993) discussed the more realistic situation of classical
electromagnetic radiation in an expanding and recollapsing universe. Accord-
ing to their estimates, our Universe will remain essentially transparent all the
way between the two opposite radiation eras (in spite of the reversible red-
and blue-shifting over many orders of magnitude in between) – in contrast
to ergodic assumptions used in (5.26). Following a suggestion by Gell-Mann
and Hartle, they concluded that light emitted causally by all stars before
the ‘turning of the tide’ propagates freely until it reaches the time-reversed
radiation era – thus giving rise to an asymmetric history of this universe.

David Craig (1996) argued on this basis, but by assuming a thermody-
namically time-symmetric universe, that the night sky at optical frequencies
should contain an almost homogeneous component that represents the ad-
vanced radiation from stars existing during the contraction era. It should be
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observable as a non-Planckian high frequency tail in the isotropic background
radiation with a total intensity at least equalling that of the light now ob-
served from all stars and galaxies in our past – but probably much higher
because of the advanced light corresponding to that which will have to be
produced until the turning point is reached. However, since classical radiation
would preserve all information about its origin, it is inconsistent with a time-
reversed absorber (the opposite radiation era), that allows only its thermal
radiation in its causal future (Sect. 2.2). Craig also concluded that the inten-
sity of the thermal part of the background radiation would be doubled because
of the two radiation eras, but this does not seem to be required, since the ‘two’
thermal components may be identical. (Retarded and advanced fields do not
add – see Sect. 2.1 – but they must be consistent with one another.) Only
in the non-thermal frequency range can retarded and advanced radiation be
conceptually distinguished and thus carry information about their origin.

These conclusions have to be modified in an essential way when the quan-
tum aspect of electromagnetic radiation is taken into account. The information
content of radiation consisting of photons is limited, as first emphasized by
Brillouin (1962). This consequence had also turned out to be important for
Borel’s argument of Sect. 3.1.2 – see footnote 4 of Chap. 3. Each photon, even
if emitted into intergalactic space as a spherical wave, disappears from the
whole quasi-classical universe as soon as it is absorbed somewhere. A rever-
sal of this process would again require recoherence, that is, the superposition
of many Everett branches. This argument requires consistent quantum cos-
mology (Chap. 6), where initial or final conditions can only affect the total,
unitarily evolving Everett wave function. If the Schrödinger dynamics was
instead modified by means of a collapse of the wave function (as implicitly
assumed also for Gell-Mann and Hartle’s ‘histories’2), the corresponding new

2 Gell-Mann and Hartle (1994) discussed quantum mechanical ‘histories’, which
are defined in terms of time-ordered series of projections in Hilbert space. These
individual histories are thus equivalent to successions of stochastic collapse events
(global quantum jumps) – even though a collapse is not explicitly used. The au-
thors nonetheless discussed the possibility of a thermodynamically time reversal-
symmetric cosmic history by presuming a final condition that is similar to the
initial one. This proposal is based on the equivalence of the upper and lower
diagrams of Fig. 4.4, but neglects the asymmetric structure (4.56) of a collapse,
which would have to include all retarded entanglement with ‘information gaining
systems’. Therefore, it leads to insurmountable problems as soon as one attempts
to justify the probabilistic interpretation (‘consistent histories’) by an in practice
irreversible decoherence process (see Fig. 4.5). Time reversal symmetry could be
restored in the contraction era only by means of a complete process of recoher-
ence. This would not only have to include those Everett components that have
been disregarded by the Hilbert space projections which lead to individual mea-
surement outcomes, and in this way define quasi-classical ‘histories’ as a partial
quantum reality. It should also require components that have to be regarded as
being retro-caused in the future.
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dynamical law would have to be reversed, too, in order to save a thermody-
namically time-symmetric (but now indeterministic) universe.

This problem of consistent cosmic two-time boundary conditions will as-
sume a conceptually quite novel form in the context of quantum gravity, where
any fundamental concept of time disappears from the description of a closed
universe (Sect. 6.2).

5.4 Geometrodynamics and Intrinsic Time

In general relativity, the ‘block universe picture’ is traditionally preferred to a
dynamical description, as its unified spacetime concept is then manifest. So it
took almost half a century before its dynamical content was sufficiently under-
stood, in particular by means of its Hamiltonian form, invented by Arnowitt,
Deser and Misner (1962). This approach, which is essential for a quantiza-
tion of the theory, has not always been welcomed, as it seems to destroy the
beautiful relativistic spacetime concept by reintroducing a 3+1 (space and
time) representation. However, only in this form can the dynamical content
of general relativity be fully appreciated (see Chap. 21 of Misner, Thorne and
Wheeler 1973). A similarly symmetry-violating form in spite of Lorentz invari-
ance is known for the electromagnetic field when described in the Coulomb
gauge by the vector potential A as the dynamical field configuration on a
space-like hypersurface of Minkowski spacetime.

This dynamical reformulation requires the separation of unphysical gauge
degrees of freedom (which in general relativity simply represent the choice of
coordinates), and the skillful handling of boundary terms. The result of this
technically demanding procedure turns out to have a simple interpretation. It
describes the dynamics of the spatial geometry (‘three-geometry’) (3)G(t), that
is, a propagation of the intrinsic curvature on space-like hypersurfaces with
respect to a time coordinate t that labels a foliation of the spacetime arising
dynamically in this way. This foliation has to be chosen simultaneously with
the construction of the solution. The extrinsic curvature, which describes the
embedding of the three-geometries into spacetime, is represented by the cor-
responding canonical momenta. The configuration space of three-geometries
(3)G has been dubbed superspace by Wheeler, since the form of its kinetic en-
ergy defines a metric. Trajectories in this superspace define four-dimensional
spacetime geometries (4)G.

This 3+1 description may appear ugly not only as it hides Einstein’s beau-
tiful spacetime concept, but also since the foliation of a given (4)G by means
of space-like hypersurfaces, on which (3)G(t) is defined, is quite arbitrary.
Many trajectories (3)G(t) therefore represent the same spacetime (4)G, which
is absolutely defined. It is only in special situations – such as for the FRW
metric (5.20) – that there may be a ‘preferred choice’ of coordinates, which
then reflect their exceptional symmetry. The time coordinate t, characterizing
a foliation, is just one of the four arbitrary (physically meaningless) spacetime
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coordinates. As a parameter labelling trajectories it could just as well be elim-
inated and replaced by one of the dynamical variables (a global ‘clock’ – see
Chap. 1), such as the size (or scale) of an expanding universe. The abstract
four-geometry defines all spacetime distances – including all proper times of
real or imagined local clocks. Classically, spacetime may always be assumed to
be filled with a ‘dust of test clocks’ of negligible mass (see Brown and Kuchař
1995). However, such clocks are not required to define proper times; in general
relativity, time as a property of the metric is itself a dynamical variable (see
below), while proper times assume the role of Newton’s time as controllers of
motion for all material clocks.

Einstein’s equations (5.7) possess a similar hyperbolic structure as the
wave equation (2.1). They may therefore be expected to determine the metric
gµν(x, y, z, t) by means of two boundary conditions for gµν – at t0 and t1,
say. (For t1 → t0 this would correspond to gµν and its ‘velocity’ at t0. This
pair of variables would in general also define the extrinsic curvature.) Since
the time coordinate is physically meaningless, its value on the boundaries is
irrelevant: two metric functions on three-space, g

(0)
µν (x, y, z) and g

(1)
µν (x, y, z),

without mentioning time coordinates, suffice to determine a solution and hence
physical time. Not even their order is essential, since there is no absolute
direction of light cones. Similarly, the t-derivative of gµν , resulting in the
limit t1 → t0, is required only up to a scalar factor (that would specify a
meaningless initial ‘speed of three-geometry’ in superspace).

If one also eliminates all spatial coordinates from the metric gµν(x, y, z), it
describes precisely the coordinate-independent three-geometry (3)G. One may
therefore expect the coordinate-independent content of the Einstein equations
to determine the complete four-dimensional spacetime geometry in-between
(and possibly beyond) two spatial geometries (3)G(0) and (3)G(1). However,
the existence and uniqueness of a solution for this boundary value problem
has not yet been generally proved (Bartnik and Fodor 1993, Giulini 1998).

The procedure is made transparent by writing the metric with respect to
a chosen foliation as(

g00 g0l

gk0 gkl

)
=
(

N iNi − N2 Nl

Nk gkl

)
. (5.27)

The submatrix gkl(x, y, z, t) (with k, l = 1, 2, 3) for t = constant is now the
spatial metric on a hypersurface, while the lapse function N(x, y, z, t) and the
three shift functions Ni(x, y, z, t) define arbitrary increments of time and space
coordinates, respectively, for an orthogonal transition to an infinitesimally
close space-like hypersurface. These four ‘gauge functions’ have to be chosen
for convenience when solving an initial value problem.

The six functions forming the remaining symmetric matrix gkl(x, y, z, t)
still contain three gauge functions representing the spatial coordinates. Their
initial choice is specified by the initial matrix g

(0)
kl (x, y, z), while the free shift

functions determine their change with time. The three remaining, geometri-
cally meaningful functions may be physically understood as representing the
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two polarization components of gravitational waves and the ‘many-fingered’
(local) physical time that describes the increase of all proper times along world
lines connecting two infinitesimally close space-like hypersurfaces. These three
degrees of freedom are not always separable from one another in practice, but
all three are gauge-free (physical) dynamical variables. In contrast, the lapse
function N(x, y, z, t), together with the shift functions, merely determines how
a specific time coordinate is related to this many-fingered time.

Therefore, the three-geometry (3)G, representing the dynamical state of
general relativity, is itself the ‘carrier of information on physical time’ (Baier-
lein, Sharp and Wheeler 1962): it contains physical time rather than depending
on it. By means of the Einstein equations, (3)G determines a continuum of
physical clocks, that is, all time-like distances from an ‘initial’ (3)G0 (pro-
vided a solution of the corresponding boundary value problem does exist).
Given yesterday’s geometry, today’s geometry could not be tomorrow’s – an
absolutely non-trivial statement, since (3)G0 by itself is not a complete initial
condition that would determine the solution of (5.7) up to a gauge. A mechan-
ical clock can meaningfully go ‘wrong’; for a rotating planet one would have
to know the initial angle and the initial rotation velocity in order to read time
from motion. However, a speed of three-geometry (in contrast to the direction
of its velocity in superspace) would be as tautological as a ‘speed of time’.

In this sense, Mach’s principle (here with respect to time)3 is anchored in
general relativity: time must be realized by dynamical objects (such as spa-
tial geometry). Dynamical laws that do not implicitly presume an absolute
time are characterized by their reparametrization invariance, that is, invari-
ance under monotonic transformations, t → t′ = f(t). In general relativity,
the time parameter t labels trajectories in superspace by the values of an
appropriate time coordinate. No specific choice may then ‘simplify’ the laws
according to Poincaré’s definition (see Chap. 1), and no distinction between
active and passive reparametrizations remains meaningful (see Norton 1989).
It is therefore amazing to observe ongoing attempts to re-establish an exter-
nal concept of time – even by means of ‘phantom fields’ (Thiemann 2006).
The latter attempt was inspired (though not justified) by the problematic
distinction between coordinate transformations and ‘active’ diffeomorphisms
(see also Sect. 6.2.2).

Newton’s equations are not invariant under a reparametrization. His time
t is not an arbitrary parameter, but a dynamically preferred one (‘abso-
lute’ time). Its reparametrization would merely be ‘Kretzschmann invari-
ant’, that is, invariant under a trivial substitution of the old coordinates
by new ones – thereby allowing for a reformulation of the dynamical laws
by means of Coriolis-type pseudo-forces. Newton’s equations can be brought
into a reparametrization-invariant form only by artificially parametrizing the
time variable t itself, t(λ), and treating it as an additional dynamical variable
with respect to λ. If L(q, q̇) is the original Lagrangean, this leads to the new

3 See Barbour and Pfister (1995) for various interpretations of Mach’s principle.
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variational principle

δ
∫

L̃

(
q,

dq

dλ
,

dt

dλ

)
dλ := δ

∫
L

(
q,

dq

dλ

dλ

dt

)
dt

dλ
dλ = 0 , (5.28)

where the absolute time t(λ) has to be varied, too. This procedure also helps
to understand the meaning of the ‘∆-variation’ that often appears somewhat
unmotivated in analytical mechanics (see Sect. 8.6 of Goldstein 1980). Evi-
dently, (5.28) is invariant under the reparametrization λ → λ′ = f(λ).

Eliminating the formal variable t from (5.28) then leads to Jacobi’s princi-
ple (see below), which was partially motivated by the pragmatic requirements
of astronomers who did not have better clocks than the objects they were
dynamically describing. These clocks, which define ephemeris time, are given
by stellar positions when compared with tables of ephemeris produced by
colleague astronomers. Since all celestial motions must be more or less ‘per-
turbed’ by others, they do not offer any obvious way to define Newton’s time
operationally. Jacobi’s principle allowed astronomers to solve the equations of
motion without explicitly using Newton’s time. Einstein’s equations of general
relativity, on the other hand, are invariant under reparametrization of their
time coordinate, t → t′ = f(t), without any further and artificial parametriza-
tion t(λ). There is no longer any time beyond the many-fingered dynamical
variable contained in (3)G !

In (5.28), dt/dλ =: N(λ) may be regarded as a Newtonian lapse func-
tion (the relation between absolute time and a time parameter). For a time-
independent Lagrangean L, t then appears as a cyclic variable. Its canonical
momentum, pt := ∂L̃/∂N = L−∑

piq̇i = −H, which is conserved, is remark-
able only because its quantization leads to the time-dependent Schrödinger
equation. However, the ‘super-Hamiltonian’ H̃ that describes the extended
system which includes t(λ) is trivial:

H̃ :=
∑

pi
dqi

dλ
+ pt

dt

dλ
− L̃ = N

(∑
pi

dqi

dt
− H − L

)
≡ 0 . (5.29)

More dynamical content can be extracted from Dirac’s procedure of treat-
ing N(λ) rather than t(λ) as a new variable. The corresponding momentum,
pN := ∂L̃/∂(dN/dλ) ≡ 0, has to be regarded as a constraint, while the new
super-Hamiltonian is

HS :=
∑

pi
dqi

dλ
+ pN

dN

dλ
− L̃ = NH . (5.30)

Although dN/dλ cannot be eliminated in the usual way here by inverting the
definition of canonical momentum pN (N, dN/dλ, . . . ), it drops out everywhere
in the Hamiltonian equations except in the derivative ∂HS/∂pN , since it oc-
curs only as a factor multiplying the vanishing pN . The two new Hamiltonian
equations related to the variable N(λ) are (1) dN/dλ = ∂HS/∂pN = dN/dλ,
which is an identity, and (2) dpN/dλ = −∂HS/∂N = −H. Because pN ≡ 0,
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one obtains the (secondary) Hamiltonian constraint H = 0 (but not ≡ 0),
characteristic of reparametrization invariant theories. This result is the ori-
gin of the vanishing energy in (5.21), and will turn out to be important for
quantum gravity. In general relativity, there are also three momentum con-
straints, characterizing invariance under spatial coordinate transformations,
and related to the shift functions when chosen as formal dynamical variables.

Hamilton’s new principle (5.28) can be written in the form

δ
∫ (∑

piq̇i − H
) dt

dλ
dλ = 0 .

For fixed energy value, H = E, the second term would cancel under this
variation because of the new boundary conditions δt(λ) = 0. For the usual
quadratic form of the kinetic energy, 2T =

∑
aij q̇iq̇j =

∑
piq̇i = 2(E − V ),

the integrand can in this case be written homogeneously linear in dqi/dλ :

δ
∫ √

2(E − V )
∑

aij
dqi

dλ

dqj

dλ
dλ = 0 . (5.31)

This is Jacobi’s principle (see Lanczos 1970), useful for fixed energy. It is
manifestly invariant under reparametrization of λ, and can thus describe only
timeless orbits qi(λ). Even though these nonrelativistic equations of motion
could be explicitly simplified by using Newton’s time, (5.31) evidently does
not depend on the choice of λ.

In Newton’s theory, the energy E depends on absolute velocities dqi/dt.
Jacobi’s principle would therefore describe a ‘Machian’ theory only if the
fixed energy represented a universal constraint. Barbour and Bertotti (1982)
were able to propose an illuminating nonrelativistic toy model for Machian
mechanics by means of the action principle

δ
∫ √−V Tdt = 0 , (5.32)

inspired by (5.31). It is universally invariant under reparametrizations of
t (just like general relativity). Nothing new could then be obtained from
parametrizing t in order to vary t(λ) as in (5.28). Barbour and Bertotti also
eliminated absolute rotations from their configuration space. While this has
other important consequences, it is irrelevant for the problem of time. In gen-
eral relativity, this ‘Leibniz group’, consisting of time reparametrizations and
spatial rotations, would have to be generalized to the whole group of diffeo-
morphisms (general coordinate transformations). In order to eliminate any
absolute meaning of a time coordinate on spacetime, the Hamiltonian con-
straint has to be understood as a local condition on the Hamiltonian density ,
since in field theory spatial coordinates serve as ‘indices’ – not as variables.

Barbour (1999) refers to the absence of a physically meaningful function
t(λ) in general relativity as its timelessness. However, parametrizable tra-
jectories still permit asymmetric boundary conditions, which would define a
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direction of intrinsic time. This is different in quantum cosmology, where the
Hamiltonian constraint, combined with the time–energy uncertainty relation,
leads to a complete elimination of time (Sect. 6.2). In classical general relativ-
ity, even a constrained Hamiltonian would define trajectories which represent
cosmic histories in the form of spacetime foliations that can be parametrized,
although no external time is required for this purpose. While the global states
which form these histories depend on this arbitrary foliation, the resulting
spacetime geometry does not. So it defines an invariant many-fingered time,
that is, all proper times, for all local objects, such as ‘test clocks’ or observers,
uniquely.

In the Friedmann model (5.20), where the shift function has been chosen
as N ≡ 1, the increment of the time coordinate t is identical (up to a sign)
with the increment of proper times τ of ‘comoving’ matter (being at rest in
the Friedmann coordinates, which fulfill the condition Ni ≡ 0). Elimination of
the global time parameter t would here merely reproduce the equation of state
ρ(a) as the corresponding ‘trajectory’, since ρ is not an independent dynamical
variable. There is evidently no intrinsic distinction between expansion and
contraction of this ‘universe’. The single variable a would determine proper
times τ for comoving matter up to this ambiguity, since ȧ2 is given as a
function of a by the energy constraint (5.21).

Even for the exactly symmetric Friedmann universe, matter can be de-
scribed dynamically by means of a homogeneous scalar field Φ(t). Its energy
density may be chosen as

ρ =
1
2
(Φ̇2 + m2Φ2) . (5.33)

The Hamiltonian of this simple ‘quantum mechanical’ model with respect
to the variables α = ln a and Φ, derived from (5.22) without cosmological
constant, then reads

H =
e−3α

2
(
p2

α − p2
Φ + ke4α − m2Φ2e6α

)
, (5.34)

where the canonical momenta are pα = e3αα̇ and pΦ = −e3αΦ̇. A ‘timeless
orbit’ for a closed universe (k = 1) in this model is depicted in Fig. 5.7.
The freely chosen initial field Φ(a0) at some small value a0 first decays with
increasing a, before it enters the ‘matter-dominated’ era, where it oscillates
about the a-axis until it reaches a turning point in a as a consequence of the
assumed positive curvature.

In the case of a Hamiltonian constraint, H(p, q) = 0, multiplying the
Hamiltonian by a function f(p, q), that is, H → H ′ = fH = 0, would
only induce an orbit-dependent reparametrization t → t′(t). This is given
by dt′/dt = f

(
p(t), q(t)

)
, as can be seen by writing down the new Hamilto-

nian equations. For example, the choice f ≡ −1 would induce an inversion
of the Hamiltonian time parameter for all trajectories. Therefore, the factor
e−3α in (5.34) is irrelevant for the timeless orbits and can be omitted.
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Fig. 5.7. Timeless classical orbit describing an expanding and recontracting dynam-
ical Friedmann universe in terms of its expansion parameter a and a homogeneous
massive scalar field Φ. Dotted curves represent vanishing Friedmann potential V as
defined by (5.34). For slightly larger initial values Φ(a0) than chosen in the figure,
the ‘inflation era’, defined by the decaying initial field, would last over many orders
of magnitude in a before the orbit entered the ‘matter-dominated’ era, where it per-
forms a huge number of oscillations before reaching its turning point amax. (After
Hawking and Wu 1985.) This dynamical description is very different in quantum
gravity (see Fig. 6.3)

While this simple dynamical model cannot describe any thermodynami-
cal aspects, it can be generalized by means of a multipole expansion on the
Friedmann sphere,

Φ(χ, θ, φ, t) =
∑

anlm(t)Qn
lm(χ, θ, φ) , (5.35)

where Qn
lm(χ, θ, φ) are spherical harmonics on a three-sphere (Halliwell and

Hawking 1985). The variable Φ(t) in (5.34) represents the monopole compo-
nent, Φ = a000, since Q0

00 = 1. A similar expansion of the metric tensor field gkl

requires vector and tensor harmonics in addition to the scalar harmonics Qn
lm.

Only the tensor harmonics turn out to represent physical (geometric) prop-
erties, while all others describe gauge degrees of freedom. In this ‘perturbed
Friedmann model’, the time parameter t no longer automatically represents
proper time on comoving world lines.

In (5.34) and its generalization to a multipole expansion, the kinetic energy
of matter occurs with a negative sign (that is, with negative dynamical mass),
since it entered the Hamiltonian as a source of gravity (representing negative
potential energy). In Friedmann-type models, all gauge-free geometric degrees
of freedom but the global expansion parameter a (or its logarithm) share
this property (Giulini and Kiefer 1994, Giulini 1995), because gravitational
waves imposed on a flat spacetime possess gravitating positive energy. The
kinetic energy is thus not positive definite in cosmology, while the metric in



168 5 The Time Arrow of Spacetime Geometry

infinite-dimensional superspace that it defines by its quadratic form is super-
Lorentzian (with signature + −−− . . . ).4

This fact has important consequences. In the familiar case of mechanics,
vanishing kinetic energy, E − V = 0, describes turning points of the motion.
However, since there are no forbidden regions for indefinite kinetic energy,
the boundary V = V − E = 0 does not force the trajectories to come to a
halt and reverse direction here. Rather, this condition now describes a smooth
transition between ‘subluminal’ and ‘superluminal’ directions in superspace
(not in space!), as can be seen in Fig. 5.7. A trajectory would be reflected from
an infinite potential ‘barrier’ only if this were either negative at a time-like
boundary, or positive at a space-like one. Reversal of the cosmic expansion at
amax requires the vanishing of an appropriate Veff(α) that includes the actual
kinetic energy of the other degrees of freedom (similar to the effective radial
potential in the Kepler problem). It is evident that this behavior must be
important for a reversal of time and its arrow.

In the Friedmann model, a point on the trajectory in configuration space
determines Friedmann time t (that could be read from comoving test clocks)
– except where the curve intersects itself. In a mini-superspace with more
than two degrees of freedom (adding a material clock, for example), physical
time on a trajectory is generically unique, since intersections could occur only
accidentally. This demonstrates that the essential requirement for the state to
represent a carrier of information about time is reparametrization invariance
of the dynamical laws – not its spacetime-geometric interpretation.

Although a time parameter is in general physically meaningless in these
theories, it is often misused for an inappropriate interpretation. An example
is Veneziano’s (1991) string model, based on a dilaton field Φ. Its equations
of motion lead to a time dependence of the form f(t − t0), with an integra-
tion constant t0 that determines the value of the time parameter at the big
bang (where α = −∞). A translation t0 → t0 + T would thus be meaningless
(as already pointed out by Leibniz). The solution for t < t0, where expan-
sion accelerates exponentially in this model, has been interpreted as ‘pre-big
bang’, while the absence of a smooth connection between pre- and post-big
bang has been called a ‘graceful exit problem’ (Brustein and Veneziano 1994).
However, this mathematical model has simply two different solutions, which
could conceivably be related through an infinite parameter time, t = ±∞ –
similar to Schwarzschild time at a horizon. Coordinate times t < t0 would
then represent physical times later than t > t0, while a continuation through
t0 is merely formal (Dabrowski and Kiefer 1997).

4 There is also a local , 6-dimensional Lorentzian metric in superspace, correspond-
ing to the 6 degrees of freedom of the submatrix gkl at every space point, such
that there seems to be an infinity of time-like variables (see Sect. 6.2.2). However,
all but one of them are unphysical gauge degrees of freedom in a Friedmann type
universe.
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The shift functions Ni of (5.27) can be chosen to vanish even when spa-
tial symmetries are absent. The secondary momentum constraints Hi :=
∂H̃/∂Ni = 0, which warrant conservation of vanishing canonical momenta
pNi , and which are fulfilled automatically for the Friedmann solution be-
cause of its symmetry, then have to be solved explicitly. The lapse function
N(x, y, z, t) now determines genuine many-fingered time (as a spatial field on
the dynamically evolving hypersurface) with respect to the coordinate t. If
N is nonetheless chosen as a function of t alone, the foliation proceeds ev-
erywhere according to physical time (normal to the hypersurface, with fixed
‘comoving’ coordinates).

This may not always be a convenient choice. For example, observers com-
ing very close to a black hole horizon would observe the stars moving very
fast through a little hole that remains in the sky above the horizon because
of their extreme time dilation. In a universe that is bound to recontract they
could reach the contraction era within very short proper times. This renders
the immediate vicinity of horizons very sensitive to a conceivable cosmic fi-
nal condition, which may even exclude black hole horizons and singularities
(see Zeh 1983, 2005a, and Sect. 6.2.3). In this case, a foliation according to
York time, mentioned in Sect. 5.1, may be preferable, since it arrives ‘simulta-
neously’ at all final singularities. Note, however, that the external curvature
scalar K, which defines York time, is not a function of state, f((3)G).

Among the simplest inhomogeneous models are the spherically symmetric
ones, with a metric

ds2 = −N(χ, t)2dt2 + L(χ, t)2dχ2 + R(χ, t)2
(
dθ2 + sin2 θ dφ2

)
. (5.36)

They contain one remaining spatial gauge function, that has to be eliminated
by means of the momentum constraint Hχ = 0. This is analogous to Gauß’s
law in electrodynamics, as it similarly refers to the radial coordinate.

Qadir (1988) proposed an illustrative toy model for such an inhomoge-
neous universe (Fig. 5.8). It forms a generalization of the Oppenheimer–Snyder
model for the gravitational collapse of a homogeneous spherical dust cloud
(see Misner, Thorne and Wheeler 1973, Chap. 32). The latter model pastes
(or ‘sutures’) a comoving spherical surface surrounding part of a contract-
ing closed Friedmann solution (representing the dust cloud) consistently to
the external region a Schwarzschild–Kruskal solution. Qadir then pastes this
Schwarzschild solution in turn to another (much larger) partial Friedmann
solution with much smaller energy density (his universe proper). This pasting
at two spatial boundaries, with Friedmann radial coordinate values χ1 and χ2,
say, is consistent only if the total masses of the two partial Friedmann uni-
verses are identical, and can thus be identified with the Schwarzschild mass
M characterizing the partial vacuum solution. The latter forms a strip from
Fig. 5.2 between two non-intersecting geodesics that lead from the past to the
future Kruskal singularity (big bang and big crunch).

In order to comply with the Weyl tensor hypothesis as much as possi-
ble, Qadir assumed the ‘Schwarzschild corridor’ to be absent at the big bang.
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Fig. 5.8. Qadir’s ‘suture model’ of a collapsing homogeneous dust cloud, I, as part
of an expanding and recontracting Friedmann universe, III. The Friedmann spheres
at χ1 (left) and χ2 (right) are initially identified. The Weyl tensor, representing the
gravitational degrees of freedom, is thus chosen to vanish initially (except at the
spatial boundary between the two regions I and III), but will grow by means of an
emerging ‘Schwarzschild–Kruskal corridor’, II, (a strip from Fig. 5.2). The spatial
boundaries of the three spacetime regions have to be identified (including proper
times on them, all chosen to start at the big bang). According to a picture due to
Penrose, the singularity inside the black hole (region I) together with its attached
Kruskal singularity (in region II) appears as a ‘stalactite’ hanging from the ‘ceiling’
(which represents the big crunch singularity in region III). In contrast, there is only
one (piecewise homogeneous) big bang singularity (a flat floor in Penrose’s picture)
at K = −∞, that is chosen as the first slice of the foliation (corresponding to t = 0)

The density discontinuity then represents an initial inhomogeneity. Since the
denser part of this toy universe feels stronger gravitational attraction than the
less dense one, its expansion decelerates (or its contraction accelerates) faster.
A vacuum corridor must then form and grow in size with increasing temporal
distance from the big bang. As the energy–momentum tensor vanishes in the
Schwarzschild–Kruskal region, the curvature is there entirely due to the Weyl
tensor, while the latter vanishes inside the two partial Friedmann universes.
The time arrow of this process of ‘gravitational monopole radiation’ (the for-
mation of the corridor with its non-zero gravitational degrees of freedom) is
once again a consequence of the special initial condition.

This model is certainly interesting as an illustration of the Weyl tensor
hypothesis, but it does not describe statistical (entropic) aspects. For this
purpose, many multipoles of (5.35) would have to be taken into account as
radiation. Qadir’s cosmic evolution process simply describes an example of
motion away from the chosen initial state – similar to what is normally found
in unbound mechanical systems regardless of any statistical considerations.

General Literature: Chap. 21 of Misner, Thorne and Wheeler 1973; Barbour
1999; Kiefer 2007.
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The Time Arrow in Quantum Cosmology

Our mistake is not that we take our theories
too seriously, but that we do not take them
seriously enough. (Stephen Weinberg 1977)
– Well, but which theories?

The founders of quantum theory invented their theory as a theory of atoms,
that was soon successfully applied also to other microscopic systems. Macro-
scopic objects were thought to require the established classical concepts even
though they consist of atoms. This hardly consistent traditional point of view
(that would also exclude quantum cosmology) seems to be slowly changing
under the impact of more recent interpretations, which allow one to describe
the world in terms of a universally valid quantum theory (Sect. 4.6).

Another obstacle to quantum cosmology is that a description of the whole
Universe seems to require a ‘theory of everything’, which is elusive. While
there are various mathematically deep and physically even plausible proposals
for such a theory, physics is an empirical science. Physical cosmology should
therefore only extrapolate empirically founded concepts and laws. Mathemat-
ical cosmological models may be important and interesting in their own right,
and some of them may prove physically successful in the future, but reality has
usually offered great conceptual surprises that could not have been foreseen
by mathematical reasoning or pure logic.

Physical cosmology should not therefore rely on any details of uncon-
firmed unified quantum field theories, for example. Only the general frame-
work of quantum theory may be regarded as empirically sufficiently founded
to draw cosmological conclusions from it. This framework includes, first of
all, the superposition principle and the unitarity of dynamics (in other words,
a general wave function and a Schrödinger equation). In cosmology, this re-
quires an answer to the fundamental problem of what quantum theory means
in the absence of external observers or measurement devices. Physical cos-
mology must therefore depend on the interpretation of quantum theory (as
discussed in Sect. 4.6) in an essential way. A pragmatic probability interpre-
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tation with respect to external observers is obviously ruled out, since the
very concept of cosmology presumes an objective (though in principle hypo-
thetical) reality. Quantum field theory has instead traditionally been used
and confirmed as a method for calculating S-matrix elements, which describe
probabilities for scattering events. This amounts to applying a collapse of the
wave function after each elementary scattering process, and it would be insuf-
ficient for consistently describing objects which make up the Universe, such
as condensed matter, complex systems (including measurement devices and
observers), macroscopic fields, and global spacetime structure.

The general quantum framework is usually applied in the form of a ‘quanti-
zation’ of a classical theory (see Sect. 4.1.1) – in particular of the mechanics of
particles, which are kinematically described as space points. By quantization
I mean here1 the application of the superposition principle to the elements of
a classical configuration space (thus defining a wave function on it), and the
construction of the corresponding quantum Hamiltonian by replacing vari-
ables and their canonical momenta by operators acting on wave functions.
The second part is ambiguous because of the factor ordering problem.

We can now re-interpret this quantization procedure as the conceptual re-
versal of a physical decoherence process that led to the classical appearance of
the system under consideration. This explains why this quantization cannot
be expected to define a unique result, but requires further empirical input.
The quantization of many-particle mechanics leads non-relativistically ‘back’
to a consistent and successful quantum theory: quantum mechanics. Some
other ‘particle’ properties (such as spin or isotopic spin) have no similar clas-
sical correspondence. The quantization of classical fields in this canonical way
leads to wave functionals on the configuration space for field amplitudes. It
does not in general directly define a consistent quantum theory, although it
can often be rendered consistent by a mere renormalization of its fundamen-
tal parameters. This is evidence that a fundamental quantum theory may be
quite independent of any classical theory that could be quantized in this way.
For example, relativistic quantum mechanics led to the discovery that field
amplitudes of not classically observed fermion fields rather than particle posi-
tions define the correct arena for the wave function(al) – an approach that is
somewhat misleadingly called a ‘second quantization’, since the fermion fields
were first discovered as effective ‘single-particle wave functions’ (see Zeh 2003).
The underlying fields (on space) define a local basis (the ‘stage’ for quantum

1 This interpretation is quite different from the original and literal meaning of
the term ‘quantization’ as a discretization of certain quantities. For example,
‘light quanta’ can be understood as a consequence of the eigenvalue problem
in terms of wave functions for the amplitudes of free field modes, dynamically
described as harmonic oscillators. These fundamental aspects of quantum theory
are often hidden behind a collection of recipes to perform calculations (such as
perturbation theory in terms of Feynman graphs). In particular, a ‘quantization
of time’ (Sect. 6.2) does not require a quantum of time – just as the quantization
of particle motion does not require a quantum of length (or a spatial lattice).
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dynamics) that spans the required Hilbert space. This structure permits the
formulation of local dynamics by means of a Hamiltonian density in spite of
generically nonlocal states. It may therefore be useful – though also dangerous
and certainly insufficient – to investigate mathematical models for a unified
quantum field theory solely by investigating certain classical fields on three- or
higher-dimensional spaces, rather than consistently taking into account their
quantum nature from the beginning (for instance in terms of wave functionals
of these fields as representing the true quantum reality).

Extrapolating unitary dynamics to the whole Universe requires an Ev-
erett type interpretation (see Sect. 4.6). Hugh Everett (1957) seems to have
first seriously considered a wave function of the Universe,2 that must then
include internal observers. Although he may have had in mind the quanti-
zation of general relativity with its cosmological aspects, Everett applied his
ideas, which were based on a time-dependent Schrödinger equation, to non-
relativistic quantum theory. His main interpretational obstacle was the en-
tanglement arising from measurements described by means of von Neumann’s
unitary interaction (4.32). This led him to his ‘extravagant’ interpretation (in
Bell’s words) in terms of many quasi-classical ‘branches’ of the world, which
are separately experienced, but are all assumed to exist in one superposi-
tion that defines the true and dynamically consistent quantum world. Beyond
measurements proper and occasional interactions he does not seem to have
regarded entanglement as particularly important (see Tegmark 1998).

The quantitative considerations reviewed in Sect. 4.3 demonstrate that un-
controllable ‘measurement-like’ interactions with the environment are essen-
tial and unavoidable for almost all systems under all realistic circumstances.
Strong entanglement is, therefore, a generic aspect of quantum theory. The
more macroscopic a system, the stronger its entanglement with its environ-
ment. The concept of a (pure) quantum state can be consistently applied only
to the Universe as a whole (Zeh 1970, Gell-Mann and Hartle 1990). This seems
to be a far more powerful argument for the need of quantum cosmology than
an attempt to construct a unified quantum field theory.

The second pillar of physical cosmology is general relativity. It is empiri-
cally confirmed only as a classical theory, but this fact can be well understood
by decoherence again (see Sects. 4.3.5 and 6.2.2). Exactly classical gravity
would lead to inconsistencies with the uncertainty principle. Applying the
quantization rules to the Hamiltonian formalism of general relativity (de-
scribed in Sect. 5.4) leads to a non-renormalizable ‘effective’ quantum gravity
that cannot be exact, but may be expected to be appropriate as a low energy
limit. This readily allows us to discuss a number of important novel concep-
tual problems that must come up, in particular the need for a ‘quantization
of time’ (Sect. 6.2).

2 Thibault Damour (2006) has recently presented evidence that Everett was origi-
nally stimulated by remarks Albert Einstein made about quantum theory during
his last seminar, given at Princeton in 1954.
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The quantum state of the Universe must therefore include gravitational
degrees of freedom (entangled with matter) in an essential way. However,
many quantum cosmological aspects may be formulated on a quasi-classical
background spacetime, using a given foliation parametrized by a time co-
ordinate t. Global states can then be dynamically described by means of a
time-dependent Schrödinger equation with respect to this coordinate time t.
This formalism will be derived from quantum gravity (with its quantized con-
cept of an intrinsic time) in Sect. 6.2.2 as an approximation. Global states
(such as those of quantum fields) depend on a foliation (or a reference frame)
even on flat spacetime, while the density matrix of any local system should
be invariant under a change of foliation that preserves its local rest frame – a
requirement that does not seem to have attracted much attention.

If the Quantum Universe is thus conceptually regarded as a whole, it does
not decohere, since there is no further environment. Decoherence is meaningful
only for subsystems of the Universe (or for subsets of variables), and with re-
spect to observations by other subsystems (internal ‘observer-participators’).
If no real collapse of the wave function is assumed to apply, one is then forced
to accept Everett’s global wave function, which describes a superposition of at
least all ‘possible’ outcomes of measurements and measurement-like processes
that ever occurred in the Universe. This global quantum state may always
be assumed to be pure, since a global density matrix could be consistently
understood as representing incomplete information about such a pure state.
A measurement that merely selects a subset from those states which diago-
nalize this density matrix would be equivalent to a classical measurement (as
depicted in Fig. 3.5 – in contrast to Fig. 4.3).

The decoherence of subsystems by their environment according to a global
Schrödinger equation leads dynamically to robust Everett branches. They
represent dynamically autonomous components of the global wave function,
which may factorize in the form φobs1φobs2 . . . ψrest with respect to ‘observer
states’ that may describe objectivizable memory (see Sect. 4.3.2 and Tegmark
2000). This unitary evolution requires a fact-like arrow of time, correspond-
ing to a cosmic initial condition of type (4.59). Branching into components
which contain definite observer states has to be taken into account in addi-
tion to the unitary evolution as an effective dynamics in order to describe
the history of the (quasi-classical) ‘observed world’ in quantum mechanical
terms (see Sect. 4.6 and Fig. 4.3). However, this need not represent a modi-
fication of the fundamental dynamical laws, since this indeterminism affects
the observer rather than the quantum world. The decrease of physical entropy
characterizing the ‘apparent collapse’ experienced by the subjective observer
may be negligible on a thermodynamical scale, and in comparison to the en-
tropy increase by decoherence in the usual situation of a measurement. Yet it
may have dramatic consequences for global phase transitions that describe a
dynamical symmetry-breaking of the vacuum. This will now be discussed.
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6.1 Phase Transitions of the Vacuum

Heisenberg (1957) and Nambu and Jona-Lasinio (1961) invented the concept
of a vacuum that breaks symmetries of a fundamental Hamiltonian ‘sponta-
neously’ (in a fact-like way) – just as most actual states of physical systems do.
This proposal was based on an analogy between the vacuum (the ground state
of quantum field theory) and the phenomenological ground states of macro-
scopic systems, such as ferromagnets or solid bodies in general. Their asym-
metric ground states lead to specific modes of excitation, which in quantum
theory define quasi-particles (phonons, for example). The corresponding occu-
pation number eigenstates span specific partial Hilbert spaces (‘Fock spaces’).
A symmetry-violating vacuum may similarly lead to Goldstone bosons or other
collective modes, based on space-dependent oscillations of the order parameter
about its macroscopic (collective) ‘orientation’ – see below.

A symmetry-breaking (quasi-classical) ‘ground state’ is in general not even
an eigenstate of the fundamental (symmetric) Hamiltonian; it may only form
an eigenstate of an effective (asymmetric) Fock space Hamiltonian. While non-
diagonal elements of the exact Hamiltonian which connect states of different
collective orientation of these many-body systems (lying in different Fock
spaces), are usually extremely small, they would be essential to determine
its exact eigenstates, since the diagonal elements for all states related by a
symmetry transformation must be degenerate.

The symmetry-breaking vacuum was originally understood as part of the
kinematics of a field theory, while the dynamics was then assumed to be com-
pletely defined by means of the Fock space Hamiltonian. Later, the analogy
was generalized to allow for a dynamical phase transition of the vacuum dur-
ing the early stages of the Universe. This may be induced by the variation of
some global parameter (such as a rapid decrease of energy density, reflecting
the expansion of the Universe). The arising ‘unitarily inequivalent’ different
Fock spaces can then be interpreted as robust Everett branches or collapse
components. Even the empirical P or CP -violating terms of the (effective)
weak-interaction Hamiltonian may have emerged dynamically in this way by
means of an apparent or genuine collapse of the wave function that led to a
specific vacuum.

A popular model for describing symmetry-breaking in non-perturbative
quantum field theory is the ‘Mexican hat’ or ‘wine bottle potential’ of the type
V (Φ) = a|Φ|4−b|Φ|2 (with a, b > 0) for a fundamental complex matter field Φ
(such as a Higgs field). It may possess a degenerate minimum on a circle in the
complex plane, at |Φ| = Φ0 > 0, say. The classical field configurations of lowest
energy may then be written as Φ ≡ Φ0eiα, with an arbitrary phase α. They
break the dynamical symmetry under rotations in the complex Φ-plane. These
classical ground states correspond to different quantum mechanical vacuum
states |α〉 (for example described by narrow Gauß packets of α-eigenstates).
One of them, |α0〉, say, is assumed to characterize our observed world (while
the specific value of α0 is in this case observationally meaningless).
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A dynamical phase transition of the vacuum can now be described by as-
suming that the Universe was initially in the symmetric vacuum |Φ ≡ 0〉. This
may later become a ‘false’ vacuum (a relative minimum) through a change of
the parameters a and b. The state of the observed universe is then assumed
to undergo a transition into a specific Fock space vacuum |α0〉. If potential
energy is thereby released in a ‘slow roll’ (similar to latent heat in a phase
transition), it must be transformed into excitations (particle creation). Evi-
dently, this symmetry-breaking process requires effective deviations from the
Schrödinger equation – similar to a measurement process.

If the initial state is here assumed to be pure, a unitary evolution (similar
to von Neumann’s measurement) leads to a symmetric superposition of all
asymmetric states. For example, the symmetric superposition of all Fock space
vacua,

|0sym〉 = C

∫
|α〉dα �= |Φ ≡ 0〉 , (6.1)

may possess an even lower energy expectation value than |α〉, and may thus
represent an approximation to the ground state of the full theory. A globally
symmetric superposition of type (6.1) would persist even when its compo-
nents on the RHS contain or develop uncontrollable excitations in their Fock
spaces, while these components then form dynamically independent Everett
branches. The superposition itself describes intrinsic complexity , but not a
global asymmetry. If πα := i∂/∂α generates a gauge transformation, (6.1)
describes a state obeying a gauge constraint, πα|ψ〉 = 0 (see Sect. 6.2).

Each homogeneous classical state α0 would permit excitations in the form
of small space-dependent oscillations, α0 + ∆α(r, t). Quantum mechanically
they describe massless Goldstone bosons (excitations with vanishing energy
in the limit of infinite wavelength because of the degeneracy). Their degrees
of freedom are thus created by the intrinsic symmetry breaking, and their ob-
servation demonstrates that the collective variables (including corresponding
‘gauge’ degrees of freedom) do not describe mere redundancies. These new
variables may be thermodynamically extremely relevant. So it is remarkable
that the most important cosmic entropy capacities are represented by zero-
mass bosons: electromagnetic and gravitational fields (Zeh 1986a, Joos 1987).
These capacities are not only relevant for physical entropy (such as in the
form of heat), but also for the formation of entanglement between different
spatial regions. This seems to be important for the ‘arrow of quantum causal-
ity’ (Sect. 4.6).

In contrast to the false vacuum, the symmetric superposition (6.1) would
already describe a nonlocal state. If one neglects Casimir–Unruh type corre-
lations (see Sect. 5.2), each vacuum |α〉 may be written as a direct product of
vacua on volume elements ∆Vk,

|α〉 ≈
∏
k

|α〉∆Vk
. (6.2)
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This non-relativistic approximation describes a pure vacuum state on each
volume element (local subsystem) ∆Vk, while the superposition (6.1) would
lead to ‘mixed states’ for them:

ρ∆Vk
∝
∫

|α∆Vk
〉〈α∆Vk

|dα , (6.3)

formally representing Zwanzig projections P̂ sub. However, this density matrix
would be meaningful only for an external observer of the global state (who
could not live in one of the Fock spaces). It describes a canonical distribu-
tion of Goldstone bosons with infinite temperature (since then e−E/kT → 1).
Therefore, only a (genuine or apparent) collapse into one component α0 gives
rise to the pure (cold and not entangled) vacuum (6.2) experienced by an
internal local observer who lives in this Fock space.

Order parameters such as α may differ in different spatial regions (similar
to Weiss regions of a ferromagnet). If these regions are macroscopic, and thus
decohere to become ‘real’ (see Sect. 4.3.1), they break translational symmetry
(Calzetta and Hu 1995, Kiefer, Polarski and Starobinsky 1998, Kiefer et al.
2006). This scenario has now become ‘standard’ in quantum cosmology –
although its interpretation varies. A homogeneous superposition of entangled
microscopic inhomogeneities would represent ‘virtual’ symmetry breaking (in
classical language circumscribed as ‘vacuum fluctuations’).

6.2 Quantum Gravity and the Quantization of Time

Um sie kein Ort, noch weniger eine Zeit;
Von ihnen sprechen ist Verlegenheit.
(Mephisto advising Faust to time travel)

The compatibility of general relativity and quantum theory has often been
questioned. This seems to be a prejudice, that derives from various roots:

Einstein’s attitude regarding quantum theory is well known. He is even
claimed to have remarked that a quantization of general relativity would be
‘childish’ – although he also emphasized the importance of reconciling his
theory with quantum theory. Another position holds that gravitons may be
unobservable in practice, and the quantization of gravity hence not required
(von Borzeszkowski and Treder 1988). However, a classical gravitational field
or spacetime metric is inconsistent with quantum mechanics, since it would
always allow one in principle to determine the exact energy of a quantum ob-
ject – in conflict with the uncertainty relations. This has been known since the
early Bohr–Einstein debate (see Jammer 1974, for example), while other con-
sistency problems regarding an exactly classical spacetime metric were raised
by Page and Geilker (1982). Concepts of quantum gravity will turn out to
be essential for cosmology and the definition of a master arrow of time. The
classical appearance of spacetime cannot be regarded as an argument against
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its quantization, since these classical aspects may be understood within a uni-
versal quantum theory in a similar way to all other quasi-classical properties
(Sect. 4.3.5).

One often finds also arguments that the canonical quantization of general
relativity does not lead to a renormalizable theory, and must therefore be
wrong. This argument would apply if quantum gravity was assumed to be
an exact theory. However, it can only be expected to represent an ‘effective
theory’ that describes specific low energy aspects of an elusive unified field
theory. We know that QED, too, has to be modified and replaced by elec-
troweak theory at high energies, while it remains an excellent and consistent
description of all relevant phenomena at low energies. Its most general quan-
tum aspects (described in terms of QED wave functionals) are in fact observed
for laser fields in cavities. An analogous (though technically and conceptually
more demanding) canonical method of quantizing general relativity leads to
the Wheeler–DeWitt equation (6.4) below (DeWitt 1967). Why should the
Einstein equations be saved from quantization, while the Maxwell equations
are not? The conceptual consequences of quantum gravity, in particular those
for cosmology, have turned out to be profound even at this level of a low
energy approximation.

The construction of a unified theory certainly represents the major chal-
lenge to quantum field theory at a fundamental level. Such a theory must
become important in the vicinity of spacetime singularities (inside black holes
or close to the big bang), but may also have cosmological consequences. In the
absence of any observational confirmation, the latter have to be regarded as
‘mathematical cosmology’, that remains physically entirely speculative. Can-
didate models are often studied just as classical theories – sometimes includ-
ing certain ‘quantum corrections’. The surprising claim that M-theory may
eventually lead to an explanation of quantum theory (Witten 1997) seems to
be based on an elementary misunderstanding of quantum mechanics and its
empirical basis.

A second approach to overcome fundamental problems of quantum grav-
ity is canonical loop quantum gravity (Ashtekhar 1987, Rovelli and Smolin
1990, Thiemann 2006b, Nicolai, Peeters, and Zamaklar 2005). As it does not
necessarily require a unification with other field theories, it does not contain
most of the speculative elements of string theories, for example. To some ex-
tent it may be regarded as a specific though non-trivial renormalization of
general relativity. Since this includes a radical formal redefinition of many
phenomenological concepts, mostly by means of active diffeomorphisms that
would severely affect also classical general relativity, it may help to find the
correct configuration space on which the ultimate wave function may be de-
fined. However, the relation of its quantization procedures (such as ‘Bohr
compactification’ – invented by the mathematician Harald August Bohr) to
the empirically founded quantization concepts must be regarded as highly
questionable.
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If quantization can indeed be understood as the conceptual reversal of a
physical process of decoherence, the thereby recovered superpositions of the
(effective) classical quantities should at least define an effective quantum grav-
ity – similar to quantum mechanics, which is an effective theory in spite of
more general quantum field theory. Therefore, the Wheeler–DeWitt equation
in its field representation (here defined in terms of three-geometries) appears
as the method of choice for ‘physical’ quantum cosmology. Questions of inter-
pretation related to those for the wave function in general then seem to be
more urgent at this stage than the consequences of speculative attempts to
solve consistency problems that arise at high energies or in connection with a
complete renormalization procedure.

A major problem that nonetheless prevents many physicists from accepting
the Wheeler–DeWitt equation as appropriately describing quantum general
relativity is the absence of any time parameter in the case of a closed uni-
verse (see Isham 1992). According to the Hamiltonian formulation reviewed
in Sect. 5.4, one would naively expect free gravity to be described by a time-
dependent wave functional on the configuration space of three-geometries,
Ψ [(3)G, t], dynamically governed by a Schrödinger equation, i∂Ψ/∂t = HΨ .
However, there is no longer an external time parameter in a consistent quan-
tum description, and nor are there trajectories of appropriate physical clock
variables, which could give this time dependence an interpretation. Different
three-geometries (3)G (classically the carriers of ‘information’ about many-
fingered time – see Sect. 5.4) occur instead as arguments of these wave func-
tionals. In the absence of parametrizable trajectories (3)G(t) – that is, of space-
time geometries (4)G, neither proper times nor global time coordinates are
available. Therefore, it appears conceptually quite consistent (see Zeh 1984,
1986b, Barbour 1986) that the quantized form of the Hamiltonian constraint,
HΨ = 0,3 completely removes any time parameter t from the wave function
of a kinematically closed (though not necessarily finite) universe. This conse-
quence must be expected to remain valid in reparametrizable unified theories
– even after renormalization.

If matter is again represented by a single scalar field Φ on space-like hyper-
surfaces defined by their three-geometries (3)G, the Wheeler–DeWitt equation
assumes the general form

HΨ [Φ,(3) G] = 0 . (6.4)

3 Only because of the (here quite inappropriate) Heisenberg picture in terms of
particles is the equation Hψ = Eψ usually called a stationary Schrödinger equa-
tion, while in wave mechanical terms it describes static solutions. Even ‘vacuum
fluctuations’ represent static entanglement in the Schrödinger picture. Similarly,
eigenvalues of the momentum operator are no more than formally analogous to
classical momenta (which are defined as time derivatives). These conceptual sub-
tleties will turn out to be essential for a consistent interpretation of the Wheeler–
DeWitt equation.
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Even though it represents dynamics, it does not describe a one-dimensional
succession of states (or a history labelled by a parameter t). This is the nat-
ural quantum consequence of a classically missing absolute time (the absence
of any preferred time parameter). In spite of the Hamiltonian constraint, the
classical Hamiltonian equations would still define time-dependent (though
reparametrizable) trajectories, which allow the unique (one-dimensional) or-
dering of states by means of physical clocks (‘physical time’). While this does
not apply to the dynamics (6.4) of quantum gravity any more, we shall see in
Sect. 6.2.2 that one may approximately construct quasi-trajectories by means
of a WKB approximation and using decoherence. Note that (6.4) describes the
whole (Everett) quantum Universe, while branching components describing
quasi-classical spacetimes would have to obey a stochastic quantum Langevin
equation (see Sect. 4.6). However, the absence of fundamental trajectories in
Hilbert space now leads to the problem of how to pose an ‘initial’ condition
that would be able to explain the arrow of time that is already required for the
irreversible process of decoherence, which is needed to justify the branching.

If time in a closed mechanical universe was according to Mach consistently
defined by motion (as discussed in Chap. 1 regardless of general relativity),
there could also be no meaningful time-dependent Schrödinger equation. In-
stead of an external or absolute time parameter t, one would have to refer to
a physical clock variable u, say, that is part of this universe and has to be
quantized, too. A time-dependent wave function ψ(x, t) is thus replaced by
an entangled wave function ψ(x, u) (Peres 1980b, Page and Wootters 1983,
Wootters 1984). In the conventional probability interpretation, ψ(x, u) would
describe a probability amplitude for ‘physical time’ u – not at a time u. Then
why do we always observe states ‘at’ such a definite time rather than their su-
perpositions? The answer is that one has to expect the relevant clock variable
u to become quasi-classical for reasons explained in Sect. 4.3. For example,
an assumed ‘dust of test clocks’ that measured proper times would accord-
ing to (6.4) decohere any superposition of three-geometries which correspond
to different intrinsic times. (This comes close to what really happens in our
Universe – see Sect. 6.2.2.)

Equation (6.4) does not yet represent the Wheeler–DeWitt equation in a
form that can be used. In practice, one has to represent the three-geometry
(3)G by a metric hkl(x1, x2, x3) = gkl(x0

0, x
1, x2, x3) with respect to a certain

choice of coordinates (see Sect. 5.4). The wave functional Ψ [hkl] must then be
invariant under spatial coordinate transformations. This is guaranteed by the
three secondary momentum constraints, classically described as Hi = 0 (with
i = 1, 2, 3). In their quantum mechanical form they must again be imposed as
constraint operators acting on the wave function: HiΨ [hkl] = 0, similar to the
Hamiltonian constraint. If the momentum constraints are satisfied, the wave
functional Ψ [hkl] represents a functional on three-geometries, Ψ [(3)G], only.
This seems to require that the operators Hi commute in the weak sense, that
is, their commutators must again define constraints. However, this may not be
necessary if the effective theory lives in an Everett branch that breaks gauge
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symmetry – similar to an α-vacuum in (6.1). This would in turn require that
the constraints define infinitesimal physical transformations – not just redun-
dancies (see Giulini, Kiefer and Zeh 1995) as usually assumed for coordinate
transformations. A similar conceptual problem occurs for many other gauge
transformations.

General Literature: Kiefer 2007.

6.2.1 Quantization of the Friedmann Universe

A simple toy model of a quantum universe can be constructed by quantizing
the classical Friedmann universe described in Sect. 5.3, presuming exact ho-
mogeneity and isotropy (Kaup and Vitello 1974, Blyth and Isham 1975). This
leads to a reduced Wheeler–DeWitt equation for the two remaining variables,
but in contrast to its classical counterpart it does not represent a reasonable
approximation to reality. Symmetry requirements are much stronger in their
quantum mechanical form than they are classically. For example, the rotation
of a macroscopic spherical body produces a similar but microscopically dif-
ferent state, whereas a spherically symmetric quantum state is a symmetric
superposition of all orientations, that would not be affected by this symme-
try transformation any more. An exactly spherical quantum object therefore
cannot possess any rotational degrees of freedom – compare the symmetric
vacuum (6.1) or a superfluid in a spherical vessel. Rotational spectra are only
found in the case of strong intrinsic symmetry breaking, as known for small
molecules or deformed nuclei (Zeh 1967). Translations and rotations are thus
identity operations when applied to a quantum Friedmann universe, which can
therefore only be regarded as a very first step towards quantum cosmology
(except perhaps very close to the big bang). The low-dimensional configura-
tion space describing such a model is usually called a ‘mini-superspace’.

If the Hamiltonian (5.34) is quantized in the usual way in its field rep-
resentation, canonical momenta have to be replaced by the corresponding
differential operators. In general, this leads to a factor-ordering problem for
the Hamiltonian, since arbitrary terms proportional to the commutators [p, q]
could always be added before quantization. Although (5.34) looks quite ‘nor-
mal’, its straightforward translation into a Wheeler–DeWitt equation,

e−3α

2

(
∂2

∂α2
− ∂2

∂Φ2
− ke4α + m2e6αΦ2

)
Ψ(α, Φ) = 0 , (6.5)

is far from being trivial. For example, the result would have been different for
quantization in terms of the expansion parameter a instead of its logarithm α.
However, the choice used in (6.5) represents the invariant d’Alembertian with
respect to DeWitt’s ‘superspace metric’ that is defined by the quadratic form
of momenta describing the kinetic energy – see (6.14) below. This specific
factor- ordering is analogous to that for a point mass in flat space when
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formulated in terms of non-Cartesian coordinates. The prefactor e−3α/2 can
be omitted from (6.5).

Even though the Wheeler–DeWitt equation is a stationary Schrödinger
equation, it is of hyperbolic type – similar to a Klein–Gordon equation with
variable mass – for reasons explained in Sect. 5.4. This fact offers the surpris-
ing possibility of formulating an intrinsic initial value problem in spite of the
absence of any time parameter (see Sect. 2.1). The logarithmic expansion pa-
rameter α may be regarded as a time-like variable with respect to this intrinsic
dynamics. The wave function on a ‘space-like’ hypersurface in superspace (for
example at a fixed value of α) then defines an intrinsic dynamical state ac-
cording to this dynamics. This intrinsic quantum dynamics with respect to
the ‘variable’ α can also be written in the form

− ∂2

∂α2
Ψ(α, Φ) =

[
− ∂2

∂Φ2
+ V (α, Φ)

]
Ψ(α, Φ) =: H2

redΨ(α, Φ) , (6.6)

in order to define a Klein–Gordon type reduced Hamiltonian Hred.4 This dy-
namics is non-unitary, in particular as H2

red is not in general a non-negative
operator. The ‘reduced norm’,

∫ |Ψ(α, Φ)|2dΦ, is thus not generally conserved
as a function of α. Although there is a conserved formal ‘relativistic’ two-
current density in this mini-superspace,

j := Im (Ψ∗∇Ψ) , (6.7)

its direction depends on the sign of i = ±√−1, which is physically meaningless
in the absence of a time-dependent Schrödinger equation. There is in fact no
reason even to expect a complex global solution of the real Wheeler–DeWitt
equation.

The big bang and a conceivable big crunch would ‘coincide’ with respect
to the intrinsic time variable α, while the expansion of the Universe becomes
a tautology. The concept of a reversal of the cosmic expansion is an artifact
of the classical description in terms of trajectories, such as in Fig. 5.7, while in
more realistic models correlations of the expansion parameter α with quasi-
classical physical clocks (including physiological ones) remain meaningful. So
4 In loop quantum gravity , this differential equation has been replaced by a differ-

ence equation with respect to p := a2. This discrete new variable can then be
extended to negative values in a regular way (Bojowald 2003). This doubling of
space would represent a space reflection, inverting the sign of the volume measure,
such that the deterministic propagation through p = 0 (even in the continuous
case) could be visualized as ‘turning space inside out’. However, even if this ex-
tension of the concept of space could be vindicated in some way, the dynamical
meaning of negative values of p (such as representing ‘pre-big-bang times’) had to
be carefully analyzed. Since the low entropy ‘initial’ condition may be expected
to apply at p = 0 rather than at p = −∞ for reasons of symmetry, the physical
direction of time would always point into the direction of growing |p| – thus re-
placing the big bang by a reversal of the physical arrow of time in the past (see
also Laguna 2006).
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Fig. 6.1. Coherent ‘wave tube’ Ψ(α, Φ) for the anisotropic indefinite harmonic oscil-
lator (with ωΦ:ωα = 7:1) as a toy model of a periodically contracting and rebouncing
quantum universe. It is here only plotted for the sector α > 0 and Φ < 0, since the
solution is symmetric under reflections at both the α and the Φ axis (so wave tubes
intersect at the right boundary). The intrinsic structure of the wave function is not
completely resolved by the grid size used in this figure

what would ‘happen’ to a quasi-classical universe that were classically bound
to recontract at some time?

One may discuss the quantum cosmological state in analogy to the ‘sta-
tionary’ wave function of a quantum ‘particle’ with fixed energy E, reflected
from a spatial potential barrier (now a barrier in α). Since in timeless quan-
tum gravity there is no reference phase e−iωt, one cannot distinguish between
incoming and outgoing partial waves by their proportionality to e±ikα.

Because of the hyperbolic nature of the Wheeler–DeWitt equation, narrow
wave packets in Φ at fixed α lead to narrow ‘wave tubes’ that may approxi-
mately follow classical trajectories in mini-superspace (see Fig. 6.1). The case
of positive spatial curvature, k = +1, is particularly illustrative. Its classical
trajectories in mini-superspace would reverse direction with respect to α at
some αmax (Fig. 5.7). According to classical determinism, half of the trajec-
tory (defined to represent the contracting universe) would be regarded as the
dynamical successor of the other half (the expansion era). This determinis-
tic relation is symmetric, since there is no absolute dynamical direction. The
wave determinism described by the hyperbolic equation (6.6), on the other
hand, propagates monotonically with α, and permits one to choose the whole
initial condition (consisting of Ψ and ∂Ψ/∂α) on any ‘space-like’ hypersurface
in superspace (e.g., at a small value of α). One could thus exclude precisely
that part of the wave tube that would be required by classical determinism
(Zeh 1988). How can these two forms of determinism (classical and quantum)
be reconciled?

This dilemma can be resolved in analogy to conventional stationary states
of quantum mechanics – though now including negative dynamical mass mα
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Fig. 6.2. Real-valued wave tube of the ‘time’-dependent (damped) oscillator (6.5)
in adiabatic approximation without taking into account the reflection at amax, i.e.,
only the first term of (6.12) is used. Expansion parameter a = eα is plotted upward
and the amplitude of a homogeneous massive scalar field Φ from left to right

for the time-like variable. The simplest toy model for what is classically a
periodically contracting and rebouncing universe is a free motion between re-
flecting boundaries of a narrow rectangle in α and Φ, where quantum me-
chanical solutions, such as real-valued wave tubes, can be constructed as
superpositions of products of trigonometric functions matching the bound-
ary conditions. (The potential barriers would have to be positive infinite
for Φ-boundaries and negative infinite for α-boundaries.) In order to al-
low nontrivial zero-energy solutions, HΨ = 0, the box lengths Li have to
be commensurable when accounting for the mass ratio, that is, Lα/LΦ =√−mΦ/mα k/l, with integers k and l. Similar stationary wave tubes may
be constructed in analogy to Schrödinger’s coherent states from anisotropic
harmonic oscillators (Fig. 6.1). In this case, one needs an indefinite potential,
V (Φ, α) =

[
(ω2

ΦΦ2 − ωΦ) − (ω2
αα2 − ωα)

]
/2, where ‘zero point energies’ have

been subtracted. In the commensurable case, now defined by ωα/ωΦ = l/k,
solutions to the constraint HΨ = 0 may be obtained as superpositions of
the factorizing eigensolutions Θnα(

√
ωαα)ΘnΦ

(
√

ωΦΦ) of H, with eigenvalues
E = Eα + EΦ = −nαωα + nΦωΦ = 0, in the form

Ψ(α, Φ) =
∑

n

cnΘnk(
√

ωαα)Θnl(
√

ωΦΦ) . (6.8)

If the coefficients cn are chosen to define an ‘initial’ Gaussian wave packet
in Φ at ‘time’ α = 0, centered at some Φ0 �= 0 and with ∂Ψ/∂α = 0, say,
the resulting tube-like solutions propagate in α, following classical Lissajous
figures in mini-superspace – just as for the conventional oscillator (DeWitt
1967).

In contrast to Schrödinger’s time-dependent coherent states, which follow
classical trajectories without changing their shape, these ‘upside-down oscil-
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Fig. 6.3. Same as Fig. 6.2, but including the contribution of the reflected part: sec-
ond term of (6.12). The coherent wave tube assumed to represent the expanding
universe is here hardly recognizable against the background of the diffuse contribu-
tion representing the recontracting universe(s)

lators’ display a rich intrinsic structure. Wave packets on different parts of
a trajectory must also interfere with one another whenever they overlap –
in particular close to the classical turning points. Interference between inter-
secting tubes would be suppressed by taking into account additional variables
(higher-dimensional configuration spaces), since a projection onto mini-super-
space – that is, tracing out all other variables – represents decoherence (see
Sect. 6.2.2).

All components of (6.8) satisfy the usual boundary condition of normaliz-
ability in Φ and α. This choice is responsible for the reflection of wave tubes at
the potential barriers. Although unusual for a conventional time parameter,
it is consistent with the role of α as a dynamical variable. Such boundary con-
ditions (if applied to the complete Quantum Universe) might even determine
the solution of the Wheeler–DeWitt equation uniquely – provided there is a
solution for its fixed zero eigenvalue at all. The degeneracy of the oscillator
model (6.7), which allows the choice of ‘initial’ narrow wave packets, is ev-
idently pathological. Narrow wave tubes can in general only be expected to
arise as robust branches of the complete solution. They may not have to obey
the boundary conditions individually.

An approximate solution can also be constructed for the Wheeler–DeWitt
equation with a Friedmann Hamiltonian (6.5) – see Fig. 6.2 (Kiefer 1988).
The oscillator potential with respect to Φ may here be assumed to be weakly
α-dependent over many classical oscillations in Φ (shown in Fig. 5.7) except
for small values of α. If α-dependent oscillator wave functions Θn(Φ) – similar
to those used in (6.8) – are now defined by the eigenvalue equation(

− ∂2

∂Φ2
+ m2e6αΦ2

)
Θn

(√
me3αΦ

)
= (2n + 1)me3αΘn

(√
me3αΦ

)
, (6.9)
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one may expand a solution of (6.5) in terms of them as

Ψ(α, Φ) =
∑

n

cn(α)Θn(
√

me3αΦ) . (6.10)

In the adiabatic approximation with respect to α (that may here be based
on the Born–Oppenheimer expansion in terms of the inverse Planck mass
– see Banks 1985 and Sect. 6.2.2), this leads to decoupled equations for the
coefficients cn(α): [

+
∂2

∂α2
+ 2En(α)

]
cn(α) = 0 . (6.11)

For positive spatial curvature, k = 1, the effective potentials

2En(α) := (2n + 1)me3α − ke4α

become negative for α → +∞. Even though V (α, Φ) is positive almost every-
where in this limit - see (5.35), the Φ-oscillations are drawn into the narrow
region V < 0 (in the vicinity of the α-axis – see Fig. 5.7) by damping.

So if one requires square integrability for α → ∞, only the exponentially
decreasing partial wave solutions of (6.11) are admitted. Wave packets in Φ
consisting of many oscillator eigenstates with quantum numbers n ≈ n0, say,
may then be used to form wave tubes in α and Φ following the classical paths
of Fig. 5.7 – see Fig. 6.2. However, in the Friedmann model, wave tubes cannot
remain narrow wave packets in Φ when reflected at amax = eαmax , since the
turning point of the n th partial wave, amax,n = (2n + 1)m, depends strongly
on n. For values of a sufficiently below amax,n, the coefficients cn(α) can
according to Kiefer be written by means of a ‘scattering’ phase shift (caused
by the reflection) in the form of a sum of incoming and outgoing (though
real) waves. In the lowest WKB approximation one obtains (‘asymptotically’
in this sense)

cn(α) ∝ cos
[
φn(α) + n∆φ

]
+ cos

[
φn(α) − n∆φ +

π

4
an

2
]

. (6.12)

Here,

φn(α) :=
(an

4
− a

2

)√
a(an − a) +

[
arcsin

(
1 − 2a

an

)
− π

2

]
a2

n

8
− π

4
(6.13)

is a function of α and αn, while the integration constant ∆φ is the phase of the
corresponding classical Φ-oscillation at its turning point in α. If coefficients
are chosen, when substituting (6.12) into (6.10), such that the first cosines de-
scribe a (narrow) coherent oscillator wave packet, the ‘scattering phase shifts’
πan

2/4 of the second cosine terms cause the reflected wave to spread widely
(see Fig. 6.3). Only for pathological potentials, such as the indefinite harmonic
oscillator (6.8), or for integer values of m2/2 in the specific model (6.4), can
the phase shift differences be omitted as multiples of π.
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Therefore, even the WKB approximation, which would suppress any dis-
persion of the wave packet, cannot in general describe an expanding and
recollapsing quasi-classical universe by means of (‘initially’ prepared) wave
packets that propagate as narrow tubes beyond the turning point. The con-
cept of a universe deterministically expanding and recollapsing along a certain
trajectory in superspace is as incompatible with quantum cosmology as the
concept of an electron orbit in the hydrogen atom is with quantum mechanics.
Many quasi-trajectories (wave tubes) describing expanding universes have to
be superposed in order to obtain one quasi-classical contraction era (and vice
versa). Decoherence has to select very different superpositions of partial waves
cnΘn in (6.10) to define robust branches in opposite eras. The reflection at
amax describes a quasi-stochastic quantum process – just as in a quantum
scattering event. Compatibility problems for boundary conditions can thus
affect only the total Wheeler–DeWitt wave function (the superposition of
all branches). They would not at all occur for a non-normalizable Wheeler–
DeWitt wave function that represents forever expanding universes (k = 0 or
−1 in the case of Λ = 0).

All these simple models are far from being realistic. They are not only
unable to describe statistical aspects or decoherence – they also neglect the
important coupling between cosmic degrees of freedom and microscopic ones.
In particular, the latter’s ground states (‘zero point motion’) must in gen-
eral depend on α and Φ. The cosmic variables are then subject to extreme
decoherence (Barvinsky et al. 1999). Simplified models, as discussed above,
may nonetheless appropriately describe certain important conceptual aspects
of quantum cosmology.

General Literature: Ryan 1972, Kiefer 1988.

6.2.2 The Emergence of Classical Time

If classical time emerges, it cannot emerge
in classical time

A we have seen in Sect. 5.4, there is no dynamically preferred time parameter
in general relativity or other reparametrization invariant classical theories.
Moreover, the dynamical succession of global states, which may be conve-
niently described by means of a time coordinate, depends on the choice of
a foliation. The resulting invariant spacetime geometry nonetheless defines
many-fingered physical time, that is, absolute proper times as local controllers
of motion, while any foliation represents a trajectory in superspace (a global
history) that may then also be parametrized.

In quantum gravity, no global time parameter is generally available any
longer, since there are no trajectories (that is, no one-dimensional successions
of classical states with their physical clocks). Two given three-geometries are
then not dynamically connected by a definite four-geometry (a spacetime).
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Neither world lines nor their proper times, which could control Schrödinger
or master equations for local systems, are defined, and three-geometry is no
longer a reliable ‘carrier of information about time’.

As explained in Chap. 4, the Schrödinger equation is exact only as a global
equation. Its restriction to matter would require the global foliation of a clas-
sical spacetime. While this could still be chosen to proceed just locally (thus
defining a ‘finger of time’), the Wheeler–DeWitt equation describes entangled
dynamics for global quantum states of matter and three-geometry.

How can the traditional concept of time (either in the form of many-
fingered time, or as a parameter for the dynamics of global states) be recov-
ered from the Wheeler–DeWitt equation? This requires concepts and methods
discussed in Sect. 4.3, where quasi-classical quantities were shown to emerge
dynamically and irreversibly by means of decoherence, but the dynamics has
to be appropriately modified to suit the timeless Wheeler–DeWitt equation:
classical time cannot emerge in classical time. Similarly, classical spacetime
cannot have entered existence in a global quantum ‘event’ (which would have
to presume time).

In the local field representation, the general Wheeler–DeWitt equation can
be explicitly written in its gauge-dependent form (DeWitt 1967) as

−16π

m2
P

∑
klk′l′

Gklk′l′
δ2Ψ

δhklδhk′l′
− m2

P

16π

√
h(R − 2Λ)Ψ + HmatterΨ = 0 , (6.14)

when disregarding factor ordering. Here, Ψ is a functional of the six indepen-
dent functions hkl = gkl (k, l = 1, 2, 3), which represent the spatial metric
on a hypersurface. The letter h (without indices) means their determinant,
R their spatial Riemann curvature scalar. Λ is the cosmological constant,
while mP := 1/

√
G is the Planck mass. The hamiltonian density, Hmatter,

also depends on the metric by means of its kinetic energy terms. The matrix
Gklk′l′ := (hkk′hll′ + hkl′hlk′ − 2hklhk′l′)/2

√
h with respect to the six sym-

metric pairs of indices kl is DeWitt’s ‘superspace metric’. It has the locally
hyperbolic signature − + + + ++.

The Wheeler–DeWitt equation (6.14) can assume this local form only be-
cause of its gauge degrees of freedom. Their elimination requires the wave
functional to obey the three momentum constraints (see Sect. 5.4), in their
quantum mechanical form written as HkΨ = (δΨ/δhkl)|l = 0, where |l is
the covariant derivative with respect to the spatial metric hkl. They rep-
resent three functional differential equations for the functional Ψ [hkl], which
depends on six variables hkl at each point. Integration of the Wheeler–DeWitt
equation (6.14) under the constraints would then leave two functions as ‘inte-
gration constants’. These two degrees of freedom at each space point may be
regarded as representing the two physical components (polarizations) of the
gravitational field. The momentum constraints are analogous to Gauß’s law
in electrodynamics, which also forms a constraint on the initial data when
written in terms of the potential A. However, the momentum constraints are
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‘secondary’: they can only in special situations be solved analytically. In the
superspace region that describes Friedmann-type universes, all but one of the
infinity of negative kinetic energy terms of the Wheeler–DeWitt equation rep-
resent gauge degrees of freedom (see footnote 4 of Chap. 5). The remaining
physical dynamics is globally hyperbolic.

I shall now assume that a solution of these coupled equations exists. Since
the quantity m2

P/32π that appears in (6.14) as a formal dynamical mass is
very large compared to dynamical masses contained in Hmatter, one may con-
veniently analyze the solution by means of a Born–Oppenheimer approxima-
tion in analogy to molecular physics (Banks 1985). The matter wave function
will then adiabatically depend on the massive gravity variables – even though
there is no time-dependence. This situation resembles small molecules, which
are usually found in their energy eigenstates (giving rise to rotational and
vibrational bands) rather than in states representing quasi-classical motion.
However, as a novel aspect of quantum cosmology, the matter degrees of free-
dom must now also describe observers, while molecules or other microscopic
systems are observed from outside. Because of the adiabatic correlation of
the observer with the quantum state of geometrodynamics (and that of other
macroscopic variables), this quasi-classical state appears ‘given’ to him (see
Sect. 4.6).

In order to obtain a semiclassical dynamical description of spacetime ge-
ometry, one may use the ansatz

Ψ [hkl, x] = exp
[
iS0(hkl)

]
χ(hkl, x) , (6.15)

where x represents all matter degrees of freedom. S0 is defined as a solution
of the Hamilton–Jacobi equation of geometrodynamics (Peres 1962), with a
self-consistent source term that is given as the expectation value 〈χ|Tµν |χ〉 of
the matter states χ that are to be calculated along classical trajectories de-
scribed by S0. This is analogous to the description of large molecules, where
the heavy atomic nuclei or ions are dynamically described by time-dependent
classical orbits resulting from an effective potential that arises from an expec-
tation value for electron wave functions, which in turn depend adiabatically
on the nuclear positions. If the global boundary conditions are appropriate
to justify the WKB approximation, the matter wave function χ may indeed
depend adiabatically on the massive variables hkl in the relevant regions of
configuration space. As this spatial metric describes the three-geometry as
the carrier of information about time along every WKB trajectory (similar to
geometric optics), the dependence of χ on hkl may be regarded as a generalized
physical time dependence of the matter states.

Since the classical Hamilton–Jacobi equations describe an ensemble of dy-
namically independent trajectories in the configuration space of the three-
geometries, the remaining equations for the matter states χ can be integrated
along them. This procedure becomes particularly convenient after the expo-
nential exp(iS0) has been raised to the usual second order WKB approxima-
tion that includes a ‘prefactor’ which warrants the conservation of probabil-
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ity. In its local form (6.14), the Wheeler–DeWitt equation is reduced by the
ansatz (6.15) to a Tomonaga–Schwinger equation (Lapchinsky and Rubakov
1979, Banks 1985):

i
∑

klk′l′
Gklk′l′

δS0

δhkl

δχ
δhk′l′

= Hmatterχ . (6.16)

Its LHS is (the local component of) a derivative of χ in the direction of
the gradient ∇S0 in the configuration space of three-geometries. Written as
i∇S0·∇χ =: idχ/dτ , it defines a many-fingered time parameter τ for all tra-
jectories (that is, for all different spacetimes in the ensemble described by the
specific solution S0). Because of its dependence on the WKB approximation,
τ may be called a ‘WKB time’. Since the WKB wave function in general
describes an extended superposition, its individual quasi-trajectories (corre-
sponding to narrow wave tubes), correlated to their specific matter states χ,
can only represent Everett branches of a general quantum universe. They are
indeed decohered from one another by the adiabatic dependence on gravity of
the uncontrollable microscopic degrees of freedom contained in χ (Sect. 4.3.5).

Equation (6.16) thus represents an effective time-dependent Schrödinger
equation for matter. Higher orders of the WKB approximation lead to correc-
tions to this Schrödinger dynamics (Kiefer and Singh 1991). The local fingers
of time – represented by this local form – may be combined by integrating
(6.16) over three-space (Giulini 1995). This integration elevates the local inner
product ∇S0·∇χ, that is, a sum over k′l′ by means of the Wheeler–DeWitt
metric, to a global one. In this way it defines the progression of a reparametriz-
able common global dynamical time, valid for all spacetimes which are de-
scribed by the Hamilton–Jacobi function S0. Since τ is defined for all WKB
trajectories (thus defining ‘simultaneous’ three-geometries on them), it also
defines a foliation of superspace (Giulini and Kiefer 1994). Only the defini-
tion of spacetime coordinates requires lapse and shift functions N and Nk

(Sect. 5.4), which then also define ‘velocities’ ḣkl with respect to coordinate
time according to

ḣkl = −NGklk′l′
δS0

δhk′l′
+ Nk|l + Nl|k . (6.17)

The complex ansatz (6.15) is obviously essential for the result (6.16). The
correct Wheeler–DeWitt wave function will in general have to be approx-
imated by a superposition of several such WKB components. There is no
reason to expect a complex solution for the complete Wheeler–DeWitt wave
function that describes the Quantum Universe. So one may, in particular, have
to replace (6.15) by its real part, Ψ → Ψ + Ψ∗. The two terms may then sep-
arately obey (6.16) and its complex conjugate to an excellent approximation,
similar to the various WKB trajectories (or wave tubes) which have to be su-
perposed to form the extended wave front of geometric optics described by an
appropriate Hamilton–Jacobi solution S0 (or some higher order approxima-
tion S1). This dynamical separation can again be understood as a consequence
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of decoherence by the microscopic matter degrees of freedom (Halliwell 1989,
Kiefer 1992). It is interesting, as it represents a simple but fundamental exam-
ple of gauge symmetry breaking by Everett branching . Note, however, that in
contrast to the complex classical field in Sect. 6.1, the complex form of (6.16)
characterizes superpositions in Hilbert space – not in the configuration space
of fields.

The Born–Oppenheimer approximation with respect to the Planck mass
is not always the most appropriate one. Macroscopic matter variables may
be described by a WKB approximation, too, while certain geometric modes
(graviton states) may not. These variables could then be shifted between S0

and χ (see Vilenkin 1989). For example, Halliwell and Hawking (1985) applied
the WKB approximation only to the monopoles α and Φ which characterize
the quantum Friedmann universe (6.5). Their WKB solution would describe
an ensemble of trajectories a(t), Φ(t) in mini-superspace (Sect. 5.4). Wave
functions for the (nonlocal) higher multipole amplitudes of matter and geom-
etry can then again be obtained by means of a Tomonaga–Schwinger equation,
similar to (6.16). This choice of nonlocal variables offers the advantage of sep-
arating physical degrees of freedom (in this case the pure tensor modes) from
the remaining pure gauge modes. As mentioned in Sect. 5.4, the physical ten-
sor modes all appear in the kinetic energy with a dynamical mass of the same
sign as the matter modes, while only the monopole variable a (or α = ln a)
has negative dynamical mass. In this model, the monopoles a and Φ are very
efficiently decohered by the tensor modes (Zeh 1986b, Kiefer 1987, Barvinsky
et al. 1999). Decoherence of local ‘fluctuations’ may lead to the formation of
large scale structures of the Universe (Kiefer, Polarski and Starobinsky 1998).

The Tomonaga–Schwinger equation (6.16) justifies a dynamical time pa-
rameter on the basis of the timeless Wheeler–DeWitt equation, but not yet
an arrow of time. Its solutions require ‘initial’ conditions with respect to the
global time parameter τ . In order to describe our observed time-asymmetric
Universe, these initial conditions must be responsible for the arrow(s) of time
(in particular ‘quantum causality’, that has already been used when referring
to decoherence). However, they cannot be freely postulated any more, but
must be obtained from the complete Wheeler–DeWitt wave function, that
depends on its own boundary conditions. For them, the hyperbolic nature of
the Wheeler–DeWitt equation is essential. As discussed in Sect. 6.2.1, initial
conditions may be posed for it at any fixed value of a time-like variable in
superspace, such as α. While the initial condition for χ has to characterize
an early Everett branch, the total wave function, which gives rise to the time
arrow of this branching, must depend on a general boundary condition (per-
haps just normalizability). ‘Before’ anything may evolve in classical time – as
assumed when applying (6.16) in the forward direction, classical time must
itself emerge from an appropriate initial condition that is a consequence of
boundary conditions for the solution of (6.14). For example, if the dynamics
in the form (6.6) is generalized by means of higher multipoles as
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H =
∂2

∂α2
+ H2

red =
∂2

∂α2
+
∑

i

[
− ∂2

∂x2
i

+ Vi(α, xi)
]

+ Vint(α, {xi}) , (6.18)

where the xi are now all other variables, the potential Vint may be highly
asymmetric under a reversal of the sign of α. In particular, it could have a
simple structure for α → −∞, as indicated in (6.5), which might give rise
to a ‘simple’ initial condition (SIC) in α (see Conradi and Zeh 1991). This
may even explain the symmetric initial vacuum of Sect. 6.1. In the absence
of any theory that describes the big bang singularity, we can only assume an
appropriate simple structure of the total wave function in this limit (just as
discussed for t → 0 at the end of Chap. 4).

Inasmuch as the Tomonaga–Schwinger equation along a WKB trajectory
in superspace describes measurements, it is practically useless for calculating
‘backwards’ in global time τ . One would have to know all (observed and
unobserved) final branches of the total matter wave function χ (such as those
that have unitarily arisen during measurements in the past). In the ‘forward’
direction, this global Schrödinger equation for matter has to be replaced by a
master equation if decoherence of the quantum state of matter by gravity is
relevant (see Sect. 4.3.4). This may explain the oft-proposed gravity-induced
collapse as an apparent one in the ‘usual’ manner.

This limited applicability of a time-dependent Schrödinger or master equa-
tion that is based on WKB time would become particularly important for a
recontracting universe (Sect. 5.3). If a master equation can be derived for all
or most WKB trajectories with respect to that direction of τ that represents
increasing a, it cannot remain valid along a classical spacetime history that
leads to recontraction – cf. Fig. 6.3. Page (1985) and Hawking (1985) un-
derstandably arrived at the opposite conclusion when they described a recon-
tracting universe by using WKB trajectories beyond the turning point (see the
discussion following Zeh 1994). They thereby interpreted their semi-classical
Feynman paths as representing an ensemble of possible cosmic histories that
they justified by ‘initial quantum uncertainties’. Their further treatment then
neglects the final condition in τ that would be part of the initial condition
in α, and give rise to formal recoherence along the trajectory even if quasi-
trajectories of geometry were defined beyond the turning point.

Quantum cosmology requires a consistent realistic interpretation of quan-
tum theory (Everett’s, for example). It is often uncritically applied by using
some pragmatic (for this purpose insufficient) interpretation, including a tra-
ditional concept of time. Let me therefore briefly mention consequences of a
timeless wave function on Bohm’s quantum mechanics, which were first dis-
cussed for different reasons by Julian Barbour (1994a,c):

In addition to a time-dependent Everett wave function, Bohm’s theory pos-
tulates the existence of an ensemble of trajectories in a classical configuration
space that describes particles and fields (see Sect. 4.6). If quantum gravity is
taken into account, this configuration space must include three-geometries. In
a time-less theory, the trajectories degenerate into an ensemble of fixed states
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(points), assumed to possess ‘statistical weights’ according to |Ψ |2. In contrast
to Bohm’s time-dependent theory, this is no longer an initial condition that
would have to be preserved by the presumed unobservable dynamics for the
Bohm trajectories.

The structure of the Wheeler–DeWitt wave function in the range of ap-
plicability of a WKB approximation then statistically favors those classical
states which lie on apparent trajectories. This result is very similar to Mott’s
(1929) description of α-particle tracks in a cloud chamber, where the ‘station-
ary’ (static) wave function suppresses configurations that describe droplets
not approximately lying along particle tracks. Barbour calls these preferred
states ‘time capsules’, since they represent consistent memories (without cor-
responding histories). In Barbour’s words: “time is in the instant” (in the
state) “– the instant is not in time” (in a history). If all classical states in
the ensemble are regarded as ‘real’ (precisely as all past and future states
are assumed to form a real one-dimensional history in the conventional block
universe description), they now form a multi-dimensional rather than a one-
dimensional continuum. One may even say that time is replaced by the wave
function in this picture.

In contrast to the Everett interpretation, Bohm’s theory presumes these
classical configurations as part of fundamental reality, which must include ob-
servers. Each electron in a molecule, for example, is then assumed to possess a
definite position in every actual state (though not any velocity or momentum).
Since this particle position is not part of a memorized or documented (real or
apparent) history according to this interpretation, we are only led to believe
that it ‘actually exists’ as a wave function. The intrinsic dynamics of the static
Wheeler-DeWitt wave function has the consequence that the electron’s effects
on measurement devices are dynamically ‘caused’ by all its positions in the
support of the wave function (in dependence of the latter’s amplitude) – not
by a one-dimensional history. This picture would explain why the arena for the
wave function is a classical configuration space, although most problems and
disadvantages of Bohm’s theory (see Zeh 1999b) persist, and even new ones
may arise. Why should there be arbitrary global simultaneities representing
actual elements of reality, while ‘actuality’ seems to be meaningful only with
respect to local observers?

General Literature: Anderson 2006, Kiefer 2007.

6.2.3 Black Holes in Quantum Cosmology

During the early days of general relativity, the spacetime region behind a
black hole horizon was regarded as meaningless, since it is inaccessible to
observers in the external region. From their positivistic point of view, it would
‘not exist’. Later one realized that world lines, including those of observers,
can be smoothly continued beyond the horizon, where they would hit the
singularity within finite proper time. The new conclusion, that the internal
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Fig. 6.4. Various kinds of simultaneities for a spherical black hole in a Kruskal type
diagram: (a) hitting the singularity, (b) entering only the regular internal region,
(c) completely remaining outside (Schwarzschild coordinate t). Any Schwarzschild
time, for example t = tturn, may be identified with t = 0 (a horizontal line in the
diagram) regardless of the time of the observed collapse. No horizon forms on the
Schwarzschild simultaneities, which are complete for the external universe. (From
Zeh 2005c)

regions of black holes are physically ‘regular’ except at the singularity (hence
for limited time only), seems to apply as well to Bekenstein–Hawking black
holes until they disappear (see Sect. 5.1). However, arguments indicating a
genuine (possibly dramatic) quantum nature of the event horizon have also
been raised (’t Hooft 1990, Keski-Vakkuri et al. 1995, Li and Gott 1998).

While a consistent quantum description of black holes has not as yet been
presented, attempts were mostly based on semiclassical methods. (For an
overview see Kiefer 2007.) When combined with quantum cosmology, they
may lead to important novel consequences, which seem to revive the early
doubts in the meaning and existence of black hole interiors.

Consider the Schwarzschild metric (Fig. 5.1) as far as it is relevant for
a black hole formed by collapsing matter, such that the Kruskal regions III
and IV do not occur (Fig. 5.3a). Its dynamical (3+1) description in terms of
three-geometries depends in an essential way on the choice of a foliation (see
Fig. 6.4, or the Oppenheimer–Snyder model described in Box 32.1 of Misner,
Thorne and Wheeler 1973). Three-geometries which intersect the event hori-
zon may spatially extend to the singularity at r = 0, and thus render the global
quantum states that they carry prone to dynamical indeterminism or conse-
quences of a future theory that may avoid singularities. In contrast, a foliation
according to Schwarzschild time t would describe regular three-geometries for
t < ∞, which could be continued in time beyond t = ∞ by means of the new
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Fig. 6.5. Classical trajectory of a collapsing dust shell or the surface of a collapsing
star (solid curve) in a thermodynamically symmetric recontracting universe. It is
represented here in compressed Schwarzschild coordinates as used in Fig. 5.1, with
the Schwarzschild metric now being valid only to the right of the star’s surface.
Because of the scale compression, light rays appear almost horizontal in the diagram.
For t > tturn, advanced radiation from the formal past would focus onto the black
hole, which must now re-expand and grow hair in this scenario, while observers
would experience time in the opposite direction. No horizon ever forms: the region
r < 2M (which is later than t = ∞) would arise only if gravitational collapse
continued forever in a classical manner. Because of the drastic quantum effects close
to the turning point of a Friedmann universe (see Fig. 6.3), there are in general only
‘probabilistic’ connections between quasi-classical branches in the expansion and
contraction eras of the Universe. (From Kiefer and Zeh 1995)

time coordinate r (with physical time growing with decreasing r for r < 2M).
According to this foliation, the black hole interior with its singularity would
always remain in our formal future, and the singularity must be irrelevant for
Hawking radiation. In the pair creation picture, the negative-energy partner
is absorbed to the spacetime region close to what appears as a horizon until
this is completely transformed into radiation. Therefore, this foliation seems
to be appropriate for the formulation of a cosmological boundary condition
(in superspace), that may explain the master arrow of time.

For further discussion now assume that the expansion of the classical uni-
verse on which this diagram is based is reversed at a finite Schwarzschild time
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collapsing matter
loosing hair
(ordered radiation)

dense matter

thermal radiation

a = 0

a = 0

a_max

Legend:

Fig. 6.6. Quasi-classical picture (using Schwarzschild coordinates) of a thermody-
namically T -symmetric quantum universe which contains black holes, white holes,
and black-and-white holes that re-expand by anti-causal effects. Instead of horizons
and singularities, there are merely spacetime regions of large curvature (‘dense mat-
ter’) in this scenario. Because of their strong time dilation, they may serve as a short
cut in proper time between big bang and big crunch (or between the presumed eras
of opposite arrows of time). ‘Information-gaining systems’ could not thereby survive
as such. In quantum cosmology there is no unique connection between quasi-classical
histories (Everett branches) represented by the upper and lower halves of the figure,
but there is no need for a violation of conservation laws

t = tturn that is much larger than the time of the effective gravitational col-
lapse (losing hair – see Fig. 6.5). No horizon yet exists on the Schwarzschild
simultaneity t = tturn < ∞. If the cosmic time arrow does change direction
(while the quasi-classical universe passes through an era of thermodynami-
cal indefiniteness), the gravitationally collapsing matter close to the expected
horizon will very soon (in terms of its own proper time) enter the era where
radiation is advanced in the sense of Chap. 2. The black hole can then no
longer ‘lose hair’ by emitting retarded radiation; it must instead ‘grow hair’
in an anti-causal manner (Fig. 6.6). According to a ‘time-reversed no-hair the-
orem’ it has to re-expand when the Universe starts recontracting (Zeh 1994,
Kiefer and Zeh 1995).

This scenario does not contradict the geometrodynamical theorems about
a monotonic growth of black hole areas, since no horizons ever form. A clas-
sical spacetime will not even exist close to the ‘turning of the tide’. Here,
decoherence is competing with recoherence before being replaced by it. Only
region I of Fig. 5.1 is then realized. Events which appear ‘later’ than tturn in
the classical picture are ‘earlier’ in the sense of the intrinsic dynamics of the
Wheeler–DeWitt equation (6.6) – and therefore also in the thermodynamical
sense if this is based on an intrinsic initial condition. This quantum cosmo-



6.2 Quantum Gravity and the Quantization of Time 197

logical model describes an apparent (quasi-classical) two-time Weyl tensor or
similar condition (see Fig. 6.6). In quantized general relativity, the two appar-
ently different boundaries are identical, and thus represent one and the same
boundary condition. The problem of their consistency (Sect. 5.4) is reduced
to the intrinsic ‘final’ condition of normalizability for a → ∞.

The description used so far in this section does not apply directly to a
forever-expanding universe, where the arrow would preserve its direction along
a complete quasi-trajectory from a = 0 to a = +∞. The Wheeler–DeWitt
wave function is then not normalizable for a → ∞. However, one may require
this wave function to vanish on all somewhere-singular three-geometries by a
symmetric generalization of the Weyl tensor hypothesis. Such a condition has
been confirmed to apply to a simple quantum model of a collapsing thin spher-
ical matter shell (Háj́ıček and Kiefer 2001). In more realistic cases it would
again lead to important thermodynamical and quantum effects close to event
horizons (Zeh 1983), and drastically affect (or even exclude) the possibility
of continuing a quasi-classical spacetime beyond them. These consequences
would be unobservable in practice by external observers, since the immediate
vicinity of a future horizon remains outside their backward light cones for
all finite future. In order to receive information from the vicinity of a future
horizon, one has to come dangerously close to it, and thus participate in the
extreme time dilatation (see Fig. 5.2, where the light cone structure is made
evident, while distances are strongly distorted).

These conclusions seem again to throw serious doubts on the validity of
a classical continuation of spacetime into black hole interiors (see also Kiefer
2004 or Zeh 2005a). Event horizons in classical general relativity may sig-
nal the presence of drastic thermodynamical and quantum effects rather than
representing ‘physically normal’ regions of spacetime. While their observable
consequences depend on the world lines of detectors or observers (their accel-
eration, in particular), global quantum states, such as a specific ‘vacuum’, are
invariantly defined – though not invariantly observed (Sect. 5.2). These global
states may define an objective arrow of time, including ‘quantum causality’
(responsible for decoherence), by means of a fundamental boundary condition
for the Wheeler–DeWitt wave function.
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Four weeks before his death, Albert Einstein wrote in a letter of condo-
lence to the family of his life-long friend Michael Besso (Dukas and Hoffman
1979):5 “For us believing physicists, the division into past, present and future
has merely the meaning of an albeit obstinate illusion.” There is no doubt
that Einstein meant this remark seriously. Evidently, it refers to the four-
dimensional (‘static’) spacetime picture of a ‘block universe’ that his theory
of relativity uses so efficiently. This picture seems to be at variance with the
experience of a present passing through time (the ‘flow’ or ‘passage of time’).
In contrast, the relativistic spacetime framework contains only a concept of
local events (points in spacetime), which may be regarded as a continuum
of dynamically related here-and-nows. Because of these dynamical relations,
characterized by time-symmetric local laws, a local present can be viewed as
‘moving’ along the world line of an observer. His personal history is a succes-
sion of strongly correlated (local clusters of) events, dynamically controlled
by proper time, while a global dynamical state would depend on an arbi-
trary foliation of the spacetime that is characterized by its invariant metric
structure.

In Hermann Weyl’s words: “The objective world simply is; it does not
happen. Only to the gaze of my consciousness, crawling upward along the
life line of my body, does a section of this world come to life as a fleeting
image in space that continuously changes in time” (my italics). Any objective
(classical) description of the locally experienced world must therefore treat
space and time on an equal footing: it does not contain the concept of an
objective global present . For this reason, Huw Price (1996) chose the subtitle
‘A View from Nowhen’ for his book on time’s arrow. However, whether the
objective world ‘simply is’, or rather ‘comes into being’, seems nonetheless to
be a pure matter of words. Weyl’s ‘is’ (the block universe picture) does not
exclude a dynamical evolution (see Sect. 5.4).

5 “Für uns gläubige Physiker hat die Scheidung zwischen Vergangenheit, Gegenwart
und Zukunft nur die Bedeutung einer wenn auch hartnäckigen Illusion.”
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The four- (or higher-) dimensional ‘static’ view is by no means specific to
the theory of relativity. It does not even require deterministic laws, as it was
already used by St. Augustine in his Confessiones. He regarded it as a divine
world view – presumably since he understood it as including all details – not
merely as a conceptual framework. A mortal physicist may at least conceive of
the future history of the world (though with less confidence in the details than
in those of the past). Even Laplace could not have expected his model world
to be determinable in practice (see Sect. 3.3); he had to assume an extra-
physical demon of unlimited capacities for this purpose. The argument that
even the macroscopic future cannot in general be known to physical systems,
such as humans or computers, should not be confused with a conceivable
indeterminism of the dynamical laws (as is often done in the theory of chaos
– see the lucid article by Bricmont 1996).

The peculiarity of the subjective present, often mistaken as part of an
objective ‘structure of time’, was emphasized by Einstein in a conversation
with Carnap. According to Carnap (1963), “Einstein said that the problem of
the Now worried him seriously. He explained that the experience of the Now
means something special for man, something essentially different from the past
and the future, but that this important difference does not and cannot occur
within physics. That this experience cannot be grasped by science seemed to
him a matter of painful but inevitable resignation.” So he concluded “that
there is something essential about the Now which is just outside the realm of
science.”

Carnap emphasized, however, that Einstein agreed with him (in contrast
to Bergson and other philosophers) that this situation does not indicate a
defect of the physical concept of time. (The non-confirmation of a prejudice
is easily viewed as a defect!) The situation should rather be understood as
reflecting the undefined role of the observer, that must characterize the fun-
damental and underivable here-and-now of subjective reality in the form of a
local psycho-physical parallelism, for example. Objective reality (the ‘divine
world picture’ of a block universe) must instead always remain a hypothe-
sis – but this successful (‘heuristic’) fiction6 describes an empirically founded
asymmetry in time that does not require the concept of a present which flows
in time.

6 This notion of a ‘fiction’ is quite compatible with that of reality, even though
it emphasizes the impossibility of proving the existence of a real world. For ex-
ample, Einstein’s gläubiger Physiker (believing physicist) may express the belief
in an objective reality (in Einstein’s case preferentially a local one) to be de-
scribed by the physical formalism. As an admirer of Hume (but not of Kant – see
Franck 1949) Einstein was clearly aware of this hypothetical character of reality.
The evidence that Nature appears comprehensible was regarded by Einstein as
“the most incomprehensible thing about Nature”. One should here recall that
Descartes and Hume raised their doubts and criticism, which essentially forces us
into fictionalism, against attempts to obtain absolute certainty in the empirical
sciences – not against any conceivable reality – see also d’Espagnat (1995).
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The role of time is very different in quantum theory because of the latter’s
probabilistic appearance. The ‘openness of the future’ has even been regarded
as its most fundamental novel aspect (von Weizsäcker 1982), although its ori-
gin and meaning remain controversial. Heisenberg spoke of the trajectory of a
particle ‘coming into being by human observations’ (see the end of the Intro-
duction), while the later Niels Bohr seems to have regarded objective quantum
events as occurring ‘out of the blue’ in the measurement device (see Ulfbeck
and Bohr 2001). Similar ideas about a fundamental concept of becoming in
Nature were upheld for somewhat different (though also questionable) reasons
by Prigogine (1980).

It is evident that these various opinions are based on different interpreta-
tions of quantum theory (see Sect. 4.6). For example, the wave function has
been regarded as representing mere ‘potentiality’ or some novel fundamen-
tal concept of information (‘it from bit’ – see Wheeler 1994). These concepts
would then asymmetrically apply only to the future, while the past is pre-
sumed to be given. Some of them may in fact represent no more than words
(see Tegmark 1998). In particular, if quantum theory were just a stochastic
theory, the block universe picture would still apply to the ‘divine world view’,
as mentioned above, while quantum theory is in conflict with any local reality.

If the wave function (or some more general concept of superpositions)
is the correct kinematical concept of quantum theory (complete, in particu-
lar, to define entropy as a measure of irreversibility), its dynamics must be
essential and sufficient to analyze the objective arrow of time – regardless
of any further interpretation. This dynamics is deterministic as far as the
Schrödinger equation holds, but probabilistic whenever a collapse of the wave
function has to be taken into account. Although the collapse probabilities
have been claimed to be time-symmetric (Aharonov, Bergmann and Lebowitz
1964), since |〈a|b〉| = |〈b|a〉| for any two states a and b, the structure of initial
and final states of a probabilistic event is usually very different – see (4.56)
and footnote 2 of Chap. 5. A generic collapse would reduce the entanglement
between subsystems, as it projects onto definite ‘pointer states’, while it is
usually preceded by a much larger increase of entanglement (decoherence).
This latter asymmetry can be explained by means of an appropriate initial
condition for the universal wave function (the absence of initial entanglement).
In the case of a collapse, symmetry could be restored only if this collapse were
allowed also to ‘create’ nonlocal entanglement in an acausal manner in order
to reverse (4.56).

Could the subjective experience of a present that seems to flow in turn in-
duce an apparent time asymmetry that had no counterpart in the real world?
Einstein’s above-quoted remark is often interpreted as supporting this idea of
an arrow of time as an illusion. It is, therefore, often mentioned by the fun-
damental information-theoretical school of statistical mechanics (Sect. 3.3.1),
or in favor of an extra-physical concept of (growing) ‘human knowledge’ –
corresponding to Heisenberg’s ‘idealistic’ interpretation of the wave function.
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I have tried to explain in various chapters of the book that the concept
of entropy is in fact observer-related by means of a relevance concept . This
observer-relatedness of the macroscopic description (which includes ‘pointer
states’ of measurement devices) is particularly important in quantum theory,
and – as it turns out – even for the emergence of a classical concept of time
from a timeless quantum world. However, the observed time-asymmetry could
always be traced back (at least in principle) to the asymmetric structure of an
objective physical reality, that according to present knowledge is represented
by a nonlocal quantum world.

Memories, in particular, have to be stored in physical form, and are then
correlated with sources in their past (they are ‘retarded’). This drastic asym-
metry may be sufficient to explain the apparent flow of time once there is a
psycho-physical parallelism based on a presumed local moment of awareness.
Only this (not necessarily asymmetric) concept of a local present is fundamen-
tally subjective, while the asymmetry between past and future directions is
part of objective reality. What we usually call the preserved identity of a per-
son (who changes considerably during his lifetime) is ‘in reality’ nothing but
a particularly strong and robust ‘causal’ correlation between different local
physical states which represent the individual carriers of a subjective present.
As pointed out by Einstein and Carnap, it is the here-and-now subjectivity
as the center of all awareness that goes beyond objective reality, while it must
severely affect our perception of the ‘real world’.

The essential novel aspect of quantum theory is its nonlocality. The dislo-
calization of superpositions with increasing time forces certain causal chains,
which may also represent observers, to exist only in dynamically autonomous
components of the global quantum state. Since these components then branch
in our asymmetric quantum world, the quasi-classical world appears indeter-
ministic to these branching observers. Entanglement entropy of ‘systems’ may
appear to be an objective quantity that is defined by the global wave function,
but locality (essential to characterize systems) already represents a non-trivial
relevance concept that can be justified only by the locality of the observer,
which is facilitated by the locality of dynamics.
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Various elementary models which are intended to illustrate statistical meth-
ods in physics can be found in the literature. Well known are the urn model
(Ehrenfest and Ehrenfest 1911) and the ring model (Kac 1959). Both are
based on stochastic dynamical assumptions, applied in a given time direc-
tion. The model to be discussed below is deterministic, and based on special
initial conditions. Its main purpose is to illustrate the concept of a Zwanzig
projection by means of the simple example of spatial coarse-graining. This
coarse-graining is used for the definition of entropy, and, in a second step,
also to construct a master equation. However, it then fails to represent a good
approximation, thus demonstrating the importance of dynamical properties
of a Zwanzig projection if it is to be useful.

The model is defined by a swarm of nP free particles (i = 1, . . . , nP), mov-
ing with fixed velocities vi = v0 +∆vi on a ‘ring’ (a periodic interval) divided
into nS ‘unit cells’ (j = 1, . . . , nS), where the ∆vi’s form a homogeneous ran-
dom distribution in the range ±∆v/2. Coarse-graining is defined by averaging
over cells. All particles are assumed to start from random positions in the cell
j = 1.

The Zwanzig concept of relevance is furthermore assumed not to distin-
guish between the (distinguishable) particles, thus establishing an ‘occupation
number representation on unit cells’. Since momenta are conserved here, only
the spatial distribution of particles has to be considered. If nj particles are in
the j th cell, the entropy according to this Zwanzig projection is given by

S = −
nS∑
j=1

nj

nP
ln

nj

nP
. (6.19)

It vanishes in the initial state, while its maximum, Smax = lnnS, holds for
equipartition, nj = nP/nS. With respect to this coarse-grained entropy, the
model has a statistical Poincaré recurrence time tPoincaré = nnP−1

S , while the
relaxation time, required for the approach to equipartition, is only of order
nS/∆v. It is so short, since this coarse-graining is not in any way robust. Other
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equilibrium distributions could be constructed by using intervals of different
lengths.

The first plot of the Mathematica notebook7 below (plot1) shows the en-
tropy evolution for nP = 100 and nS = 20 during the first 2000 units of time.
The relaxation time scale is of the order 1000 units. Only integer times are
plotted in order to eliminate otherwise disturbing lattice effects of the model.
At some later time (see plot2), the coarse-grained representation no longer re-
veals any information about the existence of a low-entropy state in the recent
past, although this information must still exist, since motion can be reversed
in this deterministic model.

One can now simply enforce a two-time boundary condition (Sect. 5.3.3)
by restricting all relative velocities ∆vi to integer multiples of nS divided by
a large integer (e.g., by rounding them off at a certain figure). Consequences
of this change are negligible for small and intermediate times, although the
evolution is now exactly periodic (on an interval of 200 000 units in the chosen
numerical example, which is a very small fraction of the statistical recurrence
time). Relative entropy minima may occur at simple rational fractions of this
interval (such as at 2/5 of 200 000 in plot3).

When using the coarse-graining dynamically, one obtains a master equa-
tion for mean occupation numbers n̄j(t) in an ensemble of individual solutions.
For v0 = 0 it would read [see (4.45)]

dn̄j

dt
= λ(n̄j−1 + n̄j+1 − 2n̄j) , (6.20)

where λ (in this case given by ∆v/8) is the mean rate for particles to move by
one unit in either direction. For v0 �= 0, the result would hold in the center-of-
mass frame. The lower smooth curve of plot4 shows the resulting monotonic
increase of ensemble entropy, compared with the individual (fluctuating) so-
lution of plot1.

Evidently, the two curves agree only for about the first 2/∆v units of time.
This demonstrates that this Zwanzig projection is not very appropriate for
dynamical purposes, since some fine-grained (neglected) information remains
dynamically relevant: the individually conserved velocities lead here to rele-
vant correlations between position and velocity. The master equation, which
does not distinguish between individual particles, allows them even to change
their direction of motion. A slightly improved long-time approximation can
therefore be obtained by assuming all particles to diffuse in only one direction
(upper smooth curve of plot4) – equivalent to using a reference frame that
moves with a velocity −∆v/2 in the center-of-mass frame. It still neglects dy-
namically relevant correlations resulting from the fact that the most distant
particles continue travelling fastest. These correlations remain dynamically
relevant during relaxation, that is, until most particles have diffused once
around the ring. This can be recognized in plot4.

The master equation (6.20) may also represent an ensemble of individually
stochastic (indeterministic) histories nj(t), described by a Langevin equation.
7 Programming aid by Erich Joos is acknowledged.
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      Notebook: A Toy Model

        1. Definitions

nS = 20;
nP = 100;
v0 = 1.;
v = .02;

shannon@x_D := If@x == 0, 0., N@x Log@xDDD
entropMax = Log@nSD êê N

2.995732274

poincareTime = nS^HnP 1L êê N

6.338253001× 10128

relaxTime = nSê v

1000.

         2. Initial Values

SeedRandom@2D
v = Table@v0 + v HRandom@D .5L, 8nP<D;
x0 = Table@Random@D, 8 nP<D;
<< "Statistics`DescriptiveStatistics`"8Mean@x0D, Mean@vD, Variance@vD<80.5156437577, 0.9997682434, 0.00003356193642<
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         3. Exact Model

entropy@t_D := ModuleA8cellnb, n, e<,ikjjjjjjcellnb = Ceiling@Mod@v t + x0, nSDD;
Do@n@iD = Count@cellnb, iD, 8i, nS<D;
e = NALog@nPD ⁄j=1

nS shannon@n@jDD
nP

E y{zzzzzz E
plot1 = ListPlot@Table@8t, entropy@tD<, 8t, 50, 2000, 5<D,
PlotJoined True, Frame True, PlotRange 80, entropMax<D;
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plot2 = ListPlot@Table@8t, entropy@tD<, 8t, 10000, 12000, 5<D,
PlotJoined True, Frame True, PlotRange 80, entropMax<D;
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         4. Two-Time Boundary Condition

v =
Floor@10000 vD

10000
;

period = 10000 nS

200000

plot3 = ListPlot@Table@8t, entropy@tD<, 8t, 79000, 81000, 5<D,
PlotJoined True, Frame True, PlotRange 80, entropMax<D;
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         5. Master Equation

= vê 8
0.0025

equList = Table@n@jD'@tD == H 2 n@jD@tD
+ n@Mod@j, nSD + 1D@tD + n@Mod@j 2, nSD + 1D@tDL, 8j, nS< D;

iniList = Join@ 8n@1D@0D == nP<, Table@n@jD@0D == 0., 8j, 2, nS<D D;
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nSolution = NDSolve@Join@equList, iniListD, Table@n@jD,8j, nS<D, 8t, 0, 2000< D;
entropyMaster@t_D := N@Log@nPDD ⁄j=1

nS shannon@n@jD@tDD
nPê. nSolution êê First

plotMasterShort = ListPlot@Table@8x, entropyMaster@xD <,8x, 0, 2000, 20<D , PlotJoined > True, PlotRange >80, entropMax<, DisplayFunction > IdentityD;
equList = Table@n@jD'@tD == 4 H n@jD@tD

+ n@Mod@j 2, nSD + 1D@tDL, 8j, nS< D;
nSolution = NDSolve@Join@equList, iniListD, Table@n@jD,8j, nS<D, 8t, 0, 2000< D;
plotMasterLong = ListPlot@Table@8x, entropyMaster@xD <,8x, 0, 2000, 20<D , PlotJoined > True, PlotRange >80, entropMax<, DisplayFunction > IdentityD;
plot4 = Show@plot1, plotMasterShort, plotMasterLongD;
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Bläsi, B., and Hardy, L. (1995): Reality and time symmetry in quantum mechanics.
Phys. Lett. A207, 119 – [132]

Blyth, W.F., and Isham, C.J. (1975): Quantization of a Friedmann universe filled
with a scalar field. Phys. Rev. D11, 768 – [181]
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Diósi, L. (1987): A universal master equation for the gravitational violation of quan-
tum mechanics. Phys. Lett. A120, 377 – [144]
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Fröhlich, H. (1973): The connection between macro- and microphysics. Riv. del
Nuovo Cim. 3, 490 – [51]

Frolov, V.P., and Novikov, I.D. (1990): Physical effects in wormholes and time ma-
chines. Phys. Rev. D42, 1057 – [16]

Fuchs, C., and Peres, A. (2000): Quantum theory needs no ‘interpretation’. Physics
Today 53(3), 70 – [124]

Fugmann, W., and Kretzschmar, M. (1991): Classical electromagnetic radiation in
noninertial reference frames. Nuovo Cim. 106 B, 351 – [31]

Gabor, D. (1964): Light and Information. Progr. in Optics 1, 111 – (LR) – [75]
Gal-Or, B. (1974): Modern Developments in Thermodynamics (Wiley) – [157]
Gardner, M. (1967): Can time go backwards? Sci. Am. 216, 98 – [72]
Gell-Mann, M., and Hartle, J.B. (1990): Quantum mechanics in the light of quan-

tum cosmology. In: Complexity, Entropy and the Physics of Information, ed. by
W.H. Zurek (Addison Wesley) – [128,173]

Gell-Mann, M., and Hartle, J.B. (1993): Classical equations for quantum systems.
Phys. Rev. D47, 3345 – [128]

Gell-Mann, M., and Hartle, J.B. (1994): Time symmetry and asymmetry in quan-
tum mechanics and quantum cosmology. In: Physical Origins of the Asymmetry
of Time, ed. by Halliwell, J.J., Perez-Mercader, J., and Zurek, W.H. (Cambridge
University Press) – [160]



References 215

Gerlach, U.H. (1988): Dynamics and symmetries of a field partitioned by an accel-
erated frame. Phys. Rev. D38, 522 – [151]

Ghirardi, G.C., Rimini, A., and Weber, T. (1986): Unified dynamics for microsco-
pic and macroscopic systems. Phys. Rev. D34, 470 – [127]

Ghirardi, G.C., Pearle, Ph., and Rimini, A. (1990): Markov processes in Hilbert
space and continuous spontaneous localization of systems of identical particles.
Phys. Rev. A42, 78 – [118]

Gibbs, J.W., (1902): Elementary Principles in Statistical Mechanics (Yale Univer-
sity Press) – [48]

Gisin, N. (1984): Quantum Measurement and Stochastic Processes. Phys. Rev.
Lett. 52, 1657 – [118]

Gisin, N., and Percival, I. (1992): The quantum-state diffusion model applied to
open systems. J. Phys. A25, 5677 – [118]

Giulini, D. (1995): What is the geometry of superspace? Phys. Rev. D51, 5630 –
[167,190]

Giulini, D. (1998): The generalized thin-sandwich problem and its local solvability.
E-print gr-qc/9805065 – [162]

Giulini, D., and Kiefer, C. (1994): Wheeler–DeWitt metric and the attractivity of
gravity. Phys. Lett. A193, 21 – [167,190]

Giulini, D., Kiefer, C., and Zeh, H.D. (1995): Symmetries, superselection rules, and
decoherence. Phys. Lett. A199, 291 – [109,111,181]

Glansdorff, P., and Prigogine, I. (1971): Thermodynamic Theory of Structure, Sta-
bility and Fluctuation (Wiley) – [60,79,82]

Gleyzes, S., Kuhr, S., Guerlin, C., Bernu, J., Deléglise, Hoff, U.B., Brune, M.,
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Schlögl, F. (1966): Zur statistischen Theorie der Entropieproduktion in nicht abge-

schlossenen Systemen. Z. Phys. 191, 81 – [70]
Schloßhauer, M. (2004): Decoherence, the measurement problem, and interpreta-

tions of quantum mechanics. Rev. Mod. Phys. 76, 1267 – [134]
Schloßhauer, M. (2006): Experimental motivation and empirical consistency in min-

imal no-collapse quantum mechanics. Ann. Phys. (N.Y.) 321, 112 – [103]
Schmidt, E. (1907): Zur Theorie der linearen und nichtlinearen Integralgleichungen.

Math. Ann. 63, 433 – [97]
Schrödinger, E. (1935): Discussion of probability relations between separated sys-

tems. Proc. Cambridge Phil. Soc. 31, 555 – [97]
Schulman, L.S. (1997): Time’s Arrows and Quantum Mechanics (Cambridge Uni-

versity Press) – [156,159]
Schulman, L.S. (1999): Opposite thermodynamical arrows of time. Phys. Rev. Lett.

83, 5419 – [57]
Schuster, H.G. (1984): Deterministic Chaos (Physik-Verlag, Weinheim) – [72]
Scully, M.O., Englert, B.-G., and Walther, H. (1991): Quantum optical tests of com-

plementarity. Nature 351, 111 – [105]
Shannon, C. (1948): A mathematical theory of communication. Bell System Techn.

J. 27, 370 – [68]
Shor, P.W. (1994): Algorithms for Quantum Computation: Discrete Logarithms

and Factoring. In: 35th Annual Symposium on Foundations of Computer Sci-
ence, ed. by S. Goldwasser (IEEE Computer Society Press) – [108]

Smart, J.J.C. (1967): Time. In: Encyclopedia of Philosophy , Vol. 8, ed. by Edwards,
Th. (Free Press) – [8]



References 223

Smoluchowski, M. Ritter von (1912): Experimentell nachweisbare, der üblichen
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Gödel’s theorem, 72
graceful exit problem, 168
Green’s function, retarded, 20, 25, 64,

120

H-functional, 46, 51
H-theorem, 46
Hamiltonian constraint, 111, 165, 166,

179, 180
Hawking radiation, 138, 144, 145, 148,

152
heat capacity, negative, 5, 135
heat death, 39, 41
historical nature, 7, 23, 40, 66
history

apparent, 104, 113, 193
consistent, 128, 160
decoherent, 124

horizon problem, 157
human knowledge, 85, 201
hyperbolic equation, 20, 23, 24, 138,

182, 183, 188, 191

ideal gas, monatomic, 47, 136
indeterminism

apparent, 202
local, 56
macroscopic, 56, 72, 73
symmetric, 81

inflation, 144, 157–159, 167
information capacity, see entropy

capacity
information loss paradox, 147, 195
ink drop analogy, 53, 55
invariant rate of radiation, 30, 32
irreversibility, 4, 19, 40, 42, 43, 46, 56,

79, 80, 85, 125, 130, 145, 188, 201
logical, 76
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