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Deconvolution of energy spectra in the ATIC experiment
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The Advanced Thin Ionization Calorimeter (ATIC) balloon-borne experiment is designed to perform cosmic-

ray elemental spectra measurements from below 100 GeV up to tens of TeV for nuclei from hydrogen to

iron. The instrument is composed of a silicon matrix detector followed by a carbon target, interleaved with

scintillator tracking layers, and a segmented BGO calorimeter composed of 320 individual crystals totalling

18 radiation lengths, used to determine the particle energy. The technique for deconvolution of the energy

spectra measured in the thin calorimeter is based on detailed simulations of the response of the ATIC instrument

to different cosmic ray nuclei over a wide energy range. The method of deconvolution is described and energy

spectrum of carbon obtained by this technique is presented.

1. Deconvolution as ill-posed problem and the solution method with Tikhonov’s

regularization

The ATIC experimentmeasures the spectra of energy deposit 	�
����� in a BGO-calorimeter for different primary
particles. The problem is to calculate the initial spectra of primaries ��
����� knowing the spectra of energy
deposits. Deposit spectra are connected with primary energy spectra by the Fredholm equation	�
������� ��� 
�������� � � ��
�� � �"!�� � (1)

where

� 
������� � � is a response function of the instrument, which was determined in the present work by
Monte Carlo simulation separately for different primaries. Determining ��
�� � � for a given 	�
������ is known as
a deconvolution problem.

The actual experimental spectra is recorded as a number of counts in logarithmic bins dividing the total energy

range # �%$'&)(*�+�%$-,/.10 into 2 intervals. If the primary energy spectra are found in the same form, then (1) can be
rewritten as a system of equations 3 &4� (56+798;: & 6�<=6 �?>@�BAC��DE�GF�FGFH2 (2)

where

3 & is the number of events in the energy deposit bin > , : & 6 is an element of the response matrix, and <I6 is
the number of counts of the primary spectrum in bin J . In the present work ��$'&K(L�MA�N GeV, �%$-,/.I�MA�NPO TeV,2Q�RDCS (5 bins per one decade of energy).
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The problem of finding the values of <T6 from (2) refers to the class of ill-posed problems. The direct solution
of the equation is possible, but the result is meaningless because there is no smooth connection between the

initial data

3 & and the result <=6 . To obtain a meaningful solution of the deconvolution problem (2) we must
suppress the oscillations of the solution <T6 . A wide-spread practice is to use a square norm of second derivative
of solution as a regularization term with weight U , where U is known as the parameter of regularization. To do
this we can rewrite equation (2) as a minimization problemVXW 
 <Y8 ��FGF�FG� < (E�X� (5 & 798YZ%[ (6+798 : & 6 < 6-\ 3 &] & ^I_�` Uba (dc 856+7 _

e <=6+f98 \ D <�6 ` <�6 c 8] 6 g _�hjibk)l (3)

where ] & is a standard deviation of 3 & .
But the function (3) is not very good for one reason. It is obvious that in the limit of very high U the second
item in (3) will dominate and the solution will tend to some straight line. But it is expected that the shape of the

spectrum is generally like a power law with the index \ DEFnmCS for equidistant bins or \ APFnmCS for logarithmic bins.
So the idea is to minimize the second derivative of < 6Yo � 8qp r�s6 instead of the second derivative of < 6 . Then
the solution will tend to a power law for high values of U and distortion of the spectrum due to regularization
is minimized.

Let us define the solution < 6 by < 6utwv"6�x �6 , where x �6 is some reasonable “initial approximation” for the
expected result < 6 . Then the function (3) can be rewritten asV 
 v 8 ��FGFGF�� v (y�X� (5 & 798YZ [ (6+798 : & 6�x �6 v"6%\ 3 &] & ^ _ ` U=a (dc 856+7 _ Z{z

x �6+f@8 v 6+f98 \ D x �6 v 6 ` z c 8 x �6 c 8 v 6 c 8] 6 ^ _ (4)
where z t 
�� 6+f98�| � 6 � 8qp r�s . It is obvious that minimization of the first item of (4) is equivalent to solution of
equation (2). Minimization of (4) means that there needs to be some compromise between the exact solution

(the first sum in (4)) and the minimum of oscillations of < 6 (the second sum in (4)). This procedure is called
the method of Tikhonov’s regularization [1]. Different values of U lead to different strength of regularization.
The case U}�jN corresponds the absence of regularization. The problem is to choose a value of U and to
minimize function (4).

2. Problem of errors calculation and choice of regularization parameter ~
Let us suppose that we have chosen the parameter of regularization U (from some consideration) and now we
are able to minimize (4) and find the solution 
 v4�8 �GFGF�F�� v*�( � . We know that the initial data 3 & have errors ] & and
the values of matrix : & 6 are also known with errors ] : & 6 . The question is: what is the statistical errors of our
result v��6 ? It is rather difficult to trace analytically the influence of ] & and ] : & 6 to the result v*�6 . The simplest
way to answer this question is to utilize Monte Carlo simulations. Using back restored values of

3 & :�3 &4� (56+798;: & 6�< �6 � < �6 � x �6 v �6 � (5)

along with initial values of matrix elements : & 6 , standard deviations ] & and ] : & 6 as standard errors for �3 & and: & 6 respectively, we can generate a set of � species of simulated experimental data � 3��& � : �& 61� ( ����AC��FGF�F��+� )
and solve the deconvolution problem for each of them. This way we will obtain a set of results �;
 v � 8 ��FGF�F�� v �( �G� .
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Figure 1. The mean correlation function of carbon.

From this set we can get the statistics of distribution of the deviations for the sought result 
 v9�8 �GF�FGF�� v��( � . This
Monte Carlo method is very simple and was used by us to calculate the error of results in the deconvolution

problem. We used a value of ����A�NCN because the relative error of error of < 6 is reasonable: A |P� ����A�N�� .
We need to obtain both standard deviations for the mean values of 
 v9�8 �GFGF�FG� v��( � and the complete covariation
matrix �����d� $ ����
 v � \�v �� ��
 v $ \�v �$ �/�1���H� �w�BAC�qD"��FGFGF/�+2 (6)

The reason is that the values of v¡�6 for different J are not independent from each other unlike the experimental
data

3 & . The complete statistical properties of the final result 
 v4�8 �GF�FGFG� v��( � are described by the complete
covariation matrix, not by the deviations only. The standard deviations can be obtained by] v �6 �B¢ ����� 6£6 (7)

We calculate the complete covariation matrix in our method, but it is rather difficult to use this matrix directly

to understand the statistics of the result. It is suitable to use some simplifications. The first step one can do is

to say that the estimation of deviations (7) is a rough estimate of the errors for v9�6 . The errors for < �6 will be] < �6 � ] x �6 v �6 . The second step uses the value of “mean correlation function” of v �6 with value of v �6+f¡¤96 ,
where ¥�J¦�§NE�q¨¦AP�q¨�DE�GFGF�F The correlation matrix is defined by equation���P©+©+� $ � ����� � $� �����d�ª�«����� $'$¬ # \ AC�GAG0®� ���P©+©H�¯� t A (8)

and can be easily calculated if one knows the covariation matrix (6). The value of

���C©�© 6+° 6�±@8 shows what is the
degree of correlation of the element in the J -th bin with neighbouring bins at the left or right side. The “mean
correlation function” denotes an averaging of

���C©�© 6�° 6+f¡¤96 over all J for fixed ¥�J² 
®¥�Jd�³� A´ 
®¥�Jd� 5 6 ���P©+© 6+° 6+f¡¤96 � ² 
 ` ¥�Jd� t ² 
 \ ¥�Jd�/�µ¥�JY��NE�/¨¦AC�/¨�D"�GF�FGF (9)

where
´ 
¥�Jd�{�¶2 \¸· ¥�J · is a corresponding number of items in the sum. The value of ² 
¥�Jd� indicates the

mean correlation between channels for given ¥�J and for the whole spectrum. Figure 1 shows an example of
the mean correlation function.



356 K.E. Batkov et al.

lg(E), GeV
1 1.5 2 2.5 3 3.5 4 4.5 5

lg(E), GeV
1 1.5 2 2.5 3 3.5 4 4.5 5

1
.7

5
N

/b
in

 E

-10

0

10

20

30

40

50

60

70

80

6
10×

E, GeV per nucleon
1 10 210

3
10

E, GeV per nucleon
1 10 210

3
10

]
1
.7

5
(G

e
V

/n
)

-1
s

r
-1

s
-2

[m
2
.7

5
E

×
 F

lu
x

1

10

Figure 2. Spectrum of energy deposition of carbon. Open

squares: experimental spectrum ¹uº , full triangles: back
restored spectrum »¹uº . Figure 3. Spectrum of carbon. Full circles: present work,

open stars: HEAO-3-C2 [2].

Consideration of the mean correlation function
² 
®¥�Jd� gives us a way to choose the parameter of regular-

ization U . Strong oscillation of the solution without regularization means strong anticorrelation of neighbour
bins, i.e.

² 
 A��b¼ \ A . The idea is to choose U such that strong anticorrelations would be changed to weak
correlations in neighbour bins. This goal may be easily achieved because

² 
HA�� monotonically depends on U ,
decreasing from values close to ` A for high U to the values close to \ A for low values of U . The value of ½ _per one degree of freedom for deviations of back-restored spectrum

�3 & , and the experimental spectrum 3 & , is
expected to be about A because �3 & should not trace statistical fluctuations of 3 & , but should deviate on values
of ¾ ��
 3 & \ �3 & � _ �¿¼ ] & F Such a value of ½ _ÁÀ A corresponds to the value of ² 
HA�� À NEFnS which actually
means weak correlation between neighbour channels, as expected. Our method is to choose values of U such
that

² 
 A��X�§NEFnS exactly for the spectra of all species that we consider.
The result of analysis for carbon projectiles is shown on figures 2 and 3. The spectra for other nuclei will be

discussed elsewhere.
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