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Selection Postulates and Probability Rules in the  

Problem of Quantum Measurement 

Alexander Panov 
Abstract 
Various approaches to quantum measurement problem within the framework of 
usual unitary quantum dynamics are considered. It is argued that neither 
decoherence theory nor many-worlds interpretation of quantum mechanics do 
provide ultimate solution of the measurement problem: they cannot solve the 
problem of an alternative selection within the framework of unitary quantum 
dynamics. It is argued that the selection postulate in quantum theory is a very 
fundamental entity tightly connected with the nature of mathematics and with 
the nature of the mind, while the probability rules are more technical things 
admitting various approaches based on various sets of axioms. 
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1. Introduction1  
The quantum measurement problem 
The essence of the quantum measurement 
problem is in the following. The main quantum 
dynamical equation—Shrödinder equation—and 
evolution governed by this equation are 
essentially linear. Therefore, having initial 
quantum system under measurement S  in a 
state of superposition of some orthogonal 
eigenstates (say aS 〉|  and bS 〉| ) and supposing 
the measurement process to be governed by the 
Shrödinder equation, we inevitably obtain that 
the final measurement state must be a linear 
superposition of various measurement results 
( a  and b  in this particular situation). But 
actually only one of all possible results of the 
measurement is accepted by an observer— a  or 
b , not both a  and b  at the same time. The 
problem is that the dynamical equations of 
quantum mechanics do not provide a 
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mechanism of selection a single result of 
measurement. 

Mathematically the problem (in the above 
mentioned simple situation) may be written as 
following. Let the state of the system S  before 
measurement be a bS Sα β〉 + 〉| |  and the state 

of the device D  before measurement be .D 〉0|  
The device can produce the results a  or b  
represented by the final states of the device 

aD 〉|  and bD 〉|  respectively. Solution of 
Shrödinder equation provides then a linear 
(moreover—unitary) operator U  that describes 
evolution of the composite system S D⊗  during 
the measurement. The device is a “good” device 
to measure a  or b  if  

 

a a a b b bU S D S D U S D S D〉 〉 〉 〉 〉 〉 〉 〉0 0| | =| | ; | | =| | . (1) 
 
The device D  of this kind provides the best 
possible measurement of the observable 
represented by the values a b{ , }  in the sense of 
the minimal disturbance of the measured system 

.S  The related measurement is called ideal 
measurement or measurement of the first type. 
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It is sufficient to consider only ideal 
measurements to trace the problem of quantum 
measurement. It follows from  (1) and linearity 
of operator U  that  
 

a b a a b bU S S D S D S Dα β α β〉 + 〉 〉 〉 〉 + 〉 〉0( | | )| = | | | | .    (2) 
 
It is clearly seen from (2) that if the system S  
was in a superposition of the eigenstates before 
the measurement then both outcomes a  and b  
(both pointer positions) are presented in the 
final state of the measurement. What is the 
mechanism that selects a single alternative for 
an observer? 

One possible solution of this problem is 
known long ago. It is so-called Copenhagen 
interpretation of quantum mechanics that 
introduces a notion of projection postulate or a 
postulate of collapse of a quantum state. This 
interpretation lays in the basis of most textbooks 
on quantum mechanics. Projection postulate 
proclaims that in a measurement like (2) the 
system S D⊗  after the measurement actually 
will be either in the state a aS D〉 〉| |  (with 

probability α 2| | , and the result of measurement 

will be a ) or in the state b bS D〉 〉| |  (with 

probability β 2| | , the result being b ) and no 
linear superposition of the eigenstates exist after 
the measurement have finished. 

In the mathematical language of quantum 
mechanics projection postulate means that the 
initial ensemble representing the initial pure 
quatum state evolves during the measurement 
into an ensemble described by a so-called mixed 
state. This evolution is neither linear nor 
reversible, contrary to the evolution predicted 
by Shrödinger equation. There are no direct 
logical contradictions in such approach but it 
looks unsatisfactory because it sharply separates 
measurements (that are not subject of linear 
Shrödinger evolution) from all other “regular” 
physical processes (those governed by linear 
Shrödinger equation) without exact clarification 
what is a measurement process and what is not. 
This unsatisfactory situation may be considered 
as another formulation of the quantum 
measurement problem. Therefore, the 
measurement problem may be formulated first, 
as the problem of selection of alternative and 
second, if we appeal to projection postulate, as 

coexistence of two different evolution laws - 
regular, governed by Shrödinger equation and a 
special law to describe measurements - 
projection postulate. 

Note that the projection postulate itself 
proclaims two sharply different things. First, it 
proclaims that the result of a measurement is 
some single pure state from a complete set of 
orthogonal states of the measured system - it is 
selection part of the projection postulate. 
Second, it predicts the probabilities to find these 
outcomes - this is probabilistic part of the 
projection postulate (Born's rule for 
probabilities). We will see that these two aspects 
are characteristic of all approaches in 
interpretation of quantum mechanics and have 
sharply different status in quantum theory. 

Other ways to solve the problem of 
quantum measurement within traditional linear 
quantum mechanics (besides Copenhagen 
interpretation) are proposed by so-called 
decoherence theory (Guilini et al, 1996) and 
many-worlds interpretation (Everett, 1957; 
DeWitt and Graham, 1973). There exist also 
ways connected with no-linear modifications of 
the Shrödinger equation but they are beyond 
standard quantum mechanics and we do not 
touch them in the present paper. 

 
2. Decoherence theory and the quantum 
measurement problem 
Solving quantum measurement problem in 
decoherence theory may be presented in the 
following way. Consider first classical 
probabilistic experiment---situation without the 
problem of selection of an alternative. Let 
possible outcomes of the experiment be a  and 
b  and they take place with the probabilities ap  

and bp  respectively. It is known how this 
situation may be described in quantum 
mechanics. The following description is 
somewhat schematic, but no essential details 
are missed. Let outcomes a  and b  of the 
experiment correspond to the final states aC 〉|  

and bC 〉|  respectively of some classical system 
C  (for example, a coin that was tossed up). 
Then the statement “ a  has probability ap  and 

b  has probability bp ” means exactly “ aC 〉|  has 

probability ap  and bC 〉|  has probability bp ”. But 
the last statement quantum-mechanically means 
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that the system C  is in the mixed state 
described by the diagonal density operator  
 

C a a a b b bC p C C p Cρ 〉 〈 + 〉 〈=| | | |.                            (3) 
 
More precisely, we may consider that just after 
the test has been finished but before the 
observer's reading off the result, one must 
describe the system C  by the state Cρ . 

Alternatively, we may consider that the state Cρ  
describes the complete ensemble of the results 
of all tests of the probabilistic experiment. Thus, 
it is equally correct to say that a classical system 
C  is in the state like (3) and to say that the 
outcome a  has classical probability ap  and the 

outcome b  has classical probability bp . Both 
these statements mean no problem of selecting 
an alternative because the experiment is 
completely classical. It is very important that 
there is no other way to represent classical 
probability (meaning no selection problem) in 
quantum mechanics. The representation (3) is 
the maximum that we can obtain in quantum 
mechanics for this purpose. 

Now return to the quantum measurement 
described above. It is very important that the 
observer has no direct perception of the 
quantum system S  and its states. It is worthwile 
to say that the quantum system lays beyond the 
horizon of perception of the observer. The only 
available thing for the observer is the classical 
device and its states. Formally, an observer must 
describe quantum measurement as a particular 
process with some classical setups needed first 
“to prepare a quantum system” and then “to 
measure it” (the words “to prepare” and “to 
measure” are used only for convenience). 

Thus the observer's mind or her or his 
perception during quantum measurement deals 
exclusively with the states of the device .D  The 
device D  itself has no pure quantum state in the 
final entangled state of the measurement like  
(2). Instead, the state of the device is described 
by the density operator obtained as a trace 
(averaging) on all states of the system S  for the 
final state of the measurement. Such an 
operator is called the reduced density operator 
or reduced density matrix. If the complete final 
state of the measurement (2) is also written in 
the form of a density operator  

 

SD a a b b

a a b b

S D S D

S D S D

ρ α β
α β

〉 〉 + 〉 〉 ×
〈 〈 + 〈 〈* *

=( | | | | )

( | | | |)
                      (4) 

  
then the state of the device itself is  
 

D a SD a b SD b

a a b b

S S S S

D D D D

ρ ρ ρ
α β

〈 〉 + 〈 〉
〉 〈 + 〉 〈2 2

= | | | |

=| | | | | | | |.
                   (5) 

 
The device D  is a classical object and the form 
of its state  (5) occurs to be the same as for the 
classical system C  in the classical probability 
experiment, (3). But we have already established 
above that the form of state (3) (and (5) as well) 
is equivalent to the situation of classical 
probability test without any problem of selection 
of alternative. Consequently, during quantum 
measurement an observer, from its own point of 
view, does not meet a problem of selection of an 
alternative - just as in a classical probability 
experiment. That is, the mixed state of the 
device in the final state of the measurement 
solves the problem of selection of an alternative 
since it reduces this problem to the situation of a 
classical probabilistic test. Also there is no 
evident collapse or reduction of state - this may 
be a solution of complete measurement 
problem. The core of this argumentation is that 
it is unimportant what is the origin of a mixed 
state of some classical system: classical 
probabilistic experiment like (3) or separation of 
a mixed state from some pure quantum 
entangled state like in (5). From the observer's 
point of view these situations are equivalent. A 
diagonal density operator, irrespectively of its 
origin, is equivalent to some classical probability 
mixture. 

The above consideration was simplified in 
a number of points. For example, we completely 
neglected interaction of the device D  with its 
environment. Sometimes just decoherence of 
the state of the device arising due to interaction 
of the device with the environment is the main 
subject of the analysis in the decoherence 
theory (see, for example, the chapter written by 
E. Joos in the book (Guilini et al, 1996). However, 
interaction of the device with the measured 
microsystem is already a sufficient cause of a 
classical final state of the device in a 
measurement. Also, in some cases human 
sensory organs (for example, an eye) may play a 
role of the device. It may be shown that 
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different technical improvements of the 
consideration do not change the conclusion. The 
key features that lead to the solution of the 
problem are, first, entanglement of states of the 
measured system S  and the device D  during 
measurement like in (2), second, existence of the 
perception horizon of the human consciousness 
restricted only by the classical objects, and third, 
uniqueness of the representation of classical 
probability in quantum mechanical formalisms 
by a diagonal density operator. 

 
3. Projection postulate and decoherence theory 
The decoherence theory provides more deep 
view on the quantum measurement problem 
than the Copenhagen interpretation does. 
Indeed, the decoherence theory provides a 
dynamical description of quantum measurement 
and tries to derive selection of an alternative 
from unitary dynamics of the composite system, 
not from an explicit extradynamical postulate. 
But does the consideration above actually 
provide an ultimate solution of the quantum 
measurement problem? 

Subtle points of the consideration of 
section 2 are formula  (3) representing a state of 
classical statistical mixture and formula  (5) for 
the reduced density operator of the device D  in 
the final entangled state of the measurement. 
The problem is that the notion of density 
operator actually is connected with the 
projection postulate, therefore formulas like  (3) 
and  (5) make use of the projection postulate in 
an implicit way. This fact is known and was 
pointed out, for example, in (Guilini et al, 1996), 
p. 16 and p. 37, and (Zurek, 2007b). Let us 
discuss this point explicitly. 

 
3.1  Density operator and mean value law 
Both formulas  (3) and  (5) are implications of 
the general quantum mechanical formula for the 
mean value of an observable M  in any quantum 
state Ψ〉| :  

M M〈 〉 〈Ψ Ψ〉= | | .                                        (6) 
 
Moreover, the mean value law  (6) is a source of 
the notion of density operator. Proof of these 
statements is straightforward. 

Suppose first that we have an ensemble 
representing a statistical mixture of some system 
C  in orthogonal states iC 〉|  with probabilities 

ip . Let M  be any observable on the system .C  
Then for the mean value of M  we obtain from  
(6)  

 

i i i C
i

M p C M C Tr Mρ〈 〉 〈 〉∑= | | = ( ),                    (7) 

 where  
 

C i i i
i

C p Cρ 〉 〈∑= | |.                                                 (8) 

 
Equation (7) shows that the state of the system 
C  in a statistical mixture is represented by the 
diagonal density operator Cρ  (because the 
mean value of any observable M  is calculated 
through Cρ ) and  (8) coincides with the formula  
(3) that has been used above to represent a 
classical probabilistic experiment. Note also that 
the mean value law  (6) is a special case of the 
formula  (7) (with only one of ip  equal to unity 
and all the rest zero) and therefore may be 
derived from  (7) . Thus  (6) and  (7) are 
equivalent. 

Consider now the following state of the 
system S D⊗   

 

i i i
i

S DαΨ〉 〉 〉∑| = | |                                     (9) 

and some observable M  of the system D . Since 
this observable belongs to the system D  only, it 
may be written in the form:  
 

S DM I M⊗= ,                                            (10) 
 
where SI  is the unit operator in the space of 

states of system S , and DM  is an operator in 
the space of states of system D . Now find the 
mean value of M  in state Ψ〉| . Using general 
law  (6) , with  (9) and  (10) , we have  
 

i i D i D D
i

M D M D Tr Mα ρ〈 〉 〈 〉∑ 2= | | | | = ( ),      (11) 

 
where  

D i i S
i

S S Trρ 〈 Ψ〉〈Ψ 〉 ≡ Ψ〉〈Ψ∑= | | (| |).             (12) 

Arguing just as above, we see that Dρ  is the 
state of the system D  and (12) is an exact 
expression of Dρ  through the pure state Ψ〉|  of 
the complete (composite) system. The form of 
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the density operator (12) coincides with the 
formula (5) that was used in decoherence theory 
to solve the measurement problem. Thus both 
formulas (3) and (5) are implication of the mean 
value law  (6) . 

 
3.2  Mean value law, projection postulate and 
measurements 
Now let us prove that the mean value law (6) is 
equivalent to the reduction postulate. To prove 
this statement, let us first accurately define 
notions of ideal measurement and the relevant 
notion of observable. Some fine points 
connected with the problem of selection of an 
alternative actually have roots in the notion of 
observable or measurement. 

The main feature of the notion of 
measurement is that a measurement produces 
just one definite result each time when it is 
applied: one definite real number. However, 
quantum linear evolution generally does not 
lead to outcomes of this type. Therefore, if we 
want anyway to use notions of measurement or 
observable, we must postulate some kind of 
selection of an alternative from the very 
beginning. Notions of measurement and 
observable would be meaningless without such 
postulate. The following definitions represent 
one possible way to fix and justify these 
selection rules. 

Let S  be a quantum system with (for 
simplicity finite-dimensional) Hilbert space of 
states  . Then: 

 
Definition 3.2.1  Each ideal measurement   is 
unambiguously characterized by an orthonormal 
basis jS 〉{| }  of  . For any initial state Ψ〉|  of 

the system S  the result of the measurement is 
one of the states from the set of states jS 〉{| } . If 

the result of the measurement is iS 〉|  then the 

system S  is in the state iS 〉|  just after the 
measurement.  

 
Definition 3.2.2  An observable M  is connected 
with the measurement   if some real numbers 

im  correspond to the states iS 〉| . By definition, 

M  takes value im  if the result of the 

measurement   is iS 〉| .  
Obviously, the observable is 

unambiguously defined by the operator  

 

i i i
i

M m S S〉〈∑= | |.                                   (13) 

 
so im  and iS 〉|  are eigenvalues and 
eigenvectors of M  respectively. The above 
definitions explicitly proclaim existence of a 
selection of an alternative during measurement. 
The observable plays the role of a scale in 
respect to the measurement. 

Now consider a quantum system S  in the 
state  

 

i i
i

SαΨ〉 〉∑| = | ,                                          (14) 

 
where iS 〉|  form an orthonormal basis of the 
system. The reduction postulate claims that 
during the measurement we obtain the state 

iS 〉|  with the probability iα 2| | . 
First prove that the mean value law  (6) 

implies the projection postulate. The selection 
part of projection postulate have been included 
already in the definition of measurement 3.2.1 
so we should prove the probability part. Let us 
consider the observable described by the 
operator j j jP S S〉〈=| | . By definition 3.2.2, the 

observable jP  takes value 1 if the system under 

measurement is found in the state jS 〉|  and 

zero in all orthogonal states. Therefore the mean 
value of this observable is exactly the probability 
to find the state jS 〉|  during measurement. 

Starting from the formula  (6) we find  
 

j j j jP S S α〈 〉 〈Ψ 〉〈 Ψ〉 2= | | =| | .                 (15) 

 
This is the projection postulate prediction to find 
the state jS 〉|  with the probability iα 2| | . 

Now prove that the projection postulate 
implies mean value law (6). Consider any 
observable M  with the spectrum of values 

im{ }  and with complete set of eigenfunctions 

.iS 〉|  Then the operator of the observable is 

represented by (13). Let ip m( )  be probability to 

obtain value im  in measurement. By definition 

3.2.2, to find the value im  is the same as to find 

the state iS 〉| , therefore, according to the 

projection postulate, i ip m α 2( )=| | . Then we find  
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i i i i
i i

M p m m m Mα〈 〉 〈Ψ Ψ〉∑ ∑ 2= ( ) = | | = | | . (16) 

 
We have got the mean value law in the right 
hand side of  (16) . 

Since the projection postulate and the 
mean value law implicate each other, they are 
equivalent. 

 
3.3  Implicit use of projection postulate in 
decoherence theory 
Since equation (5) for the reduced density 
operator of the device is an implication of the 
mean value law (6), and since the mean value 
law and the reduction postulate are equivalent, 
then (5) is an implication of the reduction 
postulate as well. Moreover, formula (3) for 
density operator of classical statistical mixture is 
equivalent to the mean value law (6). Since both  
(3) and (5) are essentially used in solving the 
quantum measurement problem by the 
decoherence theory, then the solution of the 
quantum measurement problem proposed by 
the decoherence theory implicitly uses the 
projection postulate. Therefore it is impossible 
to say that decoherence theory solves the 
problem of measurement in a sense that it can 
eliminate and overcome the projection 
postulate. One can say only that the 
decoherence theory uses projection postulate by 
a less direct way and on the higher level than the 
Copenhagen interpretation does. Technically this 
provides great advantages, since it permits 
dynamical description and investigation of a 
measurement process. However, from the 
fundamental point of view the measurement 
problem remains unsolved: just as before, we 
have unitary reversible dynamics of Shrödinger 
equation and no-unitary and irreversible 
projection postulate. 

 
4. Quantum states of the mind, many-world 
interpretation and decoherence theory 
 The analysis of secton 3 may be improved by 
explicitly including into consideration not only 
the device D  but also quantum states of the 
observer's mind and states of the environment. 
The question is: Couldn't we describing the 
observer's perception, or mind, directly on 
quantum level, obtain explicitly selection of an 
alternative by the observer? Consider a system 

consisting of the following four parts: S — the 
measured microsystem; D —the measuring 
device; M —the mind of the observer; and E —
the macroscopic environment (which may 
include an arbitrary large fragment of the 
Universe, but not the entire remaining 
Universe). We assume that the composite 
system S D M E⊗ ⊗ ⊗  is isolated and performs 
unitary evolution in time during measurement. 

Note that the first trouble with this 
approach is that E  generally could not be 
isolated from the remaining Universe in any 
approximation. Quantum entanglement of E  
with remaining Universe is inevitable. Yet we 
could not directly include entire Universe into 
consideration because entire Universe is not a 
subject of unitary evolution in time: there is no 
external time for entire quantum Universe 
(DeWitt, 1967). So the isolated system 
S D M E⊗ ⊗ ⊗  is highly idealized object. This is 
a kind of artificial “island universe”. Consider the 
problem of measurement in this (unrealistic) 
approximation. 

Suppose as above that the system S  was 
in a superposition state a bS Sα β〉 + 〉| |  before 
measurement. We can consider the process of 
measurement, suggesting that the evolution 
operator U  describing the complete 
measurement acts as follows:  

 

a a a a a

b b b b b

U S D M E S D M E

U S D M E S D M E

〉 〉 〉 〉 〉 〉 〉 〉
〉 〉 〉 〉 〉 〉 〉 〉

0 0 0

0 0 0

| | | | =| | | | ;

| | | | =| | | |
 (17) 

 
One should understand that the evolution  (17) 
may be generally a multistep process. If we 
assume, for example, that S  interacts directly 
only with the device ,D  the device interacts 
only with the observer's mind ,M  and the 
observer's mind interacts with the environment 
E  then it would be three-step process: aS 〉|  

implies ,aD 〉|  aD 〉|  implies ,aM 〉|  aM 〉|  implies 

aE 〉|  (and the same for b ). But these details are 
not of high importance for the analysis (except 
that S  does not interact with M  directly—
quantum system is beyond the horizon of 
perception of mind). Note that we consider 
consciousness as a set of states of the material 
system M  which represents mind, or brain, or 
some substructures of brain of the observer. aM  
means the state of consciousness when the 
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observer perceives the result of measurement 
a , and analogously for b . 

Linearity of the evolution operator U  
implies that the measurement on the system S  
in state a bS Sα β〉 + 〉| |  may be written as  

 

a b

a a a a b b b b

f

U S S D M E

S D M E S D M E

α β
α β

〉 + 〉 〉 〉 〉
〉 〉 〉 〉 + 〉 〉 〉 〉

Ψ 〉

0 0 0( | | )| | | =

| | | | | | | |

=| .

 (18) 

 
It is seen that the state fΨ 〉|  includes both 

possible final states of the mind aM 〉|  and bM 〉|  

(and both states of the environment aE 〉|  and 

bE 〉|  as well). Our artificial island universe was 
splitted into two different branches 
corresponding to different possible outcomes of 
the measurement. In fact this is just what is 
supposed in the well known many-worlds 
approach to quantum mechanics interpretation 
(Everett, 1957; DeWitt and Graham, 1973). It is 
clearly seen that splitting of the universe in two 
branches is a direct and simple implication of 
linearity of the evolution operator .U  Having 
such a splitting of the composite system one 
could not immediately say anything about the 
mechanism of selection of an alternative in the 
mind of the observer. To solve this problem 
many-worlds interpretation proclaims selection 
postulate: after the measurement the mind finds 
itself in only one of the branches of the 
superposition  (18) while all branches still exist. 
Note that one more problem of the many-worlds 
approach (in the addition to the above 
mentioned problem with unitary evolution of 
the Universe) is that the meaning of the word 
'exist' in this context remains completely unclear 
since this 'existence' could not be confirmed by 
observations (at least it cannot be confirmed 
without any additional hypothesis). 

The selection postulate of many-worlds 
interpretation may be supported in the following 
way (Everett, 1957). Each component of 

f
Ψ 〉|  is 

the state of the measured system (together with 
the device) corresponding to some definite 
result of the measurement and to the correlated 
with it definite state of the memory of the 
observer. We know from our experience that 
subjectively memory concerning any event can 
only be in one definite state. Therefore, each 

component of 
f

Ψ 〉|  really is one definite 

subjective state of the observer after the 
measurement—one possible result of the 
measurement. This sounds reasonably but it is 
not a proof of the selection postulate, because 
the question remains: why we feel subjectively 
only one definite state of the memory while a 
number of states of the memory really exist in 
the final superposition? We can't answer this 
question, we can only fix that it is a matter of 
fact and a property of the mind. And it is just the 
content of the selection postulate. 

To connect the mathematics of many-
worlds interpretation with observations, many-
worlds interpretation must have some 
quantitative rule to produce probabilities 
besides the above mentioned selection 
postulate. If the probability rule tells that the 
probability of mind to find itself in a branch is 
proportional to the square of norm of this 
branch in the superposition fΨ 〉| , then 

operationally the selection postulate together 
with the probability rule is equivalent to the 
usual projection postulate and produces all usual 
results of quantum mechanics. The only change 
is that the words about reduction of the 
entangled state (or even initial state of the 
measured system) are replaced by the words 
about selection of a branch by the mind. 
Effectively we again have unitary dynamics plus 
unexplained projection postulate, but 
heuristically it is insisted in the many-worlds 
interpretation that no irreversible reduction of 
states occurs because all alternatives `coexist'. 

The problem of selection of a branch in 
many-worlds approach like (18) may be 
considered also within decoherence theory. To 
understand the situation better one can ask 
about the state of the mind of the observer after 
the measurement, irrespective of all other 
subsystems. This is important because it is only 
the state of mind that is 'truly directly 
observable' by the observer (we have nothing 
for our experience but our impressions). To find 
out the answer, one should calculate the 
reduced density operator for the system M  
(mind) in the state fΨ 〉| :   
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M

i j k f f i j k
i j k a b

a a b b

S D E S D E

M M M M

ρ

α β

〈 〈 〈 Ψ 〉〈Ψ 〉 〉 〉

〉 〈 + 〉 〈

∑
, , = ,

2 2

=

| | | | | |

=| | | | | | | |.
    (19) 

Equation (19) presents classical probability 
distribution on two possible states of mind 

aM 〉|  and .bM 〉|  This may be interpreted as an 
evidence that the mind finds itself either in the 
state aM 〉|  or in the state bM 〉|  with 

probabilities α 2| |  and β 2| |  respectively, but not 

in both states at the same time—like in classical 
probabilistic experiments (see discussion in 
section 2). We may seemingly conclude that the 
observer subjectively selects just one alternative 
(since we have classical distribution of 
probability for the states of the memory) 
although both alternatives actually coexist in the 
final state of the experiment, as it is seen from  
(18). However, we must remember that this 
conclusion depends on  (19) and this equation 
depends on the projection postulate as was 
explained in section 3. In the present case 
projection postulate was applied on even higher 
level than in the usual decoherence theory (it is 
now applied to the composite system including 
not only quatum system and device, but also 
mind and environment). But the projection 
postulate already presupposes selection of an 
alternative and irreversible evolution, therefore 
we have again no solution to the measurement 
problem. Rather, this is a step back relative to 
original many-worlds interpretation. 

 
5. Is projection postulate necessary indeed? 
As we have seen in section 3, one needs to 
postulate (in some form or another) selection of 
an alternative even to have the right to talk 
about observations. Yet there is no way to 
connect theory with reality without observables 
or observations. Therefore some selection must 
be postulated explicitly in the theory. But the 
situation with quantitative or probabilistic 
content of measurement postulates is different. 
Actually, the explicit formula for the Born's rule 
for the probabilities may be deduced from other 
postulates that may look more simple, more 
fundamental or more natural. There are a 
number of approaches of this type (see for 

references (Zurek, 2007b), but we consider here 
explicitly only three ones. 

 
5.1  Approach of H. Everett III 
The first approach is the one of Hugh Everett 
III—the author of many-worlds interpretation. 
The main aim of his seminal paper (Everett, 
1957) was to reformulate or to generalize 
quantum mechanics to make it applicable to 
such fundamental structures as the space-time 
itself. The main problem he saw on this way is 
splitting of quantum mechanics on unitary and 
reversible quantum dynamics and no-unitary 
and irreversible projection postulate. Everett 
proclaimed that his goal was to propose such a 
formulation of quantum mechanics which 
includes no projection postulate but which can 
nevertheless be deduced from the conventional 
formulation. So efforts were applied in (Everett, 
1957) to deduce projection postulate from its 
new ‘relative-state’ formulation (later frequently 
known as many-worlds interpretation). Everett 
understood that some selection postulate is 
inevitable to connect theory with reality, and he 
explicitly formulated that “Each branch 
represents a different outcome of the 
measurement” (Everett, 1957), p.320. This 
statement cannot be deduced from anything 
other. Besides, he tried to derive quantitative 
rules for probabilities. His method is the 
following. 

Let iφ 〉|  be a set of orthonormal states of 
some system (may be composed) and consider a 
superposition  

 

i i
i

a φ α φ ′〉 〉∑ | = | ,                                    (20) 

 
where the state φ′〉|  is supposed to be normed 
to 1. The question is, what is the probability 
measure of the term α φ′〉|  if included in some 
other superposition. Everett formulates two 
postulates to deduce this probabilistic measure. 

 
Postulate 5.1.1  The probability measure of 
α φ′〉|  depends only on α| | and does not depend 
on the phase of α  and on the nature of the state 
φ′〉| .  
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It is followed from the postulate 5.1.12 
that the probability measure for α φ′〉|  may be 
written as m α(| |) . 

 
Postulate 5.1.2 (Additivity)  For the term α φ′〉|  

defined by  (20) it holds ii
m m aα ∑(| |) = (| |) .  

The probability rule of the projection 
postulate is easily deduced from the above 
postulates. Actually, from  (20) we have  

 

i i ii i
a aα φ 〉∑ ∑ 2| |= | = | | .                    (21) 

 
Then from the postulate 5.1.2 and from  (21) we 
have  

( ) ( )i ii
i

m a m a∑ ∑2 2| | = | | .                (22) 

 
It follows immediately from (22) that 

m x cx( )=  for any x ≥ 0 . Here c  is some 
constant. Finally we obtain  
 

m cα α 2(| |) = | | .                                        (23) 
Up to a constant factor c  equation (23) 
coincides with the probability rule of the 
projection postulate. The value of the constant 
c  is fixed as c = 1  by condition that the measure 
of a single normalized state is equal to 1. To 
summaries, Everett's approach is based on 
additivity of probabilistic measure of orthogonal 
states. Note that the idea of the Everett's proof 
is somewhat similar to the Gleason's theorem 
(Gleason, 1957). 

 
5.2  Approach of D. Deutsch 
The second approach is due to paper of David 
Deutsch (Deutsh, 1999). We do not reproduce 
exactly the Deutsch's arguments since in our 
opinion they are too sophisticated (based on the 
games theory, decision theory and related 
notions) and look to be not quite precise in some 
points (we mention two items below). However, 
the idea is clear and interesting. We provide 
below a simplified argumentation stimulated by 
the Deutsch's paper (Deutsh, 1999) but not 
coinciding with the arguments given in this 
paper. 

                                                
2Actually Evetrett formulated this condition but did not give it the 
status of a postulate. 

Our argumentation will be related to the 
mean value law (6) rather than the probabilistic 
measure of states like in the above Everett's 
argumentation. But we already have seen that 
the mean value law is equivalent to the 
projection postulate (see section 3.2). 

Consider a quantum system χ  with n -
dimensional space of states. We use the 
definitions of measurement and observable 
3.2.1 and 3.2.2. Let X  be an observable and 

n〉 〉|1 , ,|…  be a basis of corresponding 
normalized eigenstates, therefore the operator 
of the observable is ii

X x i i〉〈∑= | | , where ix  

are the values of the observable that it takes in 
single measurements. 

 
Postulate 5.2.1  For any state Ψ〉|  of the system 
χ  and for a measurement related to any 
orthonormal basis n〉 〉|1 , ,|… , for the 
measurement in the initial state Ψ〉|  there are 

probabilities ip  to find each state i〉|  of the 
basis.  

 
Corollary 5.2.1  For any observable X  with 
eigenbasis n〉 〉|1 , ,|…  and with spectrum 

nx x1 , ,…  there exists a mean value X〈 〉  for the 
measurement of the system in the state Ψ〉|  and  

i i
i

X p x〈 〉 ∑= .                                          (24) 

Proof. Since nx x1 , ,…  is only a scale of the 
measurement, then the probability of 
appearance of each value ix  due to postulate 

5.2.1 is ip  and by the meaning of probability we 

have .i ii
X x p x〈 〉 ≡ 〈 〉 ∑= n 

 
The mean value X〈 〉  for the observable 

with basis i〉|  and spectrum ix  measured in the 
state of the system Ψ〉|  may be expressed in 
two equivalent forms:  
 

i n
i

X x i i x xν ν〈 〉 〉〈 Ψ〉 ≡ Ψ〉∑ 1= ( | |;| ) ( , , ;| ).…      (25) 

 
Our purpose is to find the function 

nx xν Ψ〉1( , , ;| )… . We do not suppose the state 
Ψ〉|  to be normalized to unity, that is we try to 

prove the generalized form of the mean value 
law for no-normalized states:  
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.X X〈 〉 〈Ψ Ψ〉 Ψ 2
= | | /                            (26) 

 
To prove  (26) we need further postulates.  

 
Postulate 5.2.2  Let ii

a iΨ〉 〉∑| = | . Then 

i ja a| |=| |  implies i jp p= .  

Note that postulate 2.2 was not explicitly 
formulated in (Deutsh, 1999) but some similar 
statement was implicitly used in transition from 
eq. (10) to eq. (11) in (Deutsh, 1999). 

 
Postulate 5.2.3  Let ii

a iΨ〉 〉∑| = | . Then ia = 0  

implies ip| |= 0 .  
Corollary 5.2.2  If for some m n≤   

m

j
j

iΨ〉 〉∑
=1

| = |  

and ii
X x i i〉〈∑= | | , then  

m

i j
j

X x
m

〈 〉 ∑
=1

1
= .                                           (27) 

 Proof. Formula  (27) is a direct implication 
of equation  (24) and postulates 5.2.2 and 5.2.3. 
n 

Now consider a system with two-
dimensional space of states and prove that for 
any integer numbers k  and l  the following 
equality holds:  

kx lx
x x k l

k l
ν

+
〉 + 〉

+
1 2

1 2( , ; |1 |2 )= .                   (28) 

 
Equation  (28) is in fact all that we need to prove 
the mean value law  (26) in the general case. 
First, equation  (28) is a particular case of  (26) 
which under appropriate normalization of the 
state may be extended to any rational 
coefficients at 〉|1  and 〉|2  in two-dimensional 
state space. Further, from the physical point of 
view there is no difference between rational and 
any real coefficients since any real number may 
be approximated by rational numbers with any 
desired precision. If the coefficients are any 
complex numbers then the related phases may 
be accounted for by redefinition of the states 

〉|1  and 〉|2 . Thus we have got mean value law  
(26) for a generic two-dimensional case. Finally, 
the proof that is represented below may be 
extended to any n -dimensional case in a 
straightforward way. 

To prove  (28) we need additional 
postulate:  
 
Postulate 5.2.4  Let χ  be an observable of 
system χ  with orthonormal eigenbasis 

n〉 〉|1 , ,|…  and let nY Y〉 〉1| , ,|…  be any 
orthonormal states of some other quantum 
system Y . Then for any na a1 , ,…   
 

n i
i

n i i
i

x x a i

x x a i Y

ν

ν

〉

〉 〉

∑
∑

1

1

( , , ; | )=

( , , ; | | ).

…

…
 

 
Note that it is very fine postulate. This 

postulate supposes that in the left hand side the 
mean value X〈 〉  is measured in a pure state of 
the system χ  but in the right hand side there is 
no pure state for χ . It is supposed that if one 
entangles the system χ  with other system   
then 1) measurement on the observable X  is 
still possible and 2) the mean value will be the 
same as for the isolated system. Note that this 
(or similar) postulate was not explicitly 
formulated in the paper (Deutsh, 1999) while 
somewhat like this was implicitly used in the 
transition from equation (12) to equation (21) of 
the paper (Deutsh, 1999). 

Now let us prove  (28) . Suppose   to be 
k l+  dimensional quantum system with 
orthonormal basis k ly y +〉 〉1| , ,|…  and let  

 
k k l

a i b i
i i k

Y y Y y
k l

+

+

〉 〉 〉 〉∑ ∑
=1 = 1

1 1
| = | ; | = | .    (29) 

 
From postulate 2.4 we have:  
 

a b

x x k l

x x k Y l Y

ν

ν

〉 + 〉

〉 〉 + 〉 〉
1 2

1 2

( , ; |1 |2 )=

( , ; |1 | |2 | ).
       (30) 

 
On the other hand, to measure X  in composite 
system ⊗   (as prescribed by right hand side 
of  (30) ) means to measure the observable 

XYX X I⊗=   on this system. Actually, the 

states ji y〉 〉| |  form an eigenbasis of the X , 

each time when i =1  the result of measurement 
is x1 , and each time when i = 2  the result of 

measurement is x2 . The mean value of X I⊗   
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in the entangled state a bk Y l Y〉 〉 + 〉 〉|1 | |2 |  
may be written as   
 

k l k l

i i i i
i i

k k l

i i
i i k

k k l

i i
i i k

X

x y y x y y

y y

y y

ν
+ +

+

+

+

+

〈 〉


〉 〉〈 〈 + 〉 〉〈 〈



× 〉 〉 + × 〉 〉 +


× 〉 〉 + × 〉 〉 



∑ ∑

∑ ∑

∑ ∑

1 2
=1 =1

=1 = 1

=1 = 1

=

|1 | 1| | |2 | 2| |;

1 |1 | 0 |1 |

0 |1 | 1 |1 | .



  (31) 

  
It is seen from  (31) that the mean value X〈 〉  

is measured for the state which is a 
superposition of a number of eigenstates with 
the same weights 1. Therefore it follows from 
equation  (27) that the mean value must be an 
averaged value of corresponding eigenvalues. 
Since there are totally k l+  items in this 
superposition, k  items correspond to the 
eigenvalue x1  of the observable X , and l  

items correspond to the eigenvalue x2 , we 
immediately obtain from  (31) :  
 

XY

kx lx
x x k l X

k l
ν

+
〉 + 〉 〈 〉

+
1 2

1 2( , ; |1 |2 )= = .    (32) 

 
which had to be proved. 

 
5.3  Approach of W. H. Zurek 
Finally we would like to mention an approach 
proposed by W. H. Zurek as this approach is 
deep and very instructive. We will refer the most 
recent paper (Zurek, 2007b) but actually this 
approach was developed by Zurek in a number 
of papers (see (Zurek, 2007a; 2005) and 
references in (Zurek, 2007b)). 

Zurek emphasizes that usual approach to 
decoherence theory which based on using of 
reduced dencity matrix implicitly uses projection 
postulate and produces logical circles. Since 
projection postulate is in the deep contradiction 
with the main unitary part of quantum theory, 
then one of the main goal is to remove 
projection postulate from the theory in both its 
aspects: selection part and probabilistic part. He 
proclaims (Zurek, 2007b), p. 4: “instead of the 
demand of a single outcome we shall only 
require that the results of the measurement can 
be confirmed (by a re-measurement), or 

communicated (by making a copy of the 
record)”. To proceed Zurek starts with the 
following set of axioms (Zurek, 2007b), p.1, p.3, 
and statements which he calls 'Facts' (Zurek, 
2007b), p.11 (we use notations of (Zurek, 
2007b)): 

 
(o) The Universe consists of systems. 
 
(i) State of a quantum system is 
represented by a vector in its Hilbert space 

s . 
 
(ii)Evolutions are unitary (i.e., generated by 
Schrödinger equation). 
 
(iii) Immediate repetition of a 
measurement yields the same outcome. 

 
Fact 1: Unitary transformations must act 

on the  system to alter its state. That is, when an 
operator does not act on the Hilbert space s  of 

 , i.e., when it has a form S⊗ ⊗1… …  the state 
of   does not change. 

Fact 2:  Given the measured observable, 
the state of the system   is all that is needed 
(and all that is available) to predict 
measurement results, including probabilities of 
outcomes. 

Fact 3: The state of a larger composite 
system that includes   as a subsystem is all that 
is needed (and all that is available) to determine 
the state of  . 

 
Axioms (o)-(ii) declare standard unitary 

part of quantum mechanics and the axiom (iii) 
introduces the notion of measurement. It is seen 
from axiom (iii) that measurement is something 
that could be carried out or applied many times 
and that a measurement has some outcome. But 
it is not declared explicitly what is this outcome 
and this is in agreement with the tendency to 
avoid an explicit declaration of selection of an 
alternative. Then Zurek considers a system   
interacting with another quantum system   
(apparatus or environment) and he writes 
literally the following (Zurek, 2007b), p.4:  

 
Let us suppose (in accord with axiom 
(iii)) that there is a set of states which 
remain unperturbed by this 
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interaction - e.g., that this interaction 
implements a measurement - like 
information transfer from   to  :  

k k ks sε ε〉 〉 ⇒ 〉 〉0| | | | .  
 
Then he considers outcomes of a 

measurement exclusively as some pure states. 
However this is nothing else than an implicit 
postulating that the outcome of a measurement 
is a single pure state ks 〉|  of the measured 
system  , that is to say a measurement creates 
a pure state of a measured system. In the 
opposite case we could not apply to such 
outcome axiom (iii). And this is just a kind of a 
postulate of selection of an alternative. This of 
course is the demand of a single outcome of a 
measurement in the contradiction with the 
declared purposes in (Zurek, 2007b), p.4, as was 
cited above. A selection postulate is unavoidable 
again. 

One should note that the selection 
postulate implicitly used by Zurek is weaker than 
one in our definition of measurement 3.2.1 since 
the complete set of the possible outcomes is not 
fixed yet. May be, it is one of the weakest 
possible form of the selection postulate---this 
item should be studied (possible generalization 
is a subspace of Hilbert space as a possible 
outcome of the experiment). 

Then, instead of postulating of 
orthogonality of the possible outcomes of the 
measurement, with equation 

k k ks sε ε〉 〉 ⇒ 〉 〉0| | | |  and with axioms (i) and (ii) 

Zurek proves that all possible outcomes ks 〉|  
must be orthogonal. Further, with use of very 
useful and deep notion of envariance 
(entanglement - assisted invariance) (Zurek, 
2007b), p.9, and Facts 1-3 he proves some 
statement that is equivalent to our postulates 
5.2.2 and 5.2.3. That is, in the approach of Zurek 
(Zurek, 2007b) postulates 5.2.2 and 5.2.3 and 
orthogonality of outcomes are theorems. The 
rest of the proof that related to the Born's 
probability rule is similar to one of D. Deutch 
(Deutsch, 1999) and presented above 
simplification of his proof (section 5.2). 

Thus we see that while some sort of a 
postulate about selection of an alternative 
absolutely cannot be avoided if we would like to 
have a notion of observable or observation, the 
exact probability rules for this selection and 

complete set of outcomes must not be 
postulated. Rather all these may be deduced 
from other axioms that may look simpler or 
more suitable from different points of view. But 
we would like to stress that all these kinds of 
axioms while may look natural or simple, lay 
beyond the framework of the quantum linear 
dynamics and are arbitrary in respect to the 
quantum dynamical laws. The same is true for 
usual projection postulate of course. Therefore a 
freedom in selection of probability laws or 
related postulates is seemingly restricted only by 
experiment and is not restricted by the linear 
dynamical part of quantum mechanics. One can 
suppose that having the same linear and unitary 
quantum mechanics it is possible in principle to 
obtain quite different no-trivial physics with 
using different sets of additional interpretation 
(measurement) axioms. But is it possible really, 
even in some logically complete toy model? 
 
6.  Discussion 
To conclude, the decoherence theory and many-
worlds approach are large steps toward 
understanding of quantum measurement 
problem, however they do not provide a 
complete and fundamental solution of this 
problem. The reason is that these theories could 
not completely eliminate selection postulate and 
probabilistic rules or postulates that replace 
probabilistic rules. The latters lay outside of the 
linear quantum dynamics. Selection postulates 
and probability rules look to be clearly separated 
from linear dynamics of quantum theory and 
look to be somewhat obscure things. This is why 
a large field exists for further discussion of them 
as well as for speculations and unorthodox 
approaches like extended Everett's concept or 
postcorrection (Mensky, 2007). These 
capabilities should be thoroughly studied. The 
only thing that may point at the connection 
between quantum dynamics and additional 
postulates is that the quantum dynamics is not 
only linear but it is unitary. Such dynamics 
conserves normalization of state vectors that 
may point out on some important role of the 
normalization. But this role cannot be clarified 
only within the quantum dynamics. 

One can note that the positions of the 
decoherence theory and many-worlds approach 
in this respect are somewhat different. While 
the decoherence theory could describe a 
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measurement purely dynamically, in its 
interpretation part the notion of density 
operator is essentially used in different contexts. 
This is directly connected with the projection 
postulate. Therefore, the decoherence theory 
still supposes splitting of dynamics in two parts. 
Note also that the usage of other sets of axioms 
to deduce probability law instead of explicit 
mean value law  (6) or explicit Born's rule 

i ip a 2=| |  of the projection postulate (as was 
described in section 5) does not eliminate 
irreversible dynamics during measurement on 
some stage of the interpretation. 

At the same time many-worlds 
interpretation postulates finding of an observer 
himself, with some probability, within one of the 
branches of the quantum Universe while all the 
branches still coexist. Many-worlds 
interpretation says nothing about evolution 
which is irreversible and not unitary. In this 
respect this theory is in better logical agreement 
with unitary dynamics than the decoherence 
theory. But (as was pointed out above, section 4) 
the notion of coexisting different branches of 
the quantum Universe remains meaningless 
from the operational point of view. Moreover, 
logically closed many-worlds interpretation must 
include quantum cosmology without unitary 
evolution in external time. Rather, one should 
expect that time in this context would be an 
emergent phenomenon. 

Finally, some kind of the selection 
postulate is an absolutely necessary part of any 
interpretation of, or approach to linear quantum 
theory. And any kind of selection postulate lays 
outside of linear quantum theory itself. 

In fact, need of a selection postulate is 
merely a consequence of the way in which 
human mind or consciousness perceives the 
nature and may be considered as the property of 
the mind. We cannot (in clear mind at any rate) 
split our consciousness in a number of branches 
with a number of amplitudes and to think by 
such a “quantum logic”. It is a consequence of 
classical nature of the mind, and need in a 
selection postulate looks as a consequence of 
the same thing. 

Consciousness fixes the experience of 
perception of the nature and treats this 
experience as an informational images, and 
information is also a classical thing. Information 

supposes some kind of fixation of its content on 
some classical medium. The main way to think 
clearly and carefully about something in physics 
or about any other field is to process 
information by a logic—to think mathematically. 
Actually this concerns not only information 
about real nature. All branches of mathematics 
including “pure mathematics” presuppose 
possibility to fix information—axioms, theorems, 
proofs—on a classical medium (or, equivalently, 
they may be realized in operation of some 
classical apparatus like Turing's machine). Each 
mathematical proof or calculation must allow its 
realization as a physical process, at least in 
principle. There is no mathematics without 
possibility to fix information in a classical way. 
Consequently existence of mathematics is an 
implication of existence of classical world or, 
more exact, classical branches of the quantum 
Universe (in terms of many-worlds 
interpretation). Mathematics as a whole, 
including pure mathematics, is not a “clear mind 
product”, rather it has definite physical 
background, it cannot exist without classical 
world and therefore it is connected with 
decoherence theory, problem of selection, and 
again with the nature of the mind, and so on. 

From this point of view one may note that 
there exist obvious possible generalization of the 
notion of mathematics. This generalized notion 
may be called “partially quantum mathematics” 
and it supposes that some parts of a proof or a 
calculation are carried out without fixation of 
each intermediate steps in a classical medium, 
but by a pure quatum way with use of linear 
superposition of states of some agent. But some 
stages of calculation or at least the initial and the 
final states of the calculation must be classical—
in opposite case there may be no connection of 
such a proof or calculation with our mind. Also 
some “rules” of the quantum proof must be 
written out in some classical medium as a kind of 
program to drive the quantum agent (“quantum 
computer”). No “pure quantum mathematics”, 
without fixation the results and quantum rules in 
a classical medium, can exist. In the opposite 
case we would need a ``quantum mind'' to 
operate such pure quantum mathematics. 

These arguments show that the selection 
postulate in quantum theory is a very 
fundamental entity tightly connected with 
existence of mathematics and with the nature of 
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the mind—all these concepts are of the same 
depth. Selection postulate in some form or 
another is a necessary precondition even to start 
development of a scientific description of nature 
on quantum level. But the probability rules look 
more technical and admit various approaches on 
the base of various sets of axioms. 
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