
ar
X

iv
:1

61
0.

05
93

4v
1 

 [
he

p-
th

] 
 1

9 
O

ct
 2

01
6
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In a recently developed approach, geometry is modelled as an emergent property of random
networks. Here I show that one of these models I proposed is exactly quantum gravity defined
in terms of the combinatorial Ricci curvature recently derived by Ollivier. Geometry in the weak
(classical) gravity regime arises in a phase transition driven by the condensation of short graph
cycles. The strong (quantum) gravity regime corresponds to ”small world” random graphs with
logarithmic distance scaling.
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Discrete models of quantum gravity [1] are typically
based on (variants of) Regge calculus [2]. Since this
measures the curvature of simplicial complexes, space-
times are consequently discretized as generalized triangu-
lations. Recently, however a new approach has been de-
veloped in which a discrete space-time is not postulated
but, rather, it is considered as an emergent property of a
random network [3] : the correct space-time is expected
to self-organize according to the rules of the network and
is thus described by emergent topologies and geometries
[4].

First attempts to formulate such an emergent quan-
tum gravity go back to string nets [5] and the models
of quantum networks introduced in [6] and recently re-
visited in [7]. It has also been recently shown that ge-
ometry can emerge on the boundary of random tensor
networks [8]. In [9, 10] I have proposed a model in which
networks with the characteristics of discrete space-time
self-assemble form purely combinatorial bits as ground
states of an Ising-type model or, in other words, as the
most probable configuration of a Gaussian random graph
model.

Since these networks are essentially random configu-
rations, the Regge formulation of curvature is no more
applicable, a purely combinatorial version of Ricci cur-
vature is needed. Recently, exactly such a combinatorial
Ricci curvature has been proposed by Ollivier [11] and
further elaborated on in [12]. In this paper I prove that
the model proposed in [10] is quantum gravity defined
according to this combinatorial Ricci curvature.

The model is formulated in terms of N bits si = ±1
and N(N − 1)/2 bits wij = wji = 0, 1, for i, j = 1 . . . N .
A value si = +1 denotes the existence of space-time,
while si = −1 indicates the absence of space time (or the
presence of anti-space-time). A value wij = 1 denotes
a connection between bits si and sj , a value wij = 0
indicates that si and sj are not connected. These link
variables are symmetric, wij = wji and vanish on the
diagonal, wii = 0.

The Hamiltonian for the coupled Ising-network system
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is (I use natural units c = 1, ~ = 1)

H = H0 +HE ,

H0 =
J

2

∑

i6=j

∑

k 6=i

k 6=j

wikwkj −
1

2

∑

i6=j

siwijsj ,

HE = −
1

2g

[

Tr
(

w4
)

− 2
∑

i

(

w2
ii

)2
+
∑

i

w2
ii

]

, (1)

where the Ising coupling, representing the Planck energy
scale is also set to 1 for simplicity. J and g are then the
two dimensionless coupling constants of the model.
The second term in the Hamiltonian H0 is the stan-

dard ferromagnetic Ising model. The first term, instead
represents a nearest-neighbours antiferromagnetic Ising
model for the links, with ”nearest-neighbours” meant
in the sense that only links sharing a common vertex
are coupled. In absence of the antiferromagnetic link
term, and with the links wij uniformly drawn from ran-
dom adjacency matrices of degree 4 , the model would
be Kazakov’s random lattice Ising model in two dimen-
sions [14]. The generalizations with respect to Kazakov’s
model, thus consist in dropping the restriction to degree
4 and drawing the random adjacency matrices from a
Gaussian distribution. The model H0 is also closely re-
lated to the painted graphs of [15].
The competition between the vertex ferromagnetic

coupling and the link antiferromagnetic one generates
frustration in the model. First of all, vertices at the ends
of a non-vanishing link tend to align because of the stan-
dard ferromagnetic coupling. This same coupling favours
then the creation of many links in a vertex-aligned state,
corresponding to a fully formed space-time. On the other
side, due to the antiferromagnetic link coupling, creating
many links costs energy. The compromise is to create a
uniform, optimal number of links per vertex depending
on the coupling constant J , generating thus a connected
random regular graph with adjacency matrix w and con-
nectivity 2d for J = 1/4d− 1 as I have derived in [9, 10].
The first coupling constant J determines thus essentially
the dimensionality of the emerging space-time.
The elementary excitations above this ground state

are obtained by adding or subtracting one link and are
given by ∆addEij = 2d/(4d − 1) − 1/2 and ∆elimEij =

http://arxiv.org/abs/1610.05934v1
mailto:ca.trugenberger@bluewin.ch


2

1/2 − (2d − 1)/(4d − 1) [9, 10]. For large d these exci-
tation energies behave as O(1/8d) but they are O(1) for
the smallest d like d = 2, 3. For sufficiently large values
of g one can then consider HE as a perturbation which
is just lifting the large degeneracy in the ground state
manifold of H0, i.e. random regular graphs (note that,
in this space, the second and third terms in HE reduce
simply to the constants −8Nd2 and 2dN since w2

ii = 2d,
for all vertices i). The formation of a random regular
graph from a disordered soup of bits at high (stochas-
tic) temperature can be considered as the transition from
combinatorics to topology, in the sense that well-defined
neighbourhood relations are established. As I now show,
the gravitational coupling g governs the transition from
topology to geometry.

Random regular graphs [16] are ”small worlds”, i.e.
their diameter and average distances on the graphs scale
logarithmically with the number N of vertices (the vol-
ume). This behaviour is clearly unsuitable to model a ge-
ometric space-time. Random regular graphs have locally
a tree structure with very sparse short cycles governed
by a Poisson distribution [16] with mean (2d− 1)l/2l for
cycles of length l. Loosely speaking, the lack of links
used to form short cycles leaves lots of links available to
form ”shortcuts” among otherwise ”distant” parts of the
graph, causing the logarithmic scaling behaviour. From
a graph theory point of view, the energy term HE in (1),
favouring the formation of squares (4-cycles), ”uses up”
lots of links to make short cycles so that the graph ”opens
up” to become a ”large world” with graph distances scal-
ing as inverse integer powers of volume. I will now show
what the significance of this term is from a physics point
of view.

To do so I will introduce the concept of combinato-
rial Ricci curvature on generic graphs [11–13]. As in the
continuum Ricci curvature is associated with a point and
a direction on a manifold, its discrete version is associ-
ated with a vertex i and a link ei of a graph. Aver-
aging over all links emanating from a vertex gives the
discrete version of the Ricci scalar at that vertex. From
a geodesic transport point of view, the Ricci curvature
can be thought of as a measure of how much (infinites-
imal) spheres (or balls) around a point contract (pos-
itive Ricci curvature) or expand (negative Ricci curva-
ture) when they are transported along a geodesic with
a given tangent vector at the point under consideration.
The Ollivier curvature is a discrete version of the same
measure. For two vertices i and j = i + ei it compares
the Wasserstein (or earth-mover) distance W (µi, µj) be-
tween the two uniform probability measures µi,j on the
spheres around i and j to the distance d(i, j) on the graph
and is defined as

κ(i, j) = 1−
W (µi, µj)

d(i, j)
. (2)

The Wasserstein distance between two probability mea-

sures µ1 and µ2 on the graph is defined as

W (µ1, µ2) = inf
∑

i,j

ξ(i, j)d(i, j) , (3)

where the infimum has to be taken over all couplings (or
transference plans) ξ(i, j) i.e. over all plans on how to
transport a unit mass distributed according to µ1 around
i to the same mass distributed according to µ2 around j,

∑

j

ξ(i, j) = µ1(i) ,
∑

i

ξ(i, j) = µ2(j) . (4)

The Ollivier curvature is very intuitive but, in general
not easy to compute and work with. To help this, I will
introduce a small modification to H0 which is inessential
but makes things simpler and analytically tractable. This
consists in adding a term

H0 → H0 +
∞
∑

k=1

Tr
(

w2k+1
)

, (5)

which suppresses all odd cycles in the ground state man-
ifold. Graphs with no odd cycles are bipartite and for
bipartite regular graphs the Ollivier Ricci curvature sim-
plifies considerably [13]. As in the case of traditional
antiferromagnetic spin systems, the restriction to bipar-
tite structures renders the system amenable to analytical
analysis. In the present case, however, the restriction
is quite harmless since, as it is easy to convince oneself,
the Ollivier Ricci curvature scalar at one vertex is influ-
enced only by triangles, squares and pentagrams passing
through the vertex (which is a graph version of local-
ity embodied by dependence on first and second deriva-
tives only) and all these short loops are anyhow essen-
tially absent in random regular graphs (the probability
of such a short loop passing through a vertex vanishes
for N → ∞).
The Ollivier Ricci curvature of an edge (ij) of a regular

bipartite graph with connectivity 2d is given by [13],

κ(i, j) = −
1

d

[

(2d− 2)− |N1(j)|

+
∑

a

(|La(j)| − |Ua(i)|)× 1{|Ua(i)|<|La(j)|}

]

+
,(6)

where N1(i) denotes the set of neighbours of i which
are on a 4-cycle supported on (ij), 1 denotes the in-
dicator function (1 if the corresponding condition is
satisfied, 0 otherwise) and the undescript ”+” denotes
z+ = Max(z, 0) so that the Ollivier Ricci curvature for
bipartite graphs is always zero or negative. Suppose
that R(i, j) is the subgraph induced by N1(i) ∪ N1(j)
and R1(i, j)...Rq(i, j)are the connected components of
R(i, j). Then Ua(i) = Ra(i, j) ∩ N1(i) and La(j) =
Ra(i, j) ∩N1(j) for a = 1 . . . q.
This expression still looks forbidding but is in reality

quite simple. Two different squares (4-cycles) on a con-
nected regular graph can either share 0 edges, if they are
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separated, or 1 edge or 2 edges if they touch. It is easy to
convince oneself that the second term, involving the sum
of connected component of a subgraph only contributes
for squares that share 2 edges. Indeed, for an isolated
square |N1| = 1 for all vertices on the square. If an edge
supports Ns squares which do not share another edge,
then |N1(i)| = |N1(j)| = Ns and |Ua(i)| = |La(j)| since
all the vertices within N1(i) and N1(j) are disconnected
because of the absence of triangles in a bipartite graphs
and all the vertices of N1(i) are disconnected from those
in N1(j) since, by assumption, the edge does not support
two different squares sharing two edges.
In a random regular bipartite graph squares are ex-

tremely sparse, being distributed according to a Poisson
distribution with fixed mean (2d− 1)4/4 [17] so that the
probability of finding one vanishes for N → ∞. If the
coupling constant g is sufficiently large, the HE term in
the Hamiltonian will induce additional squares but typ-
ically not enough to reach with high probability dense
configurations in which there are lots of squares touching
on two edges. In this regime one can thus safely ignore
squares sharing two edges, in which case the Ollivier Ricci
curvature for 2d-regular bipartite squares reduces to

κ(i, j) = −
1

d

[

(2d− 2)−Ns(ij)
]

, (7)

where Ns(ij) is the total number of squares supported
on edge (ij). Note also that I have left out the subscript
”+”. This is because, for squares sharing maximally one
edge Ns(ij) ≤ (2d− 2), as I now show.
To do so, let me consider the uniform configuration

with maximum square density. First observe that, by
the degree sum formula 2e =

∑

i≥3 i vi, with e the num-
ber of edges and vi the number of vertices of degree i,
one can derive that 2d-regular graphs have exactly dN
edges. This means that one can uniquely assign to each
vertex exactly d edges. Out of d edges one can form
at most d(d − 1)/2 different squares that share maxi-
mally one edge. Therefore the total number of squares
is Nd(d − 1)/2 squares, each vertex having d(d − 1)/2
squares uniquely assigned to it. Since a square is made
of four vertices and four edges and there are a total of
N vertices and dN edges, this means that each vertex
is shared by exactly 2d(d − 1) squares and each edge is
shared by 2d − 2 squares. Thus, in this uniform con-
figuration with maximum number of squares (sharing at
most one edge) each edge supports exactly 2d−2 squares,
which shows that indeed Ns(ij) ≤ 2d−2. The maximum
value Ns(ij) = 2d − 2 for all edges is realized in Ricci
flat, locally Euclidean graphs with neighbourhoods lo-
cally homeomorphic to Z

d.
The ”integral” of the Ollivier Ricci curvature scalar

over the graph is

∑

i

κ(i) = −
2d− 2

d
N +

1

d2

∑

i

∑

ei

N (ei)

=
−4

d2

[

d(d− 1)

2
N −Ns

]

, (8)

with Ns the total number of squares on the graph. The
factor 4 comes from the fact that each square is shared
by four vertices. On the other side, the total number of
squares on a graph is given by [18]

Ns =
1

8

[

Tr
(

w4
)

− 2e− 2
∑

i

ki(ki − 1)

]

, (9)

where e is the total number of edges and ki are the vertex
connectivities. For the 2d-regular graphs of interest here
this reduces to

Ns =
1

8

[

Tr
(

w4
)

− 8Nd2 + 2dN
]

=
1

8

[

Tr
(

w4
)

− 2
∑

i

(

w2
ii

)2
+
∑

i

w2
ii

]

, (10)

where I have used that 2d = w2
ii is the uniform vertex

degree. Finally, one can combine (8), (10) and (1) to
obtain

HE = −
d2

g

[

∑

i

κ(i) +
2d− 2

d
N
]

, (11)

which shows that the term HE , favouring the formation
of squares on the graph is nothing else than a combi-
natorial version of the Einstein action (apart from an
irrelevant constant). Indeed, sampling random regular
bipartite graphs (rrbg) according to the Boltzmann prob-
ability

pB =
exp (−HE)

∑

rrbg exp (−HE)
=

exp
(

d2

g

∑

i κ(i)
)

Z
,

Z =
∑

rrbg

exp

(

d2

g

∑

i

κ(i)

)

, (12)

amounts exactly to computing the combinatorial quan-
tum gravity partition function. Note that the constant
term in (11) drops out from this expression and that the
combinatorial Ollivier Ricci curvature scalar is always
negative, making the sum well defined also for N → ∞.
The asymptotic number |Gb

N,2d| of random 2d-regular

bipartite graphs on N vertices is known [17],

|Gb
N,2d| =

(dN)! e−
1

2
(2d−1)2

((2d)!)N
∝ edN lnN , (13)

for N ≫ d. There is, instead essentially only one fully
ordered “Zd configuration” with Ns = N . For large N ,
the free energy is thus given by

F =
4

g

[d(d− 1)

2
N −Ns

]

− S (Ns) , (14)

where, with the approximation of ignoring squares shar-
ing two edges, 0 ≤ Ns ≤ (d(d − 1)/2)N and the entropy
satisfies

lim
Ns→d(d−1)N/2

S (Ns) = 0 , lim
Ns→(2d−1)4/4

S (Ns) = dN lnN .

(15)
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FIG. 1: Monte Carlo simulation of the average number of
squares for d = 2 and N = 200. Random regular graphs with
sparse squares Ns ∼ Poisson (20.25) and logarithmic distance
scaling at large values of the gravitational coupling constant
turn into Z

2 graphs with the maximum number of squares
Ns = N and power-law distances when gravitation becomes
weak.

In the strong (quantum) gravity regime g ≫ N , the en-
ergy term in the free energy is always overwhelmed by the
entropy and the typical configuration is that of a random
regular bipartite graph. In this regime squares (and all
other short cycles) are sparse, distributed according to a
Poisson distribution with mean (2d−1)4/4 , e.g. 20.25 for
d = 2 [17] and graph distances scale logarithmically with
the volume N . When gravity becomes weaker (classical),

g ≪ (2d − 2)/lnN , the energy term dominates the free
energy and the typical configuration is one with the min-
imum energy, i.e. with the maximum number of squares
Ns = (d(d−1)/2)N . This is a Ricci flat, locally Euclidean
configuration with neighbourhoods homeomorphic to Z

d

and graph distances scaling as N1/d. In between these
two extremal regimes one can expect a phase transition
in which squares condense and geometry emerges from a
purely random configuration. This transition, with the
average number of squares (4-cycles) as the order pa-
rameter is shown in Fig. 1 for d = 2 and N = 200
in a Metropolis Monte-Carlo simulation. This suggests
a second-order transition with critical point gc = O(N),
which would define the model non-perturbatively. As an-
ticipated, within the topology phase (with well defined
neighbourhood relations only) the emergence of geome-
try from random links is governed by the gravity coupling
constant g and induced by the condensation of the small-
est possible cycles. A similar conclusion has been reached
very recently in [19] where it was shown that, in graphs
where triangles are admitted as shortest cycles, geometry
is tied to the clustering coefficient.
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