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In the concordance model of the Universe, the matter distribution – as observed in galaxy number
counts or the intensity of line emission (such as the 21cm line of neutral hydrogen) – should have
a kinematic dipole due to the Sun’s motion relative to the CMB rest-frame. This dipole should be
aligned with the kinematic dipole in the CMB temperature. Accurate measurement of the direction
of the matter dipole will become possible with future galaxy surveys, and this will be a critical test
of the foundations of the concordance model. The amplitude of the matter dipole is also a potential
cosmological probe. We derive formulas for the amplitude of the kinematic dipole in galaxy redshift
and intensity mapping surveys, taking into account the Doppler, aberration and other relativistic
effects. The amplitude of the matter dipole can be significantly larger than that of the CMB dipole.
Its redshift dependence encodes information on the evolution of the Universe and on the tracers,
and we discuss possible ways to determine the amplitude.

I. INTRODUCTION

The concordance model of cosmology assumes statistical isotropy and homogeneity of the Universe. Since the Solar
System has a nonzero velocity vo relative to the cosmic frame defined by the cosmic microwave background (CMB),
this assumption requires that the matter distribution must have a kinematic dipole which is aligned with that of the
CMB1. This is a critical test of the foundations of the concordance model, as first pointed out and attempted in [2].

Up to now, attempts to measure the kinematic direction v̂o via the matter dipole are compromised by low median
redshifts and low number densities (see [3–6] for recent work). Accurate measurement of v̂o from the matter distri-
bution will become possible with next-generation galaxy surveys that will cover much of the sky out to high redshift
and with high number densities [7–9].

In addition to the direction v̂o, observations measure the amplitude of the matter dipole. This amplitude is
determined not only by Doppler and aberration effects, but also by properties of the galaxy survey and by the
evolution of the Universe. Here we focus on the amplitude of the kinematic dipole in galaxy redshift surveys, based
on number counts or on intensity mapping of HI (or other line emission). This redshift-dependent kinematic dipole
has not previously been presented, and measurements of the kinematic dipole up to now have used the projected,
two-dimensional number counts.

We analyse the contributions to the matter kinematic dipole, using observational variables and taking care to
include all relativistic effects. We start from the basic relativistic boost contribution to the number counts, and then
include contributions from the expansion history of the Universe, the evolution of source number density and the
magnification bias that arises from the magnitude limit of a galaxy redshift survey. Then we treat the case of HI
intensity mapping. The redshift-dependent amplitude of the matter kinematic dipole encodes independent information
about properties of the Universe and the tracer. We compare the amplitude of the matter kinematic dipole in the
angular correlation function to that of the CMB kinematic dipole. We also discuss possible ways to determine the
amplitude of the matter kinematic dipole.

1 Provided that the matter kinematic dipole is measured with high enough median redshift to beat down the influence of the local structure
dipole (see [1] for a detailed discussion).
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II. KINEMATIC DIPOLE IN GALAXY NUMBER COUNTS

Assuming that the observer moves with velocity vo as measured by CMB observations (with2 v0 ≈ 10−3), what is
the resulting dipole in number counts for a galaxy redshift survey? We break the answer down into steps.

A. Doppler and aberration effects

The boosted observer’s 4-velocity ũµo is related to the CMB rest-frame observer’s 4-velocity uµo by

ũµo = γ(vo)
[
uµo + vµo

]
= uµo + vµo +O(v2

o) where uµovoµ = 0. (1)

From now on, we neglect terms of O(v2
o) and second-order terms in metric perturbations. In the CMB rest-frame,

vµo = (0,vo). The boosted observer measures a different cosmological redshift z̃ to that measured in the CMB frame,
z. For a source in the unit direction nµ = (0,n) in the CMB frame, we have uµonµ = 0, and the backward lightray
vector is kµo ∝ −uµo + nµ. It follows that

1 + z̃

1 + z
=

(uµk
µ)o

(ũµkµ)o
=

1

1 + n · vo
, (2)

since the contributions to z, z̃ at the source are the same and cancel. Thus the observed redshifts are Doppler related:

1 + z̃ = (1 + z)
(
1− n · vo

)
. (3)

The direction of sources is affected by aberration, n → ñ. The photon wave vector kµ is invariant under a boost,
so that −ũµo + ñµ = (1−n ·vo)[−uµo +nµ], where we used (3). Projecting into the rest-space and using (1), we obtain

ñ =
(
1− n · vo

)
n + vo. (4)

Taking the cross product with v̂o, we have

sin θ̃ =
(
1− n · vo

)
sin θ, (5)

where θ = arccos (n · v̂o) and similarly for θ̃. By writing θ̃ = θ + δθ and expanding (5), we find

θ̃ = θ − vo sin θ. (6)

This shows that source images are aberrated towards the forward dipole direction. The azimuthal angle is unaffected
by boosting, so that solid angles at the boosted and rest-frame observers are related by

dΩ̃o
dΩo

=
sin θ̃

sin θ

dθ̃

dθ

dϕ

dϕ
= 1− 2n · vo, (7)

where we used (5) and (6). Since the intrinsic area of a source is invariant, we have d̃ 2
A dΩ̃o = d2

A dΩo, and hence the
angular diameter distance obeys

d̃A(z̃, ñ) = dA(z,n)
[
1 + n · vo

]
. (8)

The reduction of the solid angle along the forward dipole direction corresponds to an increase in the area distance,
since the object of given intrinsic size appears smaller and hence further away.

The total number of galaxies is invariant:

Ñ dz̃ dΩ̃o = N dz dΩ0, (9)

where N, Ñ are the numbers observed per redshift interval and per solid angle. Then, using (3) and (7), the number
count for the boosted observer is given by

Ñ(z̃, ñ) = N(z,n)
[
1 + 3n · vo

]
. (10)

The kinematic dipole in the number counts is thus 3n · vo, which can be thought of as the special relativistic
approximation to the matter dipole. There are two corrections that are needed: a redshift correction and a magnitude
correction. We deal with these in turn.

2 We choose units with c = 1 so that v0 is dimensionless.
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B. The redshift correction

Equation (10) contains implicitly an important correction arising from the difference between the observed (z, z̃)
and background (z̄) redshifts. This becomes apparent when we consider the fractional fluctuations in the number
counts (at first order in perturbations):

δÑ (z̃, ñ) =
Ñ(z̃, ñ)− N̄(z̃)

N̄(z̃)
=
N(z,n)

[
1 + 3n · vo

]
−
[
N̄(z̄)− (1 + z̄)n · vo dN̄(z̄)/dz̄

]
N̄(z̄)− (1 + z̄)n · vo dN̄(z̄)/dz̄

, (11)

where we used (3). Thus

δÑ (z̃, ñ) = δN (z,n) +

[
3 +

d ln N̄(z̄)

d ln(1 + z̄)

]
n · vo, (12)

which shows that the evolution of N̄ modifies the kinematic dipole. The contribution of ñ− n to δÑ is second order
in perturbations and we can rewrite (12) as

δÑ (z̃,n) = δN (z,n) + δvo

N (z,n), δvo

N (z,n) =

[
3 +

d ln N̄(z̄)

d ln(1 + z̄)

]
n · vo. (13)

We are assuming that the survey detects all galaxies, without any magnitude limit; the case of a magnitude limited
survey is considered below.

The observed proper volume element in the background is dV = dRdA = (adr) (d̄ 2
A dΩo) = (a/H)dz̄ (ar)2dΩo,

where r is the line-of-sight comoving distance. Then the background number of sources per z̄ per Ωo is given by

N̄ =

(
r2

H

)[
(1 + z̄)−3n̄s

]
, (14)

where n̄s is the proper number density of sources. The term in round brackets is the comoving volume per redshift
per solid angle, while the term in square brackets is the comoving number density. Thus the redshift correction in
(13) encodes a volume and a number density contribution.

Using (14) in (13), we can display the 3 types of contribution to the kinematic dipole:

δvo

N =

{
3 +

[
Ḣ

H2
+

2(1 + z̄)

rH

]
+
d ln

[
(1 + z̄)−3n̄s

]
d ln(1 + z̄)

}
n · vo. (15)

The first term in braces is the special relativistic Doppler + aberration contribution; the second term, in square
brackets, is the volume part of the redshift correction; the final term is the number density part of the redshift
correction. This last term is given by the ‘evolution bias’ of the tracer [10, 11]:

be = −
d ln

[
(1 + z̄)−3n̄s

]
d ln(1 + z̄)

, (16)

which measures the deviation from the idealized case of conservation of comoving number density, n̄s ∝ a−3, for which
be = 0.

In summary, the kinematic dipole in the number count contrast, when we assume that there is no magnitude limit,
is given by

δvo

N (z,n) = D(z)n · v̂o where D =

[
3 +

Ḣ

H2
+

2(1 + z)

rH
− be

]
vo. (17)

Here and below we drop the overbar on the background redshift where there is no ambiguity. Equation (17) holds for
any perturbed Friedmann spacetime. For the concordance model, we have

D(z) =

[
3− 3

2
Ωm(z) +

2(1 + z)

r(z)H(z)
− be(z)

]
vo LCDM. (18)

At low redshifts, the term 2(1 + z)/rH dominates: e.g., for z = 0.1, it is ∼ 20.
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C. Including the magnitude limit

Now we take account of the fact that only sources with observed magnitude m < m∗ are detected. Fluctuations in
the observed magnitude, which can be given by fluctuations in the luminosity distance dL, affect the number counts,
so that δÑ (z̃,n) is replaced by [10–12]

δÑ (z̃,n,m < m∗) = δÑ (z̃,n)− 5s(z̃,m∗)
δdL(z̃,n)

d̄L(z̃)
. (19)

Here,

s(z̄,m∗) =
∂ log N̄s(z̄,m < m∗)

∂m∗
(20)

is the magnification bias, where N̄s is the cumulative luminosity function:

N̄s(z̄,m < m∗) =
2

5
ln 10

∫ m∗

−∞
dm n̄s(z̄,m). (21)

We are interested in the kinematic dipole of (19), which requires the kinematic dipole of the luminosity distance

fractional fluctuation. Using the general reciprocity relation d̃L = (1 + z̃)2d̃A, together with (3) and (8), we find that

d̃L(z̃,n) = dL(z,n)
[
1− n · vo

]
. (22)

The luminosity distance in the direction of the boost is decreased since the observed flux L/(4πd̃2
L) increases while

the intrinsic luminosity L is invariant.
Taking account of the difference between observed and background redshifts, we find from (3) and (22) that the

fractional fluctuation is given by

δd̃L(z̃, ñ) = δdL(z,n) +

[
−1 +

d ln d̄L(z̄)

d ln(1 + z̄)

]
n · vo. (23)

In the background, d̄L = (1 + z̄)r, so that the kinematic dipole in the fractional luminosity distance fluctuation is3

δvo

dL
(z,n) =

(1 + z)

r(z)H(z)
n · vo. (24)

Finally, (19) and (24) lead to:

δvo

N (z,n,m < m∗) = δvo

N (z,n)− 5(1 + z)s(z,m∗)

r(z)H(z)
n · vo = Dgal(z,m∗)n · v̂o, (25)

where the amplitude of the dipole is

Dgal =

[
3 +

Ḣ

H2
+ (2− 5s)

(1 + z)

rH
− be

]
vo. (26)

Since the number density is a function of m, (16) should now be replaced by

be(z̄,m∗) = −
∂ ln

[
(1 + z̄)−3N̄s(z̄,m < m∗)

]
∂ ln(1 + z̄)

. (27)

Equation (26) generalizes (17) and gives the theoretical prediction for the amplitude of the kinematic dipole in the
number count contrast, for a magnitude-limited galaxy redshift survey.

To our knowledge, this expression is not given in previous literature on the cosmic kinematic dipole,4 which has
focused on the projected two-dimensional number counts. It shows how the redshift-dependent amplitude of the
kinematic dipole in the matter distribution is modified from the naive special relativistic approximation not only by
the expansion of the Universe, but also by the astrophysical characteristics (be and s) of the tracer used to map the
matter distribution.

3 This is in agreement with [13], noting that their n is minus ours. Note also that the dipole for the area distance is the same as (24).

4 Dgaln · v̂o is part of the general equation for the number count contrast observed on the past lightcone, but terms at the observer are
typically neglected in the final expression (e.g. [10, 11, 14]). There is also a monopole in the number count contrast, determined by the
metric gravitational potentials at the observer, but that is not relevant here.
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D. HI intensity mapping

The fractional fluctuations of brightness temperature for intensity mapping of the neutral hydrogen 21cm line
emission after reionization,5 can be obtained at first order from the number count contrast of HI atoms (see [12, 14]
for details). Perturbations in the brightness temperature are determined by those in the number count and in the
luminosity distance: δTIM

= δNIM
− 2δdL/d̄L. Comparing this with (19), it follows that the map from number count

to temperature contrast is given by setting s = 2/5 in (26):

DIM =

[
3 +

Ḣ

H2
− be

]
vo

(
sIM =

2

5

)
, (28)

where

be = −
d ln

[
(1 + z̄)−3n̄IM

]
d ln(1 + z̄)

= −
d ln

[
(1 + z̄)−2HT̄IM

]
d ln(1 + z̄)

. (29)

III. KINEMATIC DIPOLE IN THE ANGULAR CORRELATION FUNCTION

If we do not remove the kinematic dipole by a boost at the observer, then observations will measure the total
fluctuation, i.e.,

∆Ñ = ∆N + δvo

N , (30)

where ∆N is the observed fluctuation at the source:

∆N = δN −
(1 + z)

H
∂r
(
v · n

)
+ (5s− 2)κ+ ∆uls. (31)

The second term on the right is the observational correction from redshift space distortions and the third term is the
lensing magnification correction. The last term represents the ultra-large scale relativistic observational corrections
(see [10–12]). The angular correlation function for a redshift survey is defined by〈

∆Ñ (z,n,m < m∗)∆Ñ (z′,n′,m′ < m∗)
〉

=
∑
`

(2`+ 1)

4π
C̃`(z, z

′,m∗)P`(n · n′). (32)

Since the kinematic dipole term δvo

N does not correlate with the terms at the source, ∆N , we have〈
∆Ñ (z,n,m < m∗) ∆Ñ (z′,n′,m′ < m∗)

〉
=
〈
∆N (z,n,m < m∗) ∆N (z′,n′,m′ < m∗)

〉
+
〈
δvo

N (z,n,m < m∗) δ
vo

N (z′,n′,m′ < m∗)
〉

=
∑
`

(2`+ 1)

4π
C`(z, z

′,m∗)P`(n · n′) +
3

4π
Cvo

1 (z, z′,m∗)n · n′. (33)

The dipole in the boosted frame is related the intrinsic dipole in the rest-frame and the kinematic dipole as:

C̃1 = C1 + Cvo
1 . (34)

By (25), using 〈
(n · v̂o) (n′ · v̂o)

〉
=

1

3
n · n′, (35)

we find that the kinematic dipole is

Cvo
1 (z, z′,m∗) =

4π

9
D(z,m∗)D(z′,m∗), (36)

where for galaxies D = Dgal is given by (26), and for intensity mapping, D = DIM is given by (28).

5 The dipole in the eopoch of reionization is considered in [15].
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FIG. 1: The evolution and magnification biases in SKA galaxy (‘gal’) and intensity mapping (‘IM’) surveys. (The effective
magnification bias for IM, sIM = 2/5, is not shown.)

A. Comparison with the amplitude of the CMB kinematic dipole

In the concordance model, the matter kinematic dipole is aligned with that of the CMB. However the amplitudes of
the dipoles are different. The matter dipole depends on the expansion rate, and also on the astrophysical parameters
be and s. In particular, the amplitude is redshift-dependent. By contrast the CMB temperature kinematic dipole is
given simply by [16]

DCMB = vo. (37)

The amplitude of the matter kinematic dipole in number counts/ intensity, relative to that of the CMB, is thus

rD(z,m∗) =
D(z,m∗)

DCMB
=
D(z,m∗)

v0
= 3− 3

2
Ωm(z) + [2− 5s(z,m∗)]

(1 + z)

r(z)H(z)
− be(z,m∗). (38)

In terms of the observable angular correlations, the matter kinematic dipole amplitude relative to that of the CMB
is

rC(z, z′,m∗) ≡
Cvo

1 (z, z′,m∗)

CCMB
1

=
D(z,m∗)D(z′,m∗)

v2
o

, (39)

by (36) and (37).
We compute the ratios (38) and (39) for two redshift surveys that are planned for the Square Kilometre Array

(SKA) [17]: an HI galaxy survey in Phase 2, and an HI intensity mapping survey in Phase 1. In order to
predict the amplitude of the kinematic dipole in these surveys, we need only the evolution and magnification biases.
For the redshift evolution of the Hubble rate, we use the concordance model parameters Ωm0 = 0.3 = 1−ΩΛ0, h = 0.68.

be and s:

Fitting formulas for the evolution and magnification biases of the SKA2 HI galaxy survey are given in [18] for a
range of possible flux cuts. We choose a flux cut of 3µJy. For the SKA1 HI intensity mapping survey, the effective
magnification bias parameter is 2/5 [see (28)]. The brightness temperature is given in [19], and then the evolution
bias is computed via (29) (see also [12]). The results are shown in Fig. 1.

rD and rC :

Using the predicted be and s, we compute rD and rC for the two SKA surveys. The results are displayed in Fig. 2:
The upper left panel shows rD(z,m∗).
The upper right panel shows rC(z, z,m∗) = [rD(z,m∗)]

2 for both surveys.
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FIG. 2: The kinematic matter dipole in SKA galaxy (‘gal’) and intensity mapping (‘IM’) surveys, relative to the CMB.
Upper: The dipole in HI number counts/ intensity relative to the CMB [see (38)] (left); the dipole in the angular correlations
at the same redshift, z′ = z, relative to the CMB [see (39)] (right).
Lower: The dipole in the angular correlations at different redshifts, in the galaxy (left) and intensity mapping (right) surveys,
relative to the CMB.

The lower panels show rC(z, z′,m∗) = rD(z,m∗)rD(z′,m∗), for the galaxy (left panel) and intensity mapping (right
panel) surveys.

Figure 2 demonstrates that the theoretical amplitude of the matter kinematic dipole can be much larger than that
of the CMB, especially for the galaxy survey:

• The rD(z,m∗) curves in the upper left panel explain the behaviour of rC(z, z,m∗) in the upper right panel:
Galaxies – rD decreases monotonically and goes through zero at a low redshift, z ∼ 0.3, so that rC rises after
the zero-point.
Intensity mapping – rD also decreases monotonically but does not go through zero; as a result, rC decreases
monotonically.

• Similarly, for rC(z, z′,m∗) in the lower panels:
Galaxies – rC(z, z′,m∗) is negative when rD has opposite signs at z and z′. For the z = 0.1 curve (red), this
occurs when z′ & 0.3, while for the other curves (z = 0.5, 1, 1.5), it occurs when z′ . 0.3.
Intensity mapping – rC(z, z′) is always positive since rD > 0 at all z, z′.

The main driver for the difference between the two surveys is evolution bias: in the interval 0.1 < z < 3, we have
5 < be < 19 for galaxies,6 and −1 < be < 0 for intensity mapping. The be for galaxies is large enough that −be in (26)
can produce Dgal = 0 at low z, and then push Dgal to large negative values at high z. Both kinematic dipoles contain

6 Note that be for galaxies is sensitive to the flux cut. We chose 3µJy – for higher values (lower sensitivity), be is larger.
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the same positive expansion term 3− 3Ωm/2. The magnification bias contribution is zero for intensity mapping. For
galaxies, 0 < s < 2, so that the term (2 − 5s)(1 + z)/rH is positive and large at low z, but negative and small in
magnitude for higher z.

B. Determining the amplitude of the kinematic dipole

We briefly discuss theoretical options for the determination of the dipole amplitude (we do not consider here the
issue of optimal estimators and uncertainties). We assume that vo is known from the CMB.

The amplitude of the kinematic dipole as a function of redshift is given by a weighted integral of the boosted
correlation function:

Cvo
1 (z, z′,m∗) + C1(z, z′,m∗) = 2π

∫ 1

−1

dµµ
〈
∆Ñ (z,n,m < m∗) ∆Ñ (z′,n′,m′ < m∗)

〉
, µ = n · n′, (40)

which follows from (33), (34). The intrinsic dipole is a combination of the dipole from primordial perturbations, which
is of the same order as the perturbative C`, ` > 1, and the dipole from local structure. The perturbative dipole can be
neglected relative to the kinematic dipole. However, the local structure dipole dominates over the kinematic dipole
at low redshift, z, z′ . 0.7 [1]:

C̃1 = Cvo
1 + C loc

1 + Cprim
1 ≈ Cvo

1 + C loc
1

≈ Cvo
1 for z, z′ & 1. (41)

In the case z′ = z, the upper right panel of Fig. 2 gives examples of Cvo
1 , in units of the CMB dipole amplitude.

At low redshift, Cvo
1 is not a good approximation to C̃1.

The contribution of
〈
∆N ∆′N

〉
, i.e. the rest-frame correlation function, in (33) can be suppressed if z′ � z (e.g.

z = 0.1, z′ = 2.5). The reason is that for widely separated redshifts, the only non-negligible correlations from ∆N are
those involving the lensing convergence contribution (5s− 2)κ to ∆N [see (31)]. From (33),〈

∆Ñ ∆′
Ñ

〉
≈ (5s′ − 2)

〈
∆N κ

′〉+
〈
δvo

N δvo

N
′〉 ≈ 〈δvo

N δvo

N
′〉 for z′ � z. (42)

The local structure dipole in ∆N at redshift z dominates over δvo

N at z – but it does not correlate with any of the
terms at z′ and thus we can neglect it. Therefore〈

∆Ñ (z,n,m < m∗) ∆Ñ (z′,n′,m′ < m∗)
〉
≈ 3

4π
Cvo

1 (z, z′,m∗)n · n′ for z′ � z. (43)

The red curves (z = 0.1) at z′ = 2.5 in the lower panels of Fig. 2 give examples of Cvo
1 (in units of the CMB kinematic

dipole amplitude) with z′ � z. For intensity mapping, the lensing term in (31), and hence in (42), vanishes at first
order.

IV. CONCLUSION

Next-generation galaxy surveys over huge volumes of the Universe will deliver the accuracy required to perform a
key consistency test of the standard model of cosmology: that the kinematic dipole in the matter distribution should
be aligned with that of the CMB. In addition to the direction of the matter kinematic dipole, future surveys will
also be able to measure the amplitude of the dipole, which has not previously been investigated for galaxy redshift
surveys.

We derived the expression for the kinematic dipole, due to the velocity vo of the Solar System observer relative to
the rest frame of the CMB, in the number count contrast of galaxy redshift surveys, including the special case of HI
intensity mapping surveys. The kinematic dipole is determined not only by Doppler and aberration effects, but also
by redshift and magnitude perturbations. The general expression is given by (25) and (26):

δÑ = δN + δvo

N , δvo

N (z,n,m < m∗) = D(z,m∗)n · v̂o, D =

[
3 +

Ḣ

H2
+ (2− 5s)

(1 + z)

rH
− be

]
vo. (44)

For HI intensity mapping, the magnification bias is effectively s = 2/5 and be is determined by the background
brightness temperature.
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The number count contrast observed by the rest-frame observer, ∆N , is given by the real-space contrast δN plus
observational corrections from redshift-space distortions, lensing convergence and other relativistic effects on ultra-
large scales. For the boosted observer, ∆Ñ = ∆N + δvo

N , and the boosted correlation function is 〈∆Ñ ∆′
Ñ
〉. The

kinematic dipole term δvo

N does not correlate with the terms at the source, ∆N , and its contribution is much larger

than the intrinsic dipole, C̃1 = C1 + Cvo
1 ≈ Cvo

1 , provided that we auto-correlate at high enough redshift, or cross-
correlate with z′ � z, to beat down the effect of the local structure dipole. The boosted correlation function and its
kinematic dipole are given by (33)–(36):

〈
∆Ñ ∆′

Ñ

〉
=
〈
∆N ∆′N

〉
+
〈
δvo

N δvo

N
′〉 ≈∑

`=2

(2`+ 1)

4π
C`P` +

3

4π
Cvo

1 n · n′, (45)

Cvo
1 (z, z′,m∗) =

4π

9
D(z,m∗)D(z′,m∗) = 2π

∫ 1

−1

dµµ ,m < m∗
〈
∆Ñ (z,n,m < m∗) ∆Ñ (z′,n′,m′ < m∗)

〉
. (46)

We presented a theoretical computation of the amplitude of the matter kinematic dipole, using future SKA galaxy
and intensity mapping surveys as two examples. The evolution bias and magnification bias for these surveys, based
on simulations, are shown in Fig. 1. The amplitudes D and Cvo

1 of the kinematic dipoles in these surveys are shown
in Fig. 2, in units of the corresponding CMB quantity, and as functions of redshift.

The matter dipole amplitude is larger than that of the CMB for most redshifts – especially in the case of the
HI galaxy survey. In addition, Dgal(z,m∗) goes through zero and thus Cvo

1 gal(z, z,m∗) has a minimum of zero, at
z ∼ 0.3. The main driver of this behaviour is the large be for galaxies. For angular correlations across different
redshifts, Cvo

1 gal(z, z
′,m∗) may decrease or increase monotonically, depending on z. For intensity mapping, it is always

monotonically decreasing in the redshift range 0 < z < 3.
The amplitude of the matter kinematic dipole can be measured by correlations averaged over directions. When

z′ � z, the rest-frame correlations 〈∆N ∆′N 〉 in (45) are strongly suppressed, with only a small lensing contribution
surviving – which can be neglected relative to the kinematic dipole.

In principle, measurements of the amplitude give information on the Hubble rate H(z), similarly to the kinematic
dipole in luminosity distance [20], shown in (23). The more complicated kinematic dipole of spectroscopic number
counts/ intensity mapping, (44), also contains the tracer astrophysical parameters be and s, which makes extraction of
H more difficult – but the advantage is the high number density. Future work will investigate estimators to measure
the amplitude of the kinematic dipole, and the signal-to-noise for various surveys.
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