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Observable traces of non-metricity: new constraints on metric-affine gravity
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Relaxing the Riemannian condition to incorporate geometric quantities such as torsion and non-

metricity may allow to explore new physics associated with defects in a hypothetical space-time

microstructure. Here we show that non-metricity produces observable effects in quantum fields in

the form of 4-fermion contact interactions, thereby allowing us to constrain the scale of non-metricity

to be greater than 1 TeV by using results on Bahbah scattering. Our analysis is carried out in the

framework of a wide class of theories of gravity in the metric-affine approach. The bound obtained

represents an improvement of several orders of magnitude to previous experimental constraints.

Introduction. The Einstein equivalence principle is
the cornerstone of gravitational physics, supporting the
idea that gravitation can be interpreted as a geometric
phenomenon. Particles and radiation fields follow special
paths determined by a curved geometry, whereas their lo-
cal causal relations are determined by the metric. Gen-
eral Relativity (GR) and, more generally, metric theories
of gravity are built under the assumption that the geom-
etry is (pseudo-)Riemannian, i.e., that the metric is the

foundation of all. However, the experimental limits of
the Riemannian assumption are still not well established
[1–8] and some steps should be taken to better under-
stand whether geometric structures other than the metric
could be needed to account for all space-time properties.
In this regard, it is worth noticing that though much has
been done to infer the potential existence of higher di-
mensions [9] or supersymmetry [10], the roles of torsion
[12] and non-metricity [11] are much less known. The
physical relevance of these magnitudes can be appreci-
ated in condensed matter systems, where the underlying
lattice structure gives rise to the emergence of a continu-
ous geometry which cannot be described solely in terms
of an effective metric [13–15]. Torsion and non-metricity
become necessary to fully account for the physical char-
acteristics of those systems, such as plasticity and vis-
coelasticity, which are intimately related with the pres-
ence of topological defects in the crystal lattice [13–17].
Given our limited understanding of gravitation in the
high-energy regime, if the continuous space-time that we
perceive had some kind of “microstructure”, as expected
in almost the totality of approaches to quantum gravity
[18–41], it is legitimate to explore how the continuum
may arise and the potential impact that geometrical ob-
jects other than the metric could have in a low-energy
effective description. Though some observable effects of
torsion have been experimentally tested [42–46], the ob-
servable consequences of non-metricity still represent a
largely unknown territory.
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The main purposes of this Letter are 1) to show that
the observable effects of non-metricity may be more eas-
ily accessible than those of torsion and 2) set a lower limit
to the energy scale ΛNM at which non-metricity may be-
come important. To this end, we consider the effects
of non-metricity in quantum systems involving spinor
fields in both relativistic and non-relativistic scenarios.
To carry out this study, it is first necessary to work out
the generalization of the covariant Dirac equation [47] for
space-times with the most general form of non-metricity.
The nontrivial new elements involved in this generalized
equation of motion already suggest that non-metricity
could have observable effects, but a precise quantitative
analysis requires the definition of specific forms of non-
metricity. For this purpose, we use as a guide the pre-
dictions of a wide class of metric-affine theories of grav-
ity recently studied in the literature [48], which we call
RBG (Ricci-Based Gravity) theories. These theories are
defined by Lagrangians of the form Lgrav = f(gµν , Rµν),
where Rµν denotes the (symmetrized) Ricci tensor, such
that GR is recovered as a low-energy limit. Corrections
to GR appear as terms proportional to inverse powers
of ΛNM , the scale which we here wish to constrain ex-
perimentally. Our results apply to the vast majority of
metric-affine theories studied so far, e.g. f(R), Born-
Infeld (BI), and other extensions (see [49–53] for related
reviews). Indeed, a common feature of all RBG models
(with minimal matter couplings) is that non-metricity is
sourced by the local densities of energy and momentum
[53–68]. We explicitly show that this leads to geometry-
induced interactions among the matter fields. As a result,
to first order in perturbation theory, this coupling gener-
ates 4-particle fermion interactions whose amplitude can
be orders of magnitude larger than the 4-fermion inter-
actions typically associated with torsion. Within this ap-
proximation, the effects of torsion in RBGs are the same
as in GR and, thus, can be consistently neglected. Given
that, by using experimental data for Bhabha scattering
from LEP [69, 70], we are able to constrain the energy
scale at which non-metricity effects may arise, setting a
lower bound for ΛNM at the TeV scale.

Gravity-induced point-like interactions were already
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pointed out by Flanagan [71] (see also [72]) in the context
of 1/R gravity using a scalar-tensor representation. The
existence of a certain gauge freedom associated to the
projective invariance of RBGs, however, does not allow
to interpret those effects in f(R) theories as due to the
non-metricity, as a metric-compatible gauge choice (with
torsion) of those theories is possible [48, 73, 74]. On the
contrary, the broader class of gravity theories considered
here possess genuine non-metricity, and we are able to
ascribe the appearance of additional particle contact in-
teractions directly to this term [see below Eq.(6) for more
details].
Other kind of experimental constraints on the com-

ponents of non-metric tensors have been recently consid-
ered in [75] in the context of Lorentz symmetry breaking.
There the crucial assumption for breaking symmetries is
that the non-metricity tensor has a constant non-zero ex-
pectation value. We believe that dynamically generated
non-metricity should not introduce such violations, be-
ing the RBG models possible counter-examples, which
opens different avenues to explore this sector of the grav-
itational interactions.
Fermions in non-Riemannian spaces. The stan-

dard covariant Dirac equation in a curved Riemannian
spacetime can be easily obtained from the Lagrangian
[47]

L =
√
−g
[

1

2

(

ψ̄γµ(∇µψ)− (∇µψ̄)γ
µψ
)

+ ψ̄mψ

]

(1)

and takes the form

(

γµ∇µ +m
)

ψ = 0 , (2)

which is known as the Dirac-Weyl-Fock (DWF) equa-
tion (see e.g. [79]). Here ∇µψ ≡ (∂µ − Γµ)ψ, where
Γµ ≡ ωµ

abσab, is the spinor connection, ωµ
ab ≡

1
2

(

∂µe
b
α + ebβΓµα

β
)

ηacec
α, σab ≡ 1

4 [γb, γa]
1and γµ =

ea
µγa, being ea

µ the vierbein defined by ea
µeb

νgµν = ηab
and γa the standard Dirac matrices. In non-Riemannian
spacetimes, the above equation (2) is modified. Con-
sidering non-metricity (Qµνα ≡ −∇µgνα) and torsion
Sµν

α ≡ −2Γ[µν]
α, the equation for spinor fields is (see

Appendix A)

[

γµ∇µ +
1

2

(

Sµα
α +Q[αµ]

α
)

γµ +m

]

ψ = 0, (3)

which recovers (2) in the Riemannian case.
RBGs and the non-metricity tensor. In order to
explore the physics associated to the break-down of the
metricity condition, ∇αgµν = 0, a non-metricity tensor
must be specified. In this sense, RBG theories are a
rather general but sufficiently simple family that nicely

1 σab are the generators of the Lorentz group in its usual form
within the spin representation.

fits to our purposes [80–87]. These theories possess an
Einstein frame representation [53, 80] in terms of an aux-
iliary metric hµν whose relation with gµν to lowest order
can be parametrized as

gµν = hµν + αThµν + βT µν . (4)

Here Tµν is the stress-energy tensor of the matter fields,

T its trace, and α and β are proportional to Λ−4
NM

up to some O(1) dimensionless coefficients. In RBG
models [53], this energy scale takes the form2 ΛNM =
(8πGλ2model)

−1/4 = (2π)1/4(EpΛmodel)
1/2 in units h =

c = 1. Rather than finding these model-dependent coef-
ficient we here aim to constrain the general energy scale
ΛNM . The Einstein frame representation shows that in
the weak field limit hµν ≈ ηµν + δhµν , with δhµν repre-
senting the usual Newtonian and post-Newtonian correc-
tions, which can be neglected in non-gravitational exper-
iments3. As a result, the metric and non-metricity tensor
become

gµν = ηµν + αTηµν + βT µν (5)

Qαµν = −α(∇αT )ηµν − β∇αT µν . (6)

Though the α-dependent term in (6) can be gauged away,
as in f(R) theories [48], the β contribution is a genuine
form of non-metricity. The effects of α, nonetheless, may
still arise through the tetrads associated to (5). Thus,
our scenario consists of a Minkowskian background cor-
rected by terms that give non-metricity (plus torsional
terms generated by the matter sector). Note that, as
non-metricity is sourced locally by (derivatives of) the
stress-energy tensor, then how energy and momenta are
distributed locally plays a pivotal role in determining
short-distance physics, since large departures from the
flat Minkowski metric could arise at high enough den-
sities. This opens the way to the search for departures
from GR in the high-density regime rather than in the
high-energy regime, as also suggested elsewhere relying
on different arguments [88], with implications in stellar
and nuclear matter models [53].
Particle interactions induced by non-metricity.

From (5), we obtain up to O1 in α and β:

eaµ = δaµ +
α

2
Tδaµ +

β

2
T a

µ +O2

ea
µ = δa

µ − α

2
Tδa

µ − β

2
Ta

µ +O2

√−g = 1 +
4α+ β

2
T +O2

Γµ = −1

4
Sµα

β

[

σα
β +

β

2

(

T b
βσ

α
b − Ta

ασa
β

)

]

+O2 .

(7)

2 Here Ep is the Planck energy and Λmodel = hc/λmodel.
3 This simply reflects that curvature effects can be locally re-
moved by a suitable choice of coordinates while the effects of
non-metricity cannot.



3

Writing the Lagrangian (1) as L = L0 + LI , where L0

is the usual spinor Lagrangian in Minkowski spacetime
[47], we get4:

LI =
β

2

(

T

[

ψ̄
↔

/∂ψ + ψ̄mψ

]

+ Ta
µ

[

ψ̄γa
↔

∂ µψ

])

+

+
3α

2
T

[

ψ̄
↔

/∂ψ

]

+O2 , (8)

where torsion has been neglected because, as shown in
[92], torsion-induced interactions are beyond experimen-
tal reach unless a very-high density of spin (the source
of torsion [91]) is considered. This behavior of torsion
contrasts with that of non-metricity, since the latter is
sourced by the energy-momentum density, which can be
more easily controlled and magnified in particle colliders.
The Lagrangian LI evidences that non-metricity in

RBGs induces contact interactions between a fermion
pair and any kind of field entering the stress-energy ten-
sor (even self-interactions). Accordingly, we can con-
strain ΛNM by requiring that the non-metric contribu-
tion to the cross-section of particle processes does not ex-
ceed the measurement error. This implies that theories
with non-metricity of the form (6) should be regarded as
effective theories because the lack of new dynamical de-
grees of freedom (as compared to GR) together with the
existence of 4-fermion contact interactions (8) may lead
to unitarity violations at the scale ΛNM (unless some
strong coupling mechanism beyond the linear approxi-
mation fixes this issue5).
Let us now focus on the process e+e− → e+e− in the
ultra-relativistic regime (me ≈ 0) for which up to O1

LI = −β
[

ψ̄

(

γa
↔

∂µ + γµ
↔

∂ a

)

ψ

] [

ψ̄γa
↔

∂ µψ

]

+O2, (9)

Within the Standard Model, the contribution of (9) to
the cross section of this process at tree level and order
O1 in β is

σNM ≃ 0.040β pb, (10)

where β = CmodelΛ
−4
NM , with Cmodel a model-dependent

dimensionless constant typically of O(1). Current data
on the process e+e− → e+e− can be found in [69, 70].
Measurements from LEP6 at a center of mass energy of√
s = 207 GeV show that the cross section for this process

is σexp = 256.9± 1.4± 1.3 pb7 [69, 70]. The requirement
that any RBG model in the metric-affine approach has

4 ψ̄
↔
∂ ψ ≡ 1

2

[

ψ̄(∂µψ) − (∂µψ̄)ψ
]

5 In some RBGs black hole and cosmic singularities may be avoided
in a non-perturbative way[89, 90].

6 Let us mention that using LHC data for process of the type
qq → ff would not improve the limit we here establish. See e.g.
[93].

7 We use the data with θacol < 10o and | cos θe± | < 0.96 [69, 70].

to be consistent with current data8 sets a lower (upper)
bound for ΛNM (λNM ) of about

ΛNM & 0.3C
1/4
modelTeV, (11)

λNM . 4Cmodel
−1/4 × 10−18 m , (12)

and, correspondingly, for Λmodel (λmodel)

Λmodel & 0.02Cmodel
1/2 meV, (13)

λmodel . 6Cmodel
−1/2 cm. (14)

In particular, for BI inspired models with La-
grangian

(

| det(δµν + λ2BIg
µαRαν)|n − 1

)

/(8πGλ2BI), one

has CBI = 1
2n , with n = 1/2 corresponding to the so-

called Eddington-inspired BI model. Picking out n =
1/2, the above bounds translate into ΛBI & 0.02 meV
and λBI . 6 cm. It is worth mentioning that these
bounds we here established are in the range recently high-
lighted in the naive estimations of [53]. Let us stress that
this represents an improvement on the previous best limit
on λBI (see e.g. [86, 87]) by more than 6 orders of mag-
nitude. A worth feature of the above constraint is that
it weakly depends on the details of the model consid-
ered. For astrophysical and cosmological bounds on the
n = 1/2 model see [53].
Other tests of non-metricity. Let us now illus-
trate a preliminary proposal to perform tests also in
the non-relativistic regime. As first shown by Parker
[94–96], strong gravitational fields produce modifications
in the atomic interaction Hamiltonian, which then in-
duces specific shifts in their energy levels in regions of
high curvature. One may wonder if similar effects could
be sourced by high-density concentrations through non-
metricity. Following Parker’s approach, a non-metric in-
teraction Hamiltonian can be defined from (3) by iden-
tifying H = i∂t and stating HI ≡ HD − HM

D , where
HM

D is the Dirac Hamiltonian in Minkowski spacetime.
This leads to the following interaction Hamiltonian for
fermions in a curved but non-metric space:

HI = −i
[

γaγb
(

ea
0eb

i

g00
+ δ0aδ

i
b

)

∂i
ea

0eb
i

g00
(qi − Γi)

+ q0 − Γ0 +

(

ea
0

g00
+ δ0a

)

mγa
]

, (15)

where we defined qµ ≡ 1/2
(

Sµα
α +Q[αµ]

α
)

. Using (7),
assuming conservation of T µν , and neglecting again tor-
sion for the aforementioned reasons, up to O1 we find

HI = i

[

−β
(

T 00δa
0δb

i +
1

2

(

δa
0Tb

i + Ta
0δb

i
)

)

γaγb∂i+

+
3α+ β

4
(∂aT )γ

0γa +

(

α

2
Tδa

0 − β

2
Ta

0 − βT 00δa
0

)

mγa
]

(16)

8 This is done by requiring σSM + σNM is compatible with the
experimental value.
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Keeping only the leading order terms in the non-
relativistic limit as in [96]9, one finally has

HNR
I = −i3α+ β

4
∂0T − m

2

(

βT 00 − αT
)

. (17)

In order to test non-metricity effects through energy
shifts of atomic levels, one should be able to change the
local distributions of energy and momentum around the
atom minimizing the impact of undesired electromag-
netic couplings. Clouds of dark matter particles and/
or intense neutrino fluxes, both having very weak or no
couplings to the electromagnetic sector, could do the job.
In the case of a Hydrogen atom traversed by a radiation
flux modeled as an ideal null fluid10, T µν = ρlµlν , (17)
turns into

HNR
I = −β

2
mρ . (18)

Assuming an energy density profile that decays with the
distance R to the center of the source as ρ = ρsR

2
s/(Rs+

R)2, being Rs the size of the source and ρs its initial
density, the non-metricity correction to the energy levels
is

∆Q
(n,l,m) ≃ −β

2
mρs

(

1 +
1

R2
s

〈

4r2 cos2 θ − r2
〉

nlm

)

,

(19)
where r measures the distance from the center of the
atom, and terms of order (r/Rs)

3 and higher have been
neglected. Then, for a state of the form (n, 0, 0), one gets

∆Q
(n,0,0) = −β

2
mρs

(

1− 1

3

(

na0
Rs

)2

(5n2 + 1)

)

, (20)

being a0 the Bohr radius and m the electron mass. For
the transition (1000, 0, 0) → (2, 1, 0), taking ρs = 1031

J/m3 (similar in magnitude11 to the event GW150914
[8]) and requiring ∆Q to be less than the error ∼ α2

em

due to neglecting relativistic corrections, one finds
λmodel . 1017 m, which is orders of magnitude weaker
than our relativistic estimates. Other avenues to explore
non-metricity effects on atomic systems involve the
study of rapid transients, which are sensitive to the
coefficient α in (17). This requires a more detailed
modeling of the sources and the use of time-dependent
perturbation theory and will be explored elsewhere.

Outlook. We have shown that for RBG models in
the metric-affine approach, non-metricity gives rise to

9 γi = −iβ̃α̃i ∼ O(αem), γ0 = −iβ̃ ∼ O(1), ∂i ∼ pi ∼ O(αem)
10 Here ρ is the energy density of the fluid and lµ is a null vector.
11 Gravitational waves do not appear in the matter Tµν and, there-

fore, strictly speaking cannot be regarded as a source of non-
metricity. We take this example for illustrative purposes only, as
it represents one of the most energetic events known in Nature.

potentially observable effects in microscopic systems,
which can be used to impose tight constraints on the
model parameters. We feel that recognizing this already
provides some additional insight on our understanding
of the space-time geometry and the potential impact
of departures from GR on experiments at short scales.
Indeed, using current data for e+e− scattering, we have
set a lower bound of the order of 1 TeV on the scale at
which non-metricity could be present without being in
conflict with experiments. We also found that a general
consequence of non-metricity is the induction of contact
4-particle interactions among all particles (not just
fermions). Consequently, Higgs physics at LHC or its
impact on flavor physics could provide complementary
bounds for non-metric effects12. Moreover, forthcoming
accelerator experiments such as CLIC [97] will be
used to perform high-precision measurements of e+e−

collisions with a center of mass energy around the TeV
scale (almost one order of magnitude more than the
LEP configuration we used). If no departures from
the Standard Model are found in those experiments,
our bounds might be improved by a few orders of
magnitude. Also interesting would be understanding the
role of non-metricity in the production of non-linearities
of the cosmological perturbations that reflect into
non-gaussianities in the Cosmic Microwave Background
[98–100]. At the same time, we hope that non-metricity
might open a new window to detect the presence of
energy-momentum fluxes carried by weakly interacting
sources. The non-relativistic interaction Hamiltonian
(17) allowed us to explore the impact of such fluxes using
atomic energy levels, which unfortunately turned out to
be extremely tiny. Nonetheless, we hope that transient
processes and nuclear physics scenarios are likely to
provide more insightful experimental constraints. The
rapid progress experienced (and expected) in atomic
interferometry could also help explore this sector of
gravitational physics through a variety of new experi-
ments.
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Appendix A

We here provide the reader with more details about
the derivation of Eq. (3) in the main text. In spaces
with non-metricity and torsion, the Dirac equation (2)
is modified due to two reasons: 1) that the relation be-
tween the divergence operator and the covariant deriva-
tive is not the usual one, and 2) that the curved Dirac
matrices are no longer covariantly constant. Consider a
smooth vector field A in a general smooth n-dimensional
manifold M with a volume form dV , its divergence is
defined by: Div(A)dV ≡ d(iAdV ) [101]. If in some chart
dV = fdxµ1 ∧ ... ∧ dxµn then Div(A) = 1/f∂µ(fA

µ). If
M admits an affine structure Γ, (M , Γ) has an associ-
ated covariant derivative which satisfies [102]:

∇µA
µ = ∂µA

µ + Γµα
µAα (A1)

∇µf = (∂µf − Γµα
αf) . (A2)

Therefore Div(A) can also also be written:

Div(A) =
1

f
∇µ(fA

µ) + Sµα
α , (A3)

where Sα
µν ≡ −2Γ[µν]

α is the torsion of the affine struc-

ture. Now if f =
√

|Det(g)|, being g the metric, then one
can also write

Div(A) = ∇µA
µ −

(

1

2
Qµα

α + Sαµ
α

)

Aµ , (A4)

where we used Qµνα ≡ −∇µgνα. This is the divergence
operator appearing in Stoke’s theorem [101] which allow
us to identify some integrals in the bulk with vanishing
boundary terms. Finally, taking into account that

∇µγ
α =

1

2
Qµν

αγν , (A5)

we have for the Dirac equation in spaces with general
non-metricity and torsion

[

γµ∇µ +
1

2

(

Sµα
α +Q[αµ]

α
)

γµ +m

]

ψ = 0 , (A6)

i.e. Eq. (3). Note that for Riemannian spaces (2) is
recovered as expected.
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