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ABSTRACT

The detection of gravitational waves (GWs) provides a direct way to measure the luminosity distance, which
enables us to probe cosmology. In this paper, we continue to expand the application of GW standard sirens
in cosmology, and propose that the spatial curvature can be estimated in a model-independent way by com-
paring the distances from future GW sources and current cosmic-chronometer observations. We expect an
electromagnetic counterpart of the GW event to give the source redshift, and simulate hundreds of GW data
from the coalescence of double neutron stars and black hole–neutron star binaries using the Einstein Telescope
as reference. Our simulations show that, from 100 simulated GW events and 31 current cosmic-chronometer
measurements, the error of the curvature parameter ΩK is expected to be constrained at the level of ∼ 0.125. If
1000 GW events are observed, the uncertainty of ΩK would be further reduced to ∼ 0.040. We also find that
adding 50 mock H(z) data (consisting of 81 cosmic-chronometer data and 1000 simulated GW events) could
result in much tighter constraint on the zero cosmic curvature, for which, ΩK = −0.002± 0.028. Compared to
some actual model-independent curvature tests involving the distances from other cosmic probes, this method
with GW data achieves constraints with much higher precision.

Subject headings: cosmological parameters — cosmology: observations — gravitational waves — galaxies:
general

1. INTRODUCTION

The spatial curvature of the universe is one of the im-
portant research topics in modern cosmology. To be spe-
cific, estimating the cosmic curvature is an effective way
to test the fundamental assumption that the universe is well
described by the homogeneous and isotropic Friedmann–
Lemaître–Robertson–Walker (FLRW) metric. Note that
the possible invalidation of the FLRW approximation has
been suggested to explain the accelerated expansion of
the universe (e.g., Ferrer & Räsänen 2006; Enqvist 2008;
Ferrer et al. 2009; Räsänen 2009; Boehm & Räsänen 2013;
Lavinto et al. 2013; Redlich et al. 2014). On the other
hand, even if the FLRW metric is valid, whether the cos-
mic space is open, flat, or closed is crucial for us to
understand the evolution of our universe and the nature
of dark energy (Ichikawa & Takahashi 2006; Ichikawa et al.
2006; Clarkson et al. 2007; Gong & Wang 2007; Virey et al.
2008; Zolnierowski & Blanchard 2015). Any significant de-
viation from the zero cosmic curvature would have far-
reaching consequences for fundamental physics and infla-
tion models (Eisenstein et al. 2005; Tegmark et al. 2006;
Wright 2007; Zhao et al. 2007). Although a spatially flat
Universe (ΩK = 0) is strongly supported by various cos-
mological probes, especially by the latest Planck2015 re-
sults of observations of the cosmic microwave background
(CMB; Planck Collaboration et al. 2016),1 most of the cur-
vature constraints are not in a direct geometric way. That is,
some specific cosmological models (e.g., the standard ΛCDM

1 Using non-flat inflation model energy density inhomogeneity power
spectra (Gott 1982; Hawking 1984; Ratra 1985; Ratra & Peebles 1994, 1995;
Ratra 2017), some studies have found that the Planck2015 CMB anisotropy
data favor a mildly closed universe (Ooba et al. 2017a,b,c; Park & Ratra
2018a,b). Besides, currently available non-CMB data do not significantly
require zero spatial curvature (Farooq et al. 2015, 2017; Chen et al. 2016;
Mitra et al. 2017; Ryan et al. 2018).

model) are assumed in a determination of the curvature, thus
these results are indirect and cosmological-model-dependent.
Besides, because of the strong degeneracy between the cos-
mic curvature ΩK and the dark energy equation of state w,
it is difficult to constrain the two parameters simultaneously
in a non-flat wCDM model. Therefore, it would be better to
measure spatial curvature by purely geometrical and model-
independent methods.

In Bernstein (2006), a model-independent determination of
the curvature parameterΩK based on the sum rule of distances
along null geodesics of the FLRW metric was presented (see
also Knox 2006). Recently, this distance sum rule was put for-
ward to test the FLRW metric and estimate the curvature by
using the Union2.1 compilation of type Ia supernovae (SNe
Ia) and strong gravitational lensing systems observed from
the Sloan Lens ACS Survey (Räsänen et al. 2015). However,
the spatial curvature was weakly constrained due to the large
uncertainties in the gravitational lensing data. Following the
method of Räsänen et al. (2015), the null test of the curvature
has been carried out with updated observations (Liao et al.
2017a; Xia et al. 2017; Li et al. 2018; Qi et al. 2018). Based
on this distance sum rule, Denissenya et al. (2018) recently
employed strong lensing time delays and supernova distances
to measure the curvature, and estimated uncertainties on the
curvature enabled by future survey data. Another model-
independent method was proposed to determine ΩK by com-
bining measurements of the Hubble parameter H(z) and the
luminosity distance DL(z) (or the angular diameter distance
DA(z)) (Clarkson et al. 2007, 2008):

ΩK =

[

H(z)D′(z)
]2

− 1

[H0D(z)]2
, (1)

where H0 is the Hubble constant, D(z) = (1 + z)DA(z) =
DL(z)/(1 + z) represents the comoving angular diameter dis-
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tance, and D′(z) = dD(z)/dz denotes the derivative with
respect to redshift z. This method have been exten-
sively used in the literature (Shafieloo & Clarkson 2010;
Mortsell & Jonsson 2011; Sapone et al. 2014; Li et al. 2014;
Yahya et al. 2014; Cai et al. 2016; L’Huillier & Shafieloo
2017; Rana et al. 2017). However, in this method, the
derivative of comoving distance with respect to z is neces-
sary to estimate the curvature, which introduces a consider-
able uncertainty. Recently, stricter constraints on the curva-
ture from measurements of expansion rate and distance have
been obtained by dodging the derivative of distance with re-
spect to z (Li et al. 2016; Yu & Wang 2016; Cao et al. 2017;
Wang et al. 2017; Wei & Wu 2017a; Yu et al. 2018). In addi-
tion to these above two methods, there has been some other
works proposing model-independent methods to determine
the curvature and some approaches to reduce the measure-
ment sensitivity of ΩK to dark energy (e.g., Takada & Doré
2015; Witzemann et al. 2018). For example, Takada & Doré
(2015) estimated a best achievable accuracy of the curva-
ture constraint with the radial and angular diameter dis-
tances from future baryon acoustic oscillation experiments.
Witzemann et al. (2018) showed that forthcoming 21 cm in-
tensity mapping experiments are ideally designed to carry out
curvature determinations, as they can detect the clustering sig-
nal at high redshift with sufficient precision to break the de-
generacy of dark energy and curvature.

On the other hand, the joint detection of the gravitational-
wave (GW) event GW170817 with electromagnetic (EM)
counterparts (e.g., a gamma-ray burst GRB 170817A, or a
kilonova) from the merger of binary neutron stars (NSs)
(Abbott et al. 2017a; Coulter et al. 2017; Goldstein et al.
2017) has opened the new era of multi-messenger cosmol-
ogy (Abbott et al. 2017b). The application of GWs in cos-
mology was first suggested by Schutz (1986), who proposed
that the Hubble constant can be determined from GW ob-
servations, since the waveform signals of GWs from inspi-
ralling and merging compact binaries encode distance infor-
mation (see also Holz & Hughes 2005; Messenger et al. 2014;
Zhao & Wen 2018). Thus, GWs can serve as standard sirens,
analogous to SN standard candles. But, unlike the distance
calibration of SNe Ia that rely on the nuisance parameters
characterizing SN light-curves, the GW standard-siren obser-
vations can measure the luminosity distances directly, without
the need of any other cosmic distance ladders (i.e., they are
self-calibrating). This advantage of GWs can help us dodge
the influence of the nuisance parameters on the test of the cur-
vature, which should be considered when one makes use of
the SNe Ia data (Li et al. 2016; Wei & Wu 2017a). Therefore,
combining H(z) and GW data provides a novel way to deter-
mine the cosmic curvature.

In the past, the simulated GW data have been used to
measure the cosmological parameters (e.g., Holz & Hughes
2005; Zhao et al. 2011; Del Pozzo 2012; Cai et al. 2016;
Del Pozzo et al. 2017; Liao et al. 2017b; Wei & Wu 2017b;
Wei et al. 2018), test the cosmic distance duality relation
(Yang et al. 2017), weigh the total neutrino mass (Wang et al.
2018), explore the anisotropy of the universe (Cai et al. 2018;
Lin et al. 2018), and constrain the time variation of Newton’s
constant G (Zhao et al. 2018). We note that one recent work
(Jimenez et al. 2018) provided an analysis of curvature con-
straints in a model-independent way using distance probes:
GWs, cosmic chronometers, and redshift drift. They dis-
cussed what kind of observations and what level of uncer-
tainty will be needed to measure the curvature at the CMB

fluctuations level of ∼ 10−5, and found that one could measure
the curvature at the desired accuracy only when improving
the uncertainties on the Hubble parameter and the luminosity
distance from the GW source by a factor of 10 and 1000, re-
spectively. In this paper, following the method proposed in
Clarkson et al. (2007, 2008), we investigate what level of cur-
vature constraints can be achieved using future GW data in
the era of the third-generation GW detectors such as the Ein-
stein Telescope (ET). The uncertainty on the GW luminosity
distance is adopted as the designed level of the ET. Firstly,
using a non-parametric smoothing technique, we reconstruct
a continuous H(z) function from measurements of the expan-
sion rate from cosmic chronometers. The model-independent
comoving distance can then be directly obtained by integrat-
ing the reconstructed H(z) function. Next, with the curva-
ture parameter ΩK taken into account, we transform the co-
moving distance into the curvature-dependent luminosity dis-
tance DH

L . Finally, by comparing DH
L (z) to the luminosity dis-

tances DGW
L (z) derived from the mock GW data, we achieve

a cosmology-independent and compelling test of the cosmic
curvature.

The paper is arranged as follows. In Section 2, we derive

the luminosity distance information DH
L and DGW

L from ex-
pansion rate measurements and GW standard sirens, respec-
tively. In Section 3, we demonstrate that an accurate determi-
nation of the curvature parameter can be achieved in a model-

independent way by confronting DH
L with DGW

L , using Monte
Carlo simulations. Lastly, we give a brief summary and dis-
cussion in Section 4. Throughout this paper, the geometric
unit G = c = 1 is adopted.

2. METHOD DESCRIPTION

2.1. Distance from Cosmic-Chronometer Measurements

Since the expansion rate of the universe relates to the
expansion factor a(t), i.e., H(z) ≡ ȧ/a, H(z) can be di-
rectly measured from the time-redshift derivative dt/dz us-

ing H(z) = −
1

1+z
dz
dt

. That is, the Hubble parameter H(z) can

be obtained in a cosmology-independent way by calculating
the differential age evolution of passively evolving galaxies
(Jimenez & Loeb 2002). In the literature, these galaxies are
usually called cosmic chronometers. We use the most com-
plete sample of 30 cosmic-chronometer measurements that
obtained from Moresco et al. (2016). We also include a recent
cosmic-chronometer measurement at a redshift of z = 0.47
(Ratsimbazafy et al. 2017). Our sample now contains 31 data
points in the redshift range of 0 < z < 2.0, which is listed in
Table 1.

In our analysis, we use the model-independent smoothing
technique, Gaussian process (GP), to reconstruct a continu-
ous H(z) function that best approximates the discrete Hub-
ble parameter data we have compiled in Table 1. There is
an open-source Python package of GP called GaPP devel-
oped by Seikel et al. (2012a), which is widely used for cos-
mological studies (e.g., Bilicki & Seikel 2012; Seikel et al.
2012b; Cai et al. 2016; Yu & Wang 2016; Wei & Wu 2017a;
Yennapureddy & Melia 2017, 2018; Melia & Yennapureddy
2018). The readers may turn to Seikel et al. (2012a) for
detailed information about the GP method and the package
GaPP. Using the GP method, the reconstructed H(z) func-
tion (solid line) with 1σ and 2σ confidence regions (shaded
areas) for 31 discrete H(z) measurements are shown in Fig-
ure 1(a). For comparison, we also fit the discrete H(z) data
using the flat ΛCDM model. The best-fit cosmological param-
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TABLE 1
H(z) MEASUREMENTS OBTAINED FROM THE COSMIC-CHRONOMETER

APPROACH

z H(z) (km s−1 Mpc−1) References

0.09 69± 12 Jimenez et al. (2003)

0.17 83± 8

0.27 77± 14

0.4 95± 17

0.9 117± 23 Simon et al. (2005)

1.3 168± 17

1.43 177± 18

1.53 140± 14

1.75 202± 40

0.48 97± 62 Stern et al. (2010)

0.88 90± 40

0.1791 75± 4

0.1993 75± 5

0.3519 83± 14

0.5929 104± 13 Moresco et al. (2012)

0.6797 92± 8

0.7812 105± 12

0.8754 125± 17

1.037 154± 20

0.07 69± 19.6
0.12 68.6± 26.2 Zhang et al. (2014)

0.2 72.9± 29.6
0.28 88.8± 36.6

1.363 160± 33.6 Moresco (2015)

1.965 186.5± 50.4

0.3802 83± 13.5
0.4004 77± 10.2
0.4247 87.1± 11.2 Moresco et al. (2016)

0.4497 92.8± 12.9
0.4783 80.9± 9

0.47 89± 50 Ratsimbazafy et al. (2017)

eters are H0 = 67.93+2.69
−2.61 km s−1 Mpc−1 and Ωm = 0.324+0.053

−0.050.
The corresponding best-fit theoretical curve is presented in
Figure 1(a) with a dashed line. It is obvious that the recon-
struction of H(z) is consistent with the best-fit flat ΛCDM
model within 1σ confidence region, suggesting that the GP
method can provide a reliable reconstructed function from the
observed data.

Within the framework of FLRW metric, the line-of-sight
comoving distance can be expressed as (Hogg 1999)

DC(z) =

∫ z

0

dz′

H(z′)
. (2)

By integrating the reconstructed H(z) function and its 1σ and
2σ error bars with respect to redshift, we can then derive the
model-independent DC(z) function and the corresponding 1σ
and 2σ confidence regions, respectively. As shown in Fig-
ure 1(b), the reconstructed DC(z) function (solid line) is also
in good agreement with that determined from the best-fit flat
ΛCDM model (dashed line).

With the reconstructed comoving distance function DC(z)
and its 1σ uncertainty σDC

, the correlated luminosity distance

DH
L from the H(z) data can then be calculated by

DH
L (z)

(1 + z)
=















1
H0

1√
|ΩK |

sinh
[

√

|ΩK |DC(z)H0

]

for ΩK > 0

DC(z) for ΩK = 0 ,
1

H0

1√
|ΩK |

sin
[

√

|ΩK |DC(z)H0

]

for ΩK < 0

(3)
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FIG. 1.— Reconstructed Hubble parameter function H(z) (panel (a); solid

line) from 31 cosmic-chronometer measurements with the GP method. The
corresponding continuous DC(z) function (solid line) in panel (b) are derived
from the reconstruction of H(z). The shadow areas are the 1σ and 2σ confi-
dence regions of the reconstruction. The best-fit flat ΛCDM model (dashed

line) with H0 = 67.93 km s−1 Mpc−1 and Ωm = 0.324 is also shown.

with its corresponding uncertainty

σDH
L

=















(1 + z)cosh
[

√

|ΩK |DC(z)H0

]

σDC
for ΩK > 0

(1 + z)σDC
for ΩK = 0 ,

(1 + z)cos
[

√

|ΩK |DC(z)H0

]

σDC
for ΩK < 0

(4)
where we emphasize that the cosmic curvature ΩK and the
Hubble constant H0 are the only two free parameters.

2.2. Distance from GW Sources

Unlike the distance estimation of SNe Ia that rely on the
light curve fitting parameters, the GW signals from inspi-
ralling and merging compact binaries can provide an ab-

solute measure of the luminosity distance DGW
L . If com-

pact binaries are NS–NS binaries or black hole (BH)–NS
binaries, the source redshifts may be obtained from EM
counterparts that occur coincidentally with the GW events
(Nissanke et al. 2010; Sathyaprakash et al. 2010; Zhao et al.
2011; Cai & Yang 2017). Therefore, this provides a model-

independent way to construct the DGW
L –z relation. The ET,2

with ultra-high sensitivity (10 times more sensitive than the
current advanced ground-based detectors) and wide frequency

range (1 − 104 Hz), would be able to detect GW signals up to
redshift z ∼ 2 for the NS–NS mergers and z > 2 for the BH–
NS systems. Here, we forecast the curvature constraints from
future GW data using the ET as reference.

To get the uncertainties in the luminosity distance of GW
sources, one needs to generate the waveform of GWs. In the
transverse-traceless gauge, the detector response to a GW sig-
nal is a linear combination of two wave polarizations,

h(t) = F+(θ,φ,ψ)h+(t) + F×(θ,φ,ψ)h×(t) , (5)

2 The Einstein Telescope Project, https://www.et.gw.eu/et/.
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where h+ and h× are the plus and cross modes of GW, respec-
tively. The antenna pattern functions F+ and F× depend on the
source’s position (θ,φ), the polarization angle ψ, as well as
the detector’s location and orientation. The pattern functions
of one of the three interferometers in the ET are (Zhao et al.
2011)

F
(1)

+
(θ,φ,ψ) =

√
3

2
[
1

2
(1 + cos2(θ))cos(2φ)cos(2ψ)

− cos(θ) sin(2φ) sin(2ψ)],

F
(1)
× (θ,φ,ψ) =

√
3

2
[
1

2
(1 + cos2(θ))cos(2φ) sin(2ψ)

+ cos(θ) sin(2φ)cos(2ψ)]. (6)

Since these interferometers align with an angle 60◦ with each

other, the two others’ pattern functions are F
(2)
+,×(θ,φ,ψ) =

F
(1)

+,×(θ,φ + 2π/3,ψ) and F
(3)

+,×(θ,φ,ψ) = F
(1)

+,×(θ,φ + 4π/3,ψ),

respectively.
Following Sathyaprakash & Schutz (2009) and Zhao et al.

(2011), we calculate the Fourier transform H( f ) of the time
domain waveform h(t) by applying the stationary phase ap-
proximation,

H( f ) = A f −7/6eiΨ( f ) , (7)

where the Fourier amplitude is given by

A =
1

DGW
L

√

F2
+

(

1 + cos2(ι)
)2

+ 4F2
× cos2(ι)

×
√

5π/96π−7/6M5/6
c , (8)

where ι is the inclination angle between the binary’s orbital
and the line-of-sight, and

DL(z) =
1 + z

H0

∫ z

0

dz
√

Ωm(1 + z)3
+ 1 −Ωm

(9)

is the theoretical luminosity distance in the flat ΛCDM model.

Here Mc = (1 + z)Mη3/5 represents the observed chirp mass,
where M = m1 + m2 is the total mass of binary components,

and η = m1m2/M2 denotes the symmetric mass ratio. The ex-
pression of the function Ψ can be found in Zhao et al. (2011).
Averaging the Fisher matrix over the inclination ι and the po-
larization ψ with the limit ι < 20◦ is nearly equivalent to tak-
ing ι = 0. In the following simulations, we take the simplified
case of ι = 0, as Cai & Yang (2017) did in their treatment.

The combined signal-to-noise ratio (SNR) for the network
of three independent ET interferometers is given by

ρ =

√

√

√

√

3
∑

i=1

〈H(i),H(i)〉 , (10)

where the inner product is defined as

〈a,b〉 = 4

∫ fupper

flower

ã( f )b̃∗( f ) + ã∗( f )b̃( f )

2

d f

Sh( f )
, (11)

where ∼ represents the Fourier transformation, Sh( f ) is the
one-side noise power spectral density characterizing the per-
formance of the GW detector, flower and fupper are the lower
and upper cutoff frequencies. Here we adopt flower = 1 Hz
and fupper = 2 fLSO, where the orbit frequency at the last sta-

ble orbit fLSO = 1/(63/22πMobs) with the observed total mass

Mobs = (1 + z)M (Zhao et al. 2011). The signal is claimed as a
GW event only when the SNR of the detector network reaches
over 8 (i.e., ρ > 8.0).

The instrumental uncertainty on the measurement of DGW
L

can be estimated by using the Fisher matrix. Assuming that

the uncertainty of DGW
L is irrelevant to the uncertainties of the

remaining GW parameters, we have (Zhao et al. 2011)

σinst
DL

≃
√

〈

∂H
∂DGW

L

,
∂H
∂DGW

L

〉

−1

. (12)

As H ∝ 1/DGW
L , we can derive σinst

DL
≃ DGW

L /ρ. Considering
the maximal effect of the inclination ι on the SNR, we add a
factor of 2 to the instrumental uncertainty for a conservative
estimation

σinst
DL

≃ 2DGW
L

ρ
. (13)

We also add an additional error σlens
DL
/DGW

L = 0.05z due to the

weak lensing effect. Thus, the total uncertainty on DGW
L is

taken to be

σDGW
L

=

√

(

2DGW
L

ρ

)2

+

(

0.05zDGW
L

)2
. (14)

3. MONTE CARLO SIMULATIONS

In this section, we perform Monte Carlo simulations to test
how well GW standard sirens and cosmic chronometers can
be used to constrain the cosmic curvature. To do so, we have
to choose a fiducial cosmological model. Note that the exact
value of the curvature parameter will not be essential in our
simulations, since we are only interested in the precision with
which it can be constrained. However, for consistency with
current expansion rate measurements, we adopt their best-fit
cosmological parameters in the fiducial flat ΛCDM model:

H0 = 67.93 km s−1 Mpc−1, Ωm = 0.324, and ΩΛ = 1 − Ωm.
Following the process of producing the mock GW data in
Cai & Yang (2017), we expect the source redshift can be ob-
tained by identifying an EM counterpart of the GW event,
and simulate many catalogues of NS–NS and BH–NS sys-

tems with their z, DGW
L , and σGW

DL
. The redshift distribution of

the observable sources is adopted as (Zhao et al. 2011)

P(z) ∝ 4πD2
C(z)R(z)

H(z)(1 + z)
, (15)

where DC(z) is the comoving distance, and R(z) describes
the time evolution of the burst rate, which is given by
(Schneider et al. 2001; Cutler & Holz 2009)

R(z) =







1 + 2z, z ≤ 1
3
4
(5 − z), 1< z < 5

0, z ≥ 5.

(16)

We sample the source redshift z from the probability distri-
bution function (Equation (15)). To be consistent with the
redshift range of current expansion rate measurements, we
consider the potential observations of GW standard sirens
in 0 < z < 2.0. With the mock z, we calculate the fiducial
value of Dfid

L based on Equation (9). The masses of each NS
and BH are chosen to be uniform in the intervals [1,2] and
[3,10] M⊙, respectively. The ratio of possibly detecting BH–
NS and NS–NS events is assumed to be 0.03, as predicted
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FIG. 2.— Panel (a): an example catalogue of 100 simulated GW events with redshifts z and luminosity distances DL. The dashed line denotes the fiducial
ΛCDM model. Panel (b): 1 − 3σ constraint contours for ΩK and H0, using 100 simulated GW events. The cross represents the best-fit pair.

for the Advanced LIGO-Virgo network (Abadie et al. 2010).
The position angle θ is randomly sampled within the inter-
val [0,π].3 We then evaluate the combined SNR for each set
of the random values using Equation (10), and confirm that
it is a successful GW event detection if ρ > 8.0. For ev-
ery confirmed detection, we add the deviation σDGW

L
in Equa-

tion (14) to the fiducial value of Dfid
L . That is, we sample

the DGW
L measurement according to the Gaussian distribution

DGW
L = N (Dfid

L , σDGW
L

). The detection rates of BH–NS and

NS–NS per year for the ET are estimated to be about the order

103
−107 events yr−1. However, only a small fraction (∼ 10−3)

is predicted to have the observation of EM counterpart. Tak-

ing the detection rate in the middle rang O(105), and assum-
ing that the fraction of the observation of EM counterpart is

the same at any time interval, we can expect to detect O(102)
GWs with EM counterparts per year. Note that we are only in-
terested in what level of curvature constraints can be achieved
by a certain number of future GW data together with their
EM counterparts providing source redshifts. The use of the
GW detection rate and the fraction of the observation of EM
counterpart are therefore not essential in our simulations. We
first simulate a population of 100 GW events with redshifts

z, luminosity distances DGW
L , and the errors of the luminosity

distances σDGW
L

.

An example of 100 simulated GW events from the fidu-
cial model is presented in Figure 2(a). By confronting dis-

tances DGW
L (z) from the simulated GW events with distances

DH
L (z) in Equation (3) that depend on ΩK and H0 from ob-

servations of cosmic chronometers, we can obtain a model-
independent estimation for the cosmic curvature by minimiz-

ing the χ2 statistic:

χ2(ΩK, H0) =
∑

i

[

DH
L (zi; ΩK , H0) − DGW

L (zi)
]2

σ2
DH

L
,i

+σ2
DGW

L
,i

. (17)

To ensure the final constraints are unbiased, we repeat the sim-
ulation process 1000 times for each data set by using different
noise seeds. Figure 2(b) shows the constraint results on ΩK

and H0.4 We find that, from 100 simulated GW events and

3 Because the SNR is independent of the other two angles φ and ψ, we do
not need to consider them.

4 Here we use a Gaussian prior of H0 = 67.93 ± 2.60 km s−1 Mpc−1 to

0 100 200 300 400 500 600 700 800 900 1000
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-0.1
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Number of events

K

FIG. 3.— Best-fit ΩK and 1σ confidence level as a function of the number of
GW events. The black diamond represents the model-independent constraint
from 580 Union2.1 SNe Ia. The blue dashed line is the fiducial value.

observations of cosmic chronometers, the model-independent

estimation for the cosmic curvature is ΩK = 0.043+0.125
−0.124 (1σ).

At this point, it is interesting to compare our forecast re-
sult with some actual model-independent tests involving the
distances from other popular astrophysical probes. The er-
ror on the determined ΩK is at the level of σΩK

≃ 0.125
with 100 GW events, which is 40% smaller than that of the
Union2.1/JLA SNe Ia (σΩK

≃ 0.20; Li et al. 2016; Wei & Wu
2017a), and is 60% smaller than that of 120 radio quasars
(σΩK

≃ 0.29; Cao et al. 2017). Therefore, we can conclude
that in the framework of model-independent methods test-
ing the spatial curvature, GWs may achieve constraints with
higher precision.

To better represent how effective our method might be with
a certain number of GW events, in Figure 3 and Table 2 we
display the best-fit ΩK and 1σ confidence level as a function of
the number of GW events N. The model-independent test of
ΩK from 580 Union2.1 SNe Ia (black diamond; Li et al. 2016)
is also plotted for comparison. One can see from Figure 3 that
as the number of GW events increases, the uncertainty of ΩK

is reduced. The precision of the determined ΩK from 100 GW
events is already better than that of 580 Union2.1 SNe Ia. The
spatial curvature can be constrained with an error of only 0.04
if 1000 GW events are observed.

By the time we have ET results, there might be other H(z)

guide the minimization procedure over H0 .
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TABLE 2
SUMMARY OF MODEL-INDEPENDENT CURVATURE DETERMINATIONS

FROM N SIMULATED GW EVENTS AND OBSERVATIONS OF COSMIC

CHRONOMETERS

Na ΩK Na ΩK

100 0.043+0.125
−0.124

600 0.034± 0.051

200 0.039± 0.088 700 0.034± 0.047

300 0.035± 0.072 800 0.035± 0.044

400 0.034± 0.062 900 0.035± 0.041

500 0.035± 0.056 1000 0.035± 0.039

aN denotes the number of GW events.

measurements with wider redshift range and higher accu-
racy from different observables. To investigate the case of
adding more cosmic-chronometer measurements, we also per-
form Monte Carlo simulations to create the mock H(z) − z
data sets. We assume that there are other 50 mock H(z) − z
data points by the time that 1000 GW events are detected,
the redshifts of which are chosen equally in log(1 + z) space
in 0.1 ≤ z ≤ 5.0. The relative uncertainty of these mock
data is taken at a level of 1%, which will be realized in fu-
ture observations (Weinberg et al. 2013). The route of GW
simulation is the same as described earlier in Section 3, but
now we consider the potential observations of GW standard
sirens in 0 < z < 5.0. Figure 4 gives an example of the sim-
ulations in the case of adding 50 cosmic-chronometer mea-
surements. From top to bottom, the three panels show the
cosmic-chronometer data (including 31 observed H(z) data
(solid points) and 50 mock H(z) data (circles)) with the recon-
structed H(z) function (solid line), the reconstructed DC(1 + z)
function (solid line) and 1000 simulated GW events with lu-
minosity distances DL (solid points), and the final constraints
on ΩK and H0, respectively. In this case, the final derived ΩK

is ΩK = −0.002± 0.028 (1σ). Compared with the constraint
obtained from 1000 simulated GW events and 31 current
cosmic-chronometer measurements (ΩK = 0.035±0.039), the
uncertainty of the determined ΩK in this case can be further
improved by a factor of 1.4.

4. SUMMARY AND DISCUSSION

The coincident detection of gravitational and EM waves
from a binary NS merger has formally opened a new window
on observational cosmology. More precisely, the greatest ad-
vantage of GW standard sirens is that the distance calibration
is independent of any other distance ladders. In this work, we
investigate the constraint ability of future GW observations of
the ET on the spatial curvature by using a model-independent
method. The main principle of our method is to compare two
kinds of luminosity distances. One distance DH

L (ΩK , H0) is
constructed with Hubble parameter measurements obtained
from observations of cosmic chronometers, which is suscepti-
ble to the curvature parameterΩK and the Hubble constant H0.
Based on the discrete Hubble parameter data, we first use the
GP method to reconstruct the continuous H(z) function. Next,
we obtain the model-independent comoving distance function
DC(z) by directly calculating the integral of the reconstructed
H(z) function. Using this continuous DC(z) function, the lu-
minosity distance DH

L (ΩK , H0) from the H(z) measurements
can be further calculated at a certain z. The other distance
DGW

L is from the simulated GW data, which is independently

determined. Previously, by confronting DH
L (ΩK, H0) with lu-

minosity distances from observations of SNe Ia, some studies
achieved model-independent constraints on the spatial curva-
ture (Li et al. 2016; Wei & Wu 2017a). However, the con-
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FIG. 4.— An example of the simulations for the case of 81 cosmic-
chronometer measurements and 1000 simulated GW events. Top panel shows
the cosmic-chronometer data (including 31 observed H(z) data (solid points)
and 50 mock H(z) data (circles)) with the reconstructed H(z) function (solid
line). Middle panel shows the reconstructed DC(1 + z) function (solid line)
and 1000 mock DL data (solid points). Bottom panel shows the final con-
straints on ΩK and H0 from these data.

straint ability of SNe Ia are obviously restricted by the fact
that their distances depend on light-curve fitting parameters.
While GW standard sirens have the advantage of being self-
calibrating. Therefore, combining the GW observations with
H(z) data may provide a powerful and novel way to estimate
the spatial curvature.

Through Monte Carlo simulations, we find that the error
of the curvature parameter can be expected to be constrained
at the level of ∼ 0.125 by combining 31 current observed
H(z) data and 100 simulated GW data. The uncertainty of
ΩK can be further reduced to ∼ 0.04 if 1000 GW events are
observed. We also find that with 81 cosmic-chronometer mea-
surements (including 31 observed H(z) data and 50 mock
H(z) data) and 1000 simulated GW events, one can expect
the zero cosmic curvature to be estimated at the precision of
ΩK = −0.002± 0.028. By comparing our results with previ-
ous ones which reported model-independent curvature tests
using current data of SNe Ia and radio quasars (Li et al. 2016;
Cao et al. 2017; Wei & Wu 2017a), we demonstrate that fu-
ture measurements of the luminosity distances of GW sources
will be more competitive than current analyses. These results
show that the prospects for testing the spatial curvature with
GW observations is very promising.
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