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Abstract: We give an introductory account of the AdS/CFT correspondence in the
1
2
-BPS sector of N = 4 super Yang-Mills theory. Six of the dimensions of the string

theory are emergent in the Yang-Mills theory. In this article we suggest how these

dimensions and local physics in these dimensions emerge. The discussion is aimed at

non-experts.
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1. Introduction

The problem of quantizing gravity has proved to be a difficult one. To solve this

problem, it seems to be necessary to answer the question “What is spacetime?” This

challenges the most basic assumptions we are used to making; a radical new idea may

be needed. Further, the hope of any guidance from experiment seems to be out of

the question. One might conclude that the situation is hopeless. Drawing on recent

insights from the AdS/CFT correspondence, we are nonetheless, optimistic.

The AdS/CFT correspondence[1] claims an exact equality between N = 4 super

Yang-Mills theory in flat 3 + 1 dimensional Minkowski spacetime and type IIB string

theory on an asymptotically AdS5×S5 background. Type IIB string theory is a theory

of closed strings; at least within string perturbation theory, theories of closed strings

provide a consistent UV completion of gravity. The fact that such an equality exists is

highly unexpected and nontrivial, and (as we will try to convince the reader) can be

used to gain insight into the nature of spacetime. George Ellis opened the “Foundations
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of Space and Time” workshop by holding up two fingers and asking “are there an infinite

or a finite number of places a particle could occupy between my fingers?” We don’t

know the answer to George’s question. However, we hope to convince the reader that

the AdS/CFT correspondence provides a detailed and concrete framework within which

this question can be tackled.

We know how to formulate N = 4 super Yang-Mills theory as a path integral. We

do not yet understand how to formulate quantum gravity in asymptotically AdS5×S5

backgrounds. Its seems somewhat natural then, to use the N = 4 super Yang-Mills

theory as a definition for quantum gravity in asymptotically AdS5×S5 backgrounds.

The puzzle then becomes one of translating and interpreting the quantum field theory,

as a quantum theory of gravity. Conceptually this is challenging and we do not have

any simple arguments that would explain why a higher dimensional gravity theory is

encoded in the dynamics of a quantum field theory. Technically its tough too. The

relation between the radius of the AdS space (measured in units of the string length

ls) and the ’t Hooft coupling1 (λ = g2
YMN)

R4
AdS

l4s
= λ

shows that in the limit of small curvatures (where we could have hoped to recognize a

familiar description of geometry) the field theory is strongly coupled and hence we do

not know how to do the relevant field theory calculations. Conversely, if we compute

things perturbatively in the field theory, we are studying the small λ limit where cur-

vature corrections are important and our usual notions of geometry are probably not

useful.

Fortunately, there is a way to proceed. Thanks to the large amount of supersymme-

try enjoyed by the theory, there do exist quantities that are protected from corrections.

If one chooses carefully, these quantities can be computed at weak coupling and the

result can then be extrapolated to strong coupling. The most protected states of the

theory, preserving half of the maximal amount of supersymmetry, are called the 1
2
-BPS

sector. This is the laboratory in which we will work.

In section 2 we will give some arguments for the simplicity of the 1
2
-BPS sector. In

section 3 we will explain how the dictionary between the gauge theory and the gravity

theory is organized - its organized according to the R-charge2 of the operators of the

field theory. Section 4 introduces a set of variables, the Schur polynomials, which

1Recall that by suitably rescaling the fields one can arrange things so that all g2
Y M dependence

factors out as an overall 1
g2

Y M
factor in front of the action. It is then clear that g2

Y M plays the role of
~ for the quantum field theory.

2The R-charge is a conserved charge associated specifically with supersymmetric theories. Recall
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provides a beautiful organization of the degrees of freedom of the theory. In sections 5,

6 and 7 we explain how to describe gravitons, strings and branes of the string theory

using the field theory language, and in section 8 we explain how new backgrounds (the

so called LLM geometries) arise. Section 9 is reserved for discussion.

There are a number of papers that have significantly influenced our point of view

and have had an impact on our research. Among these we mention [2, 3, 4, 5, 6, 7, 8, 9].

2. Simplicity of the 1
2-BPS Sector

We study N = 4 super Yang-Mills theory on R×S3. The field content of N = 4 super

Yang-Mills theory includes 6 Hermitian scalars transforming in the adjoint of the gauge

group. We group the six real scalars into three complex fields as follows

Z = φ1 + iφ2, Y = φ3 + iφ4, X = φ5 + iφ6 .

The half BPS chiral primary operators we focus on can be built from a single complex

combination (we use Z in what follows). Using a total of n Zs, there is a distinct

operator for each partition of n. Given the partition with parts {ni}, the corresponding

operator is
∏

i Tr (Zni). There is a one to one correspondence between these operators

and half BPS representations of R-charge n[3].

A beautiful argument, due to Berenstein[4], demonstrates the simplicity of the
1
2
-BPS sector3. Consider a time slicing of AdS5×S5, which gives the Hamiltonian

H =
(∆− J) + ε∆

ε
,

where ∆ is the dilatation operator and J is the R-charge under which Z has one unit

of charge. In the limit ε → 0 any state with ∆ − J > 0 will have a huge energy and

hence will decouple from the low energy theory. This procedure decouples (a subspace)

of the 1
2
-BPS states of N = 4 super Yang-Mills theory. These low lying states are

protected by supersymmetry and will not be lifted from zero energy by interactions. In

what follows, we assume that, even in the presence of interactions, these states remain

decoupled (which amounts to assuming that interactions do not make any of the heavy

states light). The complex scalar Z can be decomposed into partial waves on the S3.

The s-wave is simply a singlet under the SO(4) symmetry of the S3 on which the field

that an internal symmetry is one whose generators commute with all of the spacetime symmetry
generators. An R symmetry is one whose generators commute with all of the bosonic spacetime
symmetries but fail to commute with the fermionic supercharges.

3See [10] for closely related ideas.
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theory is defined. The higher spherical harmonics have a greater energy and hence

are among the states that decouple. We thus come to the remarkable conclusion that

the limit we study is described exactly by the quantum mechanics of a single complex

matrix. The action of N = 4 super Yang-Mills theory on R × S3 includes a mass

term which arises from conformal coupling to the metric of S3. With a convenient

normalization of the action, the free field theory propagators are

〈Z†ij(t)Zkl(t)〉 = δilδjk = 〈Y †ij(t)Ykl(t)〉 = 〈X†ij(t)Xkl(t)〉.

As long as one restricts attention to traces involving only Z or only Z†, it is possible to

express the theory in terms of the eigenvalues of Z. The change of variables entailed in

going from Z to the eigenvalues of Z induces a non-trivial Jacobian - the Van der Monde

determinant. The net effect of this Jacobian is accounted for by treating the eigenvalues

as fermions[11]. Consequently, one obtains the dynamics of N non-interacting fermions

in an external harmonic oscillator potential.

Key idea: The 1
2
-BPS sector of N = 4 super Yang-Mills theory is described exactly

by the holomorphic sector of the quantum mechanics of a single complex matrix, which

itself is equivalent to the dynamics of N free fermions.

3. Dictionary

The 1
2
-BPS sector of type IIB string theory on AdS5×S5 contains gravitons, membranes

and strings. Apparently all of these objects are captured by the matrix quantum

mechanics of the previous section. To see that this is indeed plausible, recall that as

the R-charge (J) of an operator in the N = 4 super Yang-Mills theory is changed, its

interpretation in the dual quantum gravity changes. This is a consequence of the Myers

effect[12]: the background we are studying has a non-zero RR five form field strength

switched on. This flux couples to D3 branes. Gravitons carry a D3 dipole charge and

are hence polarized by the background flux[13]. As we increase J , the coupling to the

background RR five form flux increases and the graviton expands. It puffs out to a

radius

R =

√
J

N
RAdS, where R2

AdS =
√
g2
YMNα

′ .

We will consider the limit that N is very large with g2
YM fixed and very small. Since

the string coupling gs = g2
YM , this is the weak string coupling and small curvature limit

in which we expect to be able to recognize the familiar objects of perturbative string

theory. For J ∼ O(1) the operator is dual to an object of zero size in string units, that

is, a point-like graviton[1]. For J ∼ O(
√
N) the operator is dual to an object of fixed
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size in string units - this is a string[10]. For J ∼ O(N) the operator is dual to an object

whose size is of the order of RAdS - as argued in [14, 3] these are the giant gravitons

of [13]. Finally, consider J ∼ O(N2). Naively, the size of these objects diverge, even

when measured in units with RAdS = 1. We will see that this divergence is simply an

indication that these operators do not have an interpretation in terms of a new object

in AdS5×S5: these operators correspond to new backgrounds [5, 6].

The original N = 4 super Yang-Mills theory is defined on Minkowski space. Af-

ter Wick rotating (to four dimensional Euclidean space) and performing a conformal

transformation, we obtain N = 4 super Yang-Mills theory on R × S3. Operators of

the theory on four dimensional Euclidean space are in one-to-one correspondence with

states of the theory on R × S3, by the usual operator-state correspondence available

for any conformal field theory. R × S3 is the boundary of AdS5×S5 in global coordi-

nates. It is natural to identify this boundary with the space on which the field theory

lives. Taken together, we obtain a map between operators of the original N = 4 super

Yang-Mills theory on Minkowski space and states of the string theory. For this reason

we will often talk of “matching operators to states” and we will often be able to read

the inner product between two states from a correlation function of the corresponding

operators.

The symmetries of theN = 4 super Yang-Mills theory match the isometries present

in the dual AdS5×S5 background. When trying to match a specific operator to a specific

state, it is useful to match the labels provided by these symmetries on both sides of the

correspondence. Reasoning in this way, it is possible to argue that scaling dimensions

in the field theory correspond to energies in the dual string theory and R-charge in the

field theory corresponds to angular momentum in the string theory.

Key idea: The dictionary between the 1
2
-BPS sector of N = 4 super Yang-Mills

theory and type IIB string theory on AdS5×S5 is organized according to R-charge.

When trying to match a specific operator to a specific state, it is useful to match

scaling dimensions (R-charge) in the field theory to energies (angular momentum) in

the dual string theory.

4. Organizing the degrees of freedom of a matrix model

In the previous section we have seen that, in order to capture all of the objects in the

spectrum of the dual string theory, it is necessary to consider all possible values of the

R-charge. This is a complicated problem since the usual simplifications of the large N

limit are no longer present, as we now explain.
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First consider the case that n = O(1). A suitable basis is provided by single trace

operators, Tr (Zn). Normalize the operators with factors of N so that they have an

O(1) two point function at large N

On =
Tr (Zn)

N
n
2

.

In this case we obviously have

〈OnO†m〉 ∝ δmn ,

because the two operators have a different R-charge if m 6= n. Consider next the

correlator

〈OpOnO†n+p〉 ∼
1

N
.

The total R-charge of this three point function is zero, so it is not forced to vanish.

However, recall that in the large N limit the expectation values of observables factor-

ize, which is equivalent to that statement that disconnected diagrams dominate. The

leading (disconnected) contributions to the above correlator vanish and hence this cor-

relator is suppressed in the large N limit by the usual arguments. To explain why this

correlator vanished, we can identify the number of traces with particle number in which

case the vanishing of the above correlator is the statement that although a two particle

state with gravitons of R-charge p and n has the same R-charge as a single particle

state with R-charge p+ n, the two states are orthogonal. The fact that the two states

have a different particle number explains why their overlap is zero. Consequently, the

weakly interacting supergravity Fock space is clearly visible in the dual gauge theory.

There is a combinatoric coefficient on the right hand side of the above correlator which

counts the number of Wick contractions.

For n = O(N), the usual 1
N

suppression of non-planar diagrams is compensated

by huge combinatoric factors4, so that operators composed of a product of a different

number of traces, are no longer orthogonal. Clearly then, the gravity states dual to

single trace operators are no longer orthogonal and hence there is no reason to expect

that they will have a natural physical interpretation. The fact that these states are

no longer orthogonal has a very natural explanation in the dual string theory. Recall

that the dimension of the operator maps into the energy of the dual state. Thus, by

considering operators of a very large dimension we are talking about very heavy objects

in the dual string theory. As we increase the mass of the objects we study, we turn the

gravitational interactions on and consequently the states that were orthogonal when

there was no interaction, are no longer orthogonal.

4The number of Wick contractions explodes as more and more operators are included in each
trace[14].
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Ideally one needs a new basis in which the two point functions are again diagonal.

Corley, Jevicki and Ramgoolam have demonstrated that the Schur polynomials (in the

zero coupling limit) do indeed diagonalize the two point function[3] for the theory with

gauge group U(N). The Schur polynomial is defined by

χR(Z) =
1

n!

∑
σ∈Sn

χR(σ)Tr (σZ⊗n), (4.1)

Tr (σZ⊗n) = Zi1
iσ(1)

Zi2
iσ(2)
· · ·Zin−1

iσ(n−1)
Zin
iσ(n)

.

The Schur polynomial label R can be thought of as a Young diagram which has n

boxes. χR(σ) is the character of σ ∈ Sn in representation R. For an extension of these

results to the case of gauge group SU(N) see [15].

Schur Calculus

The dynamical content of any quantum theory is encoded in its correlation
functions. Focusing on the 1

2−BPS sector, Schur polynomials provide an excellent
set of variables to probe different aspects of the dual string theory since (i) in the
free field limit, the two-point functions of Schur polynomials are known exactly
and (ii) they satisfy a nice product rule that can be used to collapse any product of
Schur polynomials into a sum of polynomials. This product rule follows as a
consequence of the Schur-Weyl duality between unitary groups and symmetric
groups. As a consequence of the duality, Schur polynomials χR(U), when evaluated
on an element U ∈ U(N) give the character of U in the irreducible representation
R. For any two such irreducible representations, R and S, it is well known that
R⊗ S = ⊕T fRS;TT where the fRS;T are known as Littlewood-Richardson numbers.
With the interpretation of the Schur polynomials as characters, it follows
immediately that

χR(Z)χS(Z) =
∑
T

fRS;TχT (Z)

One immediate repercussion of this is that the exact computation of any multi-point
extremal correlator of Schur polynomials can be collapsed down to an evaluation of
two-point correlators[16] .

There is a very natural connection between the free fermion description of section 2 and

the Schur polynomials[3, 4]. The Schur polynomials are labeled by Young diagrams,

which can be specified by giving a list of N integers, ri, which count the number

of boxes in the ith row of the Young diagram. The fermion wave function can be

described by specifying the N occupied energy levels Ei, which is again a list of N
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integers. Detailed computations show that the Schur polynomials coincide with the

N -fermion wave functions as long as we identify (see [3, 4] for details)

Ei = N + i+ ri .

Thus, the Schur polynomial basis coincides with the free fermion basis.

Although the huge simplifications discussed above do not survive when one goes

beyond the 1
2
-BPS sector, it is possible to write down more general bases which continue

to diagonalize the two point function[18, 19, 20, 21]. These techniques were developed

using crucial lessons[3, 17] gained from the 1
2
-BPS sector. We will have more to say

about these more general bases in the sections to come, since they are relevant for

describing nearly supersymmetric states and hence they suffer only mild corrections.

Key idea: The basis of the 1
2
-BPS sector of N = 4 super Yang-Mills theory provided

by the Schur polynomials diagonalizes the free two point function for any value of the

R-charge. At large R-charge it will thus replace the trace basis, which now fails to

diagonalize the free two point function.

5. Gravitons

In this section we will focus on that portion of the AdS/CFT dictionary that concerns

operators with an R-charge of O(1). In this case, as explained above, the trace basis

is perfectly acceptable and so we take On = Tr (Zn). We expect that these operators

are dual to gravitons. In fact, this can be checked in detail, as we now explain.

The AdS/CFT correspondence claims that for every bulk field Φ in the gravitational

description, there is a corresponding gauge invariant operator Oφ. Asymptotically

AdS spaces have a boundary at spatial infinity and one needs to impose appropriate

boundary conditions there. As a result, the partition function of the bulk theory is a

functional of these boundary conditions. The boundary values of the fields are identified

with sources that couple to the dual operator so that the gravitational partition function

(the next formulas are schematic)

Zgravity[φ0] ≡
∫

Φ|∂(AdS)=φ0

DΦ e−S

is identified with the generating functional of correlation functions in the quantum field
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theory5

Zgravity[φ0] =
〈
e−

R
φ0Oφ

〉
QFT

.

Since the gravitons are meant to be dual to operators with R-charge of O(1), and since

graviton dynamics is captured by the supergravity approximation to the complete string

theory, using the above relation we should be able to compute the correlation functions

of the On at strong coupling and at large N . Further, since these operators enjoy some

protection against corrections by virtue of their supersymmetry, we may be optimistic

that the strong coupling and weak coupling results will agree. The computation has

been performed and the agreement is perfect[24].

Key idea: The identification of gravitons with operators of R-charge of O(1) can be

checked by using the AdS/CFT correspondence. The agreement is perfect.

6. Strings

We now move on to operators with an R-charge of J = O(
√
N). These objects are

already heavy enough that, for single traces we have a new effective string coupling

replacing 1
N

gs ∼
1

N
→ J2

N
.

Thus, to suppress non-planar corrections we need to take J2 � N , which we assume

from now on. To see stringy physics it is useful to consider operators, for example, of

the form

Tr (Y ZnY ZJ−n) .

Due to the presence of the Y fields this state has ∆ = J + 2 and R-charge J . Since

J2 → ∞, this operator is nearly 1
2
-BPS and we might still expect that corrections

are suppressed. This is indeed the case [10]: one finds that the expansion parameter

λ is replaced by λ
J2 . The eigenvalues of the dilatation operator when acting on this

class of states precisely matches the expected energies of strings in the dual string

theory[10]. The matching of spectra can be significantly improved. Think of the Y s

and Zs as populating a lattice with J + 2 sites. Further, identify the Y s with a spin

up state and the Zs with a spin down state. With this interpretation, the Yang-Mills

dilatation operator can be identified with the Hamiltonian of a spin chain[26, 27, 28].

5The right hand side of this relation suffers from the usual UV divergences present in any quantum
field theory, and hence needs to be renormalized. The left hand side suffers from IR divergences
and hence also requires renormalization. The details of this renormalization has been worked out in
[22, 23].
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By considering coherent states of the spin chain, one can give the spin chain a sigma

model description. The resulting sigma model agrees exactly with the sigma model for

a string rotating with a large angular momentum, so that now agreement is obtained

at the level of the action[29]. The very detailed agreement allows one to frame very

precise questions. For example, it is straight forward to show that the mean value of the

spin of the spin chain corresponds to the position of the string in the dual gravitational

spacetime (see [29] for details).

Key idea: Operators with an R-charge of O(
√
N) do indeed correspond to strings.

The stringy dynamics can be recovered from the field theory and further, it is clear

how to build field theory states corresponding to strings localized at a point in the dual

(higher dimensional!) gravitational theory.

7. Giant Gravitons

In this section we study certain membranes in string theory, known as giant gravi-

tons. These operators have an R-charge of O(N); in this case the trace basis badly

fails to provide orthogonal states and hence we have the first case in which the Schur

polynomials must be used.

Giant graviton solutions describe branes extended in the sphere[13] or in the AdS

space [30, 31], of the AdS×S background. The giant gravitons are (classically) stable6

due to the presence of the five form flux which produces a force that exactly balances

their tension. The force which balances the tension is a Lorentz-like7 force so that the

force increases with increased giant angular momentum. Consequently a giant graviton

expands to a radius proportional to the square root of its angular momentum[13]. If the

giant is expanding in the S5 of the AdS×S background, there is a limit on how large it

can be - its radius must be less than the radius of the S5[13]. This in turn implies a cut

off on the angular momentum of the giant. Since angular momentum of the giant maps

into R-charge, there should be a cut off on the R-charge of the dual operators. The

Schur polynomials corresponding to totally antisymmetric representations do have a

cut off on their R-charge; this cut off exactly matches the cut off on the giant’s angular

momentum[14]. Thus, it is natural to identify Schur polynomials for the completely

antisymmetric representations as the operator dual to sphere giant gravitons. Another

class of Schur polynomials which are naturally singled out, are those corresponding to

totally symmetric representations. Since these representations are not cut off, they are

6They carry an RR-dipole charge, but no RR-monopole charge. Thus their decay would not be
prevented by charge conservation.

7i.e. velocity dependent
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naturally identified as operators dual to AdS giant gravitons[3], which, because they

expand in the AdS space, can expand to an arbitrarily large size and hence have no

bound on their angular momentum. The Young diagram has at most N rows, implying

a cut off on the number of AdS giant gravitons; the need for this cut off is again visible

in the dual gravitational theory: it ensures that the five form flux at the center of the

AdS space does not become zero; a non-zero flux is needed to support an AdS giant.

A smoking gun signal for D-branes in string theory, is the presence of open strings

in the excitation spectrum of the D-brane. The low energy dynamics of these strings

should realize a new gauge theory on the brane worldvolume. Since the brane world-

volume is a compact space, Gauss’ Law will only allow excitations with vanishing total

charge. There is a very natural generalization of the Schur polynomials, the restricted

Schur polynomials, in which the symmetric group character appearing in (4.1) is re-

placed by a partial trace over the symmetric group elements. The number of partial

traces that can be defined matches the number of states consistent with the Gauss

Law constraint[8]. Surprisingly, it is still possible to compute correlators of restricted

(a) (b)

Figure 1: Giants with strings attached

Schur polynomials and to evaluate the action of the field theory dilatation operator on

these operators[32, 33, 34]. This is rather non-trivial: due to the large R-charge of the

operators one needs to sum an infinite number of non-planar diagrams in these compu-

tations. The dilatation operator can again be matched to the action for open strings,

at the level of the action[33]. This allows one to ask questions that could not be asked

in perturbative string theory. For example, when the string and membrane interact,

the Young diagram changes shape. This allows one to take backreaction on the mem-

brane into account[33, 34]. From the point of view of perturbative string theory, the

D-brane appears as a boundary condition and it is not obvious how one should account

for backreaction. Another interesting effect discovered by studying these operators is

an instability arising when long open strings are attached to the giant graviton[33].

The giant graviton, which couples to the RR-five form flux, does not undergo geodesic

motion. The open string, which does not couple to the RR-five form flux, would like to
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undergo geodesic motion but is being dragged in a non-geodesic motion by the giant.

These centrifugal forces can overcome the string tension if the string is long enough,

leading to the instability. This effect has also been exploited as a toy model for quantum

gravity effects in braneworld cosmological models[35].

Emergent Gauge Theory

Fundamental strings are charged under the Kalb-Ramond 2-form. For stretched
strings this charge can be thought of as a current flowing along the string.
Consequently, when they end on D-branes, conservation of string charge means
that strings act as ‘sources’ or ‘sinks’ on the brane worldvolume. When − as in the
case of the giant gravitons above − the D-brane wraps a compact space like the
S3 ⊂ S5, the only allowed attached open string states are those consistent with
Gauss’ law. So, for example, for the giant configurations in Figure 1. only (b) is a
valid state. This is a manifestation of the closed topology of the spherical D-brane.
To see how Gauss’ law is encoded in the Yang-Mills theory we need to consider
operators dual to excited giant gravitons. These restricted Schur polynomials,

χ
(k)
R,R1

=
1

(n− k)!

∑
σ∈Sn

TrR1 (ΓR (σ)) Tr
(
σZ⊗n−k

(
W (1)

)in−k+1

iσ(n−k+1)

· · ·
(
W (k)

)in
iσ(n)

)
,

are obtained from (4.1) by the insertion of ‘words’ W (i) describing the open strings
attached to the giant system. In the language of Young diagrams, this corresponds
to labeling boxes in the diagram associated to the giant graviton. For the single
string attached to single sphere giant graviton with momentum p in Fig 1.(b), for
example, the restricted Schur takes the form χ

(1)

1p+1,1p
(Z,W ) with the open string

word W i
j = (Y J)ij say. We have denoted a Young diagram with a single column

containing n boxes by 1n. To match with the gravity side of the correspondence, we
need to count the number of possible operators χ(k)

R,R1
(Z,W i) that can be constructed

for a given representation. Remarkably, the number of these operators matches
precisely with the number of allowed states in the string theory that satisfy the
Gauss constraint[8].

Key idea: Giant gravitons are membrane states that are represented in the dual

field theory by Schur polynomials and restricted Schur polynomials. The field theory

correctly reproduce both the number of open string excitations of the giant gravitons

and their dynamics.
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8. New Geometries

When the operator we consider has an R-charge of O(N2), we are studying objects

in the dual string theory that are so heavy that they backreact on spacetime. Con-

sequently, there should be new supergravity backgrounds corresponding to these op-

erators. These new backgrounds should preserve an R × SO(4) × SO(4) symmetry.

The conserved charge associated to R corresponds to conformal dimension in the field

theory. The first SO(4) symmetry corresponds to rotations of the S3 on which the

field theory is defined (recall that our operators are built from the s-wave of Z). The

second SO(4) corresponds to R-symmetry rotations of the four scalars φ3, φ4, φ5, φ6

which are not used to construct Z. This ansatz is sufficiently specific that the general

solution with these isometries can be written down. These geometries, constructed

by Lin, Lunin and Maldacena, are known as the LLM geometries[5]. The complete

solution is determined in terms of a single function which obeys a three dimensional

Laplace equation. To get a unique solution, one needs to specify a boundary condition

for this function on a specific two dimensional plane. In order that the geometry is

regular, this boundary condition must assign the function either of the values ±1
2

on

this plane. It is tempting to identify this two dimensional plane as the phase space

of the fermions of section 2, where regions with 1
2

correspond to occupied states and

regions with −1
2

correspond to unoccupied states[5]. This can indeed be checked in

detailed computations and it turns out that this identification is perfect[36]. Thus,

once again the quantum field theory and the quantum gravity theories are in complete

agreement.

Denote the Schur polynomial ofR-charge of O(N2) by χB(Z). The operator χB(Z)

creates the new background. Is it possible, directly in the field theory, to construct the

metric corresponding to this dual geometry? One thing we could do is follow the

propagation of a graviton in the spacetime. Since we know how to build an operator

dual to a graviton, this is a computation we know how to do. Further, gravitons move

along null geodesics and hence they “know” about the dual geometry, so that we might

indeed hope to learn something about the metric. To create a graviton moving on the

new background we need to act with Tr (Zn) with n a number of O(1). Thus, to probe

the geometry we need to compute the correlator〈
χB(Z)χB(Z)†Tr (Zn)Tr (Zn)†

〉
.

This computation can be performed exactly, in the free field limit, for any choice of the

Young diagram B[37, 38]. As soon as B has O(N2) boxes, one can no longer neglect

Wick contractions between fields in Tr (Zn)† and fields in the background χB(Z) - at

precisely the value of the R-charge that we expect back reaction is important, the
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graviton and background start interacting! This is how the field theory accounts for

back reaction[37, 38]. The resulting correlators are surprisingly simple. If one takes B

to be a Young diagram with M columns (M is O(N)), the net effect of the background

is to replace N → M + N . Recall that in the trivial background graviton correlators

admit a 1
N

expansion. In the new background, graviton correlators are organized by

a 1
M+N

expansion[37, 38]. This renormalization of the string coupling constant was

achieved by summing an infinite number of non-planar diagrams, something that is only

possible thanks to the power of the Schur polynomial technology. This renormalization

of the string coupling can be checked rather explicitly, using holography in the LLM

background[39], along the lines of the computation of section 5. One again finds perfect

agreement[40]. Apart from probing the geometry with gravitons, one could consider

probing the geometry with strings[41, 42] or even giant gravitons[43]. This leads to some

interesting results. For example, in the case of string probes, one can again construct

the dilatation operator and study the sigma model that arises from the coherent state

expectation value of the model. In this way it is possible to read off the metric that

the string feels8[41, 42], which is rather detailed information about the dual geometry.

Given this very concrete description of the 1
2
-BPS geometries, it is possible to

reexamine some long standing puzzles. An important problem in this class is the

information loss paradox. The entropy of black holes suggests an enormous degeneracy

of microscopic states. The information loss paradox would be evaded if one could show

that a pure initial state collapses to a particular pure black hole microstate whose exact

structure can be deduced by careful measurements. What do pure microstates look

like and what sorts of measurements can distinguish them from each other? In [6], this

problem was examined by applying information theoretic ideas to Schur polynomials

with O(N2) boxes. It is possible to characterize a “typical operator” and then to ask

what the semi-classical description, in the dual gravity, of this state is. Concretely,

the half-BPS sector is integrable and the eigenvalues of the resulting set of commuting

conserved charges completely identify a state. These charges can be measured in the

dual gravitational description from asymptotic multipole moments of the spacetime. A

typical very heavy state corresponds to a spacetime “foam”. Almost no semiclassical

probes will be able to distinguish different foam states[44], and the resulting effective

description gives a singular geometry[45]. Although the 1
2
-BPS states considered are

not black holes, this study seems to explain how the existence of pure underlying

microstates and the absence of fundamental information loss are consistent with the

thermodynamic character of semiclassical black holes[6].

8The string only moves close to the plane on which the boundary condition is specified. One is
able to read off the metric on this plane which is what we mean by “the metric that the string feels”.
Of course one would like to do better and determine the full metric.
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Local Gravitons

For nearly a century now, we have learnt that to understand the geometry of
spacetime, we have to probe it with localised objects; (very roughly) if you want to
know whether a spacetime is curved or not, throw some particles into it and chart
their geodesics. From a field-theorist’s point of view, local geometric structure in
spacetime arises as a coherent excitation of gravitons. To understand how bulk
spacetime geometry emerges in the Yang-Mills matrix model, one might try to
understand the localization and dynamics of gravitons.

To this end, following the arguments outlined above, the normalized operator dual

to a graviton of one unit of angular momentum (in S5) is
Tr(Z)√
N

. Identifying this

operator with the graviton creation operator a† in the dual quantum gravity

theory, we can also define a graviton annihilation operator
1√
N

Tr
(
d

dZ

)
↔ a, so

that
[
a, a†

]
= 1. From this, a graviton coherent state operator can be built in the

usual way,

Oz = e−
1
2
|z|2e

z
Tr(Z)√
N .

After conformal mapping to R× S3, the operator Oz is mapped into the coherent
state |z〉 with z = r e−iφ. The dynamics of the low energy excitations of this
coherent state on R× S3 is captured by the Landau-Lifshitz Lagrangian

L = 〈z|i d
dt
|z〉 − 〈z|H|z〉 = φ̇r2 − r2,

when evaluated on the graviton coherent state. The equations of motion can be
integrated to determine φ̇ = 1 and ṙ = 0, which are, by now familiar results for
gravitons in AdS5 × S5. These results are not unique to AdS5 × S5 and can be
extended to a whole class of 1

2−BPS geometries - the so-called LLM backgrounds
which are built from operators with R−charge of O(N2). These results can be
extended to describe gravitons localized at different values of r in the multi ring
LLM geometries providing compelling evidence that local geometry emerges from
the super Yang-Mills gauge theory[37].

Key idea: The field theory description of 1
2
-BPS geometries is in terms of operators

with dimension of O(N2). Probing this geometry corresponds to computing correlators

of operators with the background operator inserted. The correlators can be used to

extract rather detailed information about the dual geometry.
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9. Outlook

It is clear that something non-trivial is working. Things are however, far from satisfac-

tory. The AdS/CFT correspondence has passed highly non-trivial tests (far more than

we discussed) so that we are confident the basic idea is correct. However, we still have

no real understanding of why the degrees of freedom of a strongly coupled Yang-Mills

theory are most simply described starting from a higher dimensional dynamical geom-

etry. The geometry is not visible in the weak coupling (Lagrangian) description of the

quantum field theory, and in this sense is emergent. A simple example of an emergent

geometry is provided by the large N limit of a single Hermitian matrix model quantum

mechanics[2]. In the large N limit, the integral is dominated by a saddle point with a

definite eigenvalue distribution. The emergent geometry relies crucially on the repulsive

inter eigenvalue force which causes the eigenvalues to spread. Without this repulsive

force the eigenvalues would simply sit at one of the minima of the potential of the

matrix model. The repulsive force itself comes from the Van der Monde determinant,

that is, from the measure of the path integral9. It is thus a quantum effect, which seems

to match nicely with the fact that ~ sets the radius of the AdS space (see footnote 1

on page 2). To go beyond a single matrix is extremely difficult. For a single matrix

model, the eigenvalues provide a very convenient set of variables. For more than one

matrix, since the matrices will not in general commute, its not clear what the analog

of the eigenvalues are. An important fact might be that we only expect the emergence

of geometry in the strong coupling limit. Berenstein[7, 47] has suggested that in the

strong coupling and large N limit the matrices will commute with each other. In this

way the usual N2 degrees of freedom of matrices get effectively reduced to order N de-

grees of freedom and the collective description of these low energy degrees of freedom

can be given in terms of a joint eigenvalue distribution for several matrices. It is the

geometrical description of this eigenvalue distribution that is supposed to produce the

emergent geometry[7, 47].

The emergent geometry obtained in the large N limit of a single Hermitian matrix

model quantum mechanics[2] was constructed by making a systematic change of vari-

ables in the quantum theory, correctly accounting for the Jacobian of this change. A

systematic way to achieve this is provided by the collective field theory formalism[48].

For a single matrix a convenient set of gauge invariant variables is provided by traces

of powers of the matrix. For more than one matrix one needs to consider traces of

arbitrary words built from the matrices - which is rather complicated. However, such

a rewriting does indeed show that the field theory reconstructs the dual gravitational

9The Van der Monde determinant has recently been shown to arise in certain sectors of multimatrix
models[46].
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dynamics[49]. In principle this approach would provide a way to systematically recon-

struct the dual gravitational dynamics from the field theory. The problem however, is

one of considerable complexity. It seems that additional insight is needed before this

program can be taken to completion.

Above we have restricted ourselves to the 1
2
-BPS sector. A skeptic might suggest

that it is dangerous to draw general lessons from the 1
2
-BPS sector. Indeed it might be,

so we should try to do better. To go beyond the half-BPS sector, one needs to study

multi-matrix dynamics. In general, this is a formidable problem. There has however,

been some recent progress: three independent bases for general multi-matrix models

have been identified. For a review of these developments and the work leading up to

them, see [9]. The basis described in [18] builds operators with definite flavor quantum

numbers. The basis of [19] uses the Brauer algebra to build correlators involving Z and

Z†; this basis seems to be the most natural for exploring brane/anti-brane systems. The

basis of [20] most directly allows one to consider excitations of the operator. All three

bases diagonalize the two point functions in the free field theory limit (to all orders in

the 1
N

expansion); it is in this sense that they generalize the Schur polynomials to the

case of multimatrix models. The discovery of these bases seems to be a promising start

towards exploring N = 4 super Yang-Mills theory beyond the 1
2
-BPS sector. On the

gravity side there has been some progress in characterizing the 1
4
-BPS geometries[50].

Perhaps in the not too distant future we will have an answer for George.
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