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A physical derivation of the Kerr—Newman
black hole solution

Reinhard Meinel

Abstract According to the no-hair theorem, the Kerr—Newman blackehsmlu-
tion represents the most general asymptotically flat,statly (electro-) vacuum
black hole solution in general relativity. The procedursatibed here shows how
this solution can indeed be constructed as the unique soltdithe corresponding
boundary value problem of the axially symmetric EinsteimxwWell equations in a
straightforward manner.

1 Introduction: From Schwarzschild to Kerr—Newman

The Schwarzschild solution, depending on a single parar(rei@ssM), represents
thegeneral spherically symmetric vacuum solution to the Einstein ¢igna. Simi-
larly, the Reissner—Nordstrom solution, depending onpaameters\l and elec-
tric chargeQ), is thegeneral spherically symmetric (electro-) vacuum solution to
the Einstein—Maxwell equations. In contrast, the Kerr—Nem solution, depending
on three parameterd/; Q and angular momentud), is only aparticular station-
ary and axially symmetric electro-vacuum solution to thesiin—Maxwell equa-
tions. However, one can show under quite general conditiatshe Kerr—Newman
solution represents the most general asymptotically flatiopary electro-vacuum
black hole solution (“no-hair theorem”). Important contributionsttte subject of
black hole uniqueness were made by Israel, Carter, HawKiaginson and Mazur
(1967-1982), for details see the recent review [3].

Assuming stationarity and axial symmetry, it is indeed faesto derive the
Kerr—Newman black hole solution in straightforward mantwgr solving the cor-
responding boundary value problem of the Einstein—-Maxellations[[7]. In the
following sections, an outline of this work will be given. @ method is a generaliza-
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tion of the technique developed for solving a boundary vpladlem of the vacuum
Einstein equations leading to the global solution desegla uniformly rotating
disc of dust in terms of ultraelliptic functions [112,]13],esalso [9]. It is based on
the “integrability” of the stationary and axisymmetric van Einstein and electro-
vacuum Einstein—Maxwell equations via the “inverse scamemethod”, see’[1].
In the pure vacuum case, the method was also used to deriethdlack hole

solution [10/ 13/ B].

2 Einstein—Maxwell equations and related Linear Problem

The stationary and axisymmetric, electro-vacuum Einstdimxwell equations are
equivalent to the Ernst equations [4]

fAS = (D& +2000).0&, fA®=(0&+2000) -0 (1)
2 19 92 d 0
with f=0&+|®2, A ap2+pap+052’ 0 (p’d ). (@)
The line element reads
ds? = f1[h(dp?+ dZ?) + p2d¢?| — f(dt + Adgp)?, (3)

where the coordinatdsand ¢ are adapted to the Killing vectors corresponding to
stationarity and axial symmetry:

17} J

(4)

We assume an asymptotic behaviouriass o (p =rsinf, { = rcosf) given by

ne=1-M1 062, D£=—2Jf259+ﬁ(r*3), 0=

+0(r?) (5)

corresponding to asymptotic flatness and the absence of aatiagronopole term
(Q real). The metric functionk andA can be calculated from the complex Ernst
potentials?’(p,{) and®(p, ) according to

— — — 4 —
(nh) ;= £ (62+200,)(6,+ 200, - P o,0,, ©®)
Ar=5(08)2-100, 4100  (—w h—>1A-0. (1)

Here complex variables
z=p+if, z=p-i¢ (8)
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have been used instead@fand . Note thatf has already been given il (2). The
electromagnetic field tensor

Fk=Aki — Ak, AdX = Agdp+ At 9
can also be obtained from the Ernst potentials:

A=-00, Aq,,zzAAt,z—%DcD),Z (r > Ag—0).  (10)

The Ernst equation$](1) can be formulated as the integialoitindition of a

related Linear Problem (LP). We use the LP [of|[11] in a sligmlodified form,
which is advantageous in the presence of ergospheres:

bl 0c 0 bl 0
Yz= 0Oa; 0 |+A| a 0 —cy Y, (12)
d 00 0d; O
b2 0c 1 0 b2 0
Y’z—: Oa 0 +X a 0 - Y (12)
d2 00 0 dz 0
with
K —iz
A= K+iz’ (13)
= 66,4200, = 6742007
a;=hy= % a=Db; = T ; (14)
a="fl=0, cy=fd=0os (15)
The integrability condition
Yz=Yz% (16)

is equivalent to the Ernst equations. The following poimésralevant for the appli-
cation of soliton theoretic solution methods:

e The 3x 3 matrixY depends not only on the coordinapeand (or zandz), but
also on the additional complex “spectral parameker”

e SinceK does not appear, we can assume without loss of generalitjhthale-
ments ofY are holomorphic functions d¢ defined on the two-sheeted Riemann
surface associated with {13), except from the location®esible singularities.

e Each column ofY is itself a solution to the LP. We assume that these three solu
tions are linearly independent.

e For a given solutio®’, @ to the Einstein—-Maxwell equations, the solution to the
LP can be fixed (normalized) by prescribi¥gat some poinpg, {o of the p-¢
plane as a (matrix) function & in one of the two sheets of the Riemann surface.

e Y can be discussed in general as a unique functign gfandA.

Three interesting relations result directly from the stuwe of the LP[(II_112):
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[f(p,0)] *detY (p,Z,A) = Co(K), (17)
1 00
0 01
B ALIT-X ) 0
[Y(p.2,1/A)] 8 —[f(péorl 0|Y(p,{,A)=Ca(K),  (19)
-1

whereCy(K) as well as the matriceS; (K) andC,(K) do not depend op and{.

3 Solving the black hole boundary value problem

After formulating the black hole boundary value problem wikuse the LP to find
its solution. The most important part comprises derivirggEnnst potentials on the
axis of symmetry[[7]. It is well known that these “axis dataiiguely determine the
solution everywhere, segl[5,]14]. A straightforward metfardobtaining the full
solution from the axis data is based on the analytical pt@seofY as a function

of A [8].

3.1 Boundary conditions

The event horizow? of a stationary and axisymmetric black hole is charactdrize
by the conditions _ _
A X'xi=0, x'ni=0, (20)

wherex' = &'+ Qn' and the constan® is the “angular velocity of the horizon”
[6][2]. Because of

p? = (&'m)*— E'&n" = (x'm)”— X' xin*nk (21)
the horizon must be located on tfeaxis of our Weyl coordinate system:
2. p=0. (22)

This results in two possibilities for a connected hor&o(ril) a finite interval on
the {-axis and (ii) a point on the -axis, see Figl]l. Note that the two parts of
the symmetry axis@* and.e7~, where the Killing vectom vanishes, are also
characterized by = 0. The black hole boundary value problem consists of finding
a solution that is regular everywhere outside the horizahsatisfies[(20) and(5).

1 A connected horizon means a single black hole. We are natestel here in the problem of
multi-black-hole equilibrium states.
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o~ Lot~

Fig. 1 In Weyl ccordinates, the horizon is either a finite intervagoint on thel-axis (adapted

from [7]))

3.2 Axis data

At p = 0, the branch point& = iz andK = —iz of (I3) merge tK = ¢ and for
K # ¢ holdsA = +1. Consequently, the solution to the LP, for= +1, is of the

form _
E42@P 1 o
g Yi= & —1-0 |Cy, (23)
20 0 1
E+2@P 1 o
I Yh= (o@_ -1-@ | Cy. (24)
20 0 1

We fix C (K) by the normalization condition
1 10 FOO
imY;((,K)y={1-10 = Ci=|G1lL (25)
K¢ 0 01 HO1

and the function§ (K), G(K), H(K) andL(K), for K = ¢, are given by the poten-
tials& =&, ®=d, ong™:

FIO =[O 60 = [l (P +i0& (] (DY (26)
H(Q) = -2, (Q[f+ (O], L) =-4(Q) (27)

and, vice versa,

£:Q) = L D) = (28)
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We can calculat€(K), C1(K) andCy(K) of relations [IVEI9) for our normaliza-

tion:
010 02F O
Co=-2F, Ci=|100]|, C,=[2F 0 o0]. (29)
001 0 0 -1
On.w/ ™, (I9) reads
{02 0 02F O
c.K)"l20 o|lc,Ky=[2F 0 o0]. (30)
00-1 0 0 -1

From continuity conditions at the “poles” of the horizgn£€ 0,{ =+l orr =0,
0 = 0, T; see FiglL) and using the boundary conditions, one canle#d¢Ty(K) and
C_(K) in terms ofC_ (K), for details | refer to[[lF]. Closing the path of integration
via infinity (curve%: p = Rsin@, { = Rcosf with 0 < 8 < 11, R — ), whereY
is constant because of the LP afdl (5), buthanges fromt1 at6 = 0 to 71 at
0 = 1, we obtain with[(IB) and(29) an explicit expression @r(K) in terms of
the parameter®, | (with | = 0 for a horizon at = 0) and the values of the Ernst
potentials at the poles. Usirlg {28), we can calcuatand @, . The number of free
real parameters is reduced to four as a consequence of tiseaian[30) and to
three if no magnetic monopole is allowed. The final result is

_ (K=L)(K-Lp) o Q-2
FK)= (K=Kp)(K=Kp)’ GK) = (K=Kp)(K=Kz)’ 1)
B 2Q(K —Ly) - Q
") T (K=Ky)(K=Kyp)’ L(K)__K—Ll (32)

. . J / J2
with Ll/ZZ_M:tIM7 K1/2::|: MZ_QZ_W (33)

and, correspondingly,

2M Q

G@Jr(Z):l—m, ¢+(Z)=m (34)
together with the parameter relations
|2 QZ JZ J/MZ
W+W+W_l and QM_(1+I/M)2+JZ/M4' (35)

3.3 Solution everywhere outside the horizon

Relation [I8) together with the expression ©1(K) in (29) is equivalent to the
following structure ofY:
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Y(p.¢,A) @(p.¢,—A)a(p,g,A)
Y(P.{,A)=| x(p,{.A) —x(p.¢,—A) B(p,{,A) |, (36)
¢(p.¢,A) ¢(p,{.—A) y(p,{,A)
wherea( p.¢ / A) =a(p,{,=A), B(p,{,A) = —B(p,{,—A) and y(p,{,A) =
v(p,{,—A). The general solution of the LP fér — c andA = +1 reads
E+202 1 @
Y(paZ71): éa_ -1-9 C7 (37)
20 0 1
whereC is a constant matrix. Eqd._(P3.]145.1 8T] 32) im@y= 1 and lead to the
ansatz L L L L
R e e R e S d
1 1
X_1+|1<K1—A_K1+1>+|2<K2— K2+1> (39)
1 1
o=m (5 arr) (e mr) (40)
B ao _ s AK+iz) Yo
a=Ot = =0T V=l (41)
where
— Ku—iz + . —
e s (T Ky=+1). (42)

According to the LPY ;Y1 andY 7Y ~1 must be holomorphic functions of
A for all A # 0,c. The regulanty ath = +k, (U = 1,2), the poles of the first
two columns ofY, is automatically guarantied, whereas regularityAat= +A,
with Ay = /(Ly —i2)/(Ly +i2) (& Ay = +1), where poles of the third column
(u = 1) and zeros of dét (u = 1, 2) occur, sed (17, 2B, B1), is equivalent to a set of
linear algebraic equations, which together with| (23 [25[32) uniquely determine

the unknowns, (p, ), 1u(p.), mu(p,{), ao(p.), w(p.{) and ®(p,{). With
&(p, ) =x(p,,1), seel(3r), this leads to the result

. 2M B Q
e=1 F—i(J/M)cosd’ (D_F—i(J/M)cosé (43)

with p=/F2—2MF + J2/M2 + Qsinb, {=(F—M)cosh.  (44)

The “domain of outer communication” (the region outsidealient horizon#’)
is given byr™ f, = M + /M2 — J2/M2 — Q2. The horizon itself is characterized by
=y, and the axis of symmetry is located@it= 0 (™) andf =1 (/7). Note
that [35) impliesQ? + J2/M? < M?. The equality sign, corresponding lte= 0, is
valid for the extremal Kerr—Newman black hole.
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3.4 Full metric and electromagnetic field

Using Egs. [(R[J611.10) we can calculate the full metric arelelectromagnetic
four-potential:

(2MF — Q;)azsmz 9) si?8dg?  (45)

(2MF — Q?)2asirn? 6 2MF—Q2\ .,
5 dodt — (1—T>dt

ds? = %dr”2+2déz+ <r2+a2+

(46)

with A= —-2Mf+a’+ Q% >=f+a’co€h, a=J/M (47)

and .
AjdX = %(asinzéd(p—dt). (48)

This is the well-known Kerr—Newman solution in Boyer—Lindsf coordinates ~
and6. ForQ = 0it reduces to the Kerr solutiod = 0 gives the Reissner—Nordstrom
solution andQ = J = 0 leads back to the Schwarzschild solution.
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