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 Abstract 
 

Black holes are real astrophysical objects, but their interiors are hidden and can only be “observed” through 

mathematics. The structure of rotating black holes is typically illustrated with the help of special coordinates. But any 

such coordinate choice necessarily results in a distorted view, just as the choice of projection distorts a map of the 

Earth. The truest way to depict the properties of a black hole is through quantities that are coordinate-invariant. We 

compute and plot all the independent curvature invariants of rotating, charged black holes for the first time, revealing 

a landscape that is much more beautiful and complex than usually thought. 

 

 

Black holes are one of the most spectacular predictions of Einstein’s theory of General Relativity: regions 

of spacetime so strongly curved by gravity that not even light can escape. They are known to exist as the 

end products of the collapse of very massive stars, and at the cores of most galaxies. But they are not 

accessible to observation in the same way as other phenomena in nature. They are surrounded by event 

horizons, surfaces from which no information can emerge. Thus black holes are objects for which the usual 

course of scientific discovery is reversed. Usually we observe first, and use mathematics and art later on to 

organize and explain what we have observed. With black holes, it is just the opposite: we are guided by 

mathematics and art, and we hope to observe later! 

Perhaps for that reason, popular depictions of these objects are often misleading. Typically they are 

shown as two-dimensional “whirlpools in space”, as in the 1979 Disney film The Black Hole. Spatially they 

are of course three-dimensional, resembling a “hole from every direction,” as memorably explained in the 

2014 film Interstellar. Their effects on space and time outside the horizon can be suggested by the use of 

colored grid lines (Figure 1, left). Here the change in color and radial compression of the grid lines represent 

the warping of time and space respectively due to the mass of the black hole, while the spiral shape of the 

grid lines in the horizontal plane suggests the twisting of spacetime due to the hole’s spin. These effects are 

known as gravitational redshift, geodetic effect and frame-dragging respectively, and all have recently been 

detected experimentally in the weak gravitational field of the Earth [1]. Because of mathematical analogies 

with Maxwell’s equations for electromagnetism, the warping effects are sometimes referred to as “gravito-

electric”, while the twisting is “gravito-magnetic”. 

Fortunately, we have mathematical solutions for all possible types of black holes: those with no charge 

or spin (Schwarzschild), those with spin but no charge (Kerr), those with charge but no spin (Reissner-

Nordstrom) and, most generally of all, those with both charge and spin (Kerr-Newman). Most astrophysical 



black holes are likely to be of the Kerr type since charge will gradually be neutralized through the 

preferential accumulation of oppositely charged matter. The interior of a Kerr black hole is typically 

illustrated using Boyer-Lindquist coordinates, in which the radius of the event horizon is 𝑟 = 𝑚 +

√𝑚2 − 𝑎2 where m and a are the black hole’s mass and angular momentum (or spin). In such coordinates 

the event horizon appears as a spherical shell (inner surface in Figure 1, right). 

Such a picture has its uses, but is also misleading in important ways. For example, it suggests that 

spatial curvature everywhere on the horizon is constant and positive. This is incorrect, in exactly the same 

way that it is incorrect to say that Greenland is larger than the continental U.S.A., even though it may look 

that way on a flat (Mercator projection) map of the Earth. The error in both cases is an artifact of the choice 

of coordinates. The only way to illustrate the interior of a black hole without such distortion is to plot only 

invariants; that is, quantities whose value is the same regardless of the coordinates used. 

We wish to obtain invariants characterizing the curvature of spacetime for the most general possible 

(Kerr-Newman) case. The essence of General Relativity is that the curvature so described is identical with 

what we feel as gravity. The starting point is the metric tensor 𝑔𝑖𝑗, a generalization of the Pythagorean 

Theorem 𝑑2 = 𝑥2 + 𝑦2 in which increments of distance in curved four-dimensional spacetime obey 𝑑𝑠2 =
∑ 𝑔𝑖𝑗𝑑𝑥𝑖𝑑𝑥𝑗

𝑖,𝑗  for coordinates 𝑥𝑖 (indices i,j,… range from 1 to 4). Taking 𝑥𝑖 to consist of time t plus the 

Boyer-Lindquist radius r and spherical polar coordinates 𝜃, 𝜑, the Kerr-Newman metric is specified by 

𝑑𝑠2 = −
∆

𝜌2
(𝑑𝑡 − 𝑎sin2𝜃𝑑𝜑)2 +

sin2𝜃

𝜌2
[(𝑟2 + 𝑎2)𝑑𝜑 − 𝑎𝑑𝑡]2 +

𝜌2

∆
𝑑𝑟2 + 𝜌2𝑑𝜃2 where ∆≡ 𝑟2 − 2𝑚𝑟 +

𝑎2 + 𝑞2, 𝜌2 ≡ 𝑟2 + 𝑎2cos2𝜃, and q is the black hole’s electric charge [2]. 

Curvature is described in terms of the metric by the Riemann tensor 𝑅𝑖
𝑗𝑘𝑙 ≡

𝜕

𝜕𝑥𝑘 Γ𝑖
𝑗𝑙 −

𝜕

𝜕𝑥𝑙 Γ𝑖
𝑗𝑘 +

Γ𝑚
𝑗𝑙Γ𝑖

𝑚𝑘 − Γ𝑚
𝑗𝑘Γ𝑖

𝑚𝑙 where Γ𝑖
𝑗𝑘 ≡

1

2
𝑔𝑙𝑖 (

𝜕𝑔𝑘𝑙

𝜕𝑥𝑗 +
𝜕𝑔𝑗𝑙

𝜕𝑥𝑘 −
𝜕𝑔𝑘𝑗

𝜕𝑥𝑙 ) is the “connection”. (These expressions 

assume the Einstein summation convention; i.e., summation over repeated indices.) But while the elements 

of 𝑅𝑖
𝑗𝑘𝑙 describe the curvature, they do not do so in an invariant manner, since they are functions of the 

chosen coordinates. To describe the curvature in a coordinate-invariant way (what Einstein called 

“expressing thoughts without words”), one must construct scalar quantities from the metric and Riemann 

tensor. In general, there are fourteen of these [3], or as many as seventeen when allowance is made for 

certain degenerate cases [4]. It can be shown that only two of these (labelled I1 and I2 in [4]) are independent   

for the case of neutral black holes. Charged black holes are characterized by three more independent 

curvature scalars (I6, I9 and I10). So one needs five such quantities to fully characterize the curvature of 

spacetime inside all possible time-independent black holes. 

Figure 1: Effects of a spin-

ning black hole on space and 

time outside the horizon (left), 

and interior of a spinning 

black hole in Boyer-Lindquist 

coordinates (right), showing 

the ring singularity and event 

horizon (spherical inner shell).  
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Two of these curvature invariants have been previously discussed for the case q = 0 [5,6]. We have 

calculated and plotted all seventeen invariants in the general case q ≠ 0 for the first time. Space constraints 

prevent us from listing them all here, but the five key independent quantities are defined by 𝐼1 = 𝐶𝑖𝑗
𝑘𝑙𝐶𝑘𝑙

𝑖𝑗 

and 𝐼2 ≡ −𝐶𝑖𝑗
𝑘𝑙𝐶∗

𝑘𝑙
𝑖𝑗

 (the Weyl invariants), 𝐼6 ≡ 𝑅𝑖𝑗𝑅𝑖𝑗 (the Ricci invariant), and 𝐼9 = 𝐶𝑖𝑘𝑙
𝑗𝑅𝑘𝑙𝑅𝑗

𝑖 and  

𝐼10 = −𝐶∗
𝑖𝑘𝑙

𝑗𝑅𝑘𝑙𝑅𝑗
𝑖 (the mixed invariants). Here 𝐶𝑖𝑗𝑘𝑙 ≡ 𝑅𝑖𝑗𝑘𝑙 +

𝑅

6
(𝑔𝑖𝑘𝑔𝑗𝑙 − 𝑔𝑖𝑙𝑔𝑗𝑘) −

1

2
(𝑔𝑖𝑘𝑅𝑗𝑙 −

𝑔𝑖𝑙𝑅𝑗𝑘 − 𝑔𝑗𝑘𝑅𝑖𝑙 + 𝑔𝑗𝑙𝑅𝑖𝑘) is the Weyl tensor, whose dual is 𝐶∗
𝑖𝑗𝑘𝑙 ≡

1

2
𝜀𝑖𝑗𝑚𝑛𝐶𝑚𝑛

𝑘𝑙 where 𝜀𝑖𝑗𝑘𝑙 is the Levi-

Civita tensor density (≡ +1 when ijkl is an even permutation of 1234; 1 if an odd permutation; and 0 

otherwise). The Ricci tensor and curvature scalar are defined by 𝑅𝑖𝑗 = 𝑅𝑘
𝑖𝑘𝑗 and 𝑅 = 𝑅𝑖

𝑖 respectively. 

Indices are raised and lowered in these expressions by means of the metric tensor and its inverse, so that 

(for instance) the Weyl tensor in mixed form is 𝐶𝑖𝑗
𝑘𝑙 = 𝑔𝑘𝑚𝑔𝑙𝑛𝐶𝑖𝑗𝑚𝑛. 

 We have evaluated these quantities by extending a publicly available suite of symbolic Mathematica 

codes [6]. The results are plotted in Figure 2 above; mathematically, they read: 
 

𝐼1 =
8

(𝑟2 + 𝑎2cos2𝜃)6
[6𝑚2(𝑟6 − 15𝑟4𝑎2cos2𝜃 + 15𝑟2𝑎4cos4𝜃 − 𝑎6cos6𝜃)

− 12𝑚𝑞2𝑟(𝑟4 − 10𝑟2𝑎2cos2𝜃 + 5𝑎4cos4𝜃) + 𝑞4(6𝑟4 − 36𝑟2𝑎2cos2𝜃 + 6𝑎4cos4𝜃)], 

𝐼2 =
96𝑎cos𝜃

(𝑟2 + 𝑎2cos2𝜃)6
[𝑚2𝑟(3𝑟4 − 10𝑟2𝑎2cos2𝜃 + 3𝑎4cos4𝜃) − 𝑚𝑞2(5𝑟4 − 10𝑟2𝑎2cos2𝜃 + 𝑎4cos4𝜃)

+ 2𝑞4𝑟(𝑟2 − 𝑎2cos2𝜃)], 

𝐼6 =
4𝑞4

(𝑟2 + 𝑎2cos2𝜃)4
 , 

𝐼9 =
16𝑞4[𝑟2(𝑞2 − 𝑚𝑟) − 𝑎2(𝑞2 − 3𝑚𝑟)cos2𝜃]

(𝑟2 + 𝑎2cos2𝜃)7
   and   𝐼10 =

16𝑎𝑞4cos𝜃[𝑟(3𝑚𝑟 − 2𝑞2) − 𝑎2𝑚cos2𝜃]

(𝑟2 + 𝑎2cos2𝜃)7
  . 

 

The plots in Figure 2 may be likened to topographical maps showing the steepness of various places on the 

surface of the Earth. The angle   is measured from the “north pole” of the black hole. The ring singularity 

is at   at a distance a = 0.6 from the center of the black hole. The Boyer-Lindquist radial coordinate r 

is zero at the ring singularity;  at the center of the black hole, and goes over asymptotically to the 

conventional radial distance far from the black hole. Contrary to the impression one receives from the 

standard picture in Figure 1, curvature is far from constant, and is negative over large regions of this phase 

space, as noted by some workers [8]. A more direct comparison between the two pictures is possible if we 

“unpack” one of these invariants and plot it for several representative values of r in spherical polar 

coordinates (Figure 3). The contrast could hardly be more dramatic! 

Figure 2: The Weyl curvature invariants I1 and I2 (yellow and blue; left) and the Ricci and 

mixed curvature invariants I6, I9 and I10 (yellow, blue and green; right), plotted as functions of 

r and   for a black hole of mass m=1, charge q=0.8 and spin a=0.6. 



Figures 2 and 3 show that the Weyl invariants gyrate wildly near the singularity; the mixed invariants 

less so. The pure Ricci invariant is well-behaved by comparison. This is interesting since the Weyl tensor 

encodes the degrees of freedom corresponding to a free gravitational field [9]. The crenellations themselves 

have been attributed to conflicting contributions to the curvature from the gravito-electric and gravito-

magnetic components of this field, the latter generated by the black hole’s rotation [10,11]. 

The importance of invariants in physics can hardly be overstated. The single invariant I5 (also 

known as the Ricci curvature scalar) contains within itself the “seed” of General Relativity through its role 

as the action of that theory [2]. Beginning instead with a different action based on I1 leads to an entirely 

different theory of gravity, conformal Weyl gravity [12]. The potential of the other invariants is as yet 

unexplored. We do not know whether the expressions we have found will eventually lead to greater physical 

insight into the nature of black holes. But we do know that the first step in obtaining any such insight is to 

find the invariants! And that is what we have done here. 
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Figure 3: The first Weyl invariant I1, plotted in spherical polar coordinates for several 

representative values of r (compare Figure 1, right). 


