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The equations of motion of a test particle are integrated for the field of a rotating

Kerr black hole (BH) (in accordance with [1]). Due to the lack of analytical transfor-

mations for the Carter–Penrose diagrams (CPDs) for the Kerr metric, the topology

of the Kerr BH is studied by analytical investigation of the equations of motion.

Transformations for the CPDs for the Reisner–Nordström metric are analyzed. The

problem of boundary conditions for the Reisner–Nordström topology is analyzed. A

solution to this problem of boundary conditions is proposed. It is proved that, in

the Reisner–Nordström topology, only one way to go to another universe is possible.

For the Kerr topology, the possibility of the existence of an alternative transition to

another universe that does not coincide with the universe for the ordinary transition

is found. This alternative transition is performed through a surface with a zero radial

coordinate (zero radius). Initial conditions for the falling particle are found that cor-

respond to an alternative transition to another universe. The tidal forces acting on

a falling body in the Kerr metric are estimated, and the possibility of the transition

of the body to other universes without being destroyed by tidal forces is proved.

I. INTRODUCTION

It has long been known that real black holes (BHs) that exist eternally (from the very ori-

gin of the Universe1 are in a space with complex topology (see, for example, [2]). Henceforth,

by real black holes we mean BHs that have either angular momentum (the Kerr solution),

or electric charge (the Reisner–Nordström solution), or both (the Kerr–Newman solution).

For charged (but not rotating) BHs, there exists an analytical (and a graphical)

Carter–Penrose diagram (CPD) (see Fig. 1), which shows that such BHs exist in a space with

1 We will write the word “universe” with a lowercase letter, meaning by this different parts of the big
Universe, which combines different parts into the complex topology of the Universe.
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Figure 1:

(a) A Carter–Penrose diagram for a charged Reisner–Nordström BH. The singularity at r = 0 is

marked by bold vertical lines. Bold curves are possible world lines of particles. They enter the

BH from region R1, then pass through the regions T− , R4, and T+ and exit in regions R2 or R3

through different white holes into different universes. (b) Lines r = const in R and T regions of the

diagram.

(c) Lines t = const in appropriate R and T regions of the diagram.

.

complex topology that combines different universes (different parts of the big Universe).

In addition, charged BHs can be analytically studied completely; i.e., for example, one

can construct trajectories of test particles in the gravitational field of these BHs. Moreover,

these trajectories can be continued below the BH horizon and then further below the Cauchy

horizon of this BH up to the turning point of the trajectory. In this case, a weak singularity

on the Cauchy horizon does not prevent the continuation of these trajectories through the

turning point (see below Fig. 1). After the turning point, the solution for the trajectory of

a test particle moves to a new sheet (in another universe) and is smoothly stitched at the

turning point.

Here, the analytical indication of the turning point of the trajectory is the vanishing of
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the denominator in the integrand of the quadrature of the trajectory (see below). Of course,

this point coincides with the turning point on the CPD when constructing this trajectory

on it.

Unfortunately, there are no analytical transformations for two-dimensional CPDs of rotat-

ing BHs. This fact greatly complicates the analytical study of the complex topology of such

BHs. Nevertheless, there is every reason to assume that the topology of rotating BHs is also

complex, unlike, for example, the topology of uncharged and nonrotating (Schwarzschild)

BHs.

The grounds for such assumptions are several facts that are considered in the present

paper.

II. FEATURES OF COMPLEX TOPOLOGY

The first indication that the BH topology is complex is the presence of an R-region inside

the BH, i.e., the existence of the Cauchy horizon in the solution. It was repeatedly shown

earlier (see, for example, [3]) that the singularity arising on the Cauchy horizon is weak

according to Tipler’s classification [4], i.e., integrable2. In contrast to the strong (according

to Tipler) singularity (which also necessarily exists inside any black hole), material bodies

do not have time to be destroyed by tidal forces when passing through a weak singularity,

since the action time of a weak singularity on a flying body tends to zero.

The second indication that the BH topology is complex is the “repulsion” of test particles

from a strong singularity. As for the particles that are not test particles but are so heavy

that they themselves have an opposite effect on the gravitation of the BH, most likely they

are also repelled by the strong singularity of the BH; however, there is no mathematical (or

numerical) confirmation of this fact yet. Moreover, “repulsion” means the absence of real

particle trajectories that would end at a strong singularity.

For charged BHs, this was proved analytically (see, for example, [5]).

2 The question is the convergence of the integral
∫ √

Kds, where K is the Kretschmann scalar and s is the
proper time of a freely falling particle [3].
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III. FEATURES OF THE KERR METRIC

The solution for a rotating BH (the Kerr metric) in coordinates (t, r, θ, ϕ) has the form

ds2 =
∆

ρ2
[
dt− a sin2 θ dϕ

]2 − sin2 θ

ρ2
[
(r2 + a2)dϕ− a dt

]2 − ρ2

∆
dr2 − ρ2 dθ2 , (1)

f(r) := (1− r−h /r)(1− r
+
h /r) , (2)

ρ2 := r2 + a2 cos2 θ . (3)

Here ∆ := r2f ; and a is the angular momentum L of the BH, expressed in units of its

mass M (a := L/M); we use dimensionless units: G = 1 (gravitational constant) and c = 1

(velocity of light).

By the asymptotic behavior of metric (1) at infinity, we obtain:

r−h + r+h = 2M , (4)

r−h · r
+
h = a2 , (5)

r±h := M ±
√
M2 − a2 . (6)

Hence we obtain:

∆ := r2f = r2 − 2Mr + a2 (7)

The maximum possible value of the parameter a can be equal to the mass M of a BH; then

the inner Cauchy horizon touches the outer horizon in such a degenerate BH. A BH simply

cannot rotate faster than for a = M ; otherwise centrifugal forces would not allow gravitation

to form such a BH. In reality, even this limit (when a = M) is not reachable; the maximum

a can be approximately equal to 0.998M [6].

As is known, strong singularities in the Schwarzschild solution and in the Reis-

ner–Nordström solution are concentrated at the same point, which is the center of symmetry

of the solutions. As for the Kerr solution (a rotating BH), here a strong singularity is con-

centrated on a ring. The geometrical locus of the points of this singular ring corresponds to

the radial coordinate r of the solution, which turns out to be zero at the singularity. By a

strong singularity is meant the becoming infinite of the Kretschmann scalar K.

When calculating K, it turns out that the singularity in the Kerr metric arises not simply

at r = 0 (as was the case for a nonrotating BH), but also the condition θ = π/2 is required;
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i.e., the singularity lies at the equatorial plane of the geometry at ρ = 0 [7]:

K := RijklR
ijkl =

48M2(r6 − 15a2r4 cos2 θ + 15a4r2 cos4 θ − a6 cos6 θ)

(r2 + a2 cos2 θ)6
(8)

Here Rijkl is the Riemann tensor, which is calculated based on the metric components gik (see

(1)).

Near the ring singularity (for θ = π/2 and r → 0), according to (8), we have the asymp-

totics K → 48M2/ρ6. Consequently, the maximum of tidal forces corresponds to the mini-

mum of ρ on the trajectory, i.e., to the ring singularity.

Moreover, according to the rules of Riemannian geometry, the circumference of such a

singular ring turns out to be equal to 2πa, since the circumference is calculated from (1) by

the formula

O =

2π∫
0

dϕ
√
|gϕϕ| = 2π sin θ

√
(r2 + a2)2 −∆a2 sin2 θ

r2 + a2 cos2 θ
(9)

Therefore, for r = 0 we obtain

O(r=0) = 2πa sin θ (10)

i.e., for r = 0, the circle turns out to be the usual circle on a sphere of radius a. But this is

exclusively due to the specific feature of the chosen coordinates in metric (1).

In addition to the definition of the circumference, we can also define the surface at

r = const. The area of this surface is calculated from (1) as the integral:

S =

π∫
0

dθ

2π∫
0

dϕ
√
|gθθgϕϕ| = 2π

π∫
0

sin θ
√

(r2 + a2)2 −∆a2 sin2 θ dθ (11)

Therefore, for r = 0 we obtain

S(r=0) = 2πa2 (12)

The quantity S0 := 2πa2 corresponds to the area of a two-sided circular membrane of radius

a; i.e., in the definition of the surface, the quantity a behaves like the radius of a flat

membrane. The difference in the definition of the radius at r = 0 for the circle 0 and for the

surface area S is due to the strong curvature of spacetime near the ring singularity.
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IV. PROOF OF THE FACT THAT A TEST PARTICLE CANNOT REACH A

RING SINGULARIT

The motion of a test particle in the field of a rotating BH is described by four integrals

of motion (see [8], §33.5): the integrals for the mass µ of the particle, for its energy ε,

for the projection lz of its angular momentum on the axis of rotation of the BH, and the

fourth (Carter) integral of motion Ω. The equations obtained in this section will be used in

Section VI to plot the trajectory of a freely falling particle.

To simplify the calculations, it is convenient to write the equations in terms of the specific

integrals of motion (divided by µ): ε := ε/µ (the specific energy of the particle), h := lz/µ

(impact parameter on the rotation axis of the BH), and ω := Ω/µ2 (the specific Carter

integral of motion).

Let us introduce the notation necessary for writing the equations:

Θ := ω − cos2 θ
[
a2(1− ε2) + h2/ sin2 θ)

]
, (13)

P := ε(r2 + a2)− ha , (14)

< := P 2 −∆
[
r2 + (h− aε)2 + ω

]
. (15)

Let us write the equations of motion of test particles in the Kerr metric:

ρ2
dt

dλ
= a(h− aε sin2 θ) + (r2 + a2)P/∆ , (16)

ρ2
dr

dλ
= ±
√
< , (17)

ρ2
dθ

dλ
= ±
√

Θ , (18)

ρ2
dϕ

dλ
= (h− aε sin2 θ)/ sin2 θ + aP/∆ . (19)

Here, λ is the affine parameter of the particle trajectory, the signs “±” in front of
√
< and

√
Θ are chosen at the end with regard to the direction of motion of the particle. Further, to

simplify the expressions, we remove the signs in front of
√
< and

√
Θ, implying the existence

of these signs.

When determining the azimuthal coordinate ϕ according to metric (1), a singularity arises

on the BH horizon. Because of this coordinate singularity, sometimes there is a misconcep-

tion that any test particle in the Kerr metric makes an infinite number of revolutions around

the BH before crossing the horizon. In fact, it is not a particle falling freely into a rotating
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BH that makes an infinite number of revolutions, but photons emitted by the particle to in-

finity from the horizon. The particle itself has time to make a rotation only through a finite

angle before crossing the BH horizon. This contradiction is due to the fact that, in order to

“escape” from the BH horizon to infinity, a photon needs infinite time. During this infinite

time, gravimagnetic forces (that involve the locally inertial reference frame in rotation) have

time to rotate the photon around the BH through an infinite angle. To eliminate these time

and azimuthal coordinate singularities, we introduce renormalized time T and azimuthal Φ

coordinates (the Boyer–Lindquist coordinates), according to the definitions:

dT

dλ
:=

r2 + a2

ρ2

(
dt

dλ
− a sin2 θ

dϕ

dλ

)
=

(r2 + a2)P

ρ2∆
, (20)

dΦ

dλ
:=

r2 + a2

ρ2

(
dϕ

dλ
− a

r2 + a2
· dt
dλ

)
=
h− aε sin2 θ

ρ2 sin2 θ
. (21)

Then, taking into account

dλ

ρ2
=

dr√
<

=
dθ√
Θ
,

we can write the integrals for calculating the particle trajectory as

θ∫
dθ√
Θ

=

r∫
dr√
<
, (22)

T =

r∫
(r2 + a2)P dr

∆
√
<

, (23)

Φ =

θ∫
(h− aε sin2 θ) dθ

sin2 θ
√

Θ
. (24)

Equation (22) is equivalent to Eq. (33.37а) from the book [8], and Eqs. (23) and (24) are

combinations of Eqs. (33.37c) and (33.37d) according to the definitions (20) and (21).

Equations (22-24) show that the condition under which a particle reaches a ring singu-

larity with coordinates r = 0, θ = π/2 is the nonnegativity of < and Θ in the neighborhood

of the singularity. According to expressions (7, 14, 15), we obtain

<(r=0) = −a2ω (25)

Let us prove that a test particle cannot reach a ring singularity by contradiction. First,

consider the case of < > 0 in the neighborhood of the singularity. In this case, according to

(25), ω should be negative; but then we find from (13) that Θ(θ=π/2) = ω < 0 on the ring

singularity, which contradicts Eqs. (22) and (24).
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Consider separately the case of <(r=0) = 0. In this case, ω = 0, and, according to (13), we

obtain Θ(θ=π/2) = 0. This degenerate case corresponds to trajectories only in the equatorial

plane, since the integrals with respect to θ diverge logarithmically in the limit as θ → π/2.

This means that, for <(r=0) = 0, the condition θ = π/2, or Θ = 0, must be satisfied for the

entire trajectory.

The mathematical measure on the set of possible initial conditions for such trajectories

(only in the equatorial plane and only for ω = 0) is zero on the set of all possible initial

conditions. This situation is similar to that in the case of trajectories for test particles in

the field of a charged Reisner–Nordström BH. In this case, only radial photons can reach

the central singularity, and the measure of the initial conditions for radial photons is also

zero on the set of all possible initial conditions (including nonradial photons).

Thus, we have proved that test particles in the Kerr metric do not reach a strong ring

singularity; i.e., a strong singularity as if “repels” particles.

V. A CARTER-PENROSE DIAGRAM FOR A REISNER-NORDSTRÖM BH

As already mentioned, due to the lack of central symmetry in the solution for a rotating

BH, it is impossible to construct a two-dimensional analytical CPD for the Kerr solution3.

However, it is obvious from the graphical CPD in Fig. 1a that there can exist trajectories for

a Reisner–Nordström BH that pass from the same universe to different universes. It is not

clear whether or not all such trajectories are physical; if yes, it is not clear to what initial

conditions for the trajectories the boundary of transition to different universes corresponds.

These questions will be addressed in the present section.

Let us write the metric of a Reisner–Nordström BH:

ds2 = f(r) dt2 − dr2

f(r)
− r2

(
dθ2 + sin2 θ dϕ2

)
(26)

r±h := M ±
√
M2 −Q2 (27)

Here the function f(r) is also defined by formula (2); M and Q are, respectively, the mass

3 However, for any metric tensor (including the Kerr metric), it is possible to construct a graphical repre-
sentation of a CPD (see, for example, Fig. 3). Such a graphical representation of a CPD is not always
supported by the analytical transformations from this section, which are found only for centrally symmet-
ric solutions.
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and the charge of the BH; and r±h are the radii of the horizons.

Now, let us write a transformation from the coordinates (t, r) to the “turtle” coordinates

(τ, `), which correspond to a Reisner–Nordström BH:

f dt2 − dr2

f
= fg2

(
dτ 2 − d`2

)
, g(r) := ± dt

dτ
, d` :=

dr

|f | · |g|
(28)

Here we took into account that always dt > 0 and dτ > 0, and sign(d`) = sign(dr) by defi-

nition. According to [9], we obtain

g := sign(f) = ±1 (29)

Now, we write an equation for a trajectory in a Reisner–Nordström BH [5]:

U r :=
dr

ds
= ∓ε

√
1− f(ε−2 + h2/r2) , (30)

dr

dt
= ∓|f |

√
1− f(ε−2 + h2/r2) (31)

The sign in (31) is chosen according to sign(dr) in the radial component of the four-velocity

U r: “minus” in the R1 and T− regions and “plus” in the T+, R2 and R3 regions. In the

region R4, U r vanishes and then changes its sign; at this moment, the sign in expression

(31) should also be changed. This point (the turning point) corresponds to the expression

for the turning radius rturn:√
1− f(rturn)(ε−2 + h2/r2turn) = 0 (32)

From (28) and (31) we obtain

d` =
dr

|f |
(33)

dτ = dt =
∓dr

|f |
√

1− f(ε−2 + h2/r2)
(34)

The transformations for the CPD from the “turtle” coordinates (τ, `) to the CPD coordinates

(ψ, ξ) in accordance with [9] have the form

τ + ` = ctg

(
ψ + ξ

2

)
, τ − ` = tg

(
ψ − ξ

2

)
(35)

f
(
dτ 2 − d`2

)
= F (ψ, ξ)

(
dψ2 − dξ2

)
(36)

Denote u± := 0.5 · (ψ ± ξ). According to the CPD in Fig. 1a, we can see that the

coordinateu+ corresponds to the right-upward direction in the squares and the coordinate
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u− corresponds to the left-upward direction. When a particle moves along a trajectory on

a CPD in the T− region, the coordinate u – runs through the values4 from −π/2 to +π/2,

and the coordinate u+ runs through the values from a constant c1 to a constant c2.

When moving toward the turning point in the T− region, the range of variation of the

coordinates τ and ` corresponds to the range of variation of the difference of coordinates

(τ − `) – from minus to plus infinity, and of the sum (τ + `) – within a finite interval.

This results from the fact that, when moving in this region, the integral of the combination

(dτ − d`) tends to infinity if the limits of integration (with respect to the coordinate r)

approach the horizons. At the same time, the integral of (dτ + d`) turns out to be finite

even if the limits of integration lie on the horizons.

When moving after the turning point in the T+ region, everything turns out to be op-

posite: the integral of (dτ + d`) tends to infinity if the limits of integration (with respect

to the coordinate r) approach the horizons, while the integral of (dτ − d`) turns out to be

finite even if the limits of integration lie on the horizons.

Accordingly, u+ varies in the ranges5 [c1, c2] for the T− region, [c2, π] for the R4 region,

and [π, 2π] for the T+ region.

The quantity u− varies in the ranges [−π/2, π/2] for the T− region, [π/2, c3] for the R4

region, and [c3, c4] for the T+ region.

These ranges define the boundary conditions for the transformation (35). Figure 1 shows

that, in a CPD of a Reisner–Nordström BH, the trajectory of a freely falling body passes

through the T and R regions, which are squares in the graphical representation of the CPD.

It becomes clear from the boundary conditions for transformations (35) that, in the squares

of the T regions, the trajectory can pass only through the opposite sides of these squares

and cannot pass through their adjacent sides. Therefore, for the Reisner–Nordström BH,

there can be only one path (trajectory in a CPD) to another universe. This unique path

corresponds to the line leading to the universe R3 in the CPD in Fig. 1a, and a path to the

universe R2 from the universe R1 is impossible.

Below we will prove that, for a Kerr BH in the Kerr solution for a rotating BH, there can

exist another (alternative) path to another universe on a graphical CPD.

4 The quantities u+ and u− are defined up to πn, where n is an integer, since the period of the functions
tg and ctg is π.

5 Here {0 < c1 < c2 < π} and {π/2 < c3 < c4 < 3π/2}.
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VI. TIDAL FORCES ON A TRAJECTORY

To graphically represent the trajectory of a falling body (Fig. 2), it is convenient to

introduce the concept of effective radius reff :

reff =
√
r2 + a2, (37)

the quantity 4πr2eff coincides with the surface areas calculated by formula (11) on both

horizons.

Despite the fact that the ring singularity itself is unattainable for particles falling into

a rotating BH, the surface r = 0 is attainable for particles with certain initial conditions.

This surface is a set of turning points (rturn = 0) for the trajectories that reach it. Similar

to formula (32) for a Reisner–Nordström BH, we can write a formula to determine a turning

point for a Kerr BH:

<(rturn) = 0 (38)

Here, the function <(r) is defined by expression (15). After the turning point, the trajectory

goes to a new solution sheet (into another universe).

For ω = 0, according to (25), rturn = 0; therefore, in the linear approximation with respect

to small quantities |ω| << M2 and |rturn| << |M |, we can write

rturn ≈ −<(r=0) :
d<
dr

∣∣∣∣
r=0

=
a2ω

2M(h− aε)2
(39)

It is known that tidal forces in a BH are proportional to
√
K (see (8) and [10]).

Since the trajectory does not reach a singularity, the tidal forces acting on a falling body

always remain finite. Thus, for a trajectory sufficiently remote from a ring singularity, the

body can enter another universe through a blackwhite hole without destruction. This will

depend on the mass of the BH and on the initial conditions of the trajectory.

The passage of a particle through a rotating black-white hole is possible either with (the

turning point rturn < 0 (Fig. 2b)) or without (the turning point rturn > 0 (Fig. 2a)) reaching

a zero membrane with radial coordinate r = 0. A real turning point cannot be negative,

since in the other universe, the particle satisfies new initial conditions.
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a) b)

Figure 2:

Schematic view of the trajectory of a falling particle in a Kerr BH in Cartesian coordinates. The

coordinates (x, y, z) are defined in a standard way in terms of the spherical coordinates (reff , θ,Φ)

(see (22, 24 and 37)). The red (inner) sphere with an area of 4πr2eff = 4πa2 corresponds to the

coordinate r = 0; on this sphere, there is a ring singularity (red circle); the blue (intermediate)

sphere with an area of 4π[a2 + (r−h )2] corresponds to the inner Cauchy horizon; the yellow (outer)

sphere with area 4π[a2 + (r+h )2] corresponds to the outer horizon of the BH (see (11 and 37)). The

blue curve is the particle trajectory, and the gray curve is the projection of the trajectory onto the

equatorial plane.

The initial conditions for the trajectories are as follows: a = 0.95M , ε = 2, h = −0.5M , θ0 = π/4.

ω = 2M2, rturn > 0 for variant (a); and ω = −M2, rturn < 0 for variant (b); the trajectory is

constructed to the surface r = 0.

.

VII. THE PROBLEM OF BOUNDARY CONDITION FOR THE

CARTER-PENROSE DIAGRAMS

The CPDs for a Reisner–Nordström BH show that the radius r−h of the Cauchy inner

horizon for the BH into which a particle falls should be the same as the radius of the

Cauchy horizon of a white hole from which this particle then flies out into another universe
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(see (6). The radii r+h of the outer horizons for black and white holes need not be the same,

and the radii of the inner horizons should remain the same both before and after the passage

of the particle. Since the particle has a mass (energy) µ > 0, the mass of the BH after the

particle falls into it should increase, while the mass of the white hole should decrease after

the particle leaves it. The radii of the horizons for black and white holes change accordingly.

When a particle with positive mass enters a BH, the radius r−h of its Cauchy horizon

always decreases; accordingly, when this particle flies out from a white hole, the radius r−h
of its inner horizon should also decrease (see (6)):

dr−h
dM

= 1− M√
M2 − a2

− a2

M
√
M2 − a2

< 0 , (40)

dr−h
dL

=
a

M
√
M2 − a2

. (41)

Formula (41) takes into account the possible change in r−h associated with a change in the

angular momentum L = aM of the BH. One can see that the change in r−h associated with

the passage of a particle is almost always nonzero. When a particle flies out into another

universe, the change in r−h for a white hole should be the same in magnitude and sign, which

is very difficult to achieve by the choice of the initial conditions for the particle.

Therefore, for positive masses, the conditions for the equality of the radii of the inner hori-

zons before and after the passage of the particle are hardly compatible. This circumstance

was the main obstacle to the development of the theory of black–white holes.

In Section 34.6 [8], Misner, Thorne, and Wheeler considered three different possibilities

for a particle falling into a real BH. The escape of this particle from a black–white hole

was there the third possibility. However, for the above reason, this third possibility was

rejected by the authors, just as the other possibilities (which were rejected for other reasons).

Combinations of these three possibilities neither gave the desired result about the fate of a

particle participating in the gravitational collapse.

However, if we assume that a particle in another universe flies out of a black–white hole

with negative mass, then this would immediately solve the problem for the third possibility

(the problem of equality of the radii of the inner horizons before and after the passage of

the particle).

Indeed, after the escape of a particle of mass µ > 0 from a white hole with negative mass

Mwh < 0, the mass of the white hole decreases by µ, i.e., δMwh < 0, but Mwh increases in

absolute value. This increase (in absolute value) will correspond to an increase in the radius
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of the Cauchy horizon by δr−h > 0 for the white hole. Hence, this increase can easily be

correlated with an increase by δr−h > 0 for the BH into which the particle falls.

Henceforth, for brevity, we will call our universe positive, and the universe with negative

masses (into which a particle with negative mass from our universe flies), negative. Since the

magnitude of the radii of the BH horizons is determined in the general theory of relativity

by the asymptotics of the metric at infinity, to eliminate the contradiction in the negative

universe, it will suffice to put a minus sign in front of M everywhere in formulas (4), (6),

(7) and (27). For the same reason, the “less than” sign in formula (40) remains valid for

negative M .

We are still accustomed from school to the fact that the mass of any body should always

be nonnegative. However, it is quite obvious that the sign in front of the mass in any

equations can be chosen arbitrarily—this will not lead to the violation of physical laws and

equations, provided that the signs in front of the masses in all other equations are also

reversed. This situation is completely analogous to the situation with the signs of charges

in electromagnetic theory: the reversal of the signs of all electric charges does not violate

anything this is just a change of notation. A more detailed study of this topic was carried

out in [11], where the authors showed that the motion of a particle with negative mass in

our universe does not lead to any anomalies. In general, the sign and magnitude of mass

in the universe is determined by the degree of inertia, i.e., by Mach’s principle. In support

of Mach’s principle, Hawking wrote: “The observed isotropy of the microwave background

indicates that the rotation of the Universe is very small, if any... This can be considered as

an experimental confirmation of Mach’s principle” [12].

In addition to solving the problem of matching boundary conditions for black–white holes,

the use of negative masses gives additional advantages: gravitational repulsion by a white

hole (with a negative mass) of a particle with positive mass that flies out from it can easily

be explained, because bodies with masses of opposite sign repel each other.

A particle with positive mass cannot fall into a BH in a negative universe, since it will be

gravitationally repelled by all heavy (negative) bodies in the negative universe. But if we

somehow attach this positive particle to a body with negative mass in a negative universe,

then this coupled pair can fall into a black–white hole in the negative universe and fly out
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in a positive universe6, similar to the fall of a positive particle into a BH in our universe.

In this section, we made an assumption that the gravitational perturbations caused by

the passage of a particle through a BH and the emission of gravitational waves associated

with this passage can be neglected. This assumption is justified by the fact that the relative

change in the radii of all horizons during the passage of a test particle is on the order of µ/M

and the relative change in these radii associated with the emission of gravitational waves by

a test particle is on the order 10−2µ2/M2, see [13].

As is known, massive bodies move in space along trajectories, being attracted to the

minima of the gravitational potential. In the main approximation of the two-body problem,

these trajectories have the shape of Keplerian orbits (ellipses, hyperbolas, and parabolas).

For bodies with negative mass in a similar gravitational field, nothing is essentially changed;

the bodies move along Keplerian orbits, but now around the maxima, rather than the

minima, of the gravitational potential. These maxima of the gravitational potential in deep

Space correspond to the centers of intergalactic voids, and the distances between voids are

usually hundreds of megaparsec. Particles with negative mass can accumulate in these voids.

A similar situation should occur for particles with positive masses in a negative universe.

The accumulation of particles with negative mass in voids can lead to cosmological effects

similar to the effect of dark energy in cosmology.

Negative particles may accumulate near the Lagrange points in solar-type stellar systems,

but most likely their velocities will be on the order of or greater than the average galactic

velocity, about 300 km/s. Therefore, it is likely that negative particles will fly out without

delay from parent galaxies and can be trapped only by the “gravitational hills” of the voids.

A more detailed and quantitative analysis of these issues requires separate consideration.

VIII. ALTERNATIVE VARIANTS

The Kerr solution for a rotating BH, in contrast to the Reisner–Nordström solution for

a charged BH, provides another unique opportunity for moving to another universe. This

possibility is associated with the fact that the surface area corresponding to the zero radial

coordinate in the Kerr solution (1) is greater than zero: S0 = 2πa2 (see (11)), as well as

6 However, it is likely that any such connection will be destroyed by infinite gravitational forces inside the
black–white hole.
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Figure 3:

Carter–Penrose-type diagram for a Kerr BH with an alternative transition to another universe.

The vertical bold lines mark the surfaces r = 0. The standard transition to another universe

is through the regions R1 − T− −R4 − T+ −R3 (in accordance with the CPD in Fig. 1 for a

Reisner–Nordström BH), the blue and violet dashed lines, and the alternative transition is performed

through the regions R1 − T− −R4 −R4− − T+ −R5, the green dashed line.

.

with the fact that a body can stay on this surface (membrane) without being destroyed by

tidal forces, provided that this body is not at a singularity. Therefore, solution (1) can pass

through zero for the radial coordinate r and go further in the same direction provided that

the radial component of the four-velocity U r := dr
ds

is negative for a body falling into a BH

at r = 0 (Fig. 3).

It can be proved7 that ds2 = dλ2. Then, according to (17 and 18), we have

U r =
dr

dλ
= ∓
√
<
ρ2

, U θ =
dθ

dλ
= ±
√

Θ

ρ2
(42)

In addition, according to (39), the radius rturn can be negative only for ω < 0.

Note that it makes sense to construct a trajectory at most to the zero radius r, and

the negativity of rturn only indicates that an alternative transition is possible to another

universe for the given initial conditions for the incident particle. To construct an extension

of this trajectory to another universe, one should construct a new trajectory in reverse time

in another universe and smoothly stitch together the two parts of the trajectory at r = 0.

This makes clearer the physical meaning of the specific Carter integral ω. According to

7 This follows upon substituting dt, dr, dθ and dϕ from (16–19), expressed in terms of dλ, into (1).
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(13 and 22), the trajectory cannot intersect the equatorial plane for ω < 0. Since Uθ = ±
√

Θ,

from (42) with ω > 0 and θ = π/2, we have Uθ(θ=π/2) = ±
√
ω; i.e., for positive ω, the root

of the specific Carter integral has the meaning of the projection, orthogonal to the z axis, of

the specific angular momentum of the particle at the time when it intersects the equatorial

plane. It is clear from (13) that this projection is not an integral of motion. In the field

of a rotating BH, this projection is not preserved—only the projection of the total angular

momentum of the particle onto the z axis, µh, is preserved.

If the trajectory passes through r = 0 (to another universe), then, to eliminate confusion

with the signs of r, we can change the notation of the sign of the radial coordinate, r → −r,

and carry out further calculations in the other universe in the same way as in our universe.

This alternative variant is also interesting in that it does not require smooth stitching of the

boundary conditions on the horizon, which was required in Section VII. This is associated

with the fact that, in the other universe, there is also a rotating BH with a zero membrane

(at r = 0) the area of which needs not be equal to the area of the membrane in our universe.

Therefore, we should have no difficulty in stitching on this membrane.

Note that solution (1) depends linearly on r only in one place (in the term with 2Mr in

∆); in other places, the dependence on r is quadratic. Therefore, the other universe can be

both positive and negative. In the negative case, there is no need in changing the notation

of the sign of the radial coordinate, r → −r, since solution (1) retains its form.

Due to the continuity requirement for the metric, we can’t arbitrarily “stitch“ two parts

of spacetime together at any given place. This also applies for the "stitching“ on different

sides of the BH membrane. The “stitching" can be performed by different methods. And

with these different methods of "stitching“ there would be a certain variant of solution.

Now it is not clear: what which of these variants of the solution was chosen by nature. It

is most convenient to perform this research in the Kerr-Shield coordinates (x, y, z) (see for

example [14], [15], [16] §5.6).

So, for the Kerr BH solution near the membrane, there are three variants:

1) Either the transition through the membrane corresponds to the smooth transition to the

region R4− – to negative values r (see green dashed line on Fig. 3), at the same time the BH

mass is still positive, and then, in this case, a new universe R5 opens behind the membrane,

in which necessarily contains closed world geodesic lines (variant 1).

2) Or, as in the first variant, the transition through the membrane corresponds to a smooth
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transition to the region R4−, to the negative r values, but in this new universe R5 the BH

mass becomes negative, and there are no closed world geodesic lines (variant 2).

3) Otherwise, the transition through the membrane corresponds to the same internal region

R4; i.e., in fact, the reflection (see violet dashed line on Fig. 3) on the coordinate r, which

now remains everywhere non-negative, there are no closed world geodesic lines, and the

metric is broken on the membrane (smoothness violation), and the membrane itself will be

a material surface with a negative mass, and the modulo of this mass is the order of the

entire BH mass (variant 3).

For the first and for the second variants, the membrane is insubstantial, and for the third

variant, the circumference around the membrane in the inner region, and the passing through

the membrane returns us to the same inner region R4. In the third variant, there is no

alternative passage to another universe, since the particle as if reflected from the membrane

and finally fly out into the universe R3 as it was discussed in the previous sections.

Personally, I prefer the second or the third variant, because, as it appears, the negative

masses are not something more exotic, than wormholes, or black-white holes. Moreover, the

negative masses and phantom matter in theory do not violate any physical laws, and they

can even explain the above-mentioned anti-gravity effect under the inner BH horizon, can

explain some effects in cosmology – for example, the effect of dark energy (rapidly universe

expanding), as well as the birth of the universe itself. Let me remind that the transition

through a black-white hole to another universe is also possible without the reaching of the

membrane by a falling body, but this will be the universe R3, which does not correspond

to the universe R5 behind the black hole membrane (in which the body falling into while

passing through the membrane in the first or second variants).

And here, in an obscure way, the beauty and complexity of non-trivial topology in General

relativity for black-white holes begins to unfold...

IX. DISCUSSION

Meanwhile, the theory of gravity cannot give an unambiguous answer to the question

of the possibility of existence of black–white holes in our Universe. Mathematically, only

the “eternal” complete solution for black–white holes is known (it is depicted in the CPD in

Fig. 1a); it is a solution that exists eternally, from the very origin of the Universe (from the
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moment of the Big Bang). It is not actually clear how the complete solution (corresponding

to some Carter-Penrose diagram) should look like for a BH formed as a result of a star

collapse (that is, after the Big Bang).

For now, it is clear that:

– any real BH has not only an outer horizon, but also the inner Cauchy horizon;

– physical bodies are able to overcome a weak singularity on the Cauchy horizon without

destruction;

– a strong singularity inside a real BH will repel any matter below the inner horizon;

– the tidal forces are finite, because the trajectory of a falling body does not touch a strong

singularity;

– this matter cannot escape back from the same BH any longer.

However, it is not yet clear what will happen with this matter—a complete solution for

the BHs born after the Big Bang is not yet found, nor self-consistent complete solutions are

found that take into account the back reaction of the falling matter on the gravity of the

whole system.

We have obtained the following results:

– We have proved that a falling test particle cannot reach a strong ring singularity inside a

Kerr BH.

– We have found a solution to the problem of boundary conditions for the Reisner-Nordström

topology.

– We have proved that only one variant of transition to another universe is possible in the

Reisner-Nordström topology.

– For the Kerr topology, we have found that there can exist an alternative transition to

another universe that does not coincide with the universe for the ordinary transition.

– We have found initial conditions for a falling particle that correspond to the alternative

transition to another universe.

– We have estimated the tidal forces acting on a falling body in the Kerr metric and proved

the possibility of the passage of a body to other universes without being destroyed by tidal

forces.

We have also proposed a hypothesis about the existence of “negative universes” and

negative masses, which allows one to stitch the boundary conditions in black and white

holes.
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Despite the attractiveness of the arguments in favor of the hypothesis proposed on the

existence of alternative transitions to another universe, a final mathematical proof of such

transitions has not yet been found.
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