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The Kerr family of solutions of the Einstein and Einstein-Maxwell equations is the most general class
of solutions known at present which could represent the field of a rotating neutral or electrically charged
body in asymptotically flat space. When the charge and specific angular momentum are small compared
with the mass, the part of the manifold which is stationary in the strict sense is incomplete at a Killing
horizon. Analytically extended manifolds are constructed in order to remove this incompleteness. Some
general methods for the analysis of causal behavior are described and applied. It is shown that in all except
the spherically symmetric cases there is nontrivial causality violation, i.e., there are closed timelike lines
which are not removable by taking a covering space; moreover, when the charge or angular momentum is
so large that there are no Killing horizons, this causality violation is of the most flagrant possible kind in
that it is possible to connect any event to any other by a future-directed timelike line. Although the sym-
metries provide only three constants of the motion, a fourth one turns out to be obtainable from the un-
expected separability of the Hamilton-Jacobi equation, with the result that the equations, not only of
geodesics but also of charged-particle orbits, can be integrated completely in terms of explicit quadratures.
This makes it possible to prove that in the extended manifolds all geodesics which do not reach the central
ring singularities are complete, and also that those timelike or null geodesics which do reach the singularities
are entirely confined to the equator, with the further restriction, in the charged case, that they be null with
a certain uniquely determined direction. The physical significance of these results is briefly discussed.
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INTRODUCTION

PROBABLY the most important problems in general
. relativity today are those concerning the singulari-
ties and other pathological features arising in gravita-
tional collapse. Because of the scanty nature of the
experimental evidence in its favor, the acceptability or
the unacceptability of Einstein’s theory must depend
largely on whether its theoretical predictions seem
reasonable or not.

A great deal is now known about the gravitational
collapse to a curvature singularity of a spherically
symmetric body. However, virtually nothing is known
about collapse in more general circumstances, where
angular momentum is present for example, except that
by the results of Penrose! and Hawking?~* singular
behavior of some sort must be expected to remain.

For this reason it is interesting to examine the proper-
ties of the Kerr family of gravitational fields from this
point of view since these are the only solutions of
Einstein’s equations known at present which could
represent the exterior field of a rotating body in
asymptotically flat space.

It will be shown that the ringlike curvature singulari-
ties in the inner parts of the Kerr fieldsare comparatively
innocuous (they are in fact invisible except in the
equatorial direction) in contrast with the all-embracing
curvature singularity in the Schwarzschild solution. On
the other hand, there is a very complicated topological
behavior and a complete and unavoidable breakdown
of the causality principle.
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The significance of these results depends on the as
yet unanswered question whether exterior fields of the
Kerr type could or would result as the final state in a
dynamical treatment of the collapse of a rotating body.
A hint that this question may have a positive answer
comes from the recent demonstration by Israel® that
the Schwarzschild solution is unique among asymp-
totically-flat static-vacuum solutions in being bounded
by a simple nonsingular Killing horizon (“simple”
meaning that the constant-time cross sections are topo-
logically spherical), which suggests that the family of
stationary axisymmetric asymptotically flat vacuum
solutions with the same property may also be very
restricted. It can be conjectured that the low-angular-
momentum Kerr fields may be the only examples. If
this is the case, or even if there are other examples
provided that these also have pathological behavior
similar to that of the Kerr fields, then grave doubt will
have been cast on the validity of Einstein’s theory in
its present form.

1. PHYSICAL AND TOPOLOGICAL STRUCTURE
A. Metric Form

The original and, for many purposes, the most useful
form of the Kerr family of solutions of the source-free
Einstein-Maxwell equations is given in terms of co-
ordinates u, 7, 8, and ¢ which can be interpreted most
simply and naturally on a manifold formed by taking
the topological product of a 2-plane on which # and 7
are Cartesian coordinates running from —o to 4o
and a 2-sphere on which 6 and ¢ are ordinary spherical
coordinates (¢ is periodic with period 2w, and 6 runs
from O to w). The covariant form of the metric tensor is

8 W. Israel, Phys. Rev. 164, 1776 (1967).
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expressed in terms of three parameters, m, e, and @ by

ds?=p?d6®—2a sin?0drd o+ 2drdu

+ o7 (7*+a%)2— Ad? sin?6 ] sin®0d ¢*
—2ap72(2mr —€?) sin®0d pdu
—[1—p2@2mr—e?)Jdu?, (1)

and the corresponding covariant form of the electro-
magnetic field tensor is

F=2ep™[ (r2—a? cos®§)dr A du— 2a%r cosf sinfdd A du
—a sin?0(r2—a? cos?0)dr Ad ¢
—+2ar(r?4-a?) cosf sinfddAde], (2)

where the abbreviations
pt=724a? cos?, 3)
A=7r’—2mr+a*+é?, 4)

have been used, and where the usual symbol, A, has
been used for the operation of taking the antisym-
metrized tensor product. (When e=0 the electromag-
netic field vanishes and the metric satisfies the vacuum
Einstein equations.)

These solutions are clearly stationary and axisym-
metric with Killing vectors d/0u and 9/d¢, and it is
also apparent that they are invariant under the discrete
transformation of inversion about the equatorial hyper-
plane §=3m. Both the metric and the electromagnetic
field forms are analytic except on the stationary ring
r=0, §=1%r, where p? vanishes. In fact, the curvature
itself becomes singular as p? — 0 except in the special
case where ¢ and m both vanish. In this special case
there must still be a singularity of the geometry at
p2=0, although the metric is then flat everywhere else.
In all cases the metric and the electromagnetic field
are well behaved throughout the rest of the manifold,
except for the usual trivial degeneracy of spherical
coordinates at =0, 6=

In all these spaces the Weyl tensor is of type D in
the Petrov-Pirani classification, the two double prin-
cipal null vectors being given by

—a/or,
(r»+a*)9/0u-+ad/dp+Ad/0r.

By the Kundt and Trumper generalization® of the
Goldberg-Sachs theorem? these are integrable to give
two shear-free null geodesic congruences. The first of
these (which is ingoing in the sense that 7 decreases in
the time direction determined by increasing #) consists
simply of the curves on which #, 6, and ¢, are all con-
stant, while the outgoing congruence is less simple in
these coordinates. The principal null congruences have
nonzero rotation (except when a vanishes, in which
case the solutions are spherically symmetric) and there-

©®)

6 W, Kundt and M. Trumper, Akad. Wiss. Lit. Mainz 12 (1962).
7J. N. Goldberg and R. K. Sachs, Acta Phys. Polon. 22, Suppl.
13 (1962).
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fore are not hypersurface-orthogonal. It was by making
use of these structural properties of the Weyl tensor,
and specifically looking for non-hypersurface-orthogonal
solutions, that the empty space metrics of the family
were derived by Kerr.® Subsequently these metrics
were derived by Kerr and Schild,? from a systematic
study of empty solutions whose metric tensor is
(locally) the sum of a flat-space metric tensor and the
tensor product of a null vector with itself. The charged
solutions are also of this form, as can be seen by making
the coordinate transformation

x+1y= (r+1ia)e’* sinf,

z=rcosf, t=u—r, (6)

which gives the metric tensor as

2mr— €
ds*=da*+dy*~-d2?— dPH——?
ri+a%s?
r(xdx+ydy)—a(xdy—ydx) 2dz 2
( +— dt) , (1)
r*4-a? r

where 7 is determined implicitly in terms of x, y, 2, by
7*— (224 y*+ 22— a?)r*—a?2?=0. (8)

However, this Kerr-Schild form of coordinate system
is rather awkward for studying global structures, be-
cause (as the price of imposing a flat-space background
metric on a manifold with the topology described above)
each set of values of the x, y, z, ¢ coordinates corre-
sponds to two different points, distinguished by the two
different real values of 7 determined by (7). These
coordinates have the further disadvantage that the
axis symmetry is no longer manifest, but there is the
compensating advantage that the degeneracy on the
axis itself is removed.

The generalization of the solutions to include an elec-
tromagnetic field was originally achieved not by a
systematic logical method but by an algebraic trick
discovered by Newman and Janis'® who succeeded in
obtaining the empty-space Kerr solutions by transfor-
mation from the Schwarzschild solution (to which they
reduce in the case when @ vanishes). The charged
generalization of the empty-space Kerr metrics was
obtained by Newman, Couch, Chinnapared, Exton,
Prakash, and Torrence* who applied an analogous trans-
formation to the charged spherical solution of Reissner
and Nordstrém (which is likewise the limiting case to
which the charged solutions reduce when a vanishes).

Alternative systematic derivations of these solutions
from different points of view, and with more explicit

8 R. P. Kerr, Phys. Rev. Letters 11, 237 (1963).

9R. P. Kerr and A. Schild, Am. Math. Soc. Symposium, New
York, 1964.
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information about the curvature, have been given by
Carter'? and Ernst.!

B. Rotating Body Interpretation

Despite its many advantages the coordinate system
(1) (which will subsequently be referred to as the Kerr-
Newman form) has the drawback that it does not dis-
play the full symmetry of the space.

Papapetrouhas shown that any connected stationary
axisymmetric solution of Einstein’s empty-space equa-
tions must have an additional discrete symmetry under
simultaneous inversion of the axial and stationary
Killing vectors, while Boyer and Lindquist'® have inde-
pendently discovered a specific transformation which
casts the empty-space Kerr metrics into a form which
is manifestly invariant under such an inversion. Carter!®
has shown that Papapetrou’s result can be generalized
to include cases where the space is nonempty, provided
that the matter tensor is itself invariant under simul-
taneous inversion of the time and axial angle and that
this situation holds automatically if the only contribu-
tion to the matter tensor comes from a source-free
electromagnetic field. (It would not necessarily hold
in the presence of a perfect fluid.) Thus Papapetrou’s
result generalizes directly to the solutions of the source-
free Maxwell-Einstein equations, and hence applies to
the charged Kerr solutions.

The specific transformation needed to obtain a mani-
festly invertible form is an immediate generalization of
the one given by Boyer and Lindquist ; thus introducing
new time and angle coordinates £ and ¢ defined by

di=du— (r*+a?)Adr,

9
d¢=deo—aA™dr, ©)
we obtain the metric tensor form as
ds?= p?A~1dr*+ p*d6%+ p2 sin20[ adi— (*+a?)d $ |2
—p?Aldi—a sin®d$ 2, (10)

where the cross terms between the ignorable coordinates
and the others have been eliminated. The electromag-
netic field tensor now takes the form

F=2¢p*(r’—a? cos?)dr A [df—a sin% d @]
—4epar cosf sinfdf A [adi— (r*+a®)d¢]. (11)

In this system (which will be subsequently referred to
as the Boyer-Lindquist form) it is immediately clear
how the metrics reduce to the familiar forms of the
Schwarzschild and Reissner-Nordstrém solutions when
a vanishes. (That the metrics are flat when both e and
m vanish can be seen more easily from the Kerr-Schild
form unless one is familiar with spheroidal coordinates.)

12 B, Carter, J. Math. Phys. (to be published).
13 F. J. Ernst, Phys. Rev. 167, 1175 (1968) ; 168, 1415 (1968).
14 A, Papapetrou, Ann. Inst. H. Poincaré 4, 83 (1966).
(1;56 17{) H. Boyer and R. W. Lindquist, J. Math. Phys. 8, 265
g, Carter, Comm. Math. Phys. (to be published).
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It is also clear that the spaces are asymptotically flat, in
both the local and the global sense, in the limits of large
positive or negative values of 7. The Boyer-Lindquist
form is ideal for the examination of the asymptotic
behavior of the fields, on which the physical interpreta-
tion of the parameters is based.

It can be easily seen from (10) and (11) by analogy
with the Schwarzschild and Reissner-Nordstrém solu-
tions that (in unrationalized units with Newton’s con-
stant G and the speed of light ¢ both set equal to unity)
m represents the mass and e the charge in the limit of
large positive 7, and that the mass and charge are,
respectively, —m and — e in the limit of large negative 7.
There is no loss of generality in assuming, as we shall do
from now on, that z is positive ; this is simply equivalent
to choosing which of the two asymptotically flat regions
we shall label with positive values of 7.

The interpretation of the parameter ¢ requires more
care, since its effects are of asymptotically higher order.
In confirmation of a remark originally made by Kerr,?
Boyer and Price!” have shown, by a careful examination
of the geodesics in the equatroial plane in the uncharged
case, that it gives rise to Coriolis-type forces which are
asymptotically identical to those which one would
expect from a rotating body with angular momentum
ma in the weak-field limit (cf. also Cohen'®), As the
effects of the charge on the metric are of asymptotically
higher order than those of the mass, it can be seen that
this conclusion still stands in the charged case. Thus ¢ is
what may be called the specific angular momentum.
The metric form used here has been adjusted so that a
positive value of @ corresponds to a positive sense of
rotation (it turned out to be the other way round in the
form used by Boyer and Price).

It is the presence of rotational effects which gives the
Kerr solutions their importance. This family includes
all solutions yet known which could represent the ex-
terior fields of rotating charged or uncharged bodies,
other asymptotically flat solutions such as those of
Weyl® or Papapetrou® being either static or massless.
Whether physically natural interior material solutions
exist (e.g., a simply rotating perfect-fluid body) of
which these are the exterior fields is not yet known.
Boyer® has given conditions which the surface of a
perfect-fluid interior would have to satisfy. Zel’dovich
and Novikov? attempted to argue from the apparent
absence of simultaneous inversion symmetry (at a time
when the Boyer-Lindquist transformation had not yet
been published) that such a body must contain meri-
dional circulation. Now that the inversion symmetry is

( ;” 151) H. Boyer and T. G. Price, Proc. Camb. Phil. Soc. 61, 531
1965).

18 T, M. Cohen, J. Math. Phys. 8, 1477 (1967).

9 W. Weyl, Ann. Physik 54, 117 (1917).

20 A. Papapetrou, Ann. Physik 12, 309 (1953).

2% R. H. Boyer, Proc. Camb. Phil. Soc. 61, 527 (1965).

%2 Ya. B. Zel’dovich and I. D. Novikov, Zh. Eksperim i Teor.
4(1?6616;5) (1965) [English transl.: Soviet Phys.—JETP 22, 122



1562

known, one might be tempted to argue the other way
round. However, the results of Papapetrou and Carter
which have just been mentioned show that no such
deductions can be made at all since the invertibility
of the exterior is inevitable in any case.

Just as the parameter @ couples with the mass to give
the angular momentum, also [as can be seen from the
form (11) of the field] it couples with the charge to give
an asymptotic magnetic dipole moment ea. There is no
freedom of variation of the gyromagnetic ratio which
is simply e/m. It is noteworthy that this is exactly the
same as the gyromagnetic ratio predicted for a spinning
particle by the simple Dirac equation, which is obeyed
to quite a high accuracy by the electron. Therefore,
despite the fact that the parameters of the solutions
contain only two adjustable ratios, it is possible to
choose them in such a way that they agree with the
corresponding parameters for an electron, for which, in
units with =1, the mass, angular momentum, and
squared charge are given by m~ 102, ma=1%, e2=~1/137
from which we obtain a~3m1~102, e~+;. The value
of the length scale determined by a is therefore quite
large, in fact, about the same as the Compton radius.
On the other hand, the value of m is so small that the
field differs very little from the limiting case m=0,
with e and a as the only parameters.

Despite its great elegance the Boyer-Lindquist form
unfortunately fails where A vanishes. This will occur
whenever m is greater than the critical value

mr=a*+e?, (12)
in which case A has a zero at each of the two values of
7 (both positive) defined by

ro=m= (mi—a2— )12

(13)

and is negative in between them. In the intermediate
region the solution changes character. It can be seen
clearly from the form (10) that this region cannot be
regarded as stationary in the strict sense since there are
no longer any timelike vectors in the planes (r=const,
6= const) of the Killing vectors, but instead » has taken
over the role of a timelike variable. As a consequence
of the simultaneous inversion symmetry, the hyper-
surfaces bounding this region must be null, by a theorem
given by Carter!® and must, moreover, satisfy the strict
definition of a Killing horizon given in that reference.
In the limiting case when ¢ and e both vanish, the inner
horizon collapses onto the central singularity and the
outer horizon becomes the well-known Schwarzschild
horizon at r=2m. When the equality (12) is satisfied
the two horizons coalesce at r=m. When @*+}e2>m?
there are no Killing horizons and, as will subsequently
be proved, the manifold is geodesically complete except
for those geodesics which reach the central singularity
at p?=0. However, when a?>-}¢2< m?, although the local
failure of the metric can be cured by reverting to the
Kerr-Newman coordinate system, the manifold defined
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above remains incomplete as 7 tends to 7, since there
are geodesics for which the coordinate # becomes un-
bounded within a finite affine distance. In Sec. C, the
analytic extensions required to remedy this defect will
be discussed and, subsequently, when the geodesic
equations have been integrated, it will be shown that
the extended manifolds so obtained are in fact geode-
sically complete, again with the exception of the
geodesics which reach the singularities at p?=0.

C. Maximal Analytic Extension

The most suitable basic unit for building up the ex-
tended manifold is the original Kerr-Newman coordi-
nate patch (1) which is connected to the invertible
Boyer-Lindquist form (10) by the transformation (9).
The starting point for the extension is the remark that
the invertible form can be extended in a symmetric
manner in an inverted direction in terms of new time
and angle coordinates w and @ by the transformation

di= —dw+ (P+a?) Ay,

14
d¢=—dp-+aA \dr. (14)

The resulting form for the metric is
ds?= p%d0%— 2a sin0dr d 3+ 2dr dw
+p72[ (P4 a*)2— Aq? sin% ] sin®0d6

—2ap™2(2mr—¢€?) sin20d @ dw

—[1—p2(2mr—e?) Jdw?, (15)

which is formally identical to the original Kerr-Newman
form. The transformation between the two Kerr-
Newman forms can be given directly as

du+dw=2(r*+a?) A dr,
do+d@=2aA"1dr.

(16)
17

In the case when the zeros of A coincide, i.e., when
a?+e?=m? so that r.=7_=m, we can proceed directly
to the extended manifold. The transformations (16)
and (17) give rise to complete ranges of the new coordi-
nates in each of the regions r>m and 7 <m, and they
therefore describe two distinct extensions applying to
each of these regions separately. By performing these
two types of extension alternately, one can build up an
extended manifold consisting of an infinite sequence of
(u,r,0,0) patches, labelled - - -, (n, —), (n+1, =), «--
linked transversely by a symmetrically arranged se-
quence of (w,,0,p) patches, labelled -, (—, %),
(—, n+1), - - - with overlaps alternately in the regions
r<m and r>m. The overlap region between (n#, —) and
(—, ) will be denoted (»,l). By adjusting the relative
values of # and / one can arrange that the nonempty
overlaps (n,l) are such that =1 (for a region r <m) or
n=141 (for a region »>m). It will be shown in a sub-
sequent section that the manifold so obtained is in fact
geodesically complete, except for those geodesics which
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reach the singularities at p?=1, i.e., it is a maximal
extension.

In the general case when the zeros of A are distinct,
i.e., when a?+e?<m?, the extension is more difficult.
One can start in the same way as in the previous case,
except that (16) and (17) now give rise to three distinct
transformations instead of two, corresponding to the
regions I; r>7ry; I1: 7. >r>7_; and II1: r.>7; it is
therefore natural to build up an extended manifold
again consisting of an infinite sequence of (u,7,8,¢)
patches labelled ---, (», —), (n+1, =), -+ over-
lapping a symmetric sequence of (w,7,0,3) patches
labelled - - -, (—, n), (—, n+1), - - - is such a way that
the overlap region (n,l) is nonempty only if #=1 (in
which case it is of the type II) or if #=1I/41 (in which
case it is of the type I if # is odd and ! even, and of
type III if it is the other way around) (cf. the illustra-
tions given by Carter® in a discussion of the restriction
of this manifold to the axis of symmetry).

However, the manifold just described still has an in-
completeness associated with the Killing horizons; there
are 2-surfaces missing where # and w both tend to
infinity together. The crux of the extension program is
the construction of new coordinate patches to include
these missing 2-surfaces. In preparation for this con-
struction we introduce the # and w coordinates simul-
taneously, and drop 7 as a coordinate, instead treating

P < o B p+? > (r*—r42)a? sin%0
52=p~
rtat ritat/ (P4 (rad+ad)

[

—p2Aa sin“’@[a sin?fd p*—
r:h2

where the obvious abbreviation py?=7,%+a? cos?0 has
been introduced.

This form is in itself even more limited in range than
the Kerr-Newman form from which we started; in fact,
it covers the same patches as the Boyer-Lindquist
form, depending on which of the regions I, II, and IIT
the solution of (18) is specified to lie in. However, we
are now in a position to give a direct generalization of
the method used by Carter® for the symmetry axis.
When this method was originally devised a rather com-
plicated transformation was used whose purpose was
not only to cover the missing regions separately, but
also to cover the whole manifold by a single coordinate
patch. This was worthwhile when the symmetry axis
alone was under consideration; it could also be done
here (except that there would remain the trivial de-
generacy at =0, 0= and the curvature singularities at
p*=0) but it would be a messy process because the
angular coordinates ¢+ required at the two horizons
are different, so that the angular coordinate would

2 B. Carter, Phys. Rev. 141, 1242 (1966).
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it as a function of # and w given implicitly (once the
region I, I, or IIT has been specified) by

Fir)=utw, (18)
where by (16) we have
F()=2r+xIn|r—ry|4+x2Inlr—r_| (19)
with the constants «.. defined by
ke=5 () (re—rs). (20)

We also use the device, introduced by Boyer and
Lindquist?® for dealing with the uncharged case, of
defining a new angle variable, constant along the
trajectories of that particular Killing vector field which
coincides with the null generators on the Killing horizon.
From (5) we see that this Killing vector field is
(ri2+a?)0/0u+ad/d¢ in terms of the original Kerr-
Newman coordinates (1), which unfortunately depends
on which of the Killing horizons =7, is under consider-
ation. Thus we shall need two alternative new angle
coordinates which we shall denote by ¢* and which
can be defined by

2dor=do—dp—a(ri24+a®)(du—dw). (21)
Thus we obtain the symmetric double quasi-null-metric
form:

ot pst

} 3 (du dw)+p2do?
(P a2)? (ri2+a2)2:|2( udw)tp

y 2—p2

%(du_dw)_mﬂ%i] . (@2

74 a?

have to be gradually changed in between, which would
destroy the manifest axisymmetry of the manifold.
Instead of doing this we shall be content with covering
the missing pieces one at a time. With this more limited
objective it is possible to choose a coordinate transfor-
mation which is very simple indeed.

We introduce new coordinates x, ¥ and construct a
patch with coordinates (x,y,0,0%) to cover the four
(u,w,0,0%) patches adjacent to a missing region at
r=ry. [Two of these patches will have the form
(n, n+1), (n+1, n) and will cover regions of type II,
and the other two will have the form (n,n), (n+1, n4+1)
and will cover regions of type I or type III according to
whether 7, or r_ is under consideration.] The new
coordinates are defined by the simple transformation

x=(d)exs*, y=(k)exv, (23)

where the sign (&) in the definition of x changes
between the two (u,7,0,¢) patches involved, and the
sign (&) in the definition of y changes between the two
(w,r,0,3) patches involved. We shall choose the signs so
that the product xy is positive in the two regions where
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r—r, is positive, and negative in the other two. (This
still leaves an arbitrary choice of sign in the definition
of x and y but because of the inversion symmetry it
will not be necessary to make it explicitly.)

By (18) and (19),  will now be determined in terms
of x and y by

xy=(r—ry)Gs7(r), 24

o pi2 \(r—7s)(r+ri)asin’6
ds?= p"2< } >
rta? ri2 e (Pa?) (rii+a?)

X (r—r5)k 2G4 (7)% (dx dy)+-p*d6?—p~2a sin20<Aa sin%0d o= —

7
+p2 sin20<(r2+a2)d<pi+a
7

This metric is clearly analytic everywhere on the
(x,9,0,0%) patch except at the curvature singularities
p?=0. It must also be checked that it is nondegenerate
on the Killing horizons at =0 and y= 0 since the trans-
formation we have used is singular there. This is also
immediately verifiable. It follows that it is nondegen-
erate everywhere except at the curvature singularities
and (trivially) at =0, 0=

With the additional points on the 2-surfaces x=0,
y=0 in the new coordinate patches, the extension that
we have obtained is maximal, since it is now geodesically
complete except for geodesics which reach the ring
singularity. We shall be able to prove this in Sec. 3B
after the integrals of the geodesic equations have been
obtained.

Although the fact that it exists is of importance, the
form (26) is too complicated to have much practical
use. However, it does clearly show the existence of
spacelike hypersurfaces x=K?y, where K is any real
nonvanishing constant, which extend right across the
manifold, one such hypersurface passing through each
point of the regions 7>7.. Analogous hypersurfaces in
the regions  <7_ do not exist, because of the curvature
singularity at p?=0.

2. CAUSALITY
A. Causally Well-Behaved Parts of the Kerr Solutions

In this discussion the causality principle means the
condition that there exist no closed causal (i.e., time-
like or null) curves in the space under consideration.
This condition can be violated in two ways: We shall
refer to the violation as trivial if none of the closed
causal curves are homotopic to zero, since in this case
we may construct a covering space in which the
causality principle is satisfied, and we may use the
covering space for purposes of physical interpretation;
we shall refer to causality violation where there exist

BRANDON CARTER
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where G.(r) is defined by
Gy(r)=e2ur|r—ry|lxally, (25)

Thus 7 is an analytic function of x and y since in the
whole (x,y) plane 7 lies between 7, and == co. Thus we
obtain the new metric form

4

[ )
(1,2_*_ a2)2 (7:1:2+ a2)2

2
P <r—r¢>ci<r>xi<ydx—xdy))dwi
2+ a2

€3

+7' + 2
izwxiai(r)%(ydx—xdy)) . 26)

closed timelike lines homotopic to zero as unavoidable
since in this case it could only be removed by altering
the local structure of the space, not merely its global
connectivity properties. Some of the possibilities of
trivial causality violation in members of this family
have been discussed previously. Fuller and Wheeler®
considered the possibility of causality violation re-
sulting from multiconnectedness introduced when the
two asymptotically flat backgrouunds in the analytically
extended Schwarzschild space are identified so that
the Kruskal throat becomes a wormhole; they showed
that, in fact, causality violation cannot arise in this way.
On the other hand, the author®?% pointed out that
identifications of this kind could lead to causality
violations in the Reissner-Nordstréom and Kerr solu-
tions (the argument in the latter case depending purely
on the properties of the symmetry axis). However, in
all these cases the causality violation being contem-
plated results from unnecessary identifications which
produce multiconnectedness. In this section, we shall be
considering causality violation of the unavoidable kind
first studied in Godel’s universe.

We have seen in Sec. 1 that, by the mode of its
construction, the extended spaces consist of a com-
bination of patches of type I (r>r.) or III (r<r.)
in which the surfaces of transitivity are everywhere
timelike and of type II (»_<r<r,) in which the sur-
faces of transitivity are everywhere spacelike, and that
these patches are separated by null hypersurfaces—
the Killing horizons. Provided we do not unnecessarily
identify some of these patches, but piece them together
exactly in the manner described in Sec. 1 and illustrated
in the diagrams of Ref. 23, a causal curve which leaves
one of these patches can never re-enter. It follows that
insofar as we are considering only nontrivial causality

24 R, W. Fuller and J. A. Wheeler, Phys. Rev. 128, 919 (1962).
26 B, Carter, Phys. Letters 21, 423 (1966).
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violation we can consider each of these patches
separately.

A very useful criterion for the nonexistence of closed
causal curves in a time-oriented space is the presence
of a spacelike hypersurface which is a properly im-
mersed submanifold in the sense of Sternberg? since
it is impossible for a closed causal curve to intersect
such a hypersurface if the curve is homotopic to zero
and therefore impossible altogether in a simply con-
nected space. (This follows from the fact that since
the immersion is proper, the number of times the curve
crosses the hypersurface can change only by two at a
time under the homotopy, so that if the homotopy
starts from zero there will at all stages be a one-one
correspondence between the crossings in the forward
and backward time directions, whereas a causal curve
can cross only in the forward time direction.) Hawking?
and Geroch?” have given (different) constructions by
which a covering space can be constructed which pre-
serves the topology of such a spacelike hypersurface
but at the same time removes all closed causal curves
through it by unwinding them. This shows explicitly
that a space with a properly immersed spacelike hyper-
surface through each point cannot have nontrivial
causality violation.

We can apply this criterion to the Kerr solutions.
Thus we saw in Sec. 1 that when a?4-e?<m? such a
spacelike hypersurface exists through any point in
region I (r>7,) and it is clear from the Boyer-Lindquist
form (10) that the hypersurfaces = const through any
point of the regions II (r_<r<r,) also satisfy the
required conditions. Therefore each connected region
r>7_ in the manifold we have constructed can have
no nontrivial causality violation; furthermore, since
each such region is simply connected, the possibility
of trivial causality violation does not arise and hence
the whole of each region r>7_ is causally well behaved.
If a®+e2=m? the surfaces #=const in the Boyer-Lind-
quist form also satisfy the required condition, so that
we can conclude in this case also that each region
r>r_ (=m) is causally well behaved.

On the other hand, even when a2+ ¢2< m? we cannot
draw such conclusions for the regions r<r_, and we
cannot apply this criterion anywhere when a?+e2>m?.

B. Causality Violation in the Kerr Solutions

In a separate paper?® the author has derived a cri-
terion for causal bad behavior which is applicable to
any space with an Abelian isometry group which is
everywhere transitive over timelike surfaces. This
criterion states that if there does not exist a Lie algebra
covector (i.e., a linear map of the Lie algebra onto the
real numbers) such that the corresponding differential

26 S, Sternberg, Lectures on Differential Geometry (Prentice-Hall,
Inc., Englewood Cliffs, N. J., 1964).

27 R. Geroch, J. Math. Phys. 8, 782 (1967).

28 B. Carter, Ph.D. thesis, University of Cambridge, England,
1967 (unpublished).
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form in each surface of transitivity is everywhere space-
like or null, then the whole space is a single nontrivially
vicious set. In a terminology which generalizes the
concept of a closed timelike curve (considered as a
vicious cycle), a vicious set is defined as a set in which
any point can be connected to any other point by both
a future and a past directed timelike curve, i.e., it is
one in which the causality principle is violated in the
most flagrant conceivable manner; by mnontrivially
vicious it is meant that the same property holds in any
covering space so that the implied causality violation is
nontrivial in the sense used in the previous section.

Now the group generated by 8/9%, 3/9$ in the Boyer-
Lindquist form satisfies the required conditions for
applying this criterion in the regions r<r_ when
a*+e*<m? and in the whole manifold when a*+ 2> m?,
i.e., in the regions where the previous criterion failed.
Choosing a Lie algebra covector means in effect choosing
a differential form w=Kdi+Ld$ on the surfaces of
transitivity where K and L are arbitrary constants.
The criterion will be satisfied if it is not possible to
choose K, L so that w is everywhere spacelike with
respect to the induced metric in the surfaces of transi-
tivity. It is easy to see that the most obvious choice, £
itself, is spacelike everywhere except in the subregion
where

a4 p2(2mr—e?)a? sin%0 < 0. (27)

However, it can easily be checked that no choice of w
satisfies the required conditions over the whole region
except in the spherically symmetric cases. Therefore
in the case when a*+e2<m? (a5%0) each region 7<7_
is a vicious set and the boundaries r=r_ are causality
horizons; in the case when a?*+¢>>m? (¢5£0) the whole
space is a single vicious set. The essential details of this
causality violation may be understood as follows.

In the uncharged case, condition (27) is satisfied in
a small region of negative 7 in the immediate neighbor-
hood of the singularity p?=0, and in the charged case
it is satisfied in a larger region including positive values
of 7, although never extending beyond a point where
7% is equal to €% on the positive 7 side, or where 72 is
equal to the greatest of ¢?, €2, or 4m? on the negative 7
side. In this region the vector 9/9¢ is timelike, so the
circles f=const, r=const, f=const, are themselves
closed timelike lines. However, although it is necessary
that any closed timelike lines should enter the region
defined by (27), our application of the criterion of
Ref. 28 shows that they are by no means restricted to
it but can extend to any part of one of the regions
r<r_ or over the whole space when a?+e2>m2. This
criterion also implies that they cannot be removed by
taking a covering space.

Actually, since the manifold as a whole, as it has been
described so far, is simply connected, there is no proper
covering space, but because the geometry is singular at
p*=0, one might just as well consider the manifold
from which these ring singularities have been excluded,
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as far as the physics is concerned. Since there would
then be curves not homotopic to zero, looping around
the ring singularities, it would be possible to construct
numerous covering spaces by partially or totally un-
winding them. When a?4-¢?>m? the universal covering
space will consist of a simple infinite linear sequence,
but when @*+e2<m? it will have an extremely com-
plicated unendingly branching topology. However,
since the closed timelike lines do not need to loop round
the ring, their existence is not affected by this process.

A more drastic way of obtaining a covering space
would be to cut out the symmetry axis =0, 6= and
unwind the remaining space by treating ¢ as a non-
periodic coordinate. This would not be a physically
reasonable process because it would create an artificial
singularity in the limit § — 0 or 6 — =. However, even
this would not be sufficient to remove the closed time-
like lines, because the impossibility of finding a suitable
combination w does not depend on the presence of the
axis. (The simple circles described above would of
course cease to exist.)

It is fairly easy to understand the general nature of
the more complicated closed timelike lines. Outside the
region (27) the coordinate  must increase continually
along a timelike line, although 7 and 6 may be varied
in any direction at will in the region under considera-
tion (r<7_ or the whole space for a?4-€*>m?) as may ¢
also except in a limited region satisfying the condition

et —2mr <0, (28)
where 9/df becomes spacelike. In order to make up
literally for lost time the path must enter the region
(27). Here time can be gained, but only at the expense
of clocking up a large change (negative for ¢>0) in the
angle @. It can be seen that in all cases the least upper
bound to the time that can be saved per unit change in
angle is |a|. However, this does not prevent the line
from being closed even when the symmetry axis is
removed and the coordinate ¢ made nonperiodic, be-
cause by letting the line proceed to within a sufficiently
small but finite distance from the symmetry axis, all the
lost angle can be made up at a very small cost in time.

To sum up, in the case when a?+-¢2>m?, the central
region has the properties of a time machine. It is
possible, starting from any point in the outer regions
of the space, to travel into the interior, move back-
wards in time (f) as far as desired, at a rate up to
27 |a| per revolution about the axis, and then return
to the original position. (By keeping the motion at all
stages sufficiently close to the light cone, the proper
time involved in the process could be kept below any
given nonzero limit, although this would not be possible
if some sort of bound were to be placed on the allowed
acceleration.)

In the case when a?+e2<m? the outer parts of the
space on the positive 7 side are causally well behaved,
and there is even a partial Cauchy surface. However,
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the null hypersurface r=7_ is a causality horizon, for
by (irreversibly) crossing it a timelike path can enter
a region where causality is violated just as in the
previous case.

3. GEODESICS AND ORBITS
A. Integration of Geodesic and Orbit Equations

The equations of motion of a test particle of mass u
and charge e are given by

D%/ Dr*= (¢/u)F 1! (Dx*/Dr) , (29)

where D/Dr denotes covariant differentiation with
respect to the proper time 7, and F is the electromag-
netic field tensor. These equations may be derived from
the Lagrangian
L=%g5j£i7ijij+8Ai£I'3i, (30)
where the covariant vector potential 4 has been intro-
duced, satisfying
F=2d4, 31)

and where a dot over a symbol denotes ordinary differ-
entation with respect to an affine parameter \. In order
to obtain (29), X must be related to the proper time by

(32)

which is equivalent to imposing the normalizing
condition

T=Uu\

(33)

By taking zero and negative values of u? in (33) and
setting e=0, the same Lagrangian (30) can be used to
give null and spacelike geodesics. [When there is no
charge, the actual value of the mass has no significance,
and so we may obtain timelike and spacelike geodesics
with \ as a metric parameter by setting u>=411n (33).]

In order to transform to a Hamiltonian formulation,
we introduce the momenta obtained from (30) as

gl =y

pi=gifi+ed: (34)
and thus obtain the Hamiltonian
H=3g"(p;—eAs)(pi—ed;). (35)

Since it does not depend explicitly on A, the Hamil-
tonian is automatically a constant of the motion, and it
is apparent that it is this constant which is determined
by the normalizing condition (33). Thus we have

H=—42. (36)

We shall work with the Kerr-Newman form of the
metric since it is simple and since the corresponding
coordinate patches cover the whole manifold except
for the 2-surfaces (x=0, y=0) in the form (26).

The simplest vector potential giving rise to the field
(2) by (31) is

A=ep % (du—a sin®0d o). @37
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Thus from (1) we obtain the momenta

pu=—[1—p2(2mr—e*) Ju—ap2(2mr—e?)

Xsin20 o+i+ep2r, (38)
Po=—ap 2(2mr—e?) sinf u
+ o2 (1’4 a?)?— Aq sin?6] sin?d ¢
—a sin?0 7 —ep—2ar sin%0, (39)
pr=u—asin% ¢, (40)
po=p%0. (41)
The inverse of the metric (1) is
(8/0s)*=p~2(9/06)*+2p7*(r*+-a%) (9/ 0r) (3/ 9u)
+207%a(0/0r)(8/9¢)+2p%a(3/0u)(3/d¢)
+07%a sin%0(9/0u)? +p~? sin?(3/d¢)?
+p72A(08/9r)*  (42)
from which we obtain the Hamiltonian
H=3p"{Ap 2+ 2[ (*+a?) putap,—eer p»
+ p*+[a sinfp,+sin20p, P}.  (43)

From the symmetries we immediately obtain two
constants of the motion corresponding to conservation
of energy, E, and angular momentum about the sym-
metry axis, ®; thus we have

po=2. (45)

In addition, we automatically have the constant of the
motion given by (36), corresponding to conservation of
rest mass.

These three first integrals are sufficient to determine
the motion only when some restriction is imposed which
reduces the problem effectively to three or fewer di-
mensions. This situation holds for the spherical cases,
for which a thorough analysis in the uncharged case
has been carried out by Darwin,®® and for which a
discussion of the charged cases has been given by
Graves and Brill.?! It also applies to suitable subspaces
in the fully general cases, namely, the symmetry axis,
which has been analyzed by Carter,? and the equatorial
symmetry plane, which has been analyzed by Boyer
and Price’” in the asymptotically flat limit, and by
Boyer and Lindquist's in the inner regions (all these
applying to the empty-space cases only).

In order to tackle the general case, a fourth first
integral of the motion is needed which cannot come
from the obvious symmetries of the metric. However,
it turns out that it is possible to obtain such an integral
by taking advantage of the unexpected fact that the
Hamilton-Jacobi equation can be solved by separation
of variables in the coordinate system (1), and with the

2 S, C. Darwin, Proc. Roy. Soc. (L.ondon) A249, 180 (1958).
30S, C. Darwin, Proc. Roy. Soc. (London) A263, 39 (1961).
31 J. C. Graves and D. R. Brill, Phys. Rev. 120, 1507 (1960).
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choice of gauge (37). (The method would also work in
in the Boyer-Lindquist coordinates with the analogous
choice of vector potential, but a transformation in-
volving the nonignorable coordinates 7,  would destroy
the separability.)

By (35) the general form of the Hamilton-Jacobi
equation is

3S/on="1g[ (0S/9x)—eAJ[(8S/dxi)—ed;], (46)

where .S is the Jacobi action.

If there is a separable solution, then in terms of the
already known constants of the motion it must take
the form

S:—-%p,z)\—EM-i—@(p‘i‘Sﬂ'i'Sﬂ (47)

where Sp and S, are, respectively, functions of 6 and »
only. Inserting this in (43), we see that the equation
can in fact be separated in the form

(dSs/d0)*+ a?u? cos?6
=+ (¢E sinf—® sin10)2= — A(dS,/dr)?

2L (*+0*) E—ad+eer]dS,/dr—u2®.  (48)

Thus both sides must be equal to a new constant of the
motion, which we shall denote by &. It can be seen
from the form of the right-hand side that & must be
positive whenever p is real, i.e., for all particle orbits
and timelike or null geodesics. Using the relations
po=0S5/00 and p.= 85/ 9r, it may be related directly to
the momenta in the form

pe*+ (¢E sinf—® sin~16)2+a2u? cos?d= XK,
Ap2=2L (P+a*) E—ad+eer p,+uirt=—XK.

(49)
(50)

These together with (44) and (45) provide a complete
set of first integrals of the motion. [It is easy to verify
directly, without considering the action, that expressions
(49) and (50) are indeed constant, since it is almost
immediately apparent that their Poisson brackets with
the Hamiltonian (43) vanish. ]

Equation (48) can be solved completely by quadra-
tures. It splits up to give two ordinary differential
equations:

dSs/do=+/0, (51)
dS,/dr=A"1(P++/R), (52)
where the functions @ (6), P(r), R(r) are defined by

O =Q—cos?6[ a?(u>— E?)+ P2 sin~20], (53)
P=E(r*+a*—da+eer, (54)
R=P2—A(wr+%), (55)

and where it has been convenient to define a new con-
stant Q related to the others by

Q0=%— (@—aE)". (56)



1568

Thus the final solution for the Jacobi action is

S=—3u\— Eu+d¢p
0 - N
+/ (\/@)dﬁ—l—/ A“‘IPdr-i-/ A~1(\/R)dr, (57)

where the signs of the two square roots are independent
of each other, and where the lower limits of integration
need not be specified, since only changes of the action
are important.

The integrated forms of the geodesic and orbit equa-
tions can now be obtained automatically by using the
fact that the partial derivatives of the Jacobi action with
respect to the constants of the motion are themselves
constant.

Thus by differentiating with respect to X, u, E, ¥,
we obtain, respectively,

o do T odr
VO J W/R’ (58)
¢ a? cos?0d0 T r¥dr
V0 /R
¢ —a(aFE sin?0—®)do
“ / NG
T y24q? P
[ ==, 0
A /R
0 — (aE—® sin20)db
¢_/ VO
P PR
TR
A\ /R

where 4/0 and 4/R may take either sign independently,
but where, once a choice has been made, it must be
used consistently in all four equations, and where the
lower limits of integration may be chosen quite inde-
pendently in each term.

For many purposes this information is more con-
veniently expressed in terms of the first-order differ-

ential system: .
p*0= \/® )

o%r=+/R,
ptii=—a(aF sin0—®)+ (*+a*)A-[(,/R)—P], (64)
p2o=— (aE—® sin20)+aA'[(v/R)—P], (65)

which may be obtained either from the explicitly
integrated form [(58) to (61)] or else directly from
(44), (45), (48), and (50), and where again the signs of
4/0 and 4/R may be chosen independently, but once
chosen must be used consistently.

(62)
(63)
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B. Geodesic Completeness

We are now in a position to demonstrate that the
analytic extensions obtained in Sec. 1C are indeed
maximal, in the sense that the only geodesics which are
incomplete are those which reach the ring singularity,
so that they cannot possibly be imbedded as subspaces
of any larger manifold.

A geodesic is complete if it can be extended to un-
bounded values of the affine parameter \. It is apparent
that any geodesic can be extended indefinitely unless it
reaches the singularity or unless one of the integrals
in the Egs. (58), (60), or (61) diverges. The latter can
occur only where A has a zero, or where © or R has a
double zero.

If © or R has a double zero, then the integrals for A
will diverge, and X itself will be unbounded except in
the cases of geodesics which reach the singularity, for
which the divergent integrals for A may be able to
cancel each other out. This can be seen more easily
from the form

d\=p*(db/~/0), (66)
d\=p*(dr/+/R), (67)

of the Egs. (62) and (63), than from (58) and (59)
directly. Thus although this coupled form is not suitable
for explicit evaluation, it shows clearly that no question
of incompleteness can arise where ©® or R has a double
zero except for geodesics reaching the singularity p?=0.

Therefore in considering incompleteness away from
singularity we need only consider the cases where A has
a zero, which can occur only for strictly positive values
of 7. Possible divergences occur only in the equations
for u and ¢, which may be written in differential form as

—a(aE sin?—®)

—_—df
/0

— (¢E—® sin29) a P

do= —————————————dﬁ—l——-(l———)dr.
V4 A VR

These equations can be reexpressed in terms of the
(w,r,0,3) coordinates given by (16) and (17) as

r’+a?
+

du=

r2+a2(i——:/%>dr, (68)

(69)

+a(aE sin?—)
=l
/0

+ (aE—® sin29) a P
d¢=—————————d0+—(1—l——)dr.
/0 A VR

Now provided that P is nonzero where A=0, we obtain
from (54) and (55) the expansion

O 2 O

dw

( 1+§]€>dr, (70)

(1)
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where the sign depends on which choice of 4/R is under
consideration. It can be seen from this that only one
pair of the expressions (68) and (69), or (70) and (71),
contains a genuine divergence at A=0; in the other
pair the divergent terms cancel out. Thus, although the
geodesic leaves one of the Kerr-Newman coordinate
patches, it can be continued on an overlapping patch.

The case in which P vanishes where A=0 remains
to be considered. In this case it follows from (55) that
R must have at least a single zero there. If R has a
double zero, there is no problem, because as we have
seen the integral for N will then diverge anyway; this
must necessarily be the case if A has a double zero, which
shows why an analytic extension consisting only of
Kerr-Newman patches is sufficient in this case.

Thus we can restrict our attention to the case where
P vanishes where A=0 and where A and R have only a
single root there. In this case we have

P/+/R=0(a'") (73)

in the limit as the zero of A is approached, so the co-
ordinates # and w diverge to + o or —« together.
This simply means that the geodesic reaches one of the
points x=0, y=0 in one of the (x, y, 6, ¢*) patches
(26). Since the immediate neighborhoods of these points
are well behaved, such a geodesic can straightforwardly
be continued on the other side.

By working with the geodesic equations in the Kerr-
Newman coordinate system, we have left out of account
the possibility that there may be goedesics confined en-
tirely to the 2-surfaces x=0, y=0. In fact, it is obvious
from the symmetry of the form (26) that such geodesics
do exist. Nevertheless no question of incompleteness
arises because the surfaces x=0, y=0 are topologically
2-spheres, and, as can be seen at once from (26), they
are spacelike. It is well known that a compact spacelike
manifold cannot possibly be incomplete.

This completes our demonstration that the analytic
extensions of Sec. 1C. are maximal, and that only geod-
esics which strike the singularity are incomplete. As a
by-product we have shown that the charged-particle
orbits have the same property. It is widely conjectured
that this ought to follow automatically from the com-
pleteness of the geodesics, but norigorous theorem about
this question is known to the author, so it is perhaps
worth mentioning that this is not a counterexample.

C. Some Qualitative Properties of Geodesics and Orbits

It is possible to see quite easily how the 6 coordinate
varies during the geodesic and orbital motions, due to
the remarkable simplicity of the function ® by which
the variation of 6 is governed. It can be seen from (53)
that not only is the form of ©® quite independent of the
presence of electric charge either on the test particle
or in the field, but it is even independent of the mass
parameter of the field. In other words, ® is identical
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with the function obtained in the limit of field-free
flat space.

Useful information about the orbits, and restrictions
on the values which can be taken by the constants of
the motion, may be obtained by examining the extent
of the allowed regions where ® is non-negative. The
results may be summarized as follows:

Case (1), Q>0 ,

In this case there are always real solutions in which
ranges over a region straddling the equator, cosf=0.
This region extends to the axis of symmetry sinf=0,
if and only if =0 and Q-+ e2(F2—u2)> 0.

In addition there is a solution in which 8 is constant
at the axis value, sinf=0, when =0 and

Q+a*(E*—pt)=0.

Case (2), Q=0

In this case there are always real solutions in which
6 is constant at the equatorial value, cos§=0.

There are real solutions in which 6 varies if and only
if the energy is sufficiently high, i.e.,

a*(E2—pu?)> P2, (74)

If this is satisfied, 6 varies over a range touching the
equator on one side or other. The range extends to the
axis of symmetry if and only if =0.

The only other case where there are real solutions is
that in which =0 and a?(E?—u?)=0, when 6 may take
any constant value whatsoever.

Case (3) 0<0

In this case there are no real solutions at all unless
(74) is satisfied, and, in addition,

02 —{[&(E—p) ] —|2|}2. (75)

If (75) is satisfied as a strict inequality, 6 varies over a
range which does not touch the equatorial plane and
which extends to the symmetry axis if, and only if,
®=0. If equality holds in (75), then # takes a fixed
value which lies strictly between the equatorial plane
and the symmetry axis, except when ®=0 in which case
it lies on the symmetry axis.

It is not easy to give such a complete description of
the motion of the 7 coordinate, because the correspond-
ing governing function R(r) is a quartic in the fullsense:
The odd-power terms do not drop out as they do for
©(6). Nevertheless, it is possible without much trouble
to reach some interesting conclusions.

The function R(r) may be expanded in the form

R= (2= 1)r'+ 2 (u2m+ ecE)r?
+ [a2E2._ @2_*_ 82 (82'_ 2) — a2'u2___ Q]72
+2[m (aE—®)*+eea(aE—®)+mQr

—e(aE—®)*— (a>+e¥)Q. (76)



1570

From the form of the quartic term it can be seen that
no orbit or geodesic can escape to the asymptotically
flat regions of large positive or negative 7 if it has less
than the escape energy, i.e., if E2<y? as one would
expect.

From the form of the constant term in (76) it can be
seen that no geodesic or orbit can possibly cross the
hypersurface =0 which extends across the mouth of
the singular ring if Q is positive. Nor can it do so if it is
confined to the equator since the way would be blocked
by the ring singularity itself. Therefore the hypersurface
7=0 cannot be crossed unless the inequality (74) is
satisfied.

Thus we reach the conclusion that no orbit or geodesic
can pass through the ring between regions of positive
and negative 7 unless its energy is greater than some
minimum which is certainly not less than the escape
energy.

This repulsive property of the gravitational field
across the mouth of the ring has already been noted by
Carter? insofar as it applies to the symmetry axis, and
the exact height of the energy barrier on the symmetry
axis is calculated in this reference. In general, the
minimum energy for passing through the ring will de-
pend on the angular momentum, etc., possibly in a
complicated way. We shall not investigate the matter
further here, but only remark that geodesics and
particles with sufficiently high energy can clearly pass
through without difficulty.

D. Geodesic Structure of Ring Singularity

The results of Sec. 3C can be used to give very
stong restrictions on the geodesics and orbits which may
reach the singularity p?=0. Thus we have seen that »
cannot reach the value zero if Q is positive and that
cosf cannot reach the value zero if Q is negative, and
hence a necessary condition for an orbit or geodesic to
reach the singularity is

0=0. (77)

Moreover, from the form of the constant term in (76)
it is apparent that when Q is zero it will still be im-
possible for 7 to reach the value zero unless either the
equality

®=aE (78)

is satisfied, or alternatively the charge e of the solution
vanishes. In the timelike and null cases, i.e., when
4220, (78) is incompatible with (74), and therefore if
the motion is not to be confined to the equator (78) may
not hold, but instead the charge e must vanish. Now
under these circumstances the remaining coefficients in
(76) are all strictly positive, and therefore the parameter
7 can only reach zero by approaching from and returning
to asymptotically large values on the positive side, and
the integral on the right-hand side of (58) remains
finite during this process; on the other hand, the
integral on the left-hand side of (58) diverges as cosf

BRANDON CARTER

174

approaches zero, with the implication that the geodesic
or orbit only approaches the equator asymptotically as
7 tends to infinity.

Thus we reach the conclusion that a timelike or null
geodesic or orbit cannot reach the singularity under any
circumstances except in the case where it is confined
to the equator, cosf=0.

The restriction can be carried even further than this.
An examination of the equatorial geodesics in the case
where the solution is uncharged (e=0) has already
been made by Boyer and Lindquist,'s who have shown
that there is in general a finite range of angular momen-
tum within which a geodesic of a given sufficiently high
energy from a general point on the positive- side of the
equator can reach the singularity. However, when the
solution is charged (or if one is considering approach
from the negative-r side) the restriction is considerably
more severe because (78) must be satisfied. In other
words, a geodesic or charged particle orbit with a
given energy can only reach the singularity if it has a
uniquely determined angular momentum. Even this is
not quite sufficient as can be seen from the form to
which (76) reduces when (77) and (78) are satisfied,
which is
R= (E*—u)r'+-2 (um+eeE)r

+[e2(e2—u?) —a2? ). (79)

It is clear that an additional necessary condition for the
singularity to be attainable is that the coefficient of the
quadratic term be non-negative; in other words, the
charge on the test particle must be large enough to
satisfy

&2 (14a*/e)u. (80)

If this holds as a strict inequality, it is a sufficient condi-
tion for the singularity to be attainable from sufficiently
close points on the equator on either side, whereas if
it holds as an equality the singularity will in general be
attainable from one side only (although there will be
exceptional cases when the energy is such that either
the quartic or the cubic term vanishes). In the par-
ticular case of timelike geodesics (e=0, u?>0), the
inequality (80) cannot be satisfied at all except in the
Schwarzschild limit when e and ¢ both vanish. In the
case of null geodesics (e=0, u=0), strict equality holds
in (80) but the singularity can be reached from either
side because the cubic term in (79) vanishes.

Thus we conclude that when the solution is charged,
no timelike geodesics can reach the singularity, while
null geodesics reach the singularity if, and only if, they
lie in the equator and have a uniquely determined
angular momentum given by (78). Even when the
solution is uncharged, the only timelike or null geodesics
which can reach the singularity are those confined to
the equator, but as Boyer and Lindquist have shown,
in this case both null and timelike ones reach the
singularity and their angular momentum may lie in a
finite range.
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The significance of this for an observer studying the
singularity visually, i.e., by receiving photons which
have come out from the singularity along null geodesics,
is as follows: If he observes from a point on the equator
then when the field is uncharged the singularity is
visible as a finite one-dimensional line, as one would
expect for a ring seen edgewise on (except that by the
results of Boyer and Lindquist!® the line may sometimes
consist of two disconnected parts); however, if the
field is charged then the singularity is visible from the
equator only as a point, and in either case if the observer
moves off the equator the singularity will become
totally invisible to him.

4. IMPLICATIONS

The fact that there are closed timelike lines looping
through the interior does not affect the reasonableness
of interpreting the Kerr solutions as the exterior fields
of rotating bodies, since a source body might be ex-
pected to block off these regions in auy case. However,
it does hint (although it certainly does not prove) that
causality breakdown may be expected to result from
the collapse of a rotating body. The theorems of
Penrose! and Hawking?™* indicate that something
pathological must be expected to occur in a situation of
gravitational collapse of a rotating body, but different
opinions may be held about the nature of the break-
down. From a physical point of view the least serious
kind of breakdown would be the local development of
density or curvature singularities, and this is also the
kind of breakdown which has been considered most
widely in the past. The reason why this would not be
very serious is that one would expect in any case that
general relativity would need to be modified in condi-
tions of extreme curvature, in order to accommodate
quantum theory, and one might be sanguine enough
to hope that the necessary modifications would cure
the trouble. However, it is also conceivable, as has been
suggested by Lifshitz and Kbhalatnikov,® that the
curvature singularities which are familiar in highly
symmetric solutions do not exist in more general cases.

The Kerr solutions have a lower symmetry group
than any other solutions in which (as far as the author

32 E. M. Lifshitz and I. M. Khalatnikov, Zh. Eksperim i Teor.

Fiz. 39j 149 (1960) [English transl.: Soviet Phys.—JETP 12, 108
(1961)7].
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knows) an analytic study of a curvature singularity has
been made (although the separability which has made
this possible is itself a symmetry of a kind), and the
results of the previous section seem to lend a certain
amount of support to this last idea. Thus as the sym-
metry is progressively reduced, starting from the
Schwarzschild solution, the extent of the class of geo-
desics reaching the singularity is steadily reduced like-
wise, until in the case with both charge and rotation
there are almost none at all, which suggests that after
further reduction of the symmetry, incomplete geodesics
might cease to exist altogether. Even if a few incomplete
geodesics remain in the fully general case, their im-
portance is overshadowed by the causal pathology,
which seems to increase as the symmetry is reduced.
[However, in spite of this apparent effect the existence
or lack of symmetry may not be as important as it
appears, for the Taub-N.U.T. space which has been
discussed by Misner® is much more highly symmetric
than the Kerr solution, and yet its global behavior is in
some ways worse: It has geodesics which are incomplete
in a region which is locally nonsingular, and it also has
closed timelike lines confined within any neighborhood,
no matter how thin, of the causality horizon of the well-
behaved part, whereas in the Kerr solutions, in the
cases when there are causality horizons (at r=7_), any
closed timelike line must at some stage penetrate deeply
into the bad part beyond these horizons.]

All these things suggest that the breakdown in
general relativity may be of a global rather than (or as
well as) of a local nature, in which case it is very
serious indeed. If this turns out to be the case then one
will not be able to expect to cure the trouble by minor
modifications significant only in regions of high curva-
ture, so that the whole theory might have to be
abandoned, or at least drastically reformulated.
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