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Abstract. The cosmic-ray streaming instability creates strong magnetohydrodynamic turbulence in the precursor of a SN shock.
The level of turbulence determines the maximum energy of cosmic-ray particles accelerated by the diffusive shock accelera-
tion mechanism. In this paper we present the continuation of previous work (Ptuskin & Zirakashvili 2003). We assume that
Kolmogorov type nonlinear wave interactions together with ion-neutral collisions restrict the amplitude of the random mag-
netic field. As a result, the maximum energy of the accelerated particles strongly depends on the age of a SNR. The average
spectrum of cosmic rays injected in the interstellar medium in the course of the adiabatic SNR evolution (the Sedov stage) is
approximately Q(p)p2 ∝ p−2 at energies larger than 10−30 GeV/nucleon and with a maximum particle energy that is close
to the position of the knee in the cosmic-ray spectrum observed at ∼4 × 1015 eV. At an earlier stage of SNR evolution – the
ejecta-dominated stage described by the Chevalier-Nadyozhin solution, the particles are accelerated to higher energies and have
a rather steep power-law distribution. These results suggest that the knee may mark the transition from the ejecta-dominated to
the adiabatic evolution of SNR shocks which accelerate cosmic rays.
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1. Introduction

Diffusive shock acceleration is considered as the main mech-
anism of acceleration of galactic cosmic rays. The diffusion
coefficient D(E), which is a function of energy, determines the
maximum energy that particles can gain in the process of ac-
celeration by the shock moving through the turbulent interstel-
lar medium. The condition of efficient acceleration is D(E) ≤
κushRsh, where Rsh is the radius and ush is the velocity of a
spherical shock, and the constant κ ∼ 0.1 (see Drury et al. 2001,
and Malkov & Drury 2001 for a review). The Bohm value of
the diffusion coefficient DB = vrg/3 (v is the particle velocity,
and rg is the particle Larmor radius), which is a lower bound-
ary of the diffusion along the average magnetic field, gives the
maximum particle energy Emax ∼ 2 × 1014Z (E51/n0) eV at
the time of transition from the ejecta-dominated stage to the
stage of adiabatic evolution of SNRs (the particle charge is Ze).
Here we consider a SN burst with a kinetic energy of the ejecta
E = E51 × 1051 erg in a gas with density n0 cm−3 and an inter-
stellar magnetic field B0 = 5 µG . This value of Emax is close
but somewhat less than the energy of the “knee”, the break in
the total cosmic ray spectrum observed at ∼4 × 1015 eV.

Analyzing the early stage of SNR evolution when the shock
velocity is high, ush ∼ 104 km s−1, Bell & Lucek (2001) found
that the cosmic-ray streaming instability in the shock precursor
can be so strong that the amplified field δB ≥ 100 µG far ex-
ceeds the interstellar value B0. The maximum particle energy
increases accordingly. The cosmic-ray streaming instability is
less efficient as the shock velocity decreases with time, and
the nonlinear wave interactions reduce the level of turbulence
at the late Sedov stage (Völk et al. 1988; Fedorenko 1990).
This leads to fast diffusion and to a corresponding decrease
of Emax. The effect is aggravated by possible wave damping
produced by the ion-neutral collisions (Bell 1978; Drury et al.
1996). The acceleration of cosmic rays and their streaming in-
stability in a wide range of shock velocities was considered
in our previous paper (Ptuskin & Zirakashvili 2003, Paper I).
The analytical expressions for the cosmic ray diffusion coeffi-
cient and for the instability growth rate were generalized to the
case of an arbitrary strong random magnetic field, δB ≷ B0.
The rate of nonlinear wave interactions was assumed to cor-
respond to the Kolmogorov nonlinearity of magnetohydrody-
namic waves. The collisional dissipation was also taken into
account. The maximum energy of the accelerated particles
was determined as a function of shock velocity and thus as a
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function of SNR age. The maximum energy of a particle with
charge Ze can be as high as 1017Z eV in some very young
SNRs and falls to about 1010Z eV at the end of the adiabatic
(Sedov) stage. The widely accepted estimate of the cosmic ray
diffusion coefficient at the strong shock that corresponds to
the Bohm diffusion value calculated for the interstellar mag-
netic field strength turns out to be incorrect. This result may
explain why SNRs with an age of more than a few thousand
years are not prominent sources of very high energy gamma-
rays (Buckley et al. 1998; Aharonian et al. 2002). The pres-
ence of a strongly amplified random magnetic field in young
SNRs is evidently supported by the interpretation of data on
synchrotron X-ray emission from young SNRs, see e.g. Vink
(2003) for a review.

The main objective of the present work is the calculation of
the average spectrum of cosmic rays ejected into the interstellar
medium by a SNR in a course of its evolution. Some necessary
results of Paper I are presented in Sect. 2, the evolution of SNR
shocks is discussed in Sect. 3, the average cosmic-ray source
spectrum is calculated in Sect. 4 followed by the discussion
in Sect. 5, the conclusion is given in Sect. 6. Appendix A de-
scribes the thin shell approximation used in our calculations.

2. Maximum energy of accelerated particles

In the test particle approximation, the momentum distribution
of accelerated particles for high Mach number shocks has the
canonical form f (p) ∼ p−4 (Krymsky 1977; Bell 1978). In the
case of efficient acceleration, the action of cosmic ray pressure
on the shock structure causes a nonlinear modification of the
shock that changes the shape of the particle spectrum, making
it flatter at ultrarelativistic energies (Eichler 1984; Berezhko
et al. 1996; Malkov & Drury 2001). Because of this effect, we
assume that the distribution of ultrarelativistic particles at the
shock is of the form f0(p) ∼ p−4+a where 0 < a < 0.5; the value
a = 0.3 is used in the numerical estimates below. The normal-
ization of f (p) is such that the integral N = 4π

∫
dpp2 f (p)

gives the number density of cosmic rays. The differential cos-
mic ray intensity is I(E) = f (p)p2. We assume that the cos-
mic ray pressure at the shock is some fraction ξcr < 1 of
the upstream momentum flux entering the shock front, so that
Pcr = ξcrρu2

sh, and the equation for the distribution function of
relativistic accelerated particles at the shock is

f0(p, t) =
3ξcrρu2

shH(pmax(t) − p)

4πc(mc)aϕ(pmax)p4−a
, (1)

where pmax is the maximum momentum of the accelerated par-

ticles, H(p) is the step function, and ϕ(pmax) =
∫ pmax/mc

0
dyya√

1+y2
.

The approximation of the last integral at pmax � mc is ϕ(p) ≈
a−1(p/mc)a − a−1(1 + a)−1. The value of ξcr ≈ 0.5 and the
total compression ratio at the shock close to 7 were found in
the numerical simulations of strongly modified SN shocks by
Berezhko et al. (1996). Here and below we mainly consider
protons as the most abundant cosmic ray component. For ions
with charge Z, the equations should be written as functions of
p/Z instead of p. In particular, the maximum momentum of

nuclei with charge Z is a factor of Z larger than that of pro-
tons. We use the notation m for the proton mass. The acceler-
ation in old SNRs (t � 3 × 104−105 yr) when pmax/mc < 10
is not considered in the present paper because Eq. (1) is not
applied at low Mach numbers, see Paper I for details. (Using
the test particle approximation for a non-modified shock, Drury
et al. (2003) found that the spectrum of the accelerated parti-
cles is somewhat steeper if the diffusion coefficient increases
with time compared to the case of constant D. This effect is not
included in our consideration.)

The following steady-state equation determines the energy
density W(k) (k is the wave number) of the magnetohydrody-
namic turbulence amplified by the streaming instability in the
cosmic-ray precursor upstream of the supernova shock:

u∇W(k) = 2(Γcr − Γl − Γnl)W(k). (2)

Here the l.h.s. describes the advection of turbulence by a highly
supersonic gas flow. The terms on the r.h.s. of the equation
describe respectively the wave amplification by cosmic ray
streaming, the linear damping of waves in the background
plasma, and the nonlinear wave-wave interactions that may
limit the amplitude of the turbulence. The equation for the wave
growth rate at the shock

Γcr(k) =
Ccr(a)ξcru3

shk1−a

(
1 + A2

tot

)(1−a)/2
cVaϕ(pmax)ra

g0

(3)

was suggested in Paper I as the generalization of the equation
derived for the case of a weak random field (Berezinskii et al.
1990). Here Va = B0/

√
4πρ is the Alfvén velocity (ρ is the

gas density), A = δB/B0 is the dimensionless wave amplitude,
and rg0 = mc2/eB0. The ion-neutral and electron-ion collisions
usually determine the linear damping processes in the thermal
space plasma. The Kolmogorov-type nonlinearity with a sim-
plified expression

Γnl = (2CK)−3/2VakA(>k) ≈ 0.05VakA(>k) (4)

at CK = 3.6 (as follows from the numerical simulations by
Verma et al. 1996) was used in Paper I. The wave-particle
interaction is of resonant character and the resonance con-

dition is kresrg =

√
1 + A2

tot, where the Larmor radius rg =

pc/ZeB0 is defined through the regular field B0, and Atot is
the total amplitude of the random field. The particle scatter-
ing leads to a cosmic-ray diffusion with diffusion coefficient

D = (1 + A2
tot)

1/2vrg

[
3A2(> kres)

]−1
.

Equation (2) allows finding the following approximate
equation for the dimensionless amplitude of the total random
magnetic field produced by the cosmic-ray streaming instabil-
ity at the shock (Paper I):

3u2
shA2

tot

2v(1 + A2
tot)
+

VaAtot

(2CK)3/2
=

Ccr(a)ξcru3
sh

cVaϕ(pmax)(pmax/mc)−a
√

1 + A2
tot

· (5)
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To study the effect of nonlinear interactions, the term
with linear damping in Eq. (2) was omitted in Eq. (5);
Ccr(a) = 27[4(5 − a)(2 − a)]−1. The maximum particle mo-
mentum satisfies the equation

pmax

mc
=

3κA2
totushRsh

√
1 + A2

totvrg0

· (6)

In the high velocity limit, when ush � 4aCcrξcrc[9(2CK)3/2]−1

and ush � 3Va[2aCcrξcr]−1, the advection term dominates over
the nonlinear dissipation term in the l.h.s. of Eq. (5) and the
wave amplitude is large, Atot � 1. The maximum momen-
tum of accelerated particles and the amplified magnetic field
are then given by the approximate equations

pmax

mc
≈ 2κaCcrξcru

2
shRsh

(
rg0Vac

)−1
, (7)

and

Atot ≈ 2ush

3Va
aCcrξcr. (8)

Here the cosmic ray diffusion coefficient depends on the parti-
cle Larmor radius as D ∝ vr1−a

g at p ≤ pmax.

In the low velocity limit, when ush 

[
4V3

a c2 (πaCcr×
(2CK)3 ξcr)−1

]1/5
and ush 


[
V2

a c
(
aCcr(2CK)3/2ξcr

)−1
]1/3

, the

nonlinear dissipation term dominates over the advection term in
the l.h.s. of Eq. (5) and the wave amplitude is small, Atot 
 1.
The maximum momentum of accelerated particles and the
amplified magnetic field are then given by the approximate
equations

pmax

mc
≈ 24κa2C2

crC
3
Kξ

2
cru

7
shRsh

(
rg0V4

a c3
)−1
, (9)

and

Atot ≈ aCcr(2CK)3/2ξcru
3
sh

(
cV2

a

)−1
(10)

assuming that this value of the amplified field exceeds the value
of the random interstellar magnetic field. The cosmic ray dif-
fusion coefficient depends on the particle Larmor radius as
D ∝ vr1−2a

g at p ≤ pmax. (Note the misprint in the numerical
coefficient in the first equality of Eq. (19) in Paper I that is
analogous to the present Eq. (9).)

Figure 1 illustrates the results of calculations of pmax at
the Sedov stage of SNR evolution at E = 1051 erg in the
warm interstellar gas with temperature T = 8 × 103 K, av-
erage density n0 = 0.4 cm−3, which includes small interstellar
clouds, intercloud density n = 0.1 cm−3, number density of ions
ni = 0.03 cm−3, interstellar magnetic field strength B0 = 5 µG,
see Paper I. The time dependence of the shock radius and the
shock velocity are given by the following equations (the Sedov
solution; see e.g. Ostriker & McKee 1988):

Rsh = 4.3 (E51/n0)1/5 t2/5
Kyr pc,

ush = 1.7 × 103 (E51/n0)1/5 t−3/5
Kyr km s−1, (11)

where we assume that the ultrarelativistic gas of cosmic rays
mainly determines the pressure behind the shock. The value

  

Fig. 1. The maximum momentum of accelerated protons pmax in units
mc as a function of shock velocity ush at the Sedov stage of supernova
remnant evolution in warm interstellar gas. The three solid lines cor-
respond to three cases of wave dissipation considered separately: non-
linear wave interactions; damping by ion-neutral collisions at constant
density of neutral atoms; damping by ion-neutral collisions when the
diffuse neutral gas restores its density after complete ionization by the
radiation from the supernova explosion. The dashed line represents
the age of a supernova remnant t (plotted on the right ordinate) as a
function of shock velocity. The dotted line shows the Bohm limit on
maximum particle momentum calculated for the interstellar magnetic
field strength. The dash-dot line gives the maximum particle momen-
tum when the wave dissipation is not taken into account.

κ = 0.04 was assumed in the calculations in Fig. 1. The three
solid lines correspond to the three cases of wave dissipation
considered separately: nonlinear wave interactions; damping
by ion-neutral collisions at constant gas density; damping by
ion-neutral collisions when the diffuse neutral gas restores its
density after complete ionization by the radiation from the SN
burst. For the last two curves, the dissipation of waves due to
the ion-neutral collisions with damping rate

Γl =
νin
2


1 +

(
1 + A2

tot

)−1
(
(1 +

ni

nH
)
νin
kVa

)2

−1

(12)

was taken into account whereas the term Γnl that describes
nonlinear dissipation was omitted. Here νin = nH 〈vthσ〉 ≈
8.4 × 10−9(T/104 K)0.4(nH/1 cm−3) s−1 for the temperature
T ∼ 102−105 K is the frequency of ion-neutral collisions with
cross section σ averaged over the velocity distribution of ther-
mal particles, nH is the number density of neutral hydrogen.
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(Note a slight correction of the “collisional damping” curve
in Fig. 1 comparing to corresponding Fig. 2 in Paper I.) The
maximum energy of protons accelerated by SN shocks at the
early Sedov stage is close to 3 × 1014 eV, which exceeds
the Bohm limit calculated for the interstellar magnetic field
value by one order of magnitude. The maximum energy de-
creases to about 1010 eV at the end of the Sedov stage, which
is much less than the Bohm limit calculated for the interstellar
magnetic field value. In particular, the particle energy is less
than 1013 eV at t > 3× 103 yr and this may explain the absence
of a TeV γ-ray signal from many SNRs (Buckley et al. 1998;
Aharonian et al. 2002) where the gamma-rays could in prin-
ciple be produced through π0 decays if sufficiently energetic
cosmic rays were present.

With the extreme choice of parameters of the rapidly ex-
panding young SNR envelope, it was found (Bell & Lucek
2001, Paper I) that the maximum particle energy may reach
ultra high energies. The estimate of the highest particle en-
ergy according to Paper I is Emax ≈ 2 × 1017Z(ush/3 ×
104 km s−1)2(κ/0.1)ξcrM

1/3
ej n1/6 eV at the end of a free expan-

sion stage which precedes the Sedov stage (here Mej is the mass
of the ejecta in M
). We shall see below that this promising esti-
mate is in some sense devalued by the results of the calculations
of the particle flux – the flux turns out to be low at the highest
energies which can be achieved in the process of acceleration.

3. Evolution of SNR shocks

A typical source of galactic cosmic rays is most probably asso-
ciated with the core collapse supernova, type II SNe, that is the
final stage of evolution for stars more massive than about 8 so-
lar masses while on the main sequence. Before the explosion,
the massive star goes through the Main Sequence O-star stage,
the Red Supergiant stage, and, for the most massive progenitors
(>20 M
), which give rise to the rare type Ib/c SNe, through
the Wolf-Rayet stage. The fast wind of a massive progenitor
star on the main sequence produces a big bubble of hot rarefied
gas with a temperature of about 106 K in the surrounding inter-
stellar medium, see Weaver et al. (1977), Lozinskaya (1992).
The typical type II SN goes through the Red Super Giant phase
before the explosion and this process is accompanied by the
flow of a low-velocity dense wind. Thus, immediately after the
supernova burst, the shock propagates through the wind of a
Red Super Giant star, then through the hot bubble, and finally
it enters the interstellar medium. Our calculations will be done
for an ejecta mass Mej = 1 M
 (the solar mass). The spheri-
cally symmetric distribution of gas density in the stellar wind
is nw = Ṁ/(4πmauwr2), where Ṁ = 10−5 Ṁ−5 (solar mass)/yr is
the mass loss rate, ma = 1.4m is the mean interstellar atom mass
per hydrogen nucleus, the wind velocity uw = 106uw,6 cm/s.
The magnetic field in the stellar wind has the shape of a Parker
spiral similar to the interplanetary magnetic field (Parker 1958).
At the relatively large distances from the surface of the star that
are of interest here the magnetic field has a predominately az-
imuthal structure and its value is B0 = B∗r2∗Ω sin θ/(uwr) where
B∗ is the surface magnetic field strength at the star radius r∗, Ω
is the angular velocity of star rotation, and θ is the polar an-
gle. Hence B0(r)r = 2 × 1013u−1

w,6 sin θ G× cm at B∗ = 1 G,

r∗ = 3 × 1013 cm, Ω = 3 × 10−8 s−1 that gives B0 ≈ 6 µG at the
distance r = 1 pc from the star.

Below we shall also use the following set of parameters
of the medium surrounding the type II SN: the radius of the
spherical Red Super Giant wind Rw = 2 pc, the star mass loss
Ṁ−5 = 1, and the wind velocity uw,6 = 1. In addition, the radius
of the spherical bubble of hot gas Rb = 60 pc, the gas density in
the bubble nb = 1.5×10−2 cm−3, the magnetic field Bb = 5 µG.
The gas density in the undisturbed interstellar medium around
the bubble is assumed to be equal to n0 = 1 cm−3 (physically,
the value of n0 determines nb, see Weaver et al. 1977). The
hot bubble is separated by a dense thin shell from the interstel-
lar gas. The accepted parameters are close to those assumed
by Berezhko & Völk (2000) in their analysis of gamma-ray
production in SNRs. A lengthy discussion and additional refer-
ences can be found there.

A considerable fraction of cosmic rays is probably acceler-
ated in type Ia SNe (their explosion rate in the Galaxy is about
1/4 of that of type II SN). These supernovae are caused by the
thermonuclear explosions of compact white dwarfs following
mass accretion. The characteristic masses of the progenitor star
and ejecta are 1.4 solar mass. The progenitor stars do not appear
to have an observable amount of mass loss nor do they emit
ionizing radiation that could modify the ambient medium. We
assume that the SNR shock goes through the uniform weakly
ionized interstellar medium with density 1 cm−3, and magnetic
field 7 µG.

It is instructive to consider the asymptotic regimes of the
propagation of SNR shock – the ejecta dominated stage and
the adiabatic stage.

The adiabatic regime was mentioned earlier (see the Sedov
solution (11) for the shock moving in a gas with constant
density), and it refers to the stage of SNR evolution when the
mass of swept-up gas significantly exceeds the mass of ejecta.
This condition is fulfilled in the case of a medium with constant
density at Rsh > R0 = (3Mej/4πman0)1/3 = 1.9(Mej/M
n0)1/3

pc, t0 > R/u0 ≈ 190n−1/3
0 yr, where u0 ∼ 109 cm/s is the initial

velocity of the ejecta. The adiabatic regime for the SNR shock
moving through the progenitor star wind is described by the
equations (at ush � uw):

Rsh = 7.9

(E51uw,6

Ṁ−5

)1/3

t2/3
Kyr pc,

ush = 5.2 × 103

(E51uw,6

Ṁ−5

)1/3

t−1/3
Kyr km s−1, (13)

see Ostriker & McKee (1988). As in Eq. (11), we assume
that the ultrarelativistic gas of cosmic rays mainly determines
the pressure behind the shock. Equation (13) is valid when
the mass of swept-up gas is relatively large and Rsh > R0 =

Me juw/Ṁ ≈ 1(Mej/M
)uw,6/Ṁ−5pc.
The quantity ρu2

shR3
sh = KE is conserved for the adiabatic

shocks considered. The constant K ≈ 0.16 for solution (11),
and K ≈ 0.34 for solution (13). In the general case of a power-
law gas distribution ρ = ρ0(r)r−s, s < 5, the adiabatic shock
evolution is described by the equations Rsh = (η(s)E/ρ0)

1
5−s t

2
5−s ,

and ush =
2

5−s (η(s)E/ρ0)
1

5−s t−
3−s
5−s , where η is constant at fixed s,
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which gives the general formula K = 4η(s)
(5−s)2 (the values of η(s)

were given by Ostriker & McKee 1988).
The ejecta-dominated stage precedes the adiabatic one. As

long as the mass of the ejecta is large compared to the swept-up
mass, the blast wave is moving with relatively weak decelera-
tion. At this stage, shortly after the explosion, the structure of
the rapidly expanding envelope of the presupernova star is im-
portant for the shock evolution. Actually, the blast wave con-
sists of two shocks, the forward shock and the reverse shock,
with the contact discontinuity surface between them. This sur-
face separates the shocked wind or interstellar gas downstream
of the forward shock from the shocked envelope gas that fills
the downstream region of the reverse shock. The reverse shock
lags behind the forward shock and enters the dense internal part
of the exploding star by the time of the beginning of the Sedov
stage. Though as an approximation for very young SNRs it can-
not be well justified, we ignore below the cosmic ray accelera-
tion at the reverse shock compared to the forward shock and use
the notation Rsh for the radius of forward shock (Berezinsky &
Ptuskin 1989 considered the cosmic ray acceleration by both
shocks; see also Yoshida & Yanagita 2001). The outer part
of the star that freely expands after the SN explosion has a
power law density profile ρs ∝ r−k, see e.g. Chevalier & Liang
(1989). The value of k typically lies between 6 and 14. The
value k ≈ 7 is characteristic of the SNe type Ia, and k ≈ 10 is
typical of the SNe type II. A self similar solution for the blast
wave at the ejecta-dominated stage was found by Chevalier
(1982) and Nadyozhin (1981, 1985). They showed that at an
age larger than about one week, the evolution of the shock at
the ejecta-dominated stage can be approximately described by
the power-law dependence Rsh ∝ tλ where the expansion pa-
rameter λ = k−3

k for the explosion in the uniform medium, and
λ = k−3

k−2 for the explosion in the wind of a presupernova star
(for k > 5 ejecta). In particular, using the results of the two pa-
pers mentioned above, one can obtain the following equations

Rsh = 5.3



E2

51M

n0Mej




1/7

t4/7
Kyr pc,

ush = 2.7 × 103



E2

51M

n0Mej




1/7

t−3/7
Kyr km s−1 (14)

for a type Ia SN explosion in an uniform interstellar medium at
k = 7;

Rsh = 7.7



E7/2

51 uw,6M5/2



Ṁ−5M5/2
ej




1/8

t7/8
Kyr pc,

ush = 6.6 × 103



E7/2

51 uw,6M5/2



Ṁ−5M5/2
ej




1/8

t−1/8
Kyr km s−1 (15)

for a type II SN explosion in the wind of a presupernova star at
k = 10.

Following the approach of Truelove & McKee (1999),
one can describe the shock produced by a type Ia
SN using the continuous solution which coincides with

the ejecta-dominated Eq. (14) until the moment t0 =

260(Mej/1.4 M
)5/6E−1/2
51 n−1/3

0 yr, and is given by the equations

Rsh = 4.3 (E51/n0)1/5 t2/5
Kyr

×

1 −

0.06(Mej/M
)5/6

E1/2
51 n1/3

0 tKyr




2/5

pc, (16)

ush = 1.7 × 103 (E51/n0)1/5 t−3/5
Kyr

×

1 −

0.06(Mej/M
)5/6

E1/2
51 n1/3

0 tKyr




−3/5

km s−1

at a later time t > t0. It is evident from Eq. (16) that the adia-
batic approximation (11) holds at t � t0.

The evolution of a type II SN shock first follows the ejecta-
dominated solution (15) in a presupernova wind and then, while
still moving in the wind, it enters the adiabatic regime at the
distance r ∼ 1 pc. The subsequent evolution proceeds in the
medium with a complicated structure described above for a
type II SN. The fairly accurate solution for the SNR evolution
during this period can be obtained in the “thin-shell” approx-
imation, e.g. Ostriker & McKee (1988), Bisnovatyi-Kogan &
Silich (1995). Using this approximation for the strong shock
and assuming a spherically symmetric distribution of the cir-
cumstellar gas density ρ(r), we come to the following equations
where the shock velocity ush and the SNR age t are parameter-
ized as functions of the shock radius Rsh (see Appendix for the
derivation of these equations):

ush(Rsh) =
γad + 1

2




12(γad − 1)E
(γad + 1)M2(Rsh)R6(γad−1)/(γad+1)

sh

×
∫ Rsh

0
drr

6
(
γad−1
γad+1

)
−1

M(r)

]1/2

,

t(Rsh) =
∫ Rsh

0

dr
ush(r)

, (17)

where γad is the adiabatic index (γad = 4/3 if the pressure
downstream of the shock is determined by the relativistic par-
ticles), and M(R) = Me j + 4π

∫ R

0
drr2ρ(r) is the mass of the

swept-up gas. The self-similar solution by Chevalier and by
Nadyozhin is not explicitly reproduced by Eqs. (17). The solu-
tions (15) and (17) are fitted together at the transition from the
ejecta-dominated regime to the adiabatic regime (at r ∼ 0.3 pc)
in our numerical simulations of cosmic ray acceleration in the
type II SNRs described below.

It is worth noting that the energy loss of SNRs in the form
of escaping cosmic rays is not taken into account in the solu-
tions for shock evolution that were described in this section. In
fact the shock evolution is only approximately adiabatic.

4. Average spectrum of cosmic rays injected
in the interstellar medium

At a given SNR age t, the cosmic rays are accelerated up
to a maximum momentum pmax(t). Also, particles with p >
pmax(t) cannot be confined in the precursor of the shock even
if they were accelerated earlier. Thus particles accelerated to
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the maximum energy escape from a SNR (see also Berezhko &
Krymsky 1988). Let us estimate the flux of these run-away par-
ticles. We consider the simplified approach for the maximum
energy of the accelerated particles and take the dependence of
diffusion on momentum in the following simplified form:

D(p) = D0 
 Rush, p � pmax(t),

D(p) = Dm � Rush, p > pmax(t). (18)

The spectrum of the accelerated particles in this case has a
very steep cut-off at p > pmax (cf. Eq. (1)) and the spectrum
of run-away particles beyond pmax can be approximated by a δ-
function. To find the equation for these particles, let us integrate
the equation for the momentum distribution function of cosmic
rays

∂ f
∂t
− ∇D∇ f + u∇ f − ∇u

3
p
∂ f
∂p
= 0 (19)

on momentum p from pmax to pmax + ∆p, where ∆p 
 pmax

and larger than the width of the run-away particle spectrum.

Denoting G =
∫ pmax+∆p

pmax
f dp one obtains from Eq. (19):

∂G
∂t
+ u∇G =

∇Dm∇G − ∂pmax

∂t
f (pmax − 0) − ∇u

3
pmax f (pmax − 0). (20)

Since the diffusion coefficient of the run-away particles is large,
the advection terms play no role in this equation and the last
two terms can be considered as a source of the particles. The
total source of run-away particles is given by the volume in-
tegral of these terms. As a result, the source spectrum of the
run-away particles has the form

q(p, t) = −δ(p − pmax)

×
∫

d3r

(
∂pmax

∂t
+
∇u
3

pmax

)
f (pmax − 0, r). (21)

The integration here is performed over the domain where the
integrand is negative. The integral 4π

∫
dpp2q(p, t) has dimen-

sions number of particles per unit time.
Below we consider the case of a spherically symmetric SN

shock with linear velocity profile at r < Rsh:

u =

(
1 − 1
σ

)
ush(t)r/Rsh(t), (22)

where σ is the total shock compression ratio. It includes a ther-
mal subshock and a cosmic ray precursor. The linear velocity
profile (22) is a good approximation of Sedov’s solution and
it can be considered as a very approximate one at the ejecta-
dominated stage. Since the shock is partially modified in the
presence of cosmic rays, we should not assume any relation
between the shock compression ratio σ and the spectral index
of accelerated particles 4 − a (recall that 4 − a = 3σ/(σ − 1)
for unmodified shocks). We accept the value σ = 7 in our cal-
culations. The preshock at r > Rsh is created by the cosmic
ray pressure gradient. Its width is small in comparison with
the shock radius under the conditions given by Eq. (18) and

the plane shock approximation can be used. Since the cos-
mic ray pressure dominates the gas pressure in the precur-
sor region, its gradient is proportional to the velocity gradient
∂Pcr/∂r = ρush∂u/∂r, where ρ is the density of the circumstel-
lar medium. We also use the assumption that the cosmic ray
pressure at the shock is some fraction ξcr of the upstream mo-
mentum flux, see Eq. (1). Now assuming that f (pmax) is pro-
portional to the cosmic ray pressure the expression (21) for the
run-away particle source takes the form

q(p, t) = 4πδ(p − pmax)

(
1
3

(
1 − 1
σ
− ξcr

2

)
R2ush p f0(p)

−
∫ R

0
r2dr f (pmax, r)

(
∂pmax

∂t
+
σ − 1
σ

pmax
ush

R

))
· (23)

The first term in this expression describes the particles which
runs away from the shock front, and the second term describes
the particles escaping from the shock interior. In principle, the
turbulence downstream from the strong shock might be en-
hanced, which would result in a small cosmic ray diffusion co-
efficient. In this case the particles do not run away from the
downstream and the second term in Eq. (23) should be omit-
ted. If the turbulence downstream is maintained by the same
process of cosmic ray streaming instability as in the upstream
region, the downstream diffusion coefficient is comparable to
the upstream diffusion coefficient for particles with p ∼ pmax.
We shall further assume that particles can run away both from
upstream and downstream of the shock. The uncertainty of the
efficiency of the run-away process in the inner part of SNR
does not qualitatively change the conclusion about the average
source spectrum of cosmic rays calculated later in this section
and shown in Fig. 2.

The distribution function of particles with p � pmax can be
found using the solution of transport Eq. (19) at r < Rsh with
the boundary condition f (p, r = Rsh, t) = f0 by the method of
characteristics. This gives:

q(p, t) = 4πδ(p − pmax)

[
1
3

(
1 − 1
σ
− ξcr

2

)
R2ush p f0(p)

+

(
−∂pmax

∂t
− σ − 1
σ

pmax
ush

R

) ∫ t

0

dt
σ

′
R2(t′)ush(t′)

× f0


p

(
R(t)
R(t′)

)1− 1
σ

, t′



(
R(t)
R(t′)

)3− 3
σ


 · (24)

The expression in brackets in front of the integral in Eq. (24)
should be positive, which means that adiabatically the particles
lose energy more slowly than the maximum energy decreases.
For the opposite sign, the adiabatic losses of particles are faster
than the decrease of maximum energy and the particles do not
run away from downstream of the shock. They can run away
later if at that time the decrease of the maximum momentum is
faster.

The average source power Q(p) of run-away cosmic rays
per unit volume in the galactic disk is obtained by integrating q
with respect to t and by averaging over many SN explosions:
Q(p) = νsn

∫ max

min
dtq(p, t), where νsn is the average frequency of

SN explosions per unit volume of the galactic disk. Changing
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the variable of integration from t to Rsh (dRsh = ushdt) one can
derive the following equation:

Q(p) =
3aξcrνsn

cp4
∣∣∣∣
dln (pmax)

dln (R)

∣∣∣∣




(
1 − 1

σ
− ξcr

2

)
ρ(R)u2

sh(R)R3

3
(
1 − 1

1+a

(
mc

pmax(R)

)a)

+

(
1
σ
− 1 − dln (pmax)

dln (R)

) ∫ R

Rmin

dR′

σ

ρ(R′)u2
sh(R′)R′2

(
1 − 1

1+a

(
mc

pmax(R′)

)a)

×H


pmax(R′) − p

( R
R′

)1− 1
σ




×
(

p
pmax(R′)

)a ( R
R′

)(a−1)(σ−1)/σ]

R=Rm(p)

· (25)

Here Eq. (1) for f0 with the approximation ϕ(p) ≈
a−1(p/mc)a−a−1(1+a)−1 is used, and the condition ξcr = const.
is assumed. The function Rm(p) in Eq. (25) is defined by the
equation pmax(Rsh = Rm(p)) = p. If the last equation has mul-
tiple solutions at a given p, the summation on all these solu-
tions should be performed in Eq. (25). The physical meaning
of Rm(p) is as follows: it is the value of the shock radius when
the maximum momentum of accelerating particles is equal to
p. The second term in the r.h.s. of Eq. (25) should be omitted if
the expression in parentheses in front of the integral is negative.

Let us assume that the maximum momentum is a power-
law function of the shock radius, pmax ∝ R−δ, the particles are
ultrarelativistic, p � mc, and the compression ratio is con-
stant, σ = const. The remarkable feature of Eq. (25) is then
that the expression in square brackets does not depend on mo-
mentum at the adiabatic stage of SNR shock propagation in the
medium with a power-law distribution of the gas density, be-
cause ρu2

shR3
sh = KE, K = const. in this case, see Sect. 3. The

average cosmic ray source power is now given by the simple
equation

Q(p) =
3KaξcrνsnE

cp4

[
1
3δ

(
1 − 1
σ
− ξcr

2

)

+
1
σ

1 − σ−1
σδ

1 − 1
σ
+ a

(
δ − 1 + 1

σ

)


 · (26)

Here the factors δ, and (1 − σ−1
σδ

) should be positive. The first
term in the square brackets describes the particles which run
away from the shock and the second term describes the par-
ticles which run away from the SNR interior. Consequently,
while in the adiabatic regime, the SNR shock during its evolu-
tion produces run-away particles with the universal power-law
overall spectrum Q(p) ∝p−4, whereas the instantaneous spec-
trum at the shock is more flat and not universal (see Eq. (1)) and
the instantaneous spectrum of run-away particles has a delta-
function form (see Eq. (24)).

The total source power of ultrarelativistic par-
ticles calculated with the use of Eq. (26) is W =

4πc
∫

dpp3Q(p) = CξcrνsnE ln (pmax2/pmax1), where

C = 12πKa
(

1
3δ

(
1 − 1

σ
− ξcr

2

)
+ 1
σ

1− σ−1
σδ

1− 1
σ+a(δ−1+ 1

σ )

)
; pmax2 and

pmax1 are the maximum momenta of accelerated particles at

the beginning and at the end of the adiabatic stage respectively,
thus typically ln (pmax2/pmax1) ≈ 10. This leads to the estimate
W ≈ 0.5(ξcr/0.5)νsnE for the shock moving in the uniform
interstellar medium. Hence a considerable part of the total
available mechanical energy of SN explosion νsnE goes
into cosmic rays at ξcr ∼ 0.5. As is well known, the source
spectrum ∝p−4 or slightly steeper, and an efficiency of cosmic
ray acceleration at the level 10−30% are needed to fit the
cosmic ray data below the knee in the cosmic ray spectrum at
about 4 × 1015 eV in the empirical model of cosmic ray origin
(e.g. Ptuskin 2001, see also discussion below).

At the ejecta-dominated stage which precedes the adiabatic
stage, the average spectrum of the run-away particles is differ-
ent from p−4. Let us consider the general case and assume that
ρ ∝ r−s, Rsh ∝ tλ and hence ush ∝ tλ−1. The maximum mo-
mentum of accelerated particles in the high velocity limit (7)

has the scaling pmax ∝ u2
shRshρ

1/2 ∝ tλ(3−
s
2 )−2 ∝ R

3− s
2− 2
λ

sh , so

that Rm(p) ∝ p
1

3− s
2 − 2
λ . Now Eq. (25) at λ < 4/(6 − s) gives the

following shape of the average spectrum of run-away particles:

Q(p) ∝ p
−4− λ(5−s)−2

2−λ(3− s
2 ) . (27)

A characteristic of the adiabatic regime is the relation λ = 2
5−s

and therefore Eq. (27) gives Q(p) ∝ p−4 in agreement with
Eq. (26). The Chevalier – Nadyozhin solution for the ejecta-
dominated stage has λ = k−3

k−s . With the set of parameters
excepted in Section 3, we have then Q(p) ∝ p−6.5 for the ac-
celeration at the shock produced by a type II SN in the presu-
pernova star wind (s = 2, k = 10, λ = 7/8), and Q(p) ∝ p−7

for the acceleration at the shock produced by a type Ia SN in
a uniform interstellar medium (s = 0, k = 7, λ = 4/7). Thus
the cosmic rays accelerated at the ejecta-dominated stage have
higher energies than at the later adiabatic stage but the average
energy spectrum of produced cosmic rays is rather steep at the
“canonical” choice of presupernova star parameters.

The results of our numerical calculations of the average
spectra for type II and type Ia SNe are shown in Fig. 2. The
parameter κ is equal to 0.1 in a high-velocity regime (7) and it
is equal to 0.04 in a low-velocity regime (9).

The calculations for type II SN are based on Eqs. (5), (6),
(15), (17) and (25). For the set of parameters accepted in the
present paper, the type II supernovae are able to accelerate cos-
mic ray protons to a maximum energy of the order 4 × 1016 eV
if the acceleration starts one week after the SN explosion when
ush ≈ 2.4 × 104 km s−1. The energy spectrum is close to p−4

at energies less than about 6 × 1015 eV and it steepens above
this energy. Thus the proton knee lies at about 6 × 1015 eV,
in good agreement with the observational data. The sharp dip
in the average proton spectrum at p/mc ∼ 1 × 106−3 × 106

is caused by the assumed abrupt change of the gas density at
the boundary between the dense Red Super Giant wind and the
low density bubble. We ran calculations up to the maximum
shock radius 60 pc (the corresponding SNR age is 9 × 104 yr)
when the Mach number approaches 3 and the use of the parti-
cle spectrum (1) characteristic of the strongly modified shocks
can no longer be justified. The protons are accelerated to about
20 GeV at this moment.
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Fig. 2. The solid line shows the average source spectrum Q(p)p4c
(given in units ξcr

0.5νsnE per steradian) for protons released into the inter-
stellar medium during SNR evolution after SNII explosion in the wind
of a RSG progenitor star. The dashed line presents the case of a SNIa
explosion in a uniform interstellar gas; the average source spectrum
is multiplied by 1/4. The dotted line shows the shape of the proton
source spectrum used by Hörandel (2003) to fit the KASCADE data.

The calculations for type Ia SN in Fig. 2 are based on
Eqs. (5), (6), (14), (16) and (25). The calculations were made
for a shock radius range from 0.2 to 30 pc (SNR age from 4 yr
to 1.3 × 105 yr). The shock velocity changes during this period
from 2.8×104 km s−1 to 91 km s−1. The protons are accelerated
from the maximum energy 7 × 1015 eV to about 10 GeV. The
approximate proton spectrum p−4 extends to the knee at about
3 × 1015 eV.

The average source spectrum produced by type Ia SNe is
multiplied by 1/4 in Fig. 2, which corresponds to their rela-
tive explosion rate and hence reflects the relative contribution
of this type of supernovae to the total production of cosmic
rays in the Galactic disk as compared to the contribution of
type II SNe.

5. Consistency with cosmic ray data
and discussion

The spectrum of high-energy cosmic rays in the Galaxy is of
the form f ∝ p−γ, γ = γs + b under the steady state conditions
in which the action of cosmic ray sources (with source power
Q ∝ p−γs ) is balanced by the escape of energetic particles from
the Galaxy (with escape time T ∝ p−b). The all-particle spec-
trum of cosmic rays observed at the Earth is close to f ∝ p−4.7

at energies E � 10 GeV/nucleon with a characteristic transition
(the knee, Kulikov & Khristiansen 1958) ranging over less than
one decade in the vicinity of 4 × 1015 eV to the another power-
law f ∝ p−5.1. The latter extends to about 5 × 1017 eV where
the second knee with a break δγ ∼ 0.3 is seen in the cosmic
ray spectrum, see (Hörandel 2003) for a review. This structure
is usually associated with a severe decrease of the efficiency
of cosmic ray acceleration and/or confinement in the Galaxy.

The extragalactic component of cosmic rays probably domi-
nates at E � 3×1018 eV (Gaisser et al. 1993). In the alternative
interpretation (Berezinsky et al. 2004), the Galactic component
falls steeply (with γ ∼ 6) at E � 1017 eV and the extragalactic
component dominates from energy ∼3 × 1017 eV and above.

The exponent b = 0.3 ÷ 0.7 was obtained from the
data on the abundance of secondary nuclei at energies 109 to
1011 eV/nucleon. The secondary nuclei are produced in cosmic
rays in the course of nuclear fragmentation of more heavier
primary nuclei moving through the interstellar gas. The un-
certainty in the value of b is mainly due to the choice of spe-
cific model of cosmic ray transport in the Galaxy, see Ptuskin
(2001). It follows that the source exponent below the first knee
lies in the range γs = 4.0...4.4. The value γs ≈ 4.0 for the
average source spectrum was obtained above in the considera-
tion of particle acceleration by SNR shocks during their adi-
abatic evolution (though smaller b ∼ 0.3 and consequently
larger γs ∼ 4.4 would be more favorable for the explana-
tion of the high isotropy of cosmic rays observed at 1012 to
1014 eV). According to the results of Sect. 4 the calculated aver-
age source spectrum p−4 for protons accelerated by a “typical”
type II SNe extends up to about 6 × 1015 eV, which coincides
with the observed position of the knee ∼4 × 1015 eV within
the accuracy of our analysis. The knee position at 3−5 PeV
was determined in the recent KASCADE experiment (Ulrich
et al. 2003). The scaling of the knee position in our model is
pknee ∝ ZκξcrEṀ1/2M−1

ej u−1
w for explosion in the stellar wind

and pknee ∝ ZκξcrEM−2/3
ej n1/6

0 for explosion in the uniform in-
terstellar medium.

As was recalled earlier, the diffusive shock acceleration at
the strong nonmodified shock produces the spectrum f ∝ p−4.
The back reaction of efficiently accelerating particles modifies
the shock structure, which results in a flatter particle spectrum
(see references at the beginning of Sect. 2 and Eq. (1) where
a ∼ 0.5 if the shock modification is very strong). However, the
numerical simulation of acceleration by SNR shocks under the
standard assumption of Bohm diffusion in the shock precursor
(calculated for the interstellar magnetic field strength) and with
efficient confinement of accelerated particles during the whole
of the SNR evolution gives an overall source spectrum that is
close to p−4 (Berezhko et al. 1996). Berezhko & Völk (2000)
pointed out that the last result is in some sense accidental. The
late stages of SNR evolution are important here since a rela-
tively weak shock produces a steep particle spectrum, which
has an effect on the overall spectrum. The situation is different
in the model discussed in the present paper because the diffu-
sion coefficient increases strongly with SNR age and the cos-
mic rays with energies larger than 10−30 GeV/nucleon leave
the supernova shell as run-away particles when the shock re-
mains strong. The final average source spectrum of high-energy
cosmic rays with energies larger than 10−30 GeV/n is close to
p−4 provided that the shock evolution is approximately adia-
batic and the efficiency of particle acceleration ξcr is roughly
constant. The source spectrum of particles with energies less
than 10−30 GeV/n may be steeper because they are accelerated
by not very strong shocks. In this connection it should be noted
that the source spectrum in the basic empirical model of cosmic
ray propagation in the Galaxy is of the form Q(p)p2 ∝ p−2.4 at
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E < 30 GeV/n, and Q(p)p2 ∝ p−2.15 at E > 30 GeV/n, see
Jones et al. (2001).

There are other important differences between the standard
models of cosmic-ray acceleration and the one presented here.
As noted before, our model of cosmic ray acceleration with a
strong increase in time of the diffusion coefficient and corre-
sponding decrease of maximum particle energy may naturally
explain why the SNRs are generally not bright in very high en-
ergy gamma-rays at an age larger than a few thousand years.
At this period of time, there are no particles with the ener-
gies needed to generate the very high energy gamma-rays in
a SNR shell. Another problem is the contribution of gamma-
ray emission from numerous unresolved SNRs with relatively
flat spectra to the diffuse galactic background at very high ener-
gies. Working in the standard model Berezhko & Völk (2003)
took the maximum possible energy of protons accelerated in
SNRs equal to 1014 eV, i.e. well below the knee position, and
this made it possible not to exceed the upper limits on the dif-
fuse gamma-ray emission at 4 × 1011 to 1013 eV obtained in
the Whipple, HEGRA, and TIBET experiments. In the model
considered in the present work even with efficient proton accel-
eration that may go beyond the knee, the expected gamma-ray
emission from SNRs at 4 × 1011 eV is an order of magnitude
smaller than in the model with Bohm diffusion. For a similar
reason, the standard model compared with the present model
predicts a larger ratio of fluxes of secondary and primary nu-
clei formed at very high energies through the reacceleration of
secondaries by strong shocks and through the direct production
of secondaries by primary nuclei with flat energy spectra inside
SNRs, see Berezhko et al. (2003).

The interpretation of the energy spectrum beyond the knee
in the present model is associated with the cosmic ray accelera-
tion during the ejecta-dominated stage of SNR evolution when
the protons gain energy that is larger by an order of magnitude
than at the adiabatic stage but the number of particles involved
in the shock acceleration is relatively small. The average source
spectrum of accelerated particles is not universal at this stage.
It is power law with an exponent γs whose value is very sen-
sitive to the parameter k. The last is not well determined from
the observations but the typical values accepted in our calcula-
tions were k = 10 for a type II SN explosion in the wind of a
Red Super Giant progenitor, and k = 7 for a type Ia SN explo-
sion in a uniform interstellar medium (see Chevalier & Liang
1989) that give γs = 6.5 and γs = 7 respectively; see Sect. 4.
To illustrate the range of possible uncertainty, it is worth not-
ing that the value k = 5.4 was suggested for the type Ia SNe by
Imshennik et al. (1981). This value of k results in γs = 4.3 at
the ejecta-dominated stage.

The breaks and cutoffs in the spectra of ions with differ-
ent charges should occur at the same magnetic rigidity as for
protons, i.e. at the same ratio p/Z (or E/Z for ultrarelativistic
nuclei). The data of the KASCADE experiment (Ulrich et al.
2003) for the most abundant groups of nuclei (protons, helium,
CNO group, and the iron group nuclei) are, in general, consis-
tent with this concept. According to Hörandel (2003) a good
fit to the observations is reached if an individual constituent
ion spectrum has a gradual steepening by δγ ∼ 2 at energy
4 × 1015Z eV. Equation (27) shows that the value δγs = 2 can

be obtained at k = 9, s = 2 (the SN explosion in the progenitor
wind), or k = 6.6, s = 0 (the SN explosion in the uniform inter-
stellar medium), which are not very different from our accepted
“typical” values, see Fig. 2.

At present, the main problem of the data interpretation cen-
ters around the second knee in the cosmic ray spectrum. The
natural assumption that all individual ions have only one knee
at ∼4 × 1015Z eV and that the knee in the spectrum of iron
(Z = 26) expected at about 1017 eV explains the second knee
in the all-particle spectrum does not agree with the observed
position of the second knee at 5 × 1017 eV. One way out was
suggested by Hörandel (2003) who included all elements up to
Z = 92 into the consideration and assumed that γs decreases
with Z to raise the contribution of ultra heavy nuclei from
Galactic sources to the cosmic ray flux at �1017 eV. Of con-
siderable promise is the approach by Sveshnikova (2003) who
took into account the dispersion of parameters of SN explo-
sions in her calculations of the knee position and the maximum
particle energy. This leads to a widening of the energy interval
between the two knees in the overall all-particle spectrum. This
analysis should be supplemented by the account of different
chemical compositions of the progenitor star winds that deter-
mine the composition of accelerated cosmic rays (Silberberg
et al. 1991). We plan future work on this topic in the frame-
work of the model developed in the present paper and Paper I.
It should be noted that the model by Berezinsky et al. (2004) is
quite consistent with the decreasing of the flux from Galactic
sources above 1017 eV since the conjunction with the inter-
galactic cosmic ray flux in their model occurs at relatively low
energy.

There is also a very different scenario which assumes the
strong reacceleration of cosmic rays above the knee by the col-
lective effect of multiple SNR shocks in violent regions of the
Galactic disk (Axford 1994; Bykov & Toptygin 2001; Klepach
et al. 2000) or Galactic wind (Völk & Zirakashvili 2004).

Finally, it is worth noting that in principle the knee may
arise not in the sources but in the process of cosmic ray prop-
agation in the Galaxy, e.g. as a result of interplay between or-
dinary and Hall diffusion (Ptuskin et al. 1993; Roulet 2004).
However, this explanation requires the existence of a power-
law source spectrum which extends without essential breaks
up to about 1018 eV or even further.

6. Conclusion

The accounting for non-linear effects which accompany the
cosmic ray streaming instability raises the maximum energy
of accelerated particles in young SNRs above the standard
Bohm limit by about two orders of magnitude. It also con-
siderably reduces the maximum energy of particles that are
present inside SNRs at the late Sedov stage if, as was assumed
in our calculations in Sect. 4, the cosmic ray diffusion coef-
ficient downstream of the shock is not much smaller than the
diffusion coefficient in the cosmic ray precursor of the shock
and the energetic particles with p ∼ pmax run away from the
SNR interior. In the present paper we studied the effect of a
strong time dependence of the maximum particle momentum
pmax(t) on the average spectrum of cosmic rays injected into
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interstellar space from many supernova remnants over their
lifetime. The instantaneous cosmic ray spectrum at a strongly
modified shock is flat ( f0 ∝ p−4+a, a > 0, Eq. (1)) and the
particle energy density is mainly determined by the particles
with maximum momentum pmax(t). The instantaneous source
spectrum of the run-away particles is close to a delta function
(qra(t, p) ∝ δ(pmax(t) − p), Eq. (24)). At the same time, the as-
sumption that a constant fraction ξcr of incoming gas momen-
tum flux goes into the cosmic ray pressure at the shock, and the
fact that the supernova remnant evolution is adiabatic leads to
an average source spectrum for ultrarelativistic particles from
the ensemble of SNRs that is close to Qra ∝ p−4 from energies
10−30 GeV/n up to the knee position in the observed cosmic
ray spectrum independent of the value of a, (see Eq. (26) and
Fig. 2). This source spectrum is consistent with the empirical
model of cosmic ray propagation in the Galaxy. The accelera-
tion at the preceding ejecta-dominated stage of SNR evolution
provides the steep power-law tail in the particle distribution at
higher energies up to ∼1018 eV (if the iron nuclei dominate at
these energies). The knee in the observed energy spectrum of
cosmic rays at ∼4 × 1015 eV is explained in our model by the
transition from the ejecta-dominate stage to the adiabatic stage
of SNR shock evolution. In spite of the approximate character
of our consideration, the suggested scenario of particle acceler-
ation can explain the energy spectrum of Galactic cosmic rays.
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Appendix A: Thin shell approximation

The thin-shell approximation can be used when the swept-up
gas is concentrated in a thin layer behind the shock. In par-
ticular, it is applied to the case of a spherical adiabatic shock,
see Ostriker & McKee (1988) and Bisnovatyi-Kogan & Silich
(1995) for details. The total mass of the gas shell involved in
the motion and confined by the shock of radius Rsh in the spher-
ically symmetrical case is

M = Mej + 4π
∫ Rsh

0
drr2ρ(r), (A.1)

where Mej is the ejected mass, ρ is the density of ambient gas.
The equation of momentum conservation is

d(Mu)
dt

= 4πR2
sh (Pin − P) . (A.2)

Here u is the gas velocity behind the shock, Pin is the pressure
behind the shock, and P is the pressure of ambient gas. For
the adiabatic blastwave, u is related to the shock velocity ush =
dRsh

dt by the equation ush =
γad+1

2 u, where γad is the ratio of
the specific heats (adiabatic index). The energy of explosion

E = Eth+
1
2 Mu2 consists of the internal energy Eth =

4πR3
sh

3(γad−1) Pin

and the kinetic energy.

Now for a very strong shock where Pin is negligible com-
pared to P, Eq. (A2) can be presented as:

d(Mu)2

dRsh
=

12(γad − 1)
(γad + 1)Rsh

(
EM − 1

2
(Mu)2

)
. (A.3)

The solution of Eq. (A3) allows finding the shock velocity and
the shock age as functions of the shock radius:

ush(Rsh) =
γad + 1

2

[
2wE

M2(Rsh)Rwsh

∫ Rsh

0
drrw−1M(r)

]1/2

,

t(Rsh) =
∫ Rsh

0

dr
ush(r)

, (A.4)

where w = 6(γad−1)
γad+1 , which coincides with Eq. (17) in the main

text.
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