The intensity of Galactic cosmic rays is nearly isotropic because of the influence of magnetic fields. Anisotropy in the cosmic ray (CR) sources and evolutionary processes: convection, drift, anisotropic diffusion, the interaction of magnetized plasma, known as the Compton-Getting (CG) effect, with the CR transport parameters (7–9). The long-term high-altitude observation at the Tibet Air Shower Arrays (referred to as the Tibet ASy experiment) has accumulated tens of billions of CR events in the multi-TeV energy range, ready for an unprecedented high-precision measurement of the CR anisotropy as well as the temporal and energy dependence of the CR anisotropy.

An expected anisotropy is caused by the relative motion between the observer and the CR sources. In the Galactic frame, at the distance of the Galactic center (GCMF), the CRs may be seen at a significant angle relative to the observer's line of sight. This is due to the Galactic rotation and the motion of the Sun around the Galactic center. The intensity of CRs arriving from the direction of the Galactic center is expected to be lower than the intensity arriving from the opposite direction. This is because the CRs are deflected by the local GMF environment.

The results of this study provide strong evidence for the anisotropy of Galactic cosmic rays and the correlation of the CRs with the local Galactic magnetic environment. These results have broad implications for a comprehensive understanding of cosmic ray transport parameters and the role of magnetic fields in heliospheric and Galactic dynamics. The results also support the idea that the CRs are deflected by the local GMF environment, which is consistent with the observed anisotropy.
modulation profile along the right ascension (R.A.) direction, which was usually fitted by the first few harmonics. Instead of using sine or cosine harmonics, one may introduce two Gaussian functions with declination (Dec)–dependent parameters (mean, width, and amplitude) to fit the so-called “tail-in” and “loss-cone” features and to obtain a tentative 2D anisotropic picture (20, 21) by simultaneously fitting different experimental data. The CR deficiency was thought to be associated with a magnetic cone-like structure and was thus named “loss-cone,” whereas the CR enhancement is roughly in the direction of the heliospheric magnetotail and is thus referred to as “tail-in” enhancement (12, 13). However, the spatial and energy dependence of CR anisotropy could not be determined accurately (22), and some subtle features remain hard to detect because the CR anisotropy appears more complex and cannot be properly described by two Gaussian functions. The Tibet AS-γ experiment alone can achieve 2D measurement in various energy ranges and can provide details of the 2D CR anisotropy.

The Tibet Air Shower Array experiment. The Tibet Air Shower Array experiment has been conducted at Yangbajing (90.522 E, 30.102 N; Tibet Air Shower Array experiment has been become the Tibet II array, with an area of 49 scintillation counters and forming a 7 by 7 matrix with a 15-m span—was expanded to the Tibet I array (23)—consisting of 49 scintillation counters and forming a 7 by 7 matrix with a 15-m span—was expanded to become the Tibet II array, with an area of 36,900 m², by increasing the number of counters. In 1996, part of Tibet II with an area of 5175 m² was upgraded to a high-density (HD) array with a 7.5-m span (24). To increase the event rate, the HD array was enlarged in 1999 to cover the central part of the Tibet II array and became the Tibet III array (25–27).

The area of the Tibet III array has reached 22,050 m². The trigger rates are ~105 Hz and ~680 Hz for the Tibet HD and III arrays, respectively. The data were acquired by running the HD array for 555.9 live days (the cumulative time when the array is waiting for selection of new CR events) from February 1997 to September 1999 and the Tibet III array for 1318.9 live days from November 1999 to October 2005. GCR events are selected for inclusion if any four-fold coincidence occurs in the counters with each recording more than 0.8 particles in charge, if the air shower core position is located in the array, and if the zenith angle of arrival direction is ≤40°. With all those criteria, both Tibet HD and III arrays have the modal energy of 3 TeV and a moderate energy resolution; the ~0.9° angular resolution estimated from Monte Carlo simulations (28, 29) was verified by measuring the Moon shadow of CRs (25–27). In total, ~37 billion CR events are used in our data analysis.

Data analysis and results. With such a large data sample, we conducted a 2D measurement to reveal detailed structural information of the large-scale GCR anisotropy beyond the simple R.A. profiles. For each short time step (e.g., 2 min), the relative CR intensity at points in each zenith angle belt can be compared, and this comparison can be extended step by step to all points in the surveyed sky [see (30) for details of data analysis]. Lacking the absolute detector efficiency calibration in the Dec direction, absolute CR intensities along different Dec directions cannot be compared. Thus, the average intensity in each narrow Dec belt is normalized to unity. Our analysis procedure would give a correct 2D anisotropy if there is no variation in the average CR intensity for different Dec. We systematically examined the CR anisotropy in four different time frames: solar time for solar modulation, sidereal time for Galactic modulation, antisidereal time, and extended-sidereal time for systematic studies; we found systematic variations to be unimportant because CR intensity variations of the latter two (not shown) are not consistent with statistical fluctuations.

To study the temporal variation of CR modulation, we divided the data sample into two subsets. The first subset is from February 1997 to October 2001, covering the 23rd solar maximum (a period of a few years when solar magnetic activity is strongest); the second subset is from December 2001 to November 2005, approaching the solar minimum (a period of a few years when solar magnetic activity becomes minimal). Comparing the sidereal time plots for these two intervals (Fig. 1, A to C) shows that the CR anisotropy is fairly stable and insensitive to solar activity. The tail-in and loss-cone anisotropy components (12, 13), extracted earlier from a combination of the underground μ telescope data analyses (20, 21), are seen in our 2D plots in much finer detail and with a high accuracy (Fig. 1, A and B). Our new high-

Fig. 1. Celestial CR intensity map for Tibet AS-γ data taken from (A) 1997 to 2001 and (B) 2001 to 2005 (40). The vertical color bin width is 2.5 × 10⁻⁴ for the relative intensity in both (A) and (B). The circled regions labeled by I, II, and III are the tail-in component, the loss-cone component (12, 13), and the newly found anisotropy component around the Cygnus region (~38° N Dec and ~309° R.A.), respectively. (C) The 1D projection of the 2D maps in R.A. for comparison. (D) and (E) show significance maps of the Cygnus region [pixels in radius of 0.9° and sampled over a square grid of side width 0.25° for (E)] for data from 1997 to 2005. The vertical color bin widths are 0.69 SD and 0.42 SD for significance in (D) and (E), respectively. Two thin curves in (D) and (E) stand for the Galactic parallel b = ±5°. Small-scale anisotropies (E) superposed onto the large-scale anisotropy hint at the extended gamma-ray emission.
precision measurement thus provides constraints on physical interpretations of these features.

Spreading across ~280° to ~360° in R.A., a new excess component with a ~0.1% increase of the CR intensity that peaks at Dec ~38°N and R.A. ~309° in the Cygnus region is detected at a significance level of 13.3 SD with a 5° pixel radius (Fig. 1D). The Cygnus region, where complex features are revealed in broad wavelength bands of radio, infrared, x-rays, and gamma rays, is rich in candidate GCR sources. Recently, the first unidentified TeV gamma-ray source was discovered here by high-energy gamma-ray astronomy experiment (HEGRA) (31). This region, as observed by energetic gamma-ray experiment telescope (EGRET) (32), appears to be the brightest source of diffuse GeV gamma rays in the northern sky and contributes substantially to the diffuse TeV gamma-ray emission in the Galactic plane as observed by Milagro (33), which rejects 90% of CR background while retaining ~45% of gamma rays. Such gamma rays originate from the interaction of CRs with gas and dust. Using more stringent event selection criteria (30), a deeper view of the Cygnus region with a 0.9° pixel radius shows that the large-scale excess consists of a few spatially separated enhancements of smaller scale superposed onto a large-scale anisotropy (Fig. 1E); this small-scale (~2°) excess favors the interpretation that the extended gamma-ray emission from the Cygnus region contributes considerably to the overall excess in the region (34). Because our experiment cannot yet distinguish gamma rays from the charged CR background, we cannot tell how much of this excess can be attributed to gamma rays and how much, if any, is associated with charged CRs (35). Such a determination requires upgrading the Tibet Air Shower arrays for CR and gamma-ray discrimination.

The solar time CR modulation was also stable (Fig. 2). We found that including events with fewer than eight detector coincidences (lower energy events) resulted in much larger modulation amplitudes than those obtained when these events were excluded (higher energy events). To avoid this, high multiplicity events with coincident detector numbers ≥8 were adopted (Fig. 2). The observed dipole anisotropy agrees very well with the expected CG effect as a result of Earth’s orbital motion around the Sun. Thus, heliospheric magnetic field and solar activity does not influence the multi-TeV CR anisotropy.

Because of the stable nature of the sidereal time modulation, data from different years were combined to examine the energy dependence of CR anisotropy. Figure 3 shows the variation of anisotropy for five groups of events according to their different primary energies. For primary energies below 12 TeV, the anisotropies show little dependence on energy, whereas above this level, anisotropies fade away, consistent with a CR isotropy of Karlsruhe Shower Core and Array Detector (KASCADE) (17) in the energy range of 0.7 to 6 pelectronvolts (PeV). Contrary to the earlier suggestion (13), the tail-in component remains visible above 50 TeV in smaller regions. Because the multi-TeV GCRs, whose gyroradii are hundreds or thousands of astronomical units, are not affected by the heliospheric magnetic field, it is clear that the GCRs must be responsible for both tail-in and loss-cone modulations.

As a result of diminishing GCR anisotropy at high energies, we can test the CG anisotropy caused by the orbital motion of the solar system around the Galactic center, which would peak at α (R.A.) = 315°, δ (Dec) = 49° and minimize at α = 135°, δ = −49°, with an amplitude of 0.35%. This would be a salient signal in a real 2D measurement. However, as explained earlier, the modulation along the Dec direction is partly lost. After applying the normalization procedure along each Dec belt, the expected CG anisotropy is distorted and appears to peak at α = 315°, δ = 0° and forms a trough at α = 135°, δ = 0° with a smaller amplitude of ~0.23% (Fig. 4). To avoid any contamination from the nonvanishing tail-in and loss-cone anisotropies (12, 13) when the primary energy is ~300 TeV, the upper half of the surveyed CR intensity map (with Dec > 25°) is used to compare with the predicted Galactic CG effect of amplitude ~0.16%. The fitted anisotropy amplitude is 0.03 ± 0.03%, consistent with an isotropic CR intensity. Therefore, our observations exclude the existence of other unknown Galactic CG effect with a confidence level of ~5 SD, assuming the absence of canceling effects. The null result of the Galactic CG effect implies that GCRs corotate with the local GMF environment.

Discussion. The observation of GCR anisotropy and diffuse gamma-ray emission plays an important role in probing sources and propagation of CRs. The detection of the new large-scale GCR anisotropy component and the indication

Fig. 2. Local solar time CR intensity map for the Tibet ASγ data taken from (A and B) 1997 to 2001 and (C and D) 2001 to 2005. Both samples have the modal energy of 10 TeV. The vertical color bin is 1.6 × 10^{-4} for the relative intensity in (A) and (C). In (B) and (D), the fitting function is in the form of Amp × cos[2π(¢ − ¢)/24], where the local solar time ¢ and ¢ are in units of hours and Amp is the amplitude. The χ^2 fit involves the number of degrees of freedom (ndf) given by the number of bins minus two, due to the two fitting parameters Amp and ¢. The 1D plots are projections of the 2D maps in local solar time. In the 1D plots, the dashed lines are from the expected CG effect and the solid lines are the best harmonic fits, which agree well with the prediction. The solar time modulation appears stable and insensitive to solar activity.
of extended gamma-ray emission from the same mysterious Cygnus region allow us to connect the GCR acceleration site and propagation. A precise spectral and morphological determination of the extended gamma-ray emission would be our next pursuit. The existence of large-scale GCR anisotropies up to a few tens of TeV indicates that they are not related to the heliospheric magnetic field. It is conceivable that GMF has large-scale structures in the heliospheric neighborhood. As in many spiral galaxies, the Milky Way has large-scale differential rotations in stellar and magnetized gas disks with a GMF of a few μG. The GMF, GCRs, and thermal gas have similar energy densities of \(\sim 1 \text{ eV cm}^{-3} \) and interact with each other dynamically. The corotation of the GCR plasma with the local GMF environment around the Galactic center is enforced by the Lorentz force as GCRs randomly scatter and drift in irregular GMF components (36). As the Galactic disk rotates differentially, the important inference is that the bulk GCR plasma within and above the Galactic disk must also rotate differentially. The GCR corotation evidence provides an important empirical basis for the study of Galactic MHD processes such as modeling synchrotron emission diagnostics for large-scale spiral structures of MHD density waves (37–39).

![Fig. 3. Celestial CR intensity map for different representative CR energies. (A) 4 TeV; (B) 6.2 TeV; (C) 12 TeV; (D) 50 TeV; (E) 300 TeV. Data were gathered from 1997 to 2005. The vertical color bin width is 2.5 \(\times 10^{-4} \) in (A) to (D) and 7.25 \(\times 10^{-4} \) in (E) for different statistics, all for the relative CR intensity.](image)

![Fig. 4. Celestial or 2D local sidereal time CR intensity map and its 1D projection in the R.A. direction for 300 TeV CRs of all data. (A) The colored map is the same as Fig. 3E. The contours are the “apparent” 2D anisotropy expected from the Galactic CG effect. The width of the vertical color bin is 7.25 \(\times 10^{-4} \) for the relative intensity in (A). The 1D projection is in map (B) for Dec between 25° and 70°, where the dashed line is the expected Galactic CG response and the solid line is the best fit to this observation using a first-order harmonic function. The fitting function is in the form of \(\text{Amp} \times \text{cos}(\text{R.A.} - \phi) \), where \(\phi \) is in degrees and Amp is the amplitude. The \(\chi^2 \) fit involves the ndf given by the number of bins minus two for the two fitting parameters Amp and \(\phi \). The data shows no Galactic CG effect with a confidence level of \(\sim 5 \) SD.](image)

References and Notes

Isolated Single-Cycle Attosecond Pulses

G. Sansone,1 E. Benedetti,1 F. Calegari,1 C. Vozi,1 L. Avaldi,2 R. Flammini,2 L. Poletto,3 P. Villoro,3 C. Altucci,3 R. Velotta,4 S. Stagira,1 S. De Silvestri,1 M. Nisoli1*

We generated single-cycle isolated attosecond pulses around ~36 electron volts using phase-stabilized 5-femtosecond driving pulses with a modulated polarization state. Using a complete temporal characterization technique, we demonstrated the compression of the generated pulses for as low as 130 attoseconds, corresponding to less than 1.2 optical cycles. Numerical simulations of the generation process show that the carrier-envelope phase of the attosecond pulses is stable. The availability of single-cycle isolated attosecond pulses opens the way to a new regime in ultrafast physics, in which the strong-field electron dynamics in atoms and molecules is driven by the electric field of the attosecond pulses rather than by their intensity profile.

The past decade has seen remarkable advances in the field of femtosecond (1 fs = 10−15 s) light pulses with few optical cycles (1). The main achievements have been (i) the generation of ultrabroadband light pulses, directly from a laser oscillator or with the use of external spectral broadening mechanisms; (ii) the development of sophisticated techniques for dispersion compensation on ultrabroad bandwidths; (iii) the use of experimental methods for complete temporal characterization of ultrashort pulses, particularly frequency-resolved optical gating (FROG) (2) and spectral phase interferometry for direct electric field reconstruction (SPIDER) (3), in a number of different experimental implementations; and (iv) the generation of few-cycle light pulses with precisely controlled and reproducible electric field waveform [stabilized carrier-envelope phase (CEP)] (4–6). We show that these achievements can now be extended to the attosecond (1 as = 10−18 s) domain. We demonstrate the completion and the complete temporal characterization of isolated pulses with durations down to 130 as at 36-eV photon energy, which consist of less than 1.2 periods of the central frequency. This source of extreme ultraviolet (XUV) radiation lends itself as a tool to investigate basic electron processes in a spectral range approaching the energy level of the outermost electrons in atoms, molecules, and solid-state systems. The XUV source opens the way to a new regime in the applications of attosecond pulses in which a medium interacts with nearly single-cycle isolated attosecond pulses. Moreover, in this case it is appropriate to analyze the role of the CEP of the generated attosecond pulses. Using numerical simulations, we demonstrate that the carrier-envelope phase of the attosecond pulses is characterized by an excellent stability.

So far, isolated attosecond pulses with multiple optical cycles have been produced by selecting the high-energy (cut-off) harmonics (~90 eV) generated in neon by few-cycle (~7 fs) linearly polarized fundamental pulses with stabilized CEP (7–9). In this case, the minimum pulse duration of the XUV pulses is limited by the bandwidth of the selected cut-off harmonics (~10 eV), thus preventing the generation of single-cycle attosecond pulses. A different approach for the generation of broadband isolated attosecond pulses is based on the use of phase-stabilized few-cycle driving pulses in combination with the polarization gating technique (10–13). Such a method uses the strong dependence of the harmonic generation process on the ellipticity of the driving pulses in order to obtain a temporal window of linear polarization for the fundamental pulses. XUV generation is possible only during this temporal polarization gate, which can be shorter than half an optical cycle of the fundamental radiation. In combination with the use of few-cycle driving pulses with stable CEP, this technique allows the generation of broadband isolated attosecond pulses. The advantages of this method are (i) the generation of broadband XUV pulses; (ii) the broad tunability of the attosecond pulses upon changing the generating gas medium; (iii) energy scalability; and (iv) the possibility to access the single-cycle regime.

The generation of broadband attosecond pulses is an important tool for photoelectron spectroscopy. Although they are not Fourier limited (chirped pulses), broadband attosecond pulses can be used to measure photoelectron dynamics just as effectively as if the pulses were transform limited (14). However, in this case a complete temporal characterization of the attosecond pulses is required. On the other hand, for a number of applications in which the temporal structure of the attosecond pulses is important, dispersion compensation is required in order to obtain pulses with duration close to the transform-limited value. To completely characterize the attosecond pulses in terms of temporal intensity and phase, we experimentally applied the method of FROG for complete reconstruction of attosecond burst (FROG CRAB, hereafter called CRAB) (15), an extension to attosecond electron wavepackets of the FROG method. When an atom is ionized by an XUV attosecond electric field in the presence of a streaking infrared (IR) pulse, the IR electric field acts as an ultrafast phase modulator on the generated electron wavepacket. The corresponding photo-ionization spectrum can be written as a FROG spectrum with a pure phase gate Φ(t) (15):

\[Φ(t) = \int_0^\infty dt' \left[\mathbf{v} \cdot \mathbf{A}(t') + \mathbf{A}(t')/2 \right] \]

where \(\mathbf{A}(t) \) is the vector potential of the IR field and \(\mathbf{v} \) is the final electron velocity. A number of iterative algorithms can then be used to reconstruct the electric field of both the attosecond pulse and of the streaking IR pulse from the measured CRAB trace.

1National Laboratory for Ultrafast and Ultraintense Optical Science—CNR-Istituto Nazionale per la Fisica della Materia, Department of Physics, Politecnico, Piazza Leonardo da Vinci 32, 20133 Milano, Italy. 2CNR-Istituto di Metodologie Inorganiche e dei Plasmi Area della Ricerca di Roma 1, Monterotondo Scalo 00016, Italy. 3Laboratory for Ultra-violet and X-Ray Optical Research—CNR-INFM, Department of Information Engineering—University of Padova, Padova 35131, Italy. 4Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia-Dipartimento di Scienze Fisiche, Università di Napoli Federico II, Napoli 80138, Italy.

*To whom correspondence should be addressed. E-mail: mauro.nisoli@fisic.polimi.it

23 June 2006; accepted 22 September 2006

www.sciencemag.org