ИЗУЧЕНИЕ СВЕРХТЯЖЕЛЬНЫХ ЯДЕР В КОСМИЧЕСКИХ ЛУЧАХ

Излагаются результаты исследований ядерных взрывов и фотопротонов, а также сверхтяжелых ядер, зарегистрированных на высоких энергиях в космических лучах.

Н. Н. Володичев, Н. Л. Григоров, И. А. Савенюк

Т. Р 1967

В вп. 3

УДК 551.524.1

Изучение химического состава первичного космического излучения имеет важное значение для всей проблемы происхождения космических лучей. Химический состав космических лучей вплоть до заряда Z = 28 изучен достаточно хорошо. Далее же о составе космического излучения в области сверхтяжелых ядер с зарядом Z ≈ 30 очень мало данных и весьма противоречивые.

ненностью во Вселенной. В табл. 1 собраны случаи регистрации сверхтяжелых ядер [1—8], приведены относительные распространенности этих ядер в космических лучах по данным авторов и усредненные по работам [10—12] относительные распространенности этих ядер во Вселенной. Из табл. 1 видно, что по данным работы [8] распространенность сверхтяжелых ядер в космических лучах и во Вселенной совпадает по порядку величины, но по данным остальных работ распространенность сверхтяжелых ядер в космических лучах на 1—3 порядка выше их распространенности во Вселенной.

<table>
<thead>
<tr>
<th>Работа</th>
<th>Заряд зарегистрированных ядер</th>
<th>Число зарегистрированных ядер</th>
<th>Относительная распространенность сверхтяжелых ядер в космических лучах</th>
<th>Космическая относительная распространенность сверхтяжелых ядер по работам [10—12]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>~ 40</td>
<td>1</td>
<td>N(Z = 41 ± 4) = 0,04</td>
<td>~0,7·10^-3</td>
</tr>
<tr>
<td>[2]</td>
<td>41 ± 4</td>
<td>1</td>
<td>N(Z = 40) = 0,04</td>
<td>~0,7·10^-3</td>
</tr>
<tr>
<td>[3]</td>
<td>> 20</td>
<td>1</td>
<td>N(Z > 20) = 0,04</td>
<td>~0,7·10^-4</td>
</tr>
<tr>
<td>[4]</td>
<td>> 30</td>
<td>1</td>
<td>N(Z > 30) = 0,04</td>
<td>~0,7·10^-4</td>
</tr>
<tr>
<td>[5]</td>
<td>> 30+40</td>
<td>1</td>
<td>N(Z > 30) = 0,04</td>
<td>~0,7·10^-4</td>
</tr>
<tr>
<td>[6]</td>
<td>~ 40</td>
<td>2</td>
<td>N(Z = 41 ± 4) = 0,04</td>
<td>~0,7·10^-3</td>
</tr>
<tr>
<td>[7]</td>
<td>~ 30</td>
<td>1</td>
<td>N(Z > 20) = 0,04</td>
<td>~0,7·10^-4</td>
</tr>
</tbody>
</table>

Суммы и средние значения: 9857 3113 118 99 1 0,004 0.005 ±0.002 ±0.002 ±0.001

Из табл. 1 следует, что имеющийся к настоящему времени экспериментальный материал, относящийся к сверхтяжелым ядрам, во-первых, в силу своей противоречивости, не позволяет сделать определенных выводов о распространенности сверхтяжелых ядер в космических лучах. Во-вторых, эта таблица наглядно демонстрирует больную сложность изучения сверхтяжелых ядер различными методами, использующими воздушные лаборатории технику: за 18 лет было зарегистрировано около 5 ядер с Z ≥ 40. В третьих, при столь скучной статистике вопрос об энергетическом спектре сверхтяжелых ядер даже не может быть предметом обсуждения.

Естественно, что при планировании экспериментов на космических станциях «Протон» вопросу изучения химического состава космических лучей в области сверхтяжелых ядер было уделено большое внимание. Для этих целей был сконструирован черенковский спектрометр ССЗ-1, оборудованный большой светосилой и широким динамическим диапазоном, позволяющим измерять заряды ядер от Z = 1 до Z ≥ 50 [13].

В табл. 2 приведены результаты измерения очень тяжелых и сверхтяжелых ядер с энергией E ≥ 400 МэВ/ч, выполненные на ИСС «Протон-1» по 20 сеансам измерений. Во втором столбце указан номер сеанса, на котором произошел сеанс связи; в третьем — продолжительность сеанса измерений; в четвертом, пятом, шестом и седьмом — число ядер, зарегистрированных за данный сеанс измерений с различными Z. В последних трех столбцах даны отношения число зарегистрированных сверхтяжелых ядер к ядрам с Z ≥ 21. В последней строке таблицы приведены суммарное время измерений, общее число зарегистрированных ядер и усредненные отношения сверхтяжелых ядер к очень тяжелым. Неопределенность в значениях заряда ядер обусловлена возможным накоплением электрических зарядов и, в некоторых случаях, дисперсии ядер. В табл. 3 приведены также данные для 20 сеансов измерений на ИСС «Протон-2».

Различная средняя интенсивность ядер на ИСС «Протон-1» и «Протон-2» обусловлена разным характером вращения спутников. Относительные значения:

<table>
<thead>
<tr>
<th>№</th>
<th>№ сеанса</th>
<th>Таблица 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>7 574 324 7 1 0,002</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>13 567 320 1 0 0,003</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
<td>21 793 431 7 0 0,002</td>
</tr>
<tr>
<td>4</td>
<td>28</td>
<td>28 780 360 7 0 0,002</td>
</tr>
<tr>
<td>5</td>
<td>36</td>
<td>36 780 484 11 2 0,002</td>
</tr>
<tr>
<td>6</td>
<td>44</td>
<td>44 780 441 4 0 0,002</td>
</tr>
<tr>
<td>7</td>
<td>52</td>
<td>52 774 430 9 0 0,002</td>
</tr>
<tr>
<td>8</td>
<td>59</td>
<td>59 684 383 4 0 0,002</td>
</tr>
<tr>
<td>9</td>
<td>69</td>
<td>69 696 374 7 0 0,002</td>
</tr>
<tr>
<td>10</td>
<td>77</td>
<td>77 740 431 11 4 0,002</td>
</tr>
<tr>
<td>11</td>
<td>82</td>
<td>82 780 414 3 0 0,002</td>
</tr>
<tr>
<td>12</td>
<td>99</td>
<td>99 780 381 8 0 0,002</td>
</tr>
<tr>
<td>13</td>
<td>106</td>
<td>106 694 305 7 2 0,002</td>
</tr>
<tr>
<td>14</td>
<td>113</td>
<td>113 780 422 6 0 0,002</td>
</tr>
<tr>
<td>15</td>
<td>121</td>
<td>121 780 404 10 0 0,002</td>
</tr>
<tr>
<td>16</td>
<td>129</td>
<td>129 780 341 10 0 0,002</td>
</tr>
<tr>
<td>17</td>
<td>136</td>
<td>136 691 385 3 0 0,002</td>
</tr>
<tr>
<td>18</td>
<td>144</td>
<td>144 780 428 5 1 0,002</td>
</tr>
<tr>
<td>19</td>
<td>160</td>
<td>160 876 418 1 0 0,002</td>
</tr>
</tbody>
</table>

Суммы и средние значения: 14630 7596 127 28 ±0,002 ±0,002 ±0,001
но интенсивности различных групп ядер не должно зависеть от характера края спутника. Чтобы в этом убедиться, мы провели сравнение отклонений различных групп более легких ядер на одном участке траектории, для которого была рассчитана ориентация прибора СБ-1-1 относительно звездной системы, расположенной в различные моменты времени [14]. На всех участках работы, за исключением нескольких, отклонение интенсивности ядер одной группы от интенсивности ядер другой группы не превышало 0,14. Это позволяет отнести все ядра к одной группе ядер, относящихся к одной и той же звездной системе, и считать, что интенсивность ядер не зависит от ориентации прибора. Поэтому естественно считать, что измеренные значения интенсивностей ядер в космическом луче остались постоянными для всех выбранных направлений.

Нами были выбраны два участка с различными угловыми расстояниями от звезды: один с угловыми расстояниями $\theta \approx 0$, другой с угловыми расстояниями $\theta \approx 0,14$. В обоих случаях интенсивность ядер оказалась постоянной.

Таблица 4

<table>
<thead>
<tr>
<th>Географическая зона</th>
<th>l, мин.</th>
<th>$N(z > 0)$</th>
<th>$N(z > 10)$</th>
<th>$N(z > 20)$</th>
<th>$N(z > 30)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Высокие широты</td>
<td>$l < 60^\circ$</td>
<td>1343-10^9</td>
<td>60</td>
<td>13</td>
<td>0,14-10^{-8}, 0,14-10^{-10}</td>
</tr>
<tr>
<td>Средние широты</td>
<td>$l < 60^\circ$</td>
<td>1753-10^9</td>
<td>102</td>
<td>21</td>
<td>0,14-10^{-8}, 0,14-10^{-10}</td>
</tr>
<tr>
<td>Экватор</td>
<td>$l < 60^\circ$</td>
<td>588-10^9</td>
<td>40</td>
<td>9</td>
<td>0,14-10^{-8}, 0,14-10^{-10}</td>
</tr>
</tbody>
</table>

В заключении авторы благодарят Н. И. Дормана и И. Л. Розенберга за предоставленные ими интересные данные. Н. И. Гаврилюка и Ю. Ф. Гадзикова за помощь при обработке результатов измерений.

Из результатов наших измерений получено уравнение относительной интенсивности ядер $I(z > Z)$ и ядер с $z > 0$ ($Z > 2$) в литературных данных. В этом же направлении мы рассмотрим различные области космических лучей с угловыми расстояниями $\theta \approx 0,14$ [15]. Можно получать относительное содержание ядер в космических лучах в различных направлениях от звезды $Z > 2$.

$\frac{I(z > Z)}{I_{0,0}} = 0,14, \left(\frac{I(z > 0)}{I_{0,0}}\right)^2$.

После наших измерений

$\frac{I(z > 30)}{I_{0,0}} = 0,14, \left(\frac{I(z > 0)}{I_{0,0}}\right)^2 = 0,14, \left(\frac{I(z > 0)}{I_{0,0}}\right)^2 = 0,14$.

В литературных данных приведены значения, полученные в различных направлениях от звезды $Z > 2$.

Для этих данных получено уравнение

$\frac{I(z > Z)}{I_{0,0}} = 0,14, \left(\frac{I(z > 0)}{I_{0,0}}\right)^2 = 0,14, \left(\frac{I(z > 0)}{I_{0,0}}\right)^2 = 0,14$.

В заключении авторы благодарят Н. И. Дормана и И. Л. Розенберга за предоставленные ими интересные данные. Н. И. Гаврилюка и Ю. Ф. Гадзикова за помощь при обработке результатов измерений.

Дата поступления
30 января 1967 г.

Литература

7. C. J. Waddington, ibid.

Из результатов наших измерений относительной интенсивности ядер $I(z > Z)$ и ядер с $z > 0$ ($Z > 2$) в литературных данных. В этом же направлении мы рассмотрим различные области космических лучей с угловыми расстояниями $\theta \approx 0,14$ [15]. Можно получать относительное содержание ядер в космических лучах в различных направлениях от звезды $Z > 2$.

$\frac{I(z > Z)}{I_{0,0}} = 0,14, \left(\frac{I(z > 0)}{I_{0,0}}\right)^2 = 0,14, \left(\frac{I(z > 0)}{I_{0,0}}\right)^2 = 0,14$.

В заключении авторы благодарят Н. И. Дормана и И. Л. Розенберга за предоставленные ими интересные данные. Н. И. Гаврилюка и Ю. Ф. Гадзикова за помощь при обработке результатов измерений.

Дата поступления
30 января 1967 г.

Литература

7. C. J. Waddington, ibid.