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»f Cosmic Ry | fghenergy electrons lose energy by the synchrotron and inverse Compton processes during the passage

atie Galaxy. By these raidative losses, the TeV electrons can propagate from the sources only within

el hundred pe during their lifetimes of about 10° yr.

i., Evidence i Uferthe discovery of the evidence of electrons up to 100TeV in SN1006, the argument for supernova

378, 255, 1% | sginof high-energy cosmic-ray electrons has been strongly supported. Several candidates among nearby

TR RX I | o remnants (SNRs) contributing to the high-energy electrons in the solar system have been

99, 1309, 1% “esigated. The previous estimate of distance to Vela was 500pc, and too far to contribute effectively to

v Gamms ™ } W electrons in the solar system. However, the recent accurate estimate reduces this distance to 250 pe.
“ais now the most likely candidate contributing significantly to TeV electrons near the solar system.

5904 |
ApJ; 4 “Mparing to the observed data, some consequences of Vela contribution to the spectrum of electrons in

cance are discussed in this paper.
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as well as anisotropy towards the source. (Shen, 1960, Nishimura et al., 1979, 1980, 1997
cjanetal., 1995, Atoyan et al., 1995, Ptsukin & Ormes, 1995, Pohl et al., 1998)

-andidates of electro rce : som
ible car on sources are listed in Table 1, locz s .
) ? 1, located within 1 kpc with ages
s less than

«N 1e distance to Ve od to | ;
iy Note the distance to Vela changed to 250pc from 500pc in our old list.

Table. 1. List of Nearby SNRs and Pulsars
‘ﬂ//kulmr_ﬂismnm (=r) Age(=f) Emax(=1/bt)  Ref

4115 0.95 kpe 1.810%yr 116 TeV (Strom, 1994)

o 0.8 4610° 46 (Braun, et al., 1989)
53487 0.8 2010 10 (Green, 1988)

(ygnus Loop 0.77 2.010* 10 (Miyata, et al., 1994)
o B0833-45  0.25 12-1.610' 13-18 (Cha et al., 1999)
foogem 0.3 8610' 24 (Plucinsky, et al., 1996)
! 0.17 2010° 11 (Eggar & Ashenbach, 1995)
iminga__1E0630+178 0.4 3410° 06 (Caraveo, et al.. 1996)

Wie illustrate the degree of contribution of each source to electrons at 3TeV in Figure 1, assuming the
uput of electrons from each supernova is Qe (>1GeV) =10% erg/ SN. Only a few SNRs contribute to the
ihenergy electron flux. As shown in the figure, the effect of the change of distance to Vela from 500pc
+2illpc is quite sensitive. The flux of electrons around 1TeV is two orders of higher flux than the case of
#50lpc. Significant contribution of Vela to the TeV electrons is now expected in case of R=250pc.
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COMPARISON WITH THE
 Cosmic-ray electron spectri
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m has been observed by various instruments, in which only

e the electrons beyond 1TeV. The flux of TeV electrony jx‘]mul'“z

10”) against to proton is required as a detector. Emulsig, T’W %
with these requirements (Nishimura et al., 1980, Kobayashi.et.al 1.999), bUT is limiteg by an,
. due to the accumulation of the background and has no timing information. Severy u :E;;

are being planned on board the space station to observe with long exposures,

sonent and the contribution of nearby sources.

., many sources contribute to the spectrum. We need to take into account g,
axy, since the low-energy electrons can reach the halo boundary. by

s palactic component with the following assumptions:

aly on the Galactic disc near the solar system, and

 Galaxy = 1/30yrs.,

erg/ SNR,  with Halo thickness of h=3kpc.

hundred GeV) (Engelmann et al 1990, Lukasiak et al. 1994).

n? /sec with spectral index of Y =2.2.

esuﬂ'l:;e mzthe preceding section as:

)%3 em” /sec, with spectral index of y=2.4.
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other supernovae, the flux changes accordingly.

can fix those values after having enough observed data in the TeV region. I
] w of the spectrum together with anisotropy towards Vela, we could identiwe
in TeV region. We can make a more detail analysis for the dig 2
i “nt Vela, and propagation coefficient in this energy region. In addi:nce oy,
y sources with accurate data in the hundred GeV region. on, We%‘ (
to put an electronic detector of SciFi (BETS) to observe TeV electrg,
y this detector, we can observe low flux of high-ener. S for,
of electron flux (Tamura et al., 1999, Torii et al., 1933'9 el;m“%
Yoo

average values of

Vg,

u,etal. , A LM-LIQL 1997
el Measm-ements of
(editor), and V.S Ptuskin, questions concerni

1990 «ay propagation in
999, . e gnn5u::1 .pair pro
son.etal, ARAS, 233,6,100. b wurse energy
Ji;;gy,,gtfgl:. ApJ, 287, 622, 1984. rays, and we dis
. S Stochaj et al., Ap], 436, 769,1994. s
L. Proc. o 26th ICRC (Sait Lake Cty).2611% s -
: Matsimra M. Ozaki, et al., Nature, 378, L255, 1%
Webber, Ap],423, 426, 1994. NTRODUCTIO
rakawa e al, ApJ. 238, 394, 1980. e
of 16th ICRC maic compo
K Yoshi (Kyoto), 1, 478, 1979. o e g
K Yoshida, Adv.Space Res., Vol. 19, 767, 1097 tbndanges of o
/. 1998. Predomj €s of ne
= " .
of 24th ICRC (Roma), 3, 56, 1995. bl ‘“:gyc?
icateq :
c. of 26th ICRC (Salt Lak 2 aroung I
 881,1984. e City), 2, 53, 1999. e uggpy o 1€
o .iSAD the e)’assu,xr
i, S. . 9. A. Dazeley, P. Toducign o
. ,etal., gy
IP Cont. Proc. STAIFO00 (Albuquerque), 502,187 e
amura, N.Tateyama, K.Yoshida, ] Nishi 187, 1999, | CSearch
R : :ZJ 88556 1005 + J.Nishimura et al., Ap] (in press) 2000 \1\:' u\\l'l:lr;g .
i + G.ASimpson, H.V ' e P
pida, K., K Hibino, K.Kashiwf;n; gpj' 236, 448,1980. :f‘\!gl»(ﬂ:iilti"‘rlr
i hi. T.,T'K S e UChi' N-Tilt(’ya q, e A \‘.‘jhtux | ‘\\'lth
ifune, S. A.Dazeley, P. G ['ﬁ(lwar(kv 1"‘;'!' et al., Adv.Space Res. in this issu®’ . jl‘)dw W 1]? i
3 ara, et al., "\‘Pl 487 1.65 1997 i\“;‘ln'[-\ L “ Cer
e b [hu



