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COSMIC-RAY ELECTRONS AND POSITRONS
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ABSTRACT

\urements of cosmic-ray electrons and positrons address a number of significant astrophysical

sions concerning the nature and distribution of sources in the galaxy, and the characteristics of cosmic

 propagation in the galactic disk and halo. The abundance of positrons may also carry the signature of

ssual pair production processes or dark matter particle decays. We shall review the body of

Jimation available, including recent results from the HEAT collaboration. We describe constraints on

.« urce energy spectrum of electrons, which appears to have the same shape as that of nuclear cosmic

s, and we discuss the evidence that positrons are predominantly if not exclusively of interstellar

> | wndary origin. Finally, we emphasize the need for several key observations that are required in the
g ‘e in order to resolve the remaining questions.
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| NTRODUCTION
1 Electrons, distinct by their low mass and leptonic nature, are a relatively rare and somewhat

| “matic component of the cosmic rays. It is still not understood why there are so few electrons (~ 1%
e proton intensity at GeV energies), but it is well known from measurements of the relative
| if’Mdm'lces of negative electrons and positrons, that the much more abundant negative electrons must.
l 'fd“mmantly come from primary sources.* Radio observations have shown that supernova remnants are
| ent measurements in the x-ray and gamma-ray Tegiof, have

| adi tecllnkdy forreo sanilGpe, A 1o likel lerator of electrons up to very high
| "ated one shell- m t (SN 1006) as a likely accelerd !
L shell-type supernova remnan ( ) 98), In lieu of 10 detailed knowledge

N - Tanimori et al, 1 : .
. S e L ¢ with protons and nuclei, and likely, with
on the other hand, is generally attributed to secondary

“sually assumes that negative electrons are accelerated alon,
*Sime eng AN 3
.. & energy spectrum. The origin of positrons, rh ¢  ocsii
‘j;'luctmn in the galaxy, mostly from proton-proton hadronic interactions th.at lead ;qnzozxt;:;jg:: 0%
[oe | ibuti i inte /, remail
o ‘ 'f‘hcr there are, in addition, primary contributions to the positron intensity
*INg research.
_:ii‘)uring propagation from their sources, electror .
"""I:M ok S By it du? i b[‘k?ﬁi magnetic fields of the galaxy. Compton
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oefficient, distribution of sources, size ol the
ince the 1970’s agree that the

1s are affected by electromagnetic interactions.
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1y any energy dependence of D. An exac 3 :
ed by ‘ ! ice o D. An exact solution of the propagation equation for eylindrical
"y by Dogiel (1990) gives dn/dE =« D'2E-a*05)
met y 5 Y §
A - > 1 - tee > 1 > " .
SUrem, (hus One predicts a steepening of the observed spectrum over a characteristic range of energies

_ciral slop€ ¥, Ry vary 11'{““ Yo (at low energy, and D independent of energy ) to a maximum
g *1 (provided A> £). One usually defines two “break energies” E; and E,, corresponding
* pand ME2) = d, fc‘SPCCli"L")’- The values of these energies depend critically on the value of
; “:uﬂ coefficient a'nd its energy dependence. l.f we accept the general assumption that the mea
ke ]ntn? ‘..-;ro" Speclmn: (which will be discussed below) is fully steepened to a power law index Yot1 ate
5 h_" Procegg, | about 30 GeV, then E; could at most be E; = 30 GeV. For this value of E, and with h =10
igh eng, * M " nd k=0.25x10"° GeV™' sec in the halo, but k=1.0x10-'° GeV"' sec” in the disk, one
bp‘é _1GeV and D = 1.4 x 10*® cm?/sec if the diffusion were energy independent. With the

it .

* ¢ sssumption that the diffusion coefficient reflects the E behavior of the propagation
(1) j;&‘fd from nuclear composition data, i.e., assuming D(E) = D, (E/1GeV)"®, we would obtain E; -
’,.-\". ad D= 7.5 X 10% 'cm.zlse.c. Thus, in this case the break at E; would occur at very low
i field, w e premsstrahlung and ionization energy los§es cannot be ignored and where solar modulatio
ks obSen-epg :Fﬁ  estellar spectrum. Further, the change in spectral slope at E; would be quite small, Ay=0
eferred to g lll:: it Observe. i ”
ched the ener of course, there are more parameters tha_t can ‘and perhaps must be introduced.
the distance fi ' sanopic diffusion, convection, and re-accel.eranpn in mterstel}ar space. chers are solar mo
ength is A(E) qnssirahlung losses at lovg energy, and Klein-Nishina corrections to the inverse Compton

wmore serious challenge is for the observer: one must obtain data on the electron spect
e enough to permit a determination not only of the average spectral index ¥, but al
" Bover a large range of energies. Only then will it be possible to derive decisive

o are distributed JiOn proecss,
ylume includess

observed enery HEMEASUREMENTS 2% i
 Observations of electrons have been notoriously difficult because
#ialar at high energies, rather large detectors, and because of the
it proton-induced background. While virtually all instruments use electromagnetic
A “srvtion of just the longitudinal shower profile has in general been insufficient to
mergy- 1055 e W showers, More successful were measurements where the details of the initial
spectrum hes ™ | e sisualy observed in emulsions (Kobayashi et al, 1999, and carlier work of this
g calorimeter was used for detailed observation of both the longitudinal and t

zVelopment (Torii et al, 1999). Alternatively, addit;?;;alTindepf;g:n;‘mdag
1 ; lang, e i : 5

tainment region

g::: Such as transition radiation detectors (Prince,
meters (Buffington et al, 1975; Golden et al 1984; Golden etal, 1994), or

region: el“,‘;;rmi 1 %]lﬂ 4., 1996) has proven to be successful. : N HEAT z
| have dn o |l 0 the following, we shall describe recent results that were obtained w; huid pub i
I ch””m-J'ﬂ-v LY ‘ck ttal, 1997a). A more detailed description of this work has been submitted 1or s
e )1 P inntl" g Wernois et a] 2000). We then compare our data with those of other investigators i d
€5 & 7 - 0 . s 4 -
Colli]milin‘.—‘ ol | by, "Clusions might be drawn. The HEAT instrument, showh i figure 1, enc%gga:ﬁ;c;mufe the
a [ "‘ Clector, magnetic spectrometer and {ransition radiation detector. 1t was desig

ton rejection power of nearly 10°, at an

. and exhibits a pro
: l<)lof about 30%. Figure 2 shows the electron spectrum

8 0 .
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150 oy : 995. The energy range of this mmsuzrg?;4 0 The drop-off below 8 GeV is mainly

l
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on. ill Index of the spectrum above 20 GeV 15 Y
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In figure 3, we show a compilation of all data published since 1975. The measurements extend o
|ies of about 2000 GeV, but it should be noted that all data above ~ 300 GeV come from a single set
|{ibservations (Kobayashi et al, 1999). Obviously, there are significant disagreements in the absolute
| mlization of different measurements. Even at energies around 10 GeV where the counting statistics:
| grerally quite good, we find intensities varying by about a factor of two. The more recent data tend
;{ iwor lower intensities than the earlier results, but still show discrepancies outside their given error

a5 Due to these differences, the overall slope of the spectrum cannot be determined wuhwé ]
wmey, If some of the individual spectra, including the HEAT results, are extrapolated to higher
“ies, they would tend to significantly undershoot the measurement of Kobayashi et al (1999) M
"ﬂthes into the TeV range. o ik}
| The differences among the individual data sets could result from mdetgcted hadron.backm' o
U duta that report high fluxes, or from uncertainties in the energy scale (which are ampl_lﬁet:l if the £
‘ J"’ are multiplied with E?), or from uncertainties in the instrumental acceptance .efﬁcxenctes used Y
“idual observers. Hadron contamination is not likely to be a problem for those instruments that Use
" Mependent techniques for hadron rejection, i.e. the majority of the data in figure 3. Uncertainties in
-1y scale of the order of at least 10% can probably not be excluded for most of the measurements.
3 -x“:“.;ncy corrections are notoriously difficult, but probably more reliab‘le t})r the more recent data \.Nherc
| Powerful computer simulations could be made than in earlier investiga jons.
ih Let us aSSUrFrjle lh::nt]lzl; ;lystematic differences between the individual data sets are duil t:l) errobr:
o3 We the itrarily aliz ire data set of figure > to aboY :
| " The resul:?szr:nglilz gz::::d:;,tevtfﬁlzrmis procedure does not generate perfect convergence of all
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se of solar modulation effects. In addition, in order to describe the prope”
region, energy losses due to ionization and bremsstrahlung have to be taket’
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cin sumimany the mor
!

T il ‘I re 1 t measurements of the positron fraction indicate that interstellar
\ C 1IUst o€ the do 1t s > h
. produc 1 minant source of positrons, but the need to increase the statistical

nd ener gy coverage remains
uele; 2 Tl rhe efforts of many groups over the years have led to a substantial set of data on galactic electrons
h,a\ e Pfuu‘} {rons- Nev crlh&elcss. the interpretation of the data still remains somewhat tenuous. It appears that
f unugy, _;urif spectrum .01' clcgtruns hash the same shape as that inferred for cosmic-ray nuclei. This would
S Showy ,‘““nﬁcommon origin of both particle species, most likely in supernova remnants. The source spec m
Comribum;n“-?. ot have 3 continuous power law shape but may become somewhat harder below 10 GeV. n'm

‘»umj data coxlsuz}ll} t}}e value of ‘the diffusion coefficient for interstellar propagation, but the ene
nany SYSteng | udece of the dlftusmp coefficient remains unclear. Positrons are predominantly of int
nponen;, nilf sy origin; bgt possxble unusual or cosmological contributions may still be hidden wi
f> falling . | ental uncertainties.
larities o peg " For the future we foresee several key experiments that could help to resolve the remaining
fact, in earlie, | W would like to see a new measurement with a single detector of proven capability to reject
Buffington ¢ o gharound, that could cover the entire energy range from around 1GeV to several TeV, with
1l uncertaiyg, sical accuracy. This is a difficult task because of the very low intensity (at most 3 electrons/m®
€ NOt confimy; e | TeV) and the powerful rejection of protons that is required at high energies. Progress
tlude our HE47 | sble with new instruments on long-duration balloon flights or in space, for instance, attache 1
nore recent dy: e Station. To obtain good counting statistics in the TeV region, non-standard techniques should
r panel of fig. raplored. These include observations of electrons via their emission of hard x-ray synchrotron rad
V. This feaur |+t earth’s magnetic field (Stephens and Balahsubrahmanian, 1983), or perhaps groun
tould show upif #emations with Cherenkov telescope arrays such as VERITAS or HESS. Second. the ¢
i, including d wswement of the positron spectrum, up to energies of a few hundred GeV is necessary
aknstand the propagation process and to further search for primary positron contributions. .
il require long-duration balloon flights or observations in space. Third, the energy de
"pagation pathlength for cosmic rays must be better studied with nuclear composition
eading far beyond the present limit of ~ 100 GeV/n for the L/M ratio. This is an important &
“psed ACCESS mission. : )
This work was supported by NASA Grant NAG 5-5223. The author acknowl
‘“ibutions from his colleagues in the HEAT collaboration, especially from M. DuVemois.
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