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Abstract

The cosmic-ray proton, helium, and muon spectra at smalbgpimeric depths of 4.5 —
28 glcnt were precisely measured during the slow descending pefitiiedBESS-2001
balloon flight. The variation of atmospheric secondary ip&rtfluxes as a function of at-
mospheric depth provides fundamental information to stuagronic interactions of the
primary cosmic rays with the atmosphere.
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1 Introduction

Primary cosmic rays interact with nuclei in the atmosphare] produce atmo-
spheric secondary particles, such as muons, gamma rayatrchos. It is impor-
tant to understand these interactions to investigate assyi phenomena inside
the atmosphere. For precise study of the atmospheric neudscillation [1], it is
crucial to reduce uncertainties in hadronic interactiovisich are main sources of
systematic errors in the prediction of the energy spect@trabspheric neutrinos.
At small atmospheric depths below a few ten g?cproduction process of muons
is predominant over decay process, thus we can clearly absefeature of the
hadronic interactions. In spite of their importance, onkgw measurements have
been performed with modest statistics because of strorgjreamts of short obser-
vation time of a few hours during balloon ascending periodsifthe ground to the
balloon floating altitude.

In 2001, using the BESS spectrometer, precise measuremktiie cosmic-ray
fluxes and their dependence on atmospheric depth were camwieduring slow
descending from 4.5 g/chto 28 g/cn? for 12.4 hours. The growth curves of the
cosmic-ray fluxes were precisely measured. The results eargpared with the
predictions based on the hadronic interaction models otlyresed in the atmo-
spheric neutrino flux calculations.

2 BESS spectrometer

The BESS (Rlloon-borne Eperiment with a 8perconducting Sectrometer) de-
tector [2,3,4,5,6] is a high-resolution spectrometer witlarge acceptance to per-
form precise measurement of absolute fluxes of various eosays [7,8,9], as
well as highly sensitive searches for rare cosmic-ray corapts. Fig. 1 shows a
schematic cross-sectional view of the BESS instrumenthéncentral region, a
uniform magnetic field of 1 Tesla is provided by a thin suparthecting solenoidal
coil. The magnetic-rigidity R = Pc/Ze) of an incoming charged particle is mea-
sured by a tracking system, which consists of a jet-type dnémber (JET) and
two inner-drift-chambers (IDC’s) inside the magnetic fielthe deflection®R 1) is
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calculated for each event by applying a circular fitting gsimp-to 28 hit-points,
each with a spatial resolution of 2@n. The maximum detectable rigidity (MDR)
was estimated to be 200 GV. Time-of-flight (TOF) hodoscopeside the veloc-
ity (B) and energy loss [/ dx) measurements. A f/resolution of 1.4 % was
achieved in this experiment. For particle identificatidve BESS spectrometer was
equipped with a threshold-type aerogel Cherenkov coumigtaa electromagnetic
shower counter. The refractive index of silica aerogelatmtiwas 1.022, and the
threshold kinetic energy for proton was 3.6 GeV. The showenter consists of a
plate of lead with two radiation lengths covering a quarteasof the lower TOF
counters, whose output signal was utilizedéqu identification.

The data acquisition sequence is initiated by a first-lev@F Trigger, which is a
simple coincidence of signals in the upper and lower TOF tayum order to build
a sample of unbiased triggers, one of every four events vem@ded. The TOF
trigger efficiency was evaluated to be 99.44940.2 % by using secondary proton
beam at the KEK 12 GeV proton synchrotron. In addition to tiTrigger, an
auxiliary trigger is generated by a signal from the Chererdaunter to record par-
ticles above threshold energy without bias or sampling. #fiaiency of Cherenkov
trigger were evaluated as a ratio of the Cherenkov-trigtjexents among the un-
biased trigger sample. It was 95.1 % for relativistic pdesc(3 — 1). For flux
determinations, the Cherenkov-triggered events were asldabove 9.5 GV for
protons, 11.1 GV for helium nuclei, and 0.90 GV for muons.dBethese rigidities,
the TOF-triggered events were used.

3 Balloon flight

The BESS-2001 balloon flight was carried out at Ft. Sumnew Niexico, USA
(34°49N, 10422W) on 24th September 2001. Throughout the flight, the vdrtica
geomagnetic cut-off rigidity was about 4.2 GV. The balloeached at a normal
floating altitude of 36 km at an atmospheric depth of 4.5 gloifiter a few hours,
the balloon started to lose the floating altitude and coetindescending for more
than 13 hours until termination of the flight. During the dmstding period, data
were collected at atmospheric depths between 4.5%é#d 28 g/crf. The atmo-
spheric depth was measured with accuracy dfg/cn?, which comes mainly from
an error in absolute calibration of an environmental marsistem. Fig. 2 shows

a balloon flight profile during the experiment.



4 Data analysis

4.1 Data reduction

We selected “non-interacted” events passing through tteette without any inter-
actions. The non-interacted event was defined as an eveiat) Was only one iso-
lated track, one or two hit-counters in each layer of the TO#dscopes, and proper
dE/dx inside the upper TOF counters. There is a slight probaltihigy particles in-
teract with nuclei in the detector material and only one sdeoy particle goes
into the tracking volume to be identified as a non-interaeeent. These events
were rejected by requiring propeEfx inside the upper TOF counters, because
the interaction in the detector is expected to give a largegndeposit in the TOF
counter. According to the Monte Carlo simulation with GEAND)], these events
are to be considered only below a few GeV. In order to estiraatefficiency of
the non-interacted event selection, Monte Carlo simubatieere performed. The
probability that each particle can be identified as a noeratted event was eval-
uated by applying the same selection criterion to the MorgddCevents as was
applied to the observed data. The systematic error wasastihipy comparing the
hit number distribution of the TOF counters. For muons, theutated data were
compared with muon data sample measured on the ground. $tesrsatic error for
protons below 1 GeV was directly determined by the deteatanbtest using ac-
celerator proton beam [11]. The resultant efficiency aneéritsr of non-interacted
event selection for protons was 83132.0 % at 1.0 GeV and 77.4 2.5 % at
10 GeV, and that for helium nuclei was 71462.6 % at 1.0 GeV/n and 66.6&
2.9 % at 10 GeV/n. The efficiency for muons was 94.0.9 % and 92.8t 0.8 %
at 0.5 GeV and 10 GeV, respectively.

The selected non-interacted events were required to pemgththe fiducial vol-
ume defined in this analysis. The fiducial volume of the detewts limited to the
central region of the JET chamber for a better rigidity measient. The zenith
angle @) was limited within co®, > 0.90 to obtain nearly vertical fluxes. For the
muon analysis, we used only the particles which passedghrtine lead plate to es-
timate electron contaminations. For the proton and helinalysis, particles were
required not to pass through the lead plate so as to keepttradtion probability
inside the detector as low as possible.

In order to check the track reconstruction efficiency insiaetracking system, the
recorded events were scanned randomly. It was confirme®%gabut of 1,000 vi-
sually identified tracks which passed through the fiduciime were successfully
reconstructed, thus the track reconstruction efficiency aaluated to be 996
0.2 %. It was also confirmed that rare interacted events dsedliminated by the
non-interacted event selection.



4.2 Particle identification

In order to select singly and doubly charged particles,igdag were required to
have proper B/dx as a function of rigidity inside both the upper and lower TOF
hodoscopes. The upper TOEMIx was already examined in the non-interacted
event selection. The distribution oEddx inside the lower TOF counter and the
selection boundaries are shown in Fig. 3.

In order to estimate efficiencies of th&#lx selections for protons and helium nu-
clei, we used another data sample selected by independennation of energy
loss inside the JET chamber. The estimated efficiency in Elexdselection at

1 GeV was 98.3t 0.4 % and 97.2t 0.5 % for protons and helium nuclei, respec-
tively. The accuracy of the efficiency for protons and heliouclei was limited by
statistics of the sample events. Since muons could not ieglisshed from elec-
trons by the JET chamber, th&#ix selection efficiency for muons was estimated
by the Monte Carlo simulation to be 9%31.0 %. The error for muons comes from
the discrepancy between the observed and simuldédikdlistribution inside the
TOF counters. TheE/dx selection efficiencies were almost constant in the whole
energy region discussed here.

Particle mass was reconstructed by using the relation®frigidity and charge,
and was required to be consistent with protons, helium nackuons. An appro-
priate relation between /and rigidity for each particle was required as shown in
Fig. 4. Since the P distribution is well described by Gaussian and a half-width
of the 1 selection band was set at 3.89 the efficiency is very close to unity
(99.99 % for pure Gaussian).

4.3 Contamination estimation

4.3.1 Protons

Protons were clearly identified without any contaminati@oly 1.7 GV by the
mass selection, as shown in Fig. 4. Above 1.7 GV, howevédnt pgrticles such as
positrons and muons contaminate protoryg<band, and above 4 GV deuterons
(D’s) start to contaminate it.

To distinguish protons from muons and positrons above 1.7v@fequired that
light output of the aerogel Cherenkov counter should be lemiddan the threshold.
This requirement rejected 96.5 % of muons and positronsevk@eping the effi-
ciency for protons as high as 99.5 %. The aerogel Cherenkavaziapplied below
3.7 GV, above which Cherenkov output for protons begins ¢osiase rapidly.

Contamination of muons in proton candidates after the a&©gerenkov cut was



estimated and subtracted by using calculated muon fluxds y@fich was nor-
malized to the observed fluxes below 1.0 GeV where positivenawvere clearly
separated from protons. The positron contamination wasulzded from the nor-
malized positive muon fluxes and obsenetd ratios. The resultant positive muon
and positron contamination in the proton candidates washes 0.8 % and 4.1 %
below and above 3.7 GV, respectively, at 26.4 (fevhere observedu+e)/p ratio

is largest during the experiment. The error in this subimacivas estimated from
the ambiguity in the normalization of the muon spectra todss than 0.2 % and
0.8 % below and above 3.7 GV, respectively.

Since the geomagnetic cut-off rigidity is 4.2 GV, most of tlgans contaminating
proton candidates above 4 GV are considered to be primamicasy particles.
The primaryD/p ratio was estimated by our previous measurement carried out
in 1998 — 2000 at Lynn Lake, Manitoba, Canada, where the ffutgidity is as
low as 0.5 GV. TheD/p ratio was found to be 2 % at 3 GV. No subtraction was
made for deuteron contamination because there is no relrabhsurement of the
deuteron flux above 4 GV. Therefore, above 4 GV hydrogen neelected which
included a small amount of deuterons. T ratio at higher energy is expected
to decrease [12] due to the decrease in escape path lengthishafy cosmic-ray
nuclei [13] and the deuteron component is as small as thistgtat error of the
proton flux.

4.3.2 Helium nuclei

Helium nuclei were clearly identified by using both upper dower TOF dE/dx
as shown in Fig. 3. Landau tail in proton’&ix might contaminate the helium
dE/dx band, however this contamination from protons was as srea&@kd 0. It
was estimated by using another sample of proton data seélegtde/dx in the JET
chamber. No background subtraction was made for heliumai@®dd helium fluxes
include bothPHe and*He.

4.3.3 Muons

Electrons and pions could contaminate muon candidatesstifoae electron con-
tamination, we used theeddx information inside the lower TOF counters covered
with the lead plate. We calculated lower TOE/dx distribution for muons and
electrons using the Monte Carlo simulation. The most adegef ratio was es-
timated by changing weights both for muons and electronsgo eeproduce the
observed &/dx distribution. The simulated distributions well-agreedhtihe ob-
served data as shown in Fig. 5. The electron contaminatisralaut 10 % of muon
candidates at 0.5 GV, and less than 1% above 1 GV. Since iowes energy re-
gion, the difference between th&f#iix distributions for electrons and muons are
small, rejection power ofle/dx selection are lower. The error was estimated during



the fitting procedure to be about 5 % at 0.5 GV and 0.1 % at 8.0A&¥uracy

of the electron subtraction was limited by poor statisticslectron events. For the
pion contamination we made no subtraction, thus the obdemumn fluxes include
pions. According to a theoretical calculation [14], tik ratio at a residual atmo-
sphere of 3 g/crhthrough 10 g/criwas less than 3 % at 1 GV and less than 10 %
at 10 GV.

Between 1.6 and 2.6 GV, protons contamination in the pasitmon candidates
and its error were estimated by fitting thg8distribution with a double-Gaussian
function as shown in Fig 6. The estimated ratio of proton aomnihation in muon
candidates was less than 3:31.3 %.

4.4 Corrections

In order to determine the proton, helium and muon spectrazabion energy loss
inside the detector material, live-time and geometricakatance need to be esti-
mated.

The energy of each particle at the top of the instrument whsileded by sum-
ming up the ionization energy losses inside the instrumettit tkacing back the
event trajectory. The total live data-taking time was mead@xactly to be 40,601
seconds by counting 1 MHz clock pulses with a scaler systdestday a “ready”
status that control the first level trigger. The geometracaleptance defined for this
analysis was calculated as a function of rigidity by usimgidation technique [15].
In the high rigidity region where a track of the particle isarlg straight, the geo-
metrical acceptance is 0.097%sn for protons and helium nuclei, and 0.036sm
for muons. The acceptance for muons is about 1/3 of that fmiops and helium
nuclei, because we required muons to pass through the latvphile protons and
helium nuclei were required not to pass through the lea@ pldte simple cylindri-
cal shape and the uniform magnetic field make it simple andbiel to determine
the precise geometrical acceptance. The error which aroseudncertainty of the
detector alignment was estimated to be 1 %.

5 Results and discussions

The proton and helium fluxes in energy ranges of 0.5-10 GeMdmauon flux in
0.5 GeVt-10 GeVt, at small atmospheric depths of 4.5 gfcthrough 28 g/crf,
have been obtained from the BESS-2001 balloon flight. Thdtseare summarized
in Table 1. The statistical errors were calculated as 68.@8fidence interval based
on Feldman and Cousins’s “unified approach” [16]. The oVeabrs including
both statistic and systematic errors are less than 8 %, 1@2@w84o for protons,



helium nuclei and muons, respectively. The obtained pratahhelium spectra are
shown in Fig. 7. Around at 3.4 GeV for protons and 1.4 GeV/nhelium nuclei,
a geomagnetic cut-off effect is clearly observed in theectra. The proton spec-
trum measured by the AMS experiment in 1998 [17] at the singkomagnetic
latitude (07 < Om < 0.8, where®y is the corrected geomagnetic latitude [18]) is
also shown in Fig. 7. The AMS measured proton spectra in s(@cn altitude
of 380 km), which are free from atmospheric secondary desic In the BESS
results the atmospheric secondary spectra for protonsitbGeV are observed.
Fig. 8 shows the observed proton and helium fluxes as a funatithe atmospheric
depth. Below 2.5 GeV the proton fluxes clearly increase astim®spheric depth
increases. It is because the secondary protons are produtiesl atmosphere. In
the primary fluxes above the geomagnetic cut-off, the fluxeshaate as the at-
mospheric depth increases. In this energy region, the ptmatuof the secondary
protons is much smaller than interaction loss of the prinpagtons. This is be-
cause the flux of parent particles of secondary protons ismsowller due to the
steep spectrum of primary cosmic rays.

Figs. 9 and 10 show the observed muon spectra together vethetical predic-
tions. The predictions were made with the hadronic intesaainodel, DPMJET-

[l [19], which was used for the evaluation of atmosphericitn@o fluxes [20].

The obtained proton fluxes were used to reproduce the priocwsmic-ray fluxes
in the calculation. Fig. 11 shows the observed muon fluxesfasaion of atmo-

spheric depth together with the calculated fluxes. The Gatied fluxes show good
agreement with the observed data. Further detailed stuthe dfadronic interaction
models will be discussed elsewhere.

6 Conclusion

We made precise measurements of cosmic-ray spectra ofngrdielium nuclei
and muons at small atmospheric depths of 4.5 through 28%gy/dating a slow
descending period of 12.4 hours, in the BESS-2001 balloghtfit Ft. Sumner,
New Mexico, USA. We obtained the proton and helium fluxes wikrall errors
of 8 % and 10 %, respectively, in an energy region of 0.5 — 10/8eVhe muon
fluxes were obtained with an overall error of 20 % in a momentagion of 0.5
— 10 GeVt. The results provide fundamental information to invesggaadronic
interactions of cosmic rays with atmospheric nuclei. Thesueed muon spectra
showed good agreement with the calculations by using the IEIMII hadronic
interaction model. The understanding of the interactioilamprove the accuracy
of calculation of atmospheric neutrino fluxes.

’ The AMS observed substantial “second” spectra below thenggoetic cut-off. Most
of them follow a complicated trajectory in the Earth’'s matméield, and could not be
observed at balloon altitude.
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