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ABSTRACT

We describe a method for the numerical computation of the propagation of primary and secondary
nucleons, primary electrons, and secondary positrons and electrons. Fragmentation and energy losses are
computed using realistic distributions for the interstellar gas and radiation fields, and diffusive reaccel-
eration is also incorporated. The models are adjusted to agree with the observed cosmic-ray B/C and
10Be/°Be ratios. Models with diffusion and convection do not account well for the observed energy
dependence of B/C, while models with reacceleration reproduce this easily. The height of the halo propa-
gation region is determined using recent !°Be/°Be measurements as >4 kpc for diffusion/convection
models and 4-12 kpc for reacceleration models. For convection models, we set an upper limit on the
velocity gradient of dV/dz < 7 km s~ ! kpc™!. The radial distribution of cosmic-ray sources required is
broader than current estimates of the supernova remnant (SNR) distribution for all halo sizes. Full
details of the numerical method used to solve the cosmic-ray propagation equation are given.

Subject headings: acceleration of particles — cosmic rays — diffusion — Galaxy: general —
ISM: abundances — ISM: general

1. INTRODUCTION

A numerical method and corresponding computer code
for the calculation of Galactic cosmic-ray propagation has
been developed, building on the approach described by
Strong & Youssefi (1995) and Strong (1996). Primary and
secondary nucleons, primary and secondary electrons, and
secondary positrons are included. The basic spatial propa-
gation mechanisms are (momentum-dependent) diffusion
and convection, while energy loss and diffusive reaccelera-
tion are treated in momentum space. Fragmentation and
energy losses are computed using realistic distributions for
the interstellar gas and radiation fields. Preliminary results
were presented in Strong & Moskalenko (1997; hereafter
Paper I), and full results for protons, helium, positrons, and
electrons were presented in Moskalenko & Strong (1998a;
hereafter Paper II). In Paper II, we referred the description
of the numerical method to the present paper (Paper III),
and full details are now given. Results for gamma rays and
synchrotron radiation will be given in Moskalenko &
Strong (1998b; hereafter Paper IV).

We note that our positron predictions from Paper II have
been compared with more recent absolute measurements in
Barwick et al. (1998), with good agreement; for the posi-
trons, this new comparison has the advantage of being
independent of the electron spectrum, unlike the positron/
electron ratio that was the main focus of Paper II. The
ultimate goal is to combine all constraints, including
gamma-ray and synchrotron spectra; this will be pursued in
Paper IV.

The rationale for our approach has been given previously
(Paper I, Paper II). Briefly, the idea is to develop a model
that simultaneously reproduces observational data of many
kinds related to cosmic-ray origin and propagation:
directly via measurements of nuclei, electrons, and posi-
trons; indirectly via gamma rays and synchrotron radi-
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ation. These data provide many independent constraints on
any model, and our approach is able to take advantage of
this, since it must be consistent with all types of observation.
We also emphasize the use of realistic astrophysical inputs
(e.g., for the gas distribution) as well as theoretical develop-
ments (e.g., reacceleration). The code is sufficiently general
that new physical effects can be introduced as required. We
aim to generate a standard model that can be improved
with new astrophysical inputs and additional observational
constraints. For interested users, our model is available on
our web site.?

It was pointed out many years ago (see Ginzburg,
Khazan, & Ptuskin 1980; Berezinskii et al. 1990) that the
interpretation of radioactive cosmic-ray nuclei is model
dependent, and in particular that halo models lead to a
physical picture that is quite different from that of homoge-
neous models. The latter simply show a rather lower
average matter density than the local Galactic hydrogen
(e.g., Simpson & Garcia-Munoz 1988; Lukasiak et al.
1994a), but do not lead to a meaningful estimate of the size
of the confinement region, and the corresponding cosmic-
ray lifetime is model dependent. In such treatments, the
lifetime is combined with the grammage to yield an average
density. For example, Lukasiak et al. (1994a) find an
average density of 0.28 cm ™3, compared to the local inter-
stellar value of about 1 cm ™3, indicating a z-extent of less
than 1 kpc, compared to the several kpc found in diffusive
halo models. In the present work, we use a model that
includes spatial dimensions as a basic element, and so these
issues are automatically addressed.

The possible role of convection was demonstrated by
Jokipii (1976), and Jones (1979) pointed out its effect on the
energy dependence of the secondary/primary ratio. Recent
papers give estimates for the halo size and limits on convec-
tion based on existing calculations (e.g., Webber, Lee, &
Gupta 1992); in the present work, we attempt to improve
on these models with a more detailed treatment.

3 The model and other information on this project is available online
at: http://www.gamma.mpe-garching. mpg.de/ ~ aws/aws.html.
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Previous approaches to the spatial nucleon propagation
problem have been mainly analytical: Jones (1979),
Freedman et al. (1980), Berezinskii et al. (1990), Webber et
al. (1992), and Bloemen et al. (1993) treated diffusion/
convection models in this way. One problem here is that
energy losses are difficult to treat, and in fact were appar-
ently not included in any of the above analyses except
Webber et al. (1992)—although even there not explicitly.
Bloemen et al. (1993) used the “grammage” formulation
rather than the explicit isotope ratios, and their propaga-
tion equation implicitly assumes identical distributions of
primary and secondary source functions. These papers did
not attempt to fit the low-energy (<1 GeV nucleon!) B/C
data (which we will show leads to problems), and also did
not consider reacceleration. It is clear that an analytical
treatment quickly becomes limited as soon as more realistic
models are desired; this is the main justification for the
numerical approach presented in this paper. The case of
electrons and positrons is even more intractable analyti-
cally, although fairly general cases have been treated
(Lerche & Schlickeiser 1982). Owens & Jokipii (1977a,
1977b) adopted an alternative approach with Monte Carlo
simulations for both nucleons and electrons. Recently,
Porter & Protheroe (1997) made use of this method for
electrons. Both of these applications are for one-
dimensional propagation in the z-direction only. This
method allows realistic models to be computed, but would
be very time-consuming for two- or three-dimensional
cases. Our method, using a numerical solution of the propa-
gation equation, is a practical alternative. Since most of
these studies were done, the data on both stable and radio-
active nuclei has improved considerably, and thus a reeva-
luation is warranted.

Reacceleration has previously been handled using leaky-
box calculations (Letaw, Silberberg, & Tsao 1993; Seo &
Ptuskin 1994 ; Heinbach & Simon 1995); this has the advan-
tage of allowing a full reaction network to be used (far
beyond what is possible in the present approach), but suffers
from the usual limitations of leaky-box models, especially
concerning radioactive nuclei, which were not included in
these treatments. Our simplified reaction network is neces-
sary because of the added spatial dimensions, but we believe
it is fully sufficient for our purpose, since we are not
attempting to derive a comprehensive isotopic composition.
A similar approach was followed by Webber et al. (1992). A
more complex reaction scheme would not in any way
change our conclusions.

We model convection in a simple way, taking a linear
increase of velocity with z. Detailed self-consistent models
of cosmic ray—driven magnetohydrodynamic (MHD) winds
(Zirakashvili et al. 1996; Ptuskin et al. 1997) provide explicit
predictions for the convective transport of cosmic rays, and
our approach could be used in future to evaluate the obser-
vational consequences of such models.

In this paper we concentrate on the evaluation of the B/C
and 1°Be/°Be ratios, evaluation of diffusion/convection and
reacceleration models, and on setting limits to the halo size.
The B/C data is used because it is the most accurately mea-
sured ratio covering a wide energy range and having well-
established cross sections. The 1°Be/°Be ratio is used rather
than !°Be/("Be + °Be) because it is less sensitive to solar
modulation and to rigidity effects in the propagation. A
reevaluation of the halo size is desirable, since new '°Be/°Be
data are now available from Ulysses (Connell 1998), with

better statistics than previously. It is not the purpose of this
approach to perform detailed source abundance calcu-
lations with a large network of reactions, which is still best
done with the path-length distribution approach
(DuVernois, Simpson, & Thayer 1996 and references
therein). Instead, we use only the principal progenitors and
weighted cross sections based on the observed cosmic-ray
abundances (see Webber et al. 1992). Other key cosmic-ray
ratios, such as 2°Al/2’Al and sub-Fe/Fe, are beyond the
scope of this paper, but will be addressed in future work.
Also important are cosmic-ray gradients derived from
gamma rays; this provides a consistency check on the dis-
tribution of cosmic-ray sources, and we address this here.

2. DESCRIPTION OF THE MODELS

The models are three-dimensional, with cylindrical sym-
metry in the Galaxy; the basic coordinates are (R, z, p),
where R is Galactocentric radius, z is the distance from the
Galactic plane, and p is the total particle momentum. The
distance from the Sun to the Galactic center is taken as 8.5
kpc. The propagation region in the models is bounded by
R =R, and z = z,, beyond which free escape is assumed.
We take R, = 30 kpc. The range z, = 1-20 kpc is con-
sidered, since this is suggested by previous studies of radio-
active nuclei (e.g, Lukasiak et al. 1994a) and the
distribution of synchrotron radiation (Phillipps et al. 1981).
For a given z,, the diffusion coefficient as a function of
momentum is determined by B/C for the case of no reaccel-
eration; if reacceleration is assumed, then the reacceleration
strength (related to the Alfvén speed) is constrained by the
energy dependence of B/C. The spatial diffusion coefficient
for the case of no reacceleration is taken as D, =
BDy(p/po)°* below rigidity p, and BD(p/p,)°* above rigidity
po, Where the factor f ( = v/c) is a natural consequence of a
random-walk process. Since the introduction of a sharp
break in D,, is an extremely contrived procedure that is
adopted simply to fit B/C at all energies, we also consider
the case of 6, = §,, i.e.,, with no break, in order to investi-
gate the possibility of reproducing the data in a physically
simpler way.* The convection velocity (in the z-direction
only), V(z), is assumed to increase linearly with distance
from the plane (V >0 for z>0, V<0 for z<0, and
dV/dz > 0 for all z). This implies a constant adiabatic
energy loss; the possibility of adiabatic energy gain
(dV/dz < 0) is not considered. The linear form for V(z) is
consistent with cosmic ray—driven MHD wind models (e.g.,
Zirakashvili et al. 1996). The velocity at z = 0 is a model
parameter, but here we consider only V(0) = 0.

Some stochastic reacceleration is inevitable, and it pro-
vides a natural mechanism for reproducing the energy
dependence of the B/C ratio without an ad hoc form for the
diffusion coefficient (Letaw et al. 1993; Seo & Ptuskin 1994;
Heinbach & Simon 1995; Simon & Heinbach 1996). The
spatial diffusion coefficient for the case of reacceleration
assumes a Kolmogorov spectrum of weak MHD turbu-
lence, so D, = BD(p/p,)° with 6 =3 for all rigidities.
Simon & Heinbach (1996) showed that the Kolmogorov
form best reproduces the observed B/C variation with
energy. For the case of reacceleration, the momentum-space
diffusion coefficient D, is related to the spatial coefficient

4 In Paper II we considered only §, = 0 and did not consider convec-
tion.



214 STRONG & MOSKALENKO

using the formula given by Seo & Ptuskin (1994; their eq.
[9]) and Berezinskii et al. (1990):

D — 4p>v}
PP 354 — %) 4 — Oyw

where w characterizes the level of turbulence and is equal to
the ratio of MHD wave energy density to magnetic field
energy density. The main free parameter in this relation is
the Alfvén speed, v,; we take w = 1 (Seo & Ptuskin 1994),
but clearly only the quantity v3/w is relevant.

The atomic hydrogen distribution is represented by the
formula

D

M

ny (R, z) = ny(R)e U 2)(e/z02 > ()]

where ny (R) is taken from Gordon & Burton (1976) and z,
from Cox, Kriigel, & Mezger (1986), giving an exponential
increase in the width of the H 11ayer outside the solar circle:

(R) = 0.25 kpc, R <10 kpc
20 = 00.083¢* "R kpe, R > 10 kpe .

The distribution of molecular hydrogen is taken from
Bronfman et al. (1988) using CO surveys:

nHz(R9 Z) — nHz(R)e_(ln 2)(z/70 pc)? ) (4)

The adopted radial distribution of H 1 and H, is shown in
Figure 1.

For the ionized gas, we use the two-component model of
Cordes et al. (1991):

_ |z] R \?
g = 0.025 exp [ I kpo 20 kpo

+02 2] R o) em—s. s

<P | 7o 15 kpc \2kpc em==. ()

The first term represents the extensive warm ionized gas

and is similar to the distribution given by Reynolds (1989);

the second term represents H 1 regions and is concentrated

around R = 4 kpc. A temperature of 10* K is assumed in
order to compute Coulomb energy losses in ionized gas.

The He/H ratio of the interstellar gas is taken to be 0.11

by number; there is some uncertainty in this quantity, but

our value is consistent with recent photospheric determi-

©)

Density, atoms cm

0 10 20 30
R (kpc)

F1G. 1.—Adopted radial distribution of atomic, molecular, and ionized
hydrogen at z = 0.
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nations (0.10 + 0.008; see Grevesse, Noels, & Savuval
1996). Helioseismological methods (Hernandez &
Christensen-Dalsgaard 1994) give a helium abundance by
mass of 0.242, corresponding to He/H = 0.08, but still with
possible uncertainties due to the details of the models.
Although the latter is perhaps the most accurate local deter-
mination, the uncertainty in extending the photospheric
value to the interstellar medium over the whole Galaxy is
large. Other uncertainties dominate the secondary pro-
duction; for example, the density of neutral and molecular
hydrogen. In any case, even if He/H = 0.08, the influence of
the uncertainty of He/H on the secondary production does
not exceed 10%.

The distribution of cosmic-ray sources is chosen to repro-
duce (after propagation) the cosmic-ray distribution deter-
mined by analysis of EGRET gamma-ray data (Strong &
Mattox 1996). The form used is

_ (R _,R—-Ry  |z]
q(R, Z)_q"(R@) eXP( ¢ R, 02 kpc>, (6)

where ¢, is a normalization constant and # and ¢ are
parameters; the R-dependence has the same param-
eterization as that used for supernovae remnants (SNRs) by
Case & Bhattacharya (1996), but we adopt different param-
eters in order to fit the gamma-ray gradient. We also
compute models with the SNR distribution, in order to
investigate the possibility of fitting the gradient in this case.
We apply a cutoff in the source distribution at R = 20 kpc,
since it is unlikely that significant sources are present at
such large radii. The z-dependence of g is nominal and
simply reflects the assumed confinement of sources to the
disk.

We assume that the source distribution of all cosmic-ray
primaries is the same. Meyer, Drury, & Ellison (1997)
suggest that part of the C and O originates in acceleration
of C- and O-enriched pre-SN Wolf-Rayet wind material by
supernovae, but the source distribution in this case would
still follow that of SNRs.

First, the primary propagation is computed giving the
primary distribution as a function of (R, z, p); then the
secondary source function is obtained from the gas density
and cross sections, and finally the secondary propagation is
computed. Tertiary reactions such as !'B — '°B are treated
as described in Appendix A. The entire calculation is per-
formed with momentum as the kinematic variable, since
this greatly facilitates the inclusion of reacceleration.

Full details of the propagation equation and numerical
method used are given in Appendices A and B. The method
encompasses nucleons, electrons, and positrons. Energy
losses for nucleons by ionization and Coulomb interactions
are included, following Mannheim & Schlickeiser (1994)
(see Appendix C.1). Details of the positron source function,
magnetic field, and interstellar radiation field models were
given in Paper II, and the energy loss formulae for electrons
are given in Appendix C.2.

As an illustration of the calculations performed by the
code, Figure 2 shows the (R, z) distribution of primary '*C
and secondary '%:1!B at 515 MeV nucleon ! for a reaccel-
eration model with z, = 10 kpc. In practice, we are only
interested in the isotope ratios at the solar position, but it is
worth noting the variations over the Galaxy, which are
attributable to the effect of the inhomogeneous distribution
of sources and gas on the secondary production, fragmenta-
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FiG. 2.—Three-dimensional distribution of *?C and '**'B at 515 MeV nucleon ™! for reacceleration model with z, = 10 kpc, for v,

parameters, see model 10500 in Table 2.

Ptuskin et al. 1997), were

b

principle, all three processes could be significant, and such a
general model could be considered if independent astro-
physical information or models, for example for a Galactic
wind (e.g., Zirakashvili et al. 1996

to be used. Anticipating the results, it can be noted at the
outset that the reacceleration models are more satisfactory

tion, and energy losses. For comparison with gamma-ray
3. EVALUATION OF MODELS

data, the full three-dimensional distribution is of course
the radial cosmic-ray gradient from gamma rays is con-

important and will be addressed in Paper IV, but here only
sidered.

in meeting the constraints provided by the data, repro-
ducing the B/C energy dependence without ad hoc varia-

We consider the cases of diffusion + convection and

diffusion + reacceleration, since these are the minimum

tions in the diffusion coefficient; furthermore, it is not

possible to find any simple version of the diffusion/

combinations that can reproduce the key observations. In
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TABLE 1
PARAMETERS OF DIFFUSION/CONVECTION MODELS

z, D, Po dvjdz
Model (kpc) (1022 cm?s™Y)  (GV) 8, 8, (km s~ ! kpc™?)
01000...... 1 0.7 3 0.60 0.60 0
01010...... 1 0.7 3 0.60 0.60 10
01020...... 1 0.7 3 0.60 0.60 20
03000...... 3 2.0 3 0.60 0.60 0
03010...... 3 14 3 0.65 0.65 10
03020...... 3 1.1 3 0.70 0.70 20
10000...... 10 5.0 3 0.60 0.60 0
10010...... 10 25 3 0.70 0.70 10
10020...... 10 1.1 3 0.90 0.90 20
01100...... 1 09 5 —0.60 0.60 0
01105...... 1 0.8 5 —0.60 0.60 5
01110...... 1 0.8 5 —0.60 0.60 10
03100...... 3 2.5 5 —0.60 0.60 0
03105...... 3 22 5 —0.60 0.60 5
03110...... 3 2.0 5 —0.60 0.60 10
04100...... 4 35 5 —0.60 0.60 0
04105...... 4 2.7 5 —0.60 0.70 5
04110...... 4 2.5 5 —0.60 0.70 10
05100...... 5 4.5 5 —0.60 0.60 0
05105...... 5 32 5 —0.60 0.70 5
05110...... 5 2.5 5 —0.60 0.70 10
10100...... 10 7.0 5 —0.60 0.60 0
10105...... 10 3.8 5 —0.60 0.80 5
10110...... 10 3.0 5 —0.60 0.80 10
15100...... 15 9.0 5 —0.60 0.60 0
15105...... 15 3.8 5 —0.60 0.80 5
15110...... 15 3.0 5 —0.60 0.80 10
20100...... 20 9.0 5 —0.60 0.60 0
20105...... 20 3.8 5 —0.60 0.80 5
20110...... 20 3.0 5 —0.60 0.80 10

convection model that reproduces B/C satisfactorily
without additional special assumptions.

In our calculations we use the B/C data summarized by
Webber et al. (1996) from HEAO 3 and Voyager 1 and 2.
The spectra were modulated to 500 MV, appropriate to this
data, using the force-field approximation (Gleeson &
Axford 1968). We also show B/C values from Ulysses
(DuVernois et al. 1996) for comparison, but since this has
large modulation (600-1080 MYV), we do not base conclu-
sions on these values. We use the measured '°Be/Be ratio
from Ulysses (Connell 1998) and from Voyager 1 and 2,
Interplanetary Monitoring Platform (IMP) 7/8, and ISEE 3,
as summarized by Lukasiak et al. (1994a).

The source distribution adopted has # = 0.5, £ = 1.0 in
equation (6) (except for the cases with SNR source
distribution). This form adequately reproduces the small
observed gamma ray-based gradient for all z,; a more
detailed discussion is given in § 4.

3.1. Diffusion/Convection Models

The main parameters for this model are z,, Dy, d,, 5, po,
and dV/dz. We treat z, as the main unknown quantity, and
consider values of 1-20 kpc. The parameters of these models
are summarized in Table 1. For a given z,, we show B/C for
a series of models with different dV/dz.

Figure 3 shows the case with no break, 6, = J,; for each
dV/dz, the remaining parameters D, J,, and p, are adjust-
ed to fit the data as well as possible. It is clear that a good fit
is not possible; the basic effect of convection is to reduce the
variation of B/C with energy, and although this improves
the fit at low energies, the characteristic peaked shape of the
measured B/C cannot be reproduced. Although modulation
makes the comparison with the low-energy Voyager data

somewhat uncertain, Figure 3 shows that the fit is unsatis-
factory; the same is true even if we use a very low modula-
tion parameter of 300 MV in an attempt to improve the fit.
This modulation is near the minimum value for the entire
Voyager 17 yr period (cf. the average value of 500 MV;
Webber et al. 1996). The failure to obtain a good fit is an
important conclusion, since it shows that the simple inclu-
sion of convection cannot solve the problem of the low-
energy falloff in B/C.

Since the inclusion of a convective term is nevertheless of
interest for independent astrophysical reasons (Galactic
wind), we can force a fit to the data by allowing a break in
D,.(p), with 6, # 6,. Figure 4 shows cases with a break;
here the parameters D, d,, d,, and p, are adjusted. In the
absence of convection, the falloff in B/C at low energies
requires that the diffusion coefficient increase rapidly below
po =3 GV (6, ~ — 0.6), reversing the trend from higher
energies (6, ~ + 0.6). Inclusion of the convective term does
not reduce the size of the ad hoc break in the diffusion
coefficient; in fact, it rather exacerbates the problem by
requiring a larger break.’

Figure 5 shows the predicted and measured '°Be/°Be
ratio; here we use the models with a break in D, (p), since
these do have the correct B/C ratio in the few 100 MeV
nucleon ™! range where the Be measurements are available,
and are therefore appropriate for this comparison indepen-

3 Note that the dependence of interaction rate on particle velocity itself
is not sufficient to cause the full observed low-energy falloff. In leaky-box
treatments, the low-energy behavior is modeled by adopting a constant
path length below a few GeV nucleon ™!, without attempting to justify this
physically. A convective term is often invoked, but our treatment shows
that this alone is not sufficient.
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lines) km s~ ! kpc™!. The cases shown are (top left) z, = 1 kpc, (top right) z, = 3 kpc, and (bottom) z, = 10 kpc. Solid lines, interstellar ratio; shaded area,
modulated to 300-500 MV. For the data, vertical bars are from HEAO 3 and Voyager (Webber et al. 1996); filled circles are from Ulysses (DuVernois et al.

1996: ® = 600, 840, and 1080 MV). Parameters are given in Table 1.

dently of the situation at higher energies. For our final
evaluation, we use 1°Be/°Be data from Ulysses, which has
the highest statistics.

Figure 6 summarizes the limits on z, and dV/dz, using the
10Be/°Be ratio at the interstellar energy of 525 MeV
nucleon ™! appropriate to the Ulysses data (Connell 1998).
For z, < 4 kpc, the predicted ratio is always too high, even
for no convection; no convection is allowed for such z,
values, since this increases 1°Be/?Be still further. For z, > 4
kpc, agreement with '°Be/°Be is possible, provided that
0 <dV/dz < 7km s~ ! kpc™!. We conclude from Figure 6a
that in the absence of convection, 4 kpc < z, < 12 kpc, and
if convection is allowed, the lower limit remains but no

upper limit can be set. It is interesting that an upper as well
as a lower limit on z, is obtained in the case of no convec-
tion, although 1°Be/°Be approaches asymptotically a con-
stant value for large halo sizes and becomes insensitive to
the halo dimension. From Figure 6b, dV/dz <7 km s~ 1
kpc™ !, and this figure places upper limits on the convection
parameter for each halo size. These limits are rather strict,
and a finite wind velocity is only allowed in any case for
z, > 4 kpc. Note that these results are not very sensitive to
modulation, since the predicted '°Be/°Be is fairly constant
from 100 to 1000 MeV nucleon ™ 1.

Our results can be compared with those of other studies:
z, = 7.8 kpc (Freedman et al. 1980), z, < 3 kpc (Bloemen et
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km s~ ! kpc™ L. The cases shown are (top left) z, = 1 kpc, (top right) z, = 5 kpc, and (bottom) z, = 20 kpc. Lower lines, interstellar ratio; upper lines, modulated

to 500 MV. Parameters are given in Table 1. Data are as in Fig. 3.

al. 1993), and z,, < 4 kpc (Webber et al. 1992). Most recently,
Lukasiak et al. (1994a) found 1.9 kpc < z, < 3.6 kpc (for no
convection) based on Voyager Be data and using the
Webber et al. (1992) models. We believe our new limits to be
an improvement, first because of the improved Be data from
Ulysses, and second because of our treatment of energy
losses (see § 3.2) and the generally more realistic astro-
physical details in our model. The papers cited also did not
consider the low-energy B/C data, which we have shown are
in fact a problem for diffusion/convection models.

The cosmic ray—driven wind models of Zirakashvili et al.
(1996) have values of dV/dz ~ 10 km s~ kpc™!, somewhat
larger than our upper limits. Since their models differ from
ours in many respects, this is not significant, but it suggests

that it would be useful to carry out calculations like those in
the present paper for such models, to provide a critical test
of their viability.

3.2. Diffusive Reacceleration Models

The main parameters for this model are z,, D, and v, (p,
is arbitrary, since ¢ is constant). Again, we treat z, as the
main unknown quantity. The evaluation is simpler than for
convection models, since the number of free parameters is
smaller. The parameters of these models are summarized in
Table 2. Figure 7 illustrates the effect on B/C of varying v,
from v, = 0 (no reacceleration) tov, = 30 km s~ 1, for z, =
5 kpc. This shows how the initial form becomes modified to
produce the characteristic peaked shape. Reacceleration
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models thus lead naturally to the observed peaked form of
B/C, as pointed out by several previous authors (e.g., Letaw
et al. 1993; Seo & Ptuskin 1994 ; Heinbach & Simon 1995).
Figure 8 shows B/C for z, = 1-20 kpc. Our value of v, =~
20 km s~ ! is consistent with the value obtained by Seo &
Ptuskin (1994), which they also derived from B/C; since for
stable nuclei the leaky-box and diffusion treatments are
equivalent, this is a good test of the operation of our code.
The value of v, is typical of the warm ionized phase of the
interstellar gas (Seo & Ptuskin 1994). The exact low-energy
form of B/C depends on details of the modulation, so that

0.257‘ T

0.20

0 5 10 15 20
2, (kpc)

an exact fit here is not attempted; note, however, that v,
and D, can be (and indeed were) determined from the high-
energy B/C alone; the low-energy agreement is then
satisfactory.® Figure 9 shows 1°Be/°Be for the same models,
panel (a) as a function of energy for various z,, and panel (b)
as a function of z, at 525 MeV nucleon ~ !, corresponding to
the Ulysses measurement. Comparing with the Ulysses data

6 Since we are considering a ratio at the same rigidity, the effect of
modulation is confined to a deceleration of ~200 MeV nucleon™' (cf.
spectra where absolute intensity changes are important).
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F16. 6.—Predicted 1°Be/°Be ratio as function of (a) z, for dV/dz =0, 5, and 10 km s~ ! kpc™?, (b) dV/dz for z, = 1-20 kpc at 525 MeV nucleon™?,
corresponding to the mean interstellar value for the Ulysses data (Connell 1998); the Ulysses experimental limits are shown as horizontal dashed lines. The

shaded regions show the parameter ranges allowed by the data.
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TABLE 2
PARAMETERS OF DIFFUSIVE REACCELERATION MODELS

Models with SNR

Vol. 509

Best-fit Models with Source z, D, R

Models® No Energy Losses® Distribution® (kpc) (10 cm?s™!)  (kms7Y)
01500...... 01510 01511 1 1.7 20
02500...... 02510 02511 2 32 20
03500...... 03510 03511 3 4.6 20
04500...... 04510 04511 4 6.0 20
05500...... 05510 05511 5 7.7 20
10500...... 10510 10511 10 12 20
15500...... 15510 15511 15 15 20
20500...... 20510 20511 20 16 18
Effect of varying v, :
05501...... 5 7.7 0
05502...... 5 7.7 5
05503...... 5 1.7 10
05504...... 5 7.7 15
05505...... 5 7.7 20
05506...... 5 7.7 25
05507...... 5 7.7 30

Note—For all reacceleration models, p, = 3 GV, 6 = 1/3 (see § 2 for details).

? Parameters of the source distribution (eq. [6]):n = 0.5, ¢ = 1.0.
® Parameters of the SNR distribution (eq. [6]): # = 1.69, & = 3.33.

point, we conclude that 4 kpc < z, < 12 kpc. Again, the
result is not very sensitive to modulation, since the pre-
dicted °Be/°Be is fairly constant from 100 to 1000 MeV
nucleon 1.

Figure 10 illustrates the importance of energy losses on
the 1°Be/°Be ratio; for reacceleration cases with z, = 1-20
kpc, we show the ratio with and without losses. Losses
attenuate the flux of stable nuclei much more than radioac-
tive nuclei, and hence lead to an increase in 1°Be/°Be. The
effect can be simply illustrated as follows. The ionization
loss rate on neutral gas is ~1.8 x 107 7Z2(ny>B 1 eV s~ 1,
where f§ = v/c is the nucleon speed and (ny) is the average
interstellar gas density. Thus, for Be nuclei of 300 MeV
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FiG. 7—B/C ratio for diffusive reacceleration models with z, = 5 kpc,
v, = 0 (dotted line), 15 (dashed line), 20 (thin solid line), and 30 (thick solid
line) km s~ 1. Parameters are given in Table 2. In each case, the interstellar
ratio and the ratio modulated to 500 MV is shown. Data are as in Fig. 3.

nucleon™! and for a gas disk with 0.2 kpc thickness and

density 1 cm ™3, {ny> = 0.2/z, cm ™3, which gives a loss time
of ~3 x 108 yr for z, =5 kpc. Coulomb losses on the
ionized gas in the halo increase the losses further (see Fig.
13); although the density is low, the wide z-extent means
that the losses occur over large regions of the halo. For the
same z,, the diffusion time is ~4 x 10® yr, so the stable *Be
is significantly attenuated. For the radioactive '°Be (z,=
1.6 x 10° yr), the energy losses are negligible. Hence, losses
significantly increase '°Be/Be. As can be seen in Figure 10,
the relative effect is largest for large halos and becomes a
dominant effect only for z, > 3 kpc. Although we illustrate
this for the reacceleration case, the same effect applies to
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Fi1G. 8—B/C ratio for diffusive reacceleration models: z, = 1 (dotted
line), 5 (dashed line), 10 (thin solid line), and 20 kpc (thick solid line). Param-
eters are given in Table 2. In each case, the interstellar ratio and the ratio
modulated to 500 MV is shown. Data are as in Fig. 3.
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F16. 9—'°Be/’Be ratio for diffusive reacceleration models: (a) as function of energy for (from top to bottom)z, = 1, 2, 3,4, 5, 10, 15, and 20 kpc, with data
points as in Fig. 5; (b) as function of z, at 525 MeV nucleon ™, corresponding to the mean interstellar value for the Ulysses data (Connell 1998); the Ulysses
experimental limits are shown as horizontal dashed lines. Parameters are given in Table 2.

diffusion/convection models. Clearly, if losses are ignored,
the predicted ratio will be too low and the derived value of
z, will be too small, since z, will have to be reduced to fit the
observations.

The proton, helium, and positron spectra were presented
in Paper II for the case of z, = 3 kpc using the same model
as used here, and the injection spectra were derived. The
effect of varying the halo size is small for these spectra, so
we do not extend that calculation to different z,.

4. COSMIC-RAY GRADIENTS

An important constraint on any model of cosmic-ray
propagation is provided by gamma-ray data that give infor-
mation on the radial distribution of cosmic rays in the
Galaxy. For a given source distribution, a large halo will
give a smaller cosmic-ray gradient. It is generally believed
that supernova remnants (SNRs) are the main sources of
cosmic rays (see Webber 1997 for a recent review), but
unfortunately the distribution of SNRs is poorly known
because of selection effects. Nevertheless, it is interesting to
compare quantitatively the effects of halo size on the gra-
dient for a plausible SNR source distribution. For illustra-
tion, we use the SNR distribution from Case &
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F1G. 10—'°Be/°Be ratio for diffusive reacceleration model, showing
the influence of energy losses, for z, = 1 (dotted lines), 5 (solid line), and 20
kpc (dashed line). In each case, the upper curve is with energy losses, the
lower curve without. Parameters are given in Table 2. Data points are as in
Fig. 5.

Bhattacharya (1996), which is peaked at R = 4-5 kpc and
has a steep falloff toward larger R.

Figure 11 shows the effect of halo size on the resulting
radial distribution of 3 GeV cosmic-ray protons for the
reacceleration model. For comparison, we show the cosmic-
ray distribution deduced by model fitting to EGRET
gamma-ray data (>100 MeV) from Strong & Mattox
(1996), which is dominated by the n°-decay component gen-
erated by GeV nucleons; the analysis by Hunter et al.
(1997), based on a different approach, gives a similar result.
The cosmic-ray distribution predicted using the SNR
source function is too steep even for large halo sizes; in fact,
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F1G. 11.—Radial distribution of 3 GeV protons at z = 0, for diffusive
reacceleration model with halo sizes z, = 1, 3, 5, 10, 15, and 20 kpc (solid
curves). The source distribution is that for SNRs given by Case & Bhatta-
charya (1996), shown as a dashed line. The cosmic-ray distribution
deduced from EGRET > 100 MeV gamma rays (Strong & Mattox 1996) is
shown as a histogram. Parameters are as in Table 2.
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the halo size has a relatively small effect on the distribution.
Other related distributions, such as pulsars (Taylor, Man-
chester, & Lyne 1993; Johnston 1994), have an even steeper
falloff. Only for z, = 20 kpc does the gradient approach that
observed, and in this case the combination of a large halo
and a slightly less steep SNR distribution could give a satis-
factory fit. For diffusion/convection models the situation is
similar, with more convection tending to make the gradient
follow the sources more closely. A larger halo (z, > 20 kpc),
apart from being excluded by the '°Be analysis presented
here, would in fact not improve the situation much, since
Figure 11 shows that the gradient approaches an asymp-
totic shape that hardly changes beyond a certain halo size.
This is a consequence of the nature of the diffusive process,
which even for an unlimited propagation region still retains
the signature of the source distribution.

Based on these results, we must conclude, in the context
of the present models, that the distribution of sources is not
as expected from the (highly uncertain; see Green 1991)
distribution of SNRs. This conclusion is similar to what has
been previously found by others (Webber et al. 1992;
Bloemen et al. 1993). In view of the difficulty of deriving the
SNR distribution, this is perhaps not a serious short-
coming; if SNRs are indeed cosmic-ray sources, then it is
possible that the gamma-ray analysis gives the best estimate
of their Galactic distribution. Therefore, in our standard
model we have obtained the source distribution empirically
by requiring consistency with the high-energy gamma-ray
results.

Figure 12 shows the source distribution adopted in the
present work and the resulting 3 GeV proton distribution,
again compared to that deduced from gamma rays. The
gradients are now consistent, especially considering that
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Fic. 12—Radial distribution of 3 GeV protons at z = 0, for diffusive
reacceleration model with various halo sizes, z, = 1, 3, 5, 10, 15, and 20 kpc
(solid curves). The source distribution used is shown as a dashed line, and is
that adopted to reproduce the cosmic-ray distribution deduced from
EGRET > 100 MeV gamma rays (Strong & Mattox 1996), shown as a
histogram. Parameters are as in Table 2.
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some systematic effects, arising for example from unre-
solved gamma-ray sources, are present in the gamma-ray
results.

Measurements of cosmic-ray anisotropy in the 1-100
TeV range provide an independent argument for reaccelera-
tion (e.g., Seo & Ptuskin 1994), since the slower increase of
the diffusion coefficient with energy avoids the large aniso-
tropies predicted by non-reacceleration models. Our
models reproduce this behavior, the reacceleration models
giving anisotropies of ~10~% at 1 TeV, while the non-
reacceleration models give > 10~2. The observed values
(~1073) largely reflect the local structure of the interstellar
magnetic field in the part of the Galaxy near the Sun, and
hence do not give useful constraints on the large-scale pro-
pagation that our model addresses (see Berezinskii et al.
1990). In particular, it is not possible to test the large-scale
cosmic-ray gradients at such energies by this method. It is
sufficient to note that the reacceleration models are consis-
tent with the observations, while the non-reacceleration
models are not, in accord with previous authors’ conclu-
sions.

5. CONCLUSIONS

We have shown that simple diffusion/convection models
have difficulty accounting for the observed form of the B/C
ratio without special assumptions chosen to fit the data,
and do not obviate the need for an ad hoc form for the
diffusion coefficient. On the other hand, we confirm the
conclusion of other authors that models with reacceleration
account naturally for the energy dependence over the whole
observed range, with only two free parameters. Combining
these results points rather strongly in favor of the reaccel-
eration picture. In this case, v, ~ 20 km s~ !, with little
dependence on z,.

For the first time, '°Be/°Be has also been computed with
reacceleration. We take advantage of the recent Ulysses Be
measurements to improve limits on the halo size. We
emphasize the crucial importance of the treatment of energy
losses in the evaluation of the 1°Be/°Be ratio. The halo
height with reacceleration is 4 kpc < z, < 12 kpc. Our new
limits should be an improvement on previous estimates,
because of the more accurate Be data, our treatment of
energy losses, and the inclusion of more realistic astro-
physical details (such as, e.g., the gas distribution) in our
model.

In case reacceleration is not important, the halo size
limits are still 4 kpc < z, < 12 kpc for the case of no convec-
tion, while only the lower limit holds if convection is
allowed. The upper limit on the convection velocity gra-
dient is dV/dz < 7 km s~ ! kpc ™!, this value being allowed
for large z, only.

The gradient of protons derived from gamma rays is
smaller than expected for SNR sources, the closest
approach to consistency being for z, = 20 kpc; we therefore
adopt a flatter source distribution in order to meet the
gamma-ray constraints.

The anisotropy at ~1 TeV predicted by our reaccelera-
tion models is consistent with observations, while the non-
reacceleration model predicts a larger value than observed.
This reflects the general property of such models (e.g., Seo &
Ptuskin 1994). The large-scale propagation is, however, not
significantly constrained by anisotropy measurements at
the energies considered in this paper, since local interstellar
effects may dominate.
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Paper IV.
APPENDIX A

PROPAGATION EQUATION

The propagation equation is written in the form

oy . o , 01 a1, Po. 1 1
3 =46 D) Y DLV = V) Dy, o~ [pn/x 2\ V)np] AT (A1)
where Y = y(r, p, t) is the density per unit of total particle momentum, y(p)dp = 4np>f(p) in terms of phase-space density f(p),
q(r, p) is the source term, D,, is the spatial diffusion coefficient, V is the convection velocity, reacceleration is described as
diffusion in momentum space and is determined by the coefficient D, p = dp/dt is the momentum loss rate, 7, is the timescale
for fragmentation, and t, is the timescale for the radioactive decay. The details of the numerical scheme are described in
Appendix B.

We use particle momentum as the kinematic variable, since it greatly facilitates the inclusion of the diffusive reacceleration
terms. The injection spectrum of primary nucleons is assumed to be a power law in momentum for the different species,
dq(p)/dp oc p~" for the injected density,” as expected for diffusive shock acceleration (e.g., Blandford & Ostriker 1980); the
value of ' can vary with species. The injection spectrum for *>C and '°O was taken as dq(p)/dp oc p~*-** for the case of no
reacceleration, and p~2%° with reacceleration. These values are consistent with Engelmann et al. (1990), who give an injection
index of 2.23 4+ 0.05. The same indexes reproduce the observed proton and “He spectra, as was shown in Paper II. For
primary electrons, the injection spectrum is adjusted to reproduce direct measurements, gamma-ray, and synchrotron data;
details are given in the other papers of this series (Papers I, II, and IV).

For secondary nucleons, the source term is q(r, p) = Bcy (v, p)Lof(P)nu(r) + ofi(p)ny(r)], where of(p) and ofi(p) are the
production cross sections for the secondary from the progenitor on H and He targets, i, is the progenitor density, and ny and
Ny are the interstellar hydrogen and helium number densities, respectively.

To compute B/C and 1°Be/°Be, it is sufficient for our purposes to treat only one principal progenitor and compute weighted
cross sections based on the observed cosmic-ray abundances, which we took from Lukasiak et al. (1994b). Explicitly, for a
principal primary with abundance I,, we use for the production cross section 6”° = )'; ¢"*I,/I,,, where ¢* and I, are the cross
sections and abundances, respectively, of all species producing the given secondary. For the case of boron, the nitrogen
progenitor is secondary but only accounts for = 10% of the total boron production, so that the approximation of weighted
cross sections is sufficient.

For the fragmentation cross sections we use the formula given by Letaw et al. (1983). For the secondary production cross
sections we use the Webber, Kish, & Schrier (1990) and Silberberg & Tsao (1990; see also Garcia-Munoz et al. 1987)
parameterizations in the form of code obtained from the Transport Collaboration (Guzik et al. 1997). Comparison of the
results from these different versions of the cross sections gives a useful estimate of the uncertainty from this source. For the
important B/C ratio, we take the '2C, 1°O — °B, '°C, !B, and ''C cross sections from the fit to experimental data given by
Heinbach & Simon (1995). Since for Be the values of the cross sections are particularly important, we give for reference the
values actually used for the abundance-weighted cross sections at 500 MeV nucleon™!, including interstellar He:
6(*2C — °Be) = 18.2 mb, 6(**C — '°Be) = 8.6 mb. For radioactive decay, 7, = yt,,,/In2, where 7, , = 1.6 x 10° yr for '°Be.

For electrons and positrons, the same propagation equation is valid when the appropriate energy loss terms (ionization,
bremsstrahlung, inverse Compton, or synchrotron) are used. Since this paper is intended to complete the description of the
full model, we include the formulae for these loss mechanisms in Appendix C.2. A detailed description of the source function
for secondary electrons and positrons was given in Paper II.

APPENDIX B
NUMERICAL SOLUTION OF PROPAGATION EQUATION

The diffusion, reacceleration, convection, and loss terms given in equation (A1) can all be finite-differenced for each
dimension (R, z, p) in the form

B YN W W U il

ot At At P (BD)

7 This corresponds to an injected flux of dF(p)/dp oc Bp~", or dF(E,)/dE, oc p~", a form often used (e.g., Engelmann et al. 1990). Since observations are
usually quoted as a flux, with kinetic energy per nucleon as the kinematic variable, a conversion is made before comparison with data: dF(E,)/dE, =
(c/An)py(dp/dE,) = (c/4m)Ay, since dp/dE, = A/, where A is the mass number, E, is the kinetic energy per nucleon, and f = v/c.
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COEFFICIENTS FOR THE CRANK-NICHOLSON METHOD

Process Coordinate o /At o, /At o5 /At
Diffusion .............oooeininnl R M D i M
2R(AR)? ** R(AR)? ** 2R{(AR)?
z D, /[(Az)? 2D, /(Az)* D,./[(A2)?
Convection®.................... z>0(V >0 V(z;_,)/Az V(z)/Az 0
z<0 (V<0 0 —V(z)/Az —V(z;;,)/Az
p(dV/dz > 0) 0 —% p; ‘f]l—IZ//PE_1 —% Piss ‘;—IZ//PE“
Diffusive reacceleration®...... p 21)’1’%( il + 2 ) i2+1 <D” 2Ly D, ni ! 2D”i”;ilﬂ < ilﬂ .
Pz Piy piy P2\ P P, Pz P; Pi+1
Energy 108s® ...........ceuenen. p 0 p/Pitt Piv1/PiTE
Fragmentation ................ Rz p 0 1/37, 0
Radioactive decay............. R, z,p 0 1/3z, 0

aP;EPi_Pj-

where all terms are functions of (R, z, p).
In the Crank-Nicholson implicit method (Press et al. 1992), the updating scheme is

‘//§+At =yi+o ‘/’?t?t — 0y ‘//§+At + a3 ‘/’51? + q;At .

The tridiagonal system of equations,

(B2)

—ay YiIY A (L o™ — as il =i+ g At (B3)

is solved for y!*2* by the standard method (Press et al. 1992). Note that for energy losses we use “upwind ” differencing to
enhance stability, which is possible since we have only loss terms (adiabatic energy gain is not included here).
The three spatial boundary conditions

Y(R, z4, p) = Y(R, —z;, p) = Y(R;, 2z, p) =0 (B4)

are imposed at each iteration. No boundary conditions are imposed or required at R = 0 or in p. Grid intervals are typically
AR =1 kpc, Az = 0.1 kpc; for p, a logarithmic scale with a typical ratio of 1.2 is used. Although the model is symmetric
around z = 0, the solution is generated for —z, < z < z,, since this is required for the tridiagonal system to be valid.

Since we have a three-dimensional (R, z, p) problem, we use operator splitting to handle the implicit solution, as follows.
We apply the implicit updating scheme alternately for the operator in each dimension in turn, keeping the other two
coordinates fixed. To account for the substeps, g;/3 and 1/3t are used instead of g;, 1/t. The coefficients of the Crank-
Nicholson scheme we use are given in Table 3.

The method was found to be stable for all o, and this property can be exploited to advantage by starting with « > 1 (see
below). The standard alternating direction implicit (ADI) method, in which the full operator is used to update each dimension
implicitly in turn, is more accurate, but was found to be unstable for o« > 1. This is a disadvantage when treating problems
with many timescales, but can be used to generate an accurate solution from an approximation generated by the non-ADI
method.

A check for convergence is performed by computing the timescale y//(0y/0t) from equation (A1) and requiring that this be
large compared to all diffusive and energy-loss timescales. The main problem in applying the method in practice is the wide
range of timescales, especially for the electron case, ranging from 10* yr for energy losses to 10° yr for diffusion around 1 GeV
in a large halo. Use of a time step At appropriate to the smallest timescales guarantees a reliable solution, but requires a
prohibitively large number of steps to reach long timescales. The following technique was found to work well: start with a
large At, appropriate for the longest scales, and iterate until a stable solution is obtained. This solution is then accurate only
for cells with a < 1; for other cells, the solution is stable but inaccurate. Then reduce At by a factor (0.5 was adopted) and
continue the solution. This process is repeated until « < 1 for all cells, when the solution is accurate everywhere. It is found
that the inaccurate parts of the solution quickly decay as soon as the condition o < 1 is reached for a cell. As soon as all cells
satisfy o« < 1, the solution is continued with the ADI method to obtain maximum accuracy. A typical run starts with At = 10°
yr and ends with At = 10* yr for nucleons and 10? yr for electrons, performing ~ 60 iterations per At. In this way it is possible
to obtain reliable solutions with reasonable computer resources, although the CPU required is still considerable. All results
are output as FITS data sets for subsequent analysis.

More details, including the software and data sets, can be found at the authors’ web site.®

8 This information is available at: http://www.gamma.mpe-garching.mpg.de/ ~ aws/aws.html.
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B1. DIFFUSION IN R

As an example, the coefficients for the radial diffusion term are derived here.

10 o\ _ 2 D, Vier — ¥ Vi—VYioy
—__—_(RD.. )= R, —R,_ . B
RaR< ""aR) R,-Ri+1—Ri_1< “TRi,y—R, "'R,—R,_, (B3)
Setting R; . ; — R; = R; — R;_; = AR, one can obtain the following expressions in terms of our standard form (eq. [B1]):
oy 2R; — AR a 2R; o5 2R; + AR

- = B_p it n B6
At~ T 2R(AR?’ At R(AR?’ At 2R(AR)? (B6)

B2. DIFFUSIVE REACCELERATION

In terms of three-dimensional momentum phase-space density f(p), the diffusive reacceleration equation is

AT _L oL, d0
T_Vp [Dppvpf(p)]_pz 6p|: Dpp ap:l'

The distribution is assumed isotropic, so f(p) = f(p) where p = | p|. First we rewrite the equation in terms of y/(p) = 4np*f(p),
instead of f(p), and expand the inner differential:

W _ 0 o OWN_ 0 (W 2
ot op <p e p2>_5p D""<6p p>' (B8)

(B7)

The differencing scheme is then
2 1=V 2y =Wy 2y,
[Dpp,i+1<l'bl+1 lﬁl _ l//1+1> _ Dpp,i—1<l/,l l//l 1 llbl 1>i| . (B9)
Di+1 — Pi-1 Di+1 — D; Di+1 Di — Di-1 Di-1
In terms of our standard form (eq. [B1]), the coefficients for reacceleration are then

ﬂz 2Dl7p,i_1 <p 1 + 2 ) %z 2 <Dpp,i+1 + Dpp,i—l)
At pivy—Pici \Pi—DPi-1 Pi-1/)’ At piyy—Dii \Pis1 —DPi  Pi—DPi-1)

% _ _2Dppixy < L 2> (B10)
At piiy—DPi—1 \Pi+1 —Pi  DPi+1

APPENDIX C
ENERGY LOSSES

For nucleon propagation in the ISM, the losses are mainly due to ionization, Coulomb scattering, fragmentation, and
radioactive decay. For electrons, the important processes are ionization, Coulomb scattering, bremsstrahlung in the neutral
and ionized medium, and Compton and synchrotron losses. Although all these processes are well known, the formulae for the
different cases are scattered throughout the literature; hence, for completeness we summarize the formulae used below.

Figure 13 illustrates the energy-loss timescales, E(dE/dt)~*, for electrons and nucleons in pure hydrogen. The losses are
shown for equal neutral and ionized gas number densities, ny; = nyy = 0.01 cm ™3, and equal energy densities of photons and

1012, T T — o 1010 . .
(a) Ve BO (b}
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e 1091 BI ]
I+ A o] -
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: O g
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1081 Coulomb E K
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101 102 103 10* 10° 108 100 10! 10 10 10t 10° 108
Kinetic energy per nucleon, MeV Kinetic energy, MeV

F1G. 13.—Energy-loss timescales of (a) nucleons and (b) electrons in neutral and ionized hydrogen. The curves are computed for gas densities ny = ny; =
0.01 cm 3, and equal energy densities of photons and magnetic field U = Uz = 1 €V cm ™3 (in the Thomson limit). In panel (a), solid lines show ionization
losses and dashed lines show Coulomb losses; dotted line is for protons.
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the magnetic field, U = Ug = 1 eV cm ™3 (in the Thomson limit). These gas and energy densities are chosen to characterize the
average values seen by cosmic rays during propagation.

Cl. NUCLEON ENERGY LOSSES

The Coulomb collisions in a completely ionized plasma are dominated by scattering off the thermal electrons. The
corresponding energy losses are given by (Mannheim & Schlickeiser 1994; see their eqs. [4.16] and [4.22])

dE B>
<E>C0ul X — 47'67'2 cm, szzne InA W . (Cl)
where r, is the classical electron radius, m, is the electron rest mass, c is the velocity of light, Z is the projectile charge, f = v/c
is the nucleon speed, n, is the electron number density in plasma, x,, = [3(r)'/?/4]'*(2kT,/m,c?)'/?, and T, is the electron
temperature. The Coulomb logarithm in the cold plasma limit is given by (e.g., Dermer 1985)

1 2 4 M 2 p4
InA~=In mezcz B
2 ar,h*c*n, M + 2ym,

where 7 = h/2n is the Planck constant, M is the projectile mass, and y is the Lorentz factor. For the appropriate number
density n, ~ 10711073 cm 3 and total energy E ~ 103-10* MeV, the typical value of the Coulomb logarithm In A lies within
the interval ~40-50, instead of usually adopted value of 20.

For the ionization losses, we use a general formula (Mannheim & Schlickeiser 1994, their eq. [4.24]):

(€2

(”Z—f) (6> )= ~2m2am, 2% 5 ¥ nlB,+ By ZIf], (€3)

s=H,He

where o, is the fine-structure constant, n, is the number density of the corresponding species in the ISM, f, = 1.4e*/hc = 0.01
is the characteristic velocity determined by the orbital velocity of the electrons in hydrogen, and

2 202.,2 2C
Bs=|:ln< m,cC .f;z)’ Qmax)_zﬁz__s_as]’ (C4)
where y is the Lorentz factor of the ion. The largest possible energy transfer from the incident particle to the atomic electron is
defined by kinematics,®
zme C2 ﬁZ,yZ

1+ @2ym,/M)’
where M > m, is the nucleon mass and I, denotes the geometric mean of all ionization and excitation potentials of the atom.
Mannheim & Schlickeiser (1994) give the values Iy; = 19 eV and Ty, = 44 eV. The shell correction term C,/z,, the density
correction term d,, and the B’ correction term (for large Z or small f) in equations (C3) and (C4) can be neglected for our

purposes.
Fragmentation and radioactive decay are addressed in Appendix A.

Omax X (C5)

C2. ELECTRON ENERGY LOSSES
Ionization losses in the neutral hydrogen and helium are given by the Bethe-Bloch formula (Ginzburg 1979, p. 360),

dE 21 - DFPE] 1
< dt) = —2nrZem,c? i ;Heans{ln[ o + [ (Co)

where Z, is the nucleus charge, n, is the gas number density, I, is the ionization potential (we use I; = 13.6 eV, I, = 24.6 €V,
although the exact numbers are not very important), E is the total electron energy, and y and § = v/c are the electron Lorentz
factor and speed, respectively.

The Coulomb energy losses in the fully ionized medium in the cold plasma limit are described by (Ginzburg 1979, p. 361)

dE 1 Em,_c? 3
) - awem,?Zn - |In—meC )2
<dt > re cme ¢ Zn g [“<4nreh2c2nZ> 4]’ €

where Zn = n, is the electron number density. For an accurate treatment of the electron energy losses in the plasma of an
arbitrary temperature, see, e.g., Dermer & Liang (1989) and Moskalenko & Jourdain (1997).
The energy losses due to ep-bremsstrahlung in the cold plasma are given by the expression (von Stickforth 1961)

8yB[L — 0.25(y — 1) + 0.44935(y — 1) — 0.16577(y — 1)*], y<2

dE 2,
- - _Z VA
(dt)w 3 trle MeC n{ﬁ‘1[6v In(25) — 2y — 0.2900] , )>2. (©8)

° Note that there was a typographical error in the denominator of the expression given by Mannheim & Schlickeiser (1994), which is corrected in our
formula.
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For the ee-bremsstrahlung, one can obtain (Haug 1975; Moskalenko & Jourdain 1997)
dE 1
<E> = — 5 ariom, P Znpy*Quns*) (©9)

where

*2 4* 2 *2
Qcm(v*)=8”y—*[1—%;*+5<2+’y%>1n(p*+y*)], *=Vo+2,  p*=6-D2,

and the asterisk denotes center-of-mass variables. The total bremsstrahlung losses in the ionized gas is the sum (dE/dt)g; =
(dE/dt),, + (dE/dt),.. A good approximation gives the expression (Ginzburg 1979, p. 408)

) _ it em,c?Z(Z + nE | m@p) -+ |. (C10)
dt ) gy 3

Bremsstrahlung energy losses in neutral gas can be obtained by integration over the bremsstrahlung luminosity (Koch &
Motz 1959; see also Paper IV)

dE do
<E>Bo =—cf ) n Jdkk e (C11)

s=H,He

A suitable approximation (maximum 10% error near E ~ 70 MeV) for equation (C11) gives the combination (cf. eq. [C10])

1
iE —4a,riem, 02E|:1n 2y) — §:| Y nZ(Z,+1), 7 < 100
(%),-

s=H,He
’ 12)
dt M
—cE Y s y > 800,
s=H,He ’I;

(see Ginzburg 1979, pp. 386, 409), with a linear connection in between. Here M, is the atomic mass and T, is the radiation
length (T; ~ 62.8 gcm ™2, Ty, ~ 93.1 gecm ™ 2).

The Compton energy losses are calculated using the Klein-Nishina cross section (Jones 1965; Moskalenko & Jourdain
1997),

dE _ mrim,c’

dt — 2y%B
where the background photon distribution, f,(), is normalized on the photon number density as n, = | do w?f(w), ® is the
energy of the background photon taken in the electron rest-mass units, k* = wy(1 + f),

Owda) SA)[S@, o, k*) — Sy, o, k)], (C13)

31 5 3 11 3 1 1 .
S(?, , k) = w{(k + ? + % + W)ln@k + 1) . F k— I; + 12(2k n 1) + 12(2k n 1)2 + le(—2k)}

3 11 1 1 )
—y{(k +6+ E)ln(Zk +1)— 3 k+ W0k + 1) 120k + 17 + 2L12(—2k)} , (C14)
and Li, is the dilogarithm
—2k 1
Liy,(—2k)= — f dx —In(1 — x)
0 x
Y, (=2k)/i, k<02,
=471 (C16)

—1.6449341 + LIn® 2k + 1) —In(2k + 1)In k) + Y i 2Rk +1)"',  k>02.
i=1

The synchrotron energy losses are given by

dE 32
2 202
— ) = ——mar;cU s C17
<dt s 9 e B’y ﬁ ( )
where Uy = H?/8n is the energy density of the magnetic field.
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Note added in proof—Since the acceptance of this paper, two other recent papers addressing radioactive cosmic-ray nuclei
have come to our attention: W. R. Webber & A. Soutoul, ApJ, 506, 335 (1998) and V. S. Ptuskin & A. Soutoul, A&A, 337, 859
(1998). The values obtained for the halo size in these papers (2-4 kpc, 4.97% kpc, respectively, are consistent with the present

work.

An extension of our model to the cosmic-ray antiproton spectrum in connection with diffuse gamma rays and the nucleon
spectrum can be found in I. V. Moskalenko, A. W. Strong, & O. Reimer, A&A, 338, L75 (1998).



