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It is well known that there is a Hawking temperature on the cosmological horizon

of the de-sitter spacetime, and the de-sitter spacetime can be a special case of a FRW

universe. Therefore, there may be a corresponding Hawking temperature in a FRW

universe. Indeed, there have been several clues showing that there is a Hawking

temperature on the apparent horizon of a FRW universe. In our paper, however,

after finding the corresponding cosmological horizon of a FRW universe, and then

investigating the behavior of a Klein-Gordon field near the cosmological horizon, we

find that there is a Hawking temperature on the cosmological horizon. Moreover, we

also find that the Hawking temperature on the apparent horizon of a FRW universe

in some previous work is just a special case in our results, where the variation rate

of cosmological horizon
.
rH is zero.
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I. INTRODUCTION

Since Hawking found that there was a thermal radiation like a black body in a black hole,

it has been further found that the radiation is in fact due to the existence of event horizon [1].

The event horizon playing a key point can also be seen from the Unruh effect where an

uniformly accelerating observer with acceleration a in the Minkowskian spacetime can detect

a thermal spectrum with temperature T = a/2π [2]. Here the Unruh radiation is closely

related to the existence of Rindler causal horizon for the observer. Obviously, the Hawking

temperature which is proportional to its surface gravity on the event horizon can give some

insight on the deep relationship between gravity and thermodynamics. Furthermore, the

thermodynamics of black hole has been constructed with the Bekenstein entropy of a black

hole [3–6]. Note that, the Hawking temperature is usually obtained on the event horizon

of a stationary black hole. In fact, it can also be obtained on the cosmological horizon of a

spacetime such as the cosmological horizon of de Sitter spacetime [7, 8].

Event horizon and cosmological horizon are both global concepts [9, 10]. Strictly speaking,

locally it is not known whether there is an event horizon or cosmological horizon associated

with a certain dynamical spacetime at some time. Thus this causes the difficulty to discuss

Hawking radiation for a dynamic spacetime. However, by using the the null property of

event horizon or cosmological horizon and the intrinsic symmetry of a dynamic spacetime,

we can find a corresponding hypersurface which can reduce the event horizon or cosmological

horizon in the stationary case. Because of this, we also call this corresponding hypersurface

as the event horizon or cosmological horizon for a dynamic spacetime in our paper [11–15]. In

spite of that, another situation appears. This is, the event horizon (the above corresponding

hypersurface) and apparent horizon for a dynamic spacetime are usually different, while

they are consistent for a stationary spacetime. Therefore, the Hawking radiation from which

horizon is still an open question. Recently, Hayward and other authors have attacked this

question [15–17]. By using the quasi-local Misner-Sharp energy [18–20], the so-called unified

first law can be deduced from the Einstein equation in a spherical symmetric spacetime [21–

24]. And they argued that the Hawking radiation might come from the apparent horizon for a

dynamic spherical symmetric black hole spacetime, because after projecting the unified first

law on the apparent horizon of a dynamic spherical symmetric black hole spacetime, one can

obtain an analogy of the first law of thermodynamics of stationary black hole. In addition,
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one could use the Hamilton-Jacobi equation of particles to make a simple proof [17, 25].

However, in spite of those works, there are other works showing that the Hawking radiation

can come from the event horizon of dynamic black hole spacetime by investigating the

behavior of the quantum filed near the event horizon [11–14].

On the other hand, the Friedmann-Robertson-Walker (FRW) universe is a dynamical

spacetime. And the de Sitter spacetime can be its special case. Therefore, it may also exists

Hawking radiation in a FRW universe. By considering that the FRW universe is also a

spherical symmetric spacetime and with an apparent horizon, thus the above discussion on

the apparent horizon of dynamic spherical symmetric black hole spacetime can be generalized

to the FRW universe. Following this way, there have been many interesting works on it [26–

32]. And it has been proved that the Hawking temperature of the apparent horizon in a

FRW universe is T = 1/2πrA, where the temperature is measured by the corresponding

Kodama observer [33] and rA is the radius of apparent horizon [31, 32]. In particular, we

would like to mention here that if we assume the entropy of apparent horizon S satisfying

S = A/4, where A is the area of the apparent horizon, one is able to derive Friedmann

equations of the FRW universe with any spatial curvature by applying the Clausius relation

to apparent horizon [34, 35]. However, there is the same situation as the dynamic black

hole spactime that the cosmological horizon of a FRW universe is not usually consistent

with its apparent horizon. Therefore, what the result is if we investigate the behavior of the

quantum filed near the cosmological horizon of FRW universe is one of our motivations.

There are several methods to investigate the behavior of quantum filed near the horizon

of a spacetime [36–38]. In our paper, we mainly use the method first proposed by Damour

and Ruffini and then developed by Sannan and Zhao [13, 14, 38, 39]. By using the fact that

usually the Klein-Gordon equation in the tortoise coordinates can be reduced to the standard

form of wave equation near the cosmological horizon of FRW universe, we can obtain the

appropriate parameter κ which can be corresponding to the surface gravity in the stationary

case. Moreover, we can find that the ingoing wave of FRW universe is not analytical on

the cosmological horizon. And the ingoing wave can be extended by analytical continuation

from the inside of cosmological horizon to the outside [13, 14, 38–40]. After doing these, we

obtain the Hawking radiation spectrum with the temperature on the cosmological horizon

of a FRW universe.

The organization of the paper is as follows. In Sec. II, we first obtain the cosmological
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horizon in a FRW universe, and then use the Damour- Ruffini method to obtain its Hawking

temperature. Sec. III is devoted to the conclusion and discussion. And we particularly

discuss some properties of the Hawking temperature. It shows that not only our result is

consistent with that in some previous work [31, 32], but also the result in some previous

work is a special case just when the variation rate of cosmological horizon
.
rH is zero.

II. THE COSMOLOGICAL HORIZON AND ITS HAWKING TEMPERATURE

IN A FRW UNIVERSE

The metric of a FRW universe is

ds2 = −dt2 + a2(t)

(

dρ2

1− kρ2
+ ρ2dΩ2

2

)

, (2.1)

where t is the cosmic time, ρ is the comoving radial coordinate, a is the scale factor, dΩ2
2

denotes the line element of a 2-dimensional sphere with unit radius, k = 1, 0 and −1

represent a closed, flat and open FRW universe, respectively.

For the convenience, we can define r = aρ. Thus, the metric (2.1) can be rewritten

ds2 = − 1− r2/r2A
1− kr2/a2

dt2 − 2Hr

1− kr2/a2
dtdr +

1

1− kr2/a2
dr2 + r2dΩ2

2. (2.2)

where rA = 1/
√

H2 + k/a2 is the location of apparent horizon in a FRW universe.

Note that, the metric of the de Sitter spacetime is

ds2 = −
(

1− r2

l2

)

dt2 +

(

1− r2

l2

)−1

dr2 + r2dΩ2
2. (2.3)

and the FRW metric (2.2) can be further rewritten that

ds2 = − 1− r2/r2A
1− kr2/a2

(dt+
Hr

1− r2/r2A
dr)2 +

1− kr2/a2

1− r2/r2A
dr2 + r2dΩ2

2. (2.4)

Thus it can be easily found that the de Sitter spacetime is just a special case of the FRW

universe where k = 0 and rA = H−1 = l is a constant in (2.4). On the other hand, we know

that r = l is the cosmological horizon of the de Sitter spacetime, therefore, there may be a

corresponding cosmological horizon in a FRW universe. By using the null property of the

cosmological horizon and the spherical symmetry in (2.2), we can indeed obtain that the

corresponding cosmological horizon r = rH(t) which satisfies

gµν
∂f

∂xµ

∂f

∂xν
= 0, (2.5)
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is

1− r2H/r
2
A =

.
r
2
H − 2HrH

.
rH . (2.6)

where f = r − rH(t). From (2.6), it can be also easily checked that the corresponding

cosmological horizon rH(t) is just the cosmological horizon of the de Sitter spacetime when

k = 0 and
.
rH = 0.

In the following, we will investigate the Hawking temperature of the corresponding cos-

mological horizon r = rH(t) in a FRW universe. For the simplicity, we just consider the

Klein-Gordon field in a FRW universe. And the Klein-Gordon equation

(�−m2)Φ =
1√−g

∂

∂xµ
(
√−ggµν

∂

∂xv
)Φ−m2Φ = 0. (2.7)

can be rewritten in the FRW coordinates (2.2) such that

− ∂

∂t
(

1
√

1− k
a2
r2

∂

∂t
)
ρ(t, r)

r
− ∂

∂t
(

Hr
√

1− k
a2
r2

∂

∂r
)
ρ(t, r)

r
− 1

r2
∂

∂r
(

r2
√

1− k
a2
r2
Hr

∂

∂t
)
ρ(t, r)

r

+
1

r2
∂

∂r
[

r2
√

1− k
a2
r2
(1− r2/r2A)

∂

∂r
]
ρ(t, r)

r
= [m2 +

l(l + 1)

r2
]

1
√

1− k
a2
r2

ρ(t, r)

r
, (2.8)

1

sin θ

∂

∂θ
(sin θ

∂

∂θ
)Ylm(θ, ϕ) +

1

sin2 θ

∂2

∂ϕ2
Ylm(θ, ϕ) + l(l + 1)Ylm(θ, ϕ) = 0. (2.9)

where m is the rest mass of the Klein-Gordon particle, Ylm(θ, ϕ) is the usual spherical

harmonics and Φ has been separated as

Φ =
1

r
ρ(t, r)Ylm(θ, ϕ). (2.10)

For the convenience to investigate the behavior of the scalar field near the cosmological

horizon, we introduce the generalized tortoise coordinate transformation

r∗ = r +
1

2κ
ln[rH(t)− r],

t∗ = t− t0. (2.11)

where κ is an adjustable constant, and rH(t) is just the location of the cosmologica.l horizon.

Note that, κ can be just the surface gravity of the event horizon or cosmological horizon in

the stationary spacetimes.
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From (2.11), we can obtain

∂

∂r
= [1 +

1

2κ(r − rH)
]
∂

∂r∗
,

∂

∂t
=

∂

∂t∗
−

.
rH

2κ(r − rH)

∂

∂r∗
,

∂2

∂r2
= [1 +

1

2κ(r − rH)
]2

∂2

∂r2∗
− 1

2κ(r − rH)2
∂

∂r∗
,

∂2

∂t∂r
= [1 +

1

2κ(r − rH)
]

∂2

∂t∗∂r∗
−

.
rH

2κ(r − rH)
[1 +

1

2κ(r − rH)
]
∂2

∂r2∗
+

.
rH

2κ(r − rH)2
∂

∂r∗
,

∂2

∂t2
= [

.
rH

2κ(r − rH)
]2

∂2

∂r2∗
−

.
rH

κ(r − rH)

∂2

∂t∗∂r∗
−

.
r
2
H +

..
rH(r − rH)

2κ(r − rH)2
∂

∂r∗
+

∂2

∂t2∗
.

Thus after using the above differential relations, the radial equation (2.8) can be

{− 2κ(r − rH)(
.
a
2
+ k + a

..
a)

a[r(2rκ− 2rHκ + 1)
.
a− a

.
rH ]

+
2 (l2 + l +m2r2)κa(r − rH)

r2[r(2rκ− 2rHκ+ 1)
.
a− a

.
rH ]

}ρ

+ {−[
.
r
2
H + (r − rH)

..
rH − 1]a2 + [(r + rH)

.
a
.
rH + r(r − rH)(2rκ− 2rHκ+ 1)

..
a]a

a(r − rH)[r(2rκ− 2rHκ+ 1)
.
a− a

.
rH ]

+
r[2κr2 + 2κr2H − (4rκ+ 1)rH ](

.
a
2
+ k)

a(r − rH)[r(2rκ− 2rHκ+ 1)
.
a− a

.
rH ]

} ∂ρ

∂r∗
+ { (2rκ− 2rHκ+ 1)2(

.
a
2
+ k)r2

2κa(r − rH)[r(2rκ− 2rHκ+ 1)
.
a− a

.
rH ]

+
−2(2rκ− 2rHκ+ 1)

.
a
.
rHar + a2[−(2rκ + 1)2 + 4κrH(2rκ+ 1)− 4κ2r2H +

.
r
2
H ]

2κa(r − rH)[r(2rκ− 2rHκ + 1)
.
a− a

.
rH ]

}∂
2ρ

∂r2∗

+
2κ(r − rH)

.
a

r(2rκ− 2rHκ+ 1)
.
a− a

.
rH

∂ρ

∂t∗
+ 2

∂2ρ

∂t∗∂r∗
+

2κa(r − rH)

r(2rκ− 2rHκ + 1)
.
a− a

.
rH

∂2ρ

∂t2∗
= 0. (2.12)

when r → rH and t → t0, the radial equation (2.12) can be

A
∂2ρ

∂r2∗
+ 2

∂2ρ

∂t∗∂r∗
+ α0

∂ρ

∂r∗
= 0. (2.13)

where we have used the equation (2.6) and

A = −H
.
rH − (H2 + k/a2)rH

κ(HrH − .
rH)

+ 2
.
rH , α0 =

(H2 + k/a2)rH −H
.
rH +

..
rH −

..
a
a
rH

.
rH −HrH

. (2.14)

The solutions of (2.13) are

ρout = e−iωt∗ , (2.15)

ρin = e−iωt∗+2iωr∗/Ae−α0r∗/A. (2.16)

By using the fact that usually the Klein-Gordon equation in the tortoise coordinates can

be reduced to the standard form of wave equation near the horizon

∂2ρ

∂r2∗
+ 2

∂2ρ

∂t∗∂r∗
= 0, (2.17)
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we can adjust the parameter κ to make A = 1, and

κ =
H

.
rH − (H2 + k/a2)rH

(HrH − .
rH)(2

.
rH − 1)

. (2.18)

Note that, A = 1 can also be implied from the special case, that of the de Sitter spacetime.

In this special case, k = 0 and
.
rH = 0 with rA = H−1 = l, the κ in (2.18) is κ = 1/l which

is just the surface gravity of the cosmological horizon in the de Sitter spacetime.

Therefore, the ingoing wave of the Klein-Gordon filed near the cosmological horizon can

be further rewritten

ρin = e−iωt∗+2iωr∗e−α0r∗ = e−iωt∗e2iωr−α0r(rH − r)iω/κ−α0/2κ. (2.19)

where we have used (2.11). And we can find that the ingoing wave (2.19) is not analytical on

the cosmological horizon, thus we can extend it by analytical continuation from the inside

of cosmological horizon to its outside [13, 14, 38–40]

(rH − r) → |rH − r|eiπ = (r − rH)e
iπ, (2.20)

and then the ingoing wave (2.19) becomes

ρin → ˜
ρin = e−iωt∗e2iωr−α0r(r−rH)

iω/κ−α0/2κe−
iπα0

2κ e−
πω

κ = e−iωt∗+2iωr∗e−α0r∗e−
iπα0

2κ e−
πω

κ , r > rH .

(2.21)

By using the Heaviside function Y

Y (x) =
{1, x ≥0

0, x <0
(2.22)

the complete ingoing wave can be

φin
ω = Nω[Y (rH − r)ρin + Y (rH − r)

˜
ρin]. (2.23)

where Nw is a normalization factor. From (2.23), the scalar product of φin
ω is

(φin
ω1
, φin

ω2
) = Nω1

Nω2
(δω1ω2

− e−π(ω1+ω2)/κδω1ω2
). (2.24)

Note that, if κ < 0, we can obtain from (2.24)

(φin
w , φ

in
w ) = −1 = N2

ω(1− e−2πω/κ). (2.25)

which is just a thermal spectrum with a temperature T = −κ/2π. While if κ > 0, we can

obtain

(φin
ω , φin

ω ) = 1 = N2
ω(1− e−2πω/κ). (2.26)
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which is apparently not a thermal spectrum. However, we can redefine the complete ingoing

wave in (2.23) that

φin′

ω = e
πω

κ Nω[Y (rH − r)ρin + Y (rH − r)
˜
ρin], (2.27)

thus we can obtain

(φin′

ω , φin′
ω ) = 1 = N2

ω(e
2πω/κ − 1). (2.28)

which is a thermal spectrum with the temperature T = κ/2π. In words, we can obtain the

thermal spectrum in both cases

N2
ω = 1/[exp(ω/KBT )− 1], (2.29)

where the temperature T is

T =
|κ|
2π

= | (H2 + k/a2)rH −H
.
rH

2π(HrH − .
rH)(2

.
rH − 1)

|. (2.30)

III. CONCLUSION AND DISCUSSION

Whether there is a Hawking temperature in a FRW universe is a very interesting question.

Viewed from the fact that the de Sitter spacetime can be a special case of a FRW universe

and there is a Hawking temperature on the cosmological horizon of the de Sitter spacetime,

thus it may also have a corresponding Hawking temperature in a FRW universe. Indeed,

there have been some clues showing that there is a Hawking temperature on the apparent

horizon in a FRW universe. However, in our paper, after first finding the corresponding

cosmological horizon of a FRW universe, and then investigating the behavior of a Klein-

Gordon field near the cosmological horizon, we obtain that there is a Hawking temperature

on the cosmological horizon of a FRW universe.

Some remarks on our results are in order.

(1) The relation between the apparent horizon and cosmological horizon in a FRW uni-

verse. From (2.6), we can easily find that these two horizons are usually not consistent.

However, they are same when
.
rH = 0 or

.
rH = 2HrH . By using rA = 1/

√

H2 + k/a2, we can

further reduce that H = 0 or
.

H = k/a2 in the
.
rH = 0 case, while 2H2+

.

H+k/a2 = 0 in the
.
rH = 2HrH case. Note that, the Ricci scalar of a FRW universe is R = 6(2H2 +

.

H + k/a2),

thus the latter case is also equivalent to R = 0.
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(2) The uniqueness of horizon. Note that, in the generalized tortoise coordinates (2.11),

the horizon can apparently be chosen other horizons such as the apparent horizon. However,

considered the fact that usually the Klein-Gordon field in the generalized tortoise coordinates

near the horizon can be reduced the standard form of wave equation (2.17), the horizon is

unique. And it should be the cosmological horizon in (2.6). This can be seen from (2.12)

that when r → rH and t → t0

lim
r→rH ,t→t0

{(2rκ− 2rHκ+ 1)2(
.
a
2
+ k)r2 − 2(2rκ− 2rHκ+ 1)

.
a
.
rHar

2κa(r − rH)[r(2rκ− 2rHκ+ 1)
.
a− a

.
rH ]

+
a2[−(2rκ+ 1)2 + 4κrH(2rκ+ 1)− 4κ2r2H +

.
r
2
H ]

2κa(r − rH)[r(2rκ− 2rHκ+ 1)
.
a− a

.
rH ]

} = 1. (3.1)

And at first it should be satisfied

lim
r→rH ,t→t0

{(2rκ− 2rHκ+ 1)2(
.
a
2
+ k)r2 − 2(2rκ− 2rHκ+ 1)

.
a
.
rHar

+ a2[−(2rκ+ 1)2 + 4κrH(2rκ+ 1)− 4κ2r2H +
.
r
2
H ]} = 0. (3.2)

which is just the location of the cosmological horizon in (2.6).

(3) Another method to obtain κ and rH . There is a more simple method to determine κ

and rH . From the generalized tortoise coordinate transformation (2.11), we can have

dr∗ = [1 +
1

2κ(r − rH)
]dr −

.
rH

2κ(r − rH)
dt,

dt∗ = dt. (3.3)

Thus

dr =
2κ(r − rH)

2κ(r − rH) + 1
dr∗ +

.
rH

2κ(r − rH) + 1
dt∗,

dt = dt∗. (3.4)

After substituting (3.4) into the metric (2.2), we have

ds2 = {− 1− r2/r2A
1− kr2/a2

− 2Hr

1− kr2/a2

.
rH

2κ(r − rH) + 1
+

1

1− kr2/a2
[

.
rH

2κ(r − rH) + 1
]2}dt2∗

+{− 2Hr

1− kr2/a2
2κ(r − rH)

2κ(r − rH) + 1
+

2

1− kr2/a2
2κ(r − rH)

2κ(r − rH) + 1

.
rH

2κ(r − rH) + 1
}dt∗dr∗

+
1

1− kr2/a2
[

2κ(r − rH)

2κ(r − rH) + 1
]2dr2∗ + r2dΩ2

2

=
2κ(r − rH)

(1− kr2/a2)[2κ(r − rH) + 1]

−Hr[2κ(r − rH) + 1] +
.
rH

2κ(r − rH) + 1
{ 2κ(r − rH)

−Hr[2κ(r − rH) + 1] +
.
rH

dr2∗

+
−(1− r2/r2A)[2κ(r − rH) + 1]2 − 2Hr

.
rH [2κ(r − rH) + 1] +

.
r
2
H

−Hr2κ(r − rH)[2κ(r − rH) + 1] + 2κ(r − rH)
.
rH

dt2∗ + 2dt∗dr∗}+ r2dΩ2
2.

(3.5)
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which we require that it can reduce the following formalism in the limit r → rH , t → t0

ds2 = Ω2(−dt2∗ + 2dt∗dr∗) + r2dΩ2
2. (3.6)

where Ω is the corresponding conformal factor. Therefore, we can obtain the same rH and

κ in (2.6) and (2.18), respectively.

(4) The temperature in some special cases. Here we give some special cases where the

cosmological horizon is consistent with the apparent horizon.

In the
.
rH = 0 case, the temperature in (2.30) is

T =
1

2πHr2A
. (3.7)

Note that, in reference [31, 32] the temperature is T = 1
2πrA

. And this temperature measured

by the Kodama observer has a factor HrA in front of the temperature measured by the

observer (∂/∂t)a in (2.2). In addition,
.
rH = 0 ensures the observer in the coordinates system

in (2.11) same as the observer (∂/∂t)a in (2.2). Thus our result is in fact consistent with the

result in reference [31, 32]. Furthermore, it also shows that the result in reference [31, 32] is

just a special case of our result.

In the
.
rH = 2HrH case, the temperature in (2.30) is

T =
|κ|
2π

= | 2H2r2A − 1

2πHr2A(4HrA − 1)
|. (3.8)

And it contains an interesting case. When k = 0, we can further calculate a(t) = t1/2 with

H = 1
2t

and rA = 1
H

= 2t, which can just represent the period of radiation dominated in the

early FRW universe. From our result, the temperature in this period is T = 1
6πrA

.

(5) The generalized tortoise coordinate. In our paper, we choose the generalized tortoise

coordinate as that in (2.11). In fact, we can also choose the generalized tortoise coordinate

just as

r∗ =
1

2κ
ln[rH(t)− r],

t∗ = t− t0. (3.9)

By using the same procedure, we can obtain the same rH but different κ, which can be

seen in appendix A. And the reason can be simply viewed from the fact that the cos-

mological horizon is independent of observers, while the κ related with the temperature

is dependent of observers. In fact, the 4-velocity of the observer in the new coordinate
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system after the coordinates transformation can be showed in the same coordinate system

in (2.2). After the coordinates transformation (2.11), the 4-velocity of the new observer is

( ∂
∂t
)a+

.
rH

2κ(r−rH )+1
( ∂
∂r
)a, while after the coordinates transformation (3.9), it is ( ∂

∂t
)a+

.
rH(

∂
∂r
)a.

Obviously, these two observers are different. And when
.
rH = 0 they are same as the observer

(∂/∂t)a in (2.2).
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Appendix A: Choosing different generalized tortoise coordinate

In this appendix, we just use the more simple method to determine rH and κ. By using

(3.9), we can have

dr∗ =
1

2κ(r − rH)
dr −

.
rH

2κ(r − rH)
dt,

dt∗ = dt. (A1)

Thus

dr = 2κ(r − rH)dr∗ +
.
rHdt∗,

dt = dt∗. (A2)

After substituting (A2) into the metric (2.2), we have

ds2 = {− 1− r2/r2A
1− kr2/a2

− 2Hr
.
rH

1− kr2/a2
+

.
r
2
H

1− kr2/a2
}dt2∗ + {−4Hrκ(r − rH)

1− kr2/a2

+
4κ(r − rH)

.
rH

1− kr2/a2
}dt∗dr∗ +

[2κ(r − rH)]
2

1− kr2/a2
dr2∗ + r2dΩ2

2

=
2κ(r − rH)(−Hr +

.
rH)

(1− kr2/a2)
{2κ(r − rH)

−Hr +
.
rH

dr2∗ +
−(1− r2/r2A)− 2Hr

.
rH +

.
r
2
H

2κ(r − rH)(−Hr +
.
rH)

dt2∗

+2dt∗dr∗}+ r2dΩ2
2. (A3)
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Similarly, we require that the (A3) can be reduced the formalism (3.6) in the limit r → rH

and t → t0. Therefore,

lim
r→rH ,t→t0

(1− r2/r2A) + 2Hr
.
rH − .

r
2
H

2κ(r − rH)(−Hr +
.
rH)

= 1. (A4)

which reduces

(1− r2H/r
2
A) + 2HrH

.
rH − .

r
2
H , (A5)

and

κ =
H

.
rH − rH/r

2
A

.
rH −HrH

. (A6)
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