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Abstract. The current flow of high accuracy astrophysical data, among which are the Cosmic
Microwave Background (CMB) measurements by the Planck satellite, offers an unprecedented
opportunity to constrain the inflationary theory. This is however a challenging project given
the size of the inflationary landscape which contains hundreds of different scenarios. A
reasonable approach is to consider the simplest models first, namely the slow-roll single field
models with minimal kinetic terms, unless the data drive us to more complicated ones. This
still leaves us with a very populated landscape, the exploration of which requires new and
efficient strategies. It has been customary to tackle this problem by means of approximate
model independent methods while a more ambitious alternative is to study the inflationary
scenarios one by one. We have developed the new publicly available runtime library ASPIC1

to implement this last approach. The ASPIC code provides all routines needed to quickly
derive reheating consistent observable predictions within this class of scenarios. ASPIC has
been designed as an evolutive code which presently supports 64 different models, a number
that may be compared with three or four representing the present state of the art. In this
paper, for each of the ASPIC models, we present and collect new results in a systematic
manner, thereby constituting the first Encyclopædia Inflationaris. Finally, we discuss how
this procedure and ASPIC could be used to determine the best model of inflation by means
of Bayesian inference.
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1 Introduction

The theory of inflation [1–4] represents a cornerstone of the standard model of modern
cosmology (the “hot Big-Bang model” of Lemâıtre and Friedmann ) [5–8]. By definition,
it is a phase of accelerated expansion which is supposed to take place in the very early
universe, at very high energy (between 200 and 1015 GeV). Inflation allows us to understand
several puzzles that plagued the pre-inflationary standard model (before 1981) and that
could not be understood otherwise. Without inflation, the standard model of cosmology
would remain incomplete and highly unsatisfactory. The most spectacular achievement of
inflation is that, combined with quantum mechanics, it provides a convincing mechanism
for the origin of the cosmological fluctuations (the seeds of the galaxies and of the Cosmic
Microwave Background - CMB - anisotropies) and predicts that their spectrum should be
almost scale invariant (i.e. equal power on all spatial scales) [9–17] which is fully consistent
with the observations. Let us notice in passing that this part of the scenario is particularly
remarkable since it combines General Relativity and Quantum Mechanics [7, 8, 18–24]. Given
all these spectacular successes and given the fact that, despite many efforts, inflation has not
been superseded by its various challengers [25–53], this scenario has gradually become a
crucial part of modern cosmology. As can be seen in Fig. 1, the number of papers devoted
to this topic and published each year is inflating since the advent of inflation.
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Figure 1. Number of articles containing the word “inflation” and its variations (i.e. “inflating”,
“inflationary”, etc . . . ) in its title published each year since the advent of inflation. The total number
is estimated to be 4077 papers.

In order to produce a phase of inflation within General Relativity, the matter content
of the universe has to be dominated by a fluid with negative pressure. At very high energy,
the correct description of matter is field theory, the prototypical example being a scalar
field since it is compatible with the symmetries implied by the cosmological principle. Quite
remarkably, if the potential of this scalar field is sufficiently flat (in fact, more precisely, its
logarithm) so that the field moves slowly, then the corresponding pressure is negative. This
is why it is believed that inflation is driven by one (or several) scalar field(s). For obvious
reasons, this scalar field was given the name “inflaton”. However, the physical nature of
the inflaton and its relation with the standard model of particle physics and its extensions
remain elusive. Moreover the shape of its potential is not known except, of course, that it
must be sufficiently flat. This is not so surprising since, as mentioned above, the inflationary
mechanism is supposed to take place at very high energies in a regime where particle physics
is not known and has not been tested in accelerators.

Another crucial aspect of the inflationary scenario is how it ends and how it is connected
to the subsequent hot Big-Bang phase. It is believed that, after the slow-roll period, the field
oscillates at the bottom of its potential, or undergoes tachyonic preheating, but finally de-
cays into radiation. In this way, inflation is smoothly connected to the radiation-dominated
epoch [54–63]. Unfortunately, very little is observationally known on this so-called reheating
period. Let us stress that adiabatic initial conditions, as favored from the current CMB
measurements, naturally stem from such a setup within single field models. Another con-
straint is that the reheating temperature, Treh, must be higher than the nucleosynthesis scale
(i.e. a few MeV). If, however, one restricts oneself to specific models, then one can obtain
better bounds on Treh, as was recently shown for the first time in Ref. [64]. But, so far, these
constraints concern a few models only.
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We see that, despite the fact that it has become a cornerstone, inflation is not as
observationally known as the other parts of the standard model of Cosmology. However, there
is now a flow of increasingly accurate astrophysical data which gives us a unique opportunity
to learn more about inflation. In particular, the Planck satellite [65], data should play a
crucial role in this process. The mission complements and improves upon observations made
by the NASA WMAP satellite [66, 67] and is a major source of information relevant to
several cosmological issues and, of course, to inflation. But the flow of new data does not
only concern the CMB. The Supernovae projects [68–71] continue to measure the distances
to the nearby exploding SN1A stars while the large scale galaxy surveys such as the Sloan
Digital Sky Survey (SDSS) [72, 73] are providing an unprecedented picture of the structure
of the universe. SDSS is planned till 2014 and has recently provided the measure of the so-
called Baryonic Acoustic Oscillations (BAO). They are the red-shifted version of the acoustic
oscillations observed in the CMB anisotropies which have been transferred to the galaxy
power spectrum. The “level arm” in length scales between CMB and galaxy power spectra
increases the sensitivity to the small deviations from scale invariance, and thus should be
extremely powerful to constrain inflationary models. For this reason, the future Euclide
satellite will be another step forward in our understanding of inflation [74]. The CMB
small angular scales of Planck are also complemented by balloon-borne and ground-based
microwave telescopes such as the Atacama Cosmology Telescope (ACT) [75, 76] or the South
Pole Telescope (SPT) [77, 78]. In a foreseeable future, the last bit of yet unexplored length
scales are expected to be unveiled by the 21cm cosmological telescopes. These ones will be
sensitive to the red-shifted 21cm line absorbed by hydrogen clouds before the formation of
galaxies [79–85]. With such data, we will have a complete tomography of the universe history
from the time of CMB emission at the surface of last scattering to the distribution of galaxies
today.

The main goal of this article is to develop methods that will allow us to constrain the
inflationary scenario at a level matching the accuracy of these new data. Since we have
now entered the era of massive multi-data analysis, the project aims at a change of scale
compared to previous approaches. In particular, one way to deal with this question is to
perform systematic and “industrial” studies of this issue. Our ability to see through the
inflationary window turns the early universe into a laboratory for ultra-high energy physics,
at scales entirely inaccessible to conventional experimentation. In other words, this window
offers a unique opportunity to learn about the very early universe and about physics in
a regime that cannot be tested otherwise, even in accelerators such as the Large Hadron
Collider (LHC).

1.1 Methodology

Let us now discuss how, in practice, the above described goals can be reached. One issue
often raised is that, since there are (literally) a few hundreds different scenarios, it is dif-
ficult to falsify inflation. This is, however, not a very convincing argument since different
models belong to different classes and usually do differ in their observable predictions. They
can thus be observationally distinguished. A natural way to proceed is therefore to test
inflationary models step by step, starting with the simplest scenarios. This is consistent
with the Occam’s razor point of view and the way inference is achieved within Bayesian
statistics (see below). With this in mind, we can classify models in three different broad
categories: single-field inflation (category I), multiple-field inflation (category II) and models
where matter is not described by a scalar field as, for instance, vector inflation [86] and/or
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chromo-natural inflation [87] (category III). Within each category, one could further iden-
tify various sub-categories. For example, within category I, the scalar field can possess a
minimal kinetic term and a smooth potential (category IA), a minimal kinetic term and a
potential with features (category IB), a non-minimal kinetic term with a smooth potential
(category IC) or a non-minimal kinetic term and a potential with features (category ID).
The same four sub-categories can also be defined within category II (for instance, multiple
Dirac Born Infeld -DBI- field inflation [88–90] belongs to category IIC) and so on. As already
mentioned, each category leads to different predictions. For instance, all models of category
IA predict a negligible level of non-Gaussianities [91–95] while, on the contrary, models of
categories IB-ID yield non-negligible non-Gaussianities [96–110]; models belonging to IB and
to IC, or II, may not predict exactly the same type of non-Gaussianities [111, 112], etc . . . In
this context, a reasonable method is to start with the IA-models, unless the data force us
to directly consider more complicated scenarios. That should be the case if, for instance, a
non-vanishing primordial fNL, the parameter characterizing the amplitude of the bispectrum,
is detected. This is not the case at the time of writing. Following category IA, one should
then treat categories IB-ID, then category II and so on. In this way, one can falsify inflation
step by step, in a Bayesian motivated fashion.

Bayesian inference for inflation requires some cosmological data that are sensitive to it,
such as the ones enumerated above. For the purpose of illustration, let us consider the CMB
angular power spectrum. Cosmological measurements give us a set of numbers, Cmeas

ℓ , that
we are able to calculate theoretically within an inflationary model. This means that we know
the functions Cth

ℓ ≡ Cth
ℓ (θstand, θinf), where θstand represents a set of parameters describing

post-inflationary physics, i.e. θstand = (h,ΩΛ,Ωdm, · · · ) and θinf a set of parameters describ-
ing inflationary physics. We are interested in constraining the values of those parameters,
especially the θinf ’s. Within a given experiment, one is given a likelihood, or an effective chi-
squared χ2 (θstand, θinf), encoding all the underlying uncertainties. In a frequentist approach,
the searched values of θstand and θinf would be chosen at the best fit, i.e. those verifying
∂χ2/∂θ = 0. In a Bayesian approach [113], we are interested in determining the posterior
distributions of the parameters, using Bayes’s theorem

P (θstand, θinf |Cmeas
ℓ ) =

1

N L (Cmeas
ℓ |θstand, θinf)π (θstand, θinf) , (1.1)

where L (Cmeas
ℓ |θstand, θinf) = e−χ

2(θstand,θinf)/2 is the likelihood function, π (θstand, θinf) the
prior distribution, describing our prejudices about the values of the parameters before our
information is updated, and N a normalization factor, also called Bayesian evidence. Because
we are interested in the inflationary parameters, one has to integrate over the post-inflationary
parameters in order to obtain the marginalized probability distribution P (θinf |Cmeas

ℓ ) =
∫

P (θstand, θinf |Cmeas
ℓ ) dθstand. CMB physics also tells us that the multipole moment Cth

ℓ can
be written as

Cth
ℓ (θstand, θinf) =

∫ +∞

0

dk

k
jℓ(krℓss)T (k; θstand)Pζ(k; θinf), (1.2)

where jℓ is a spherical Bessel function, T (k; θstand) is the transfer function which describes the
evolution of cosmological perturbations during the standard Friedmann-Lemâıtre eras and Pζ
is the inflationary power spectrum. As a result, the process of constraining inflation from the
Cmeas
ℓ reduces to the calculation of Pζ . The same lines of reasoning could be generalized to

any other cosmological observables sourced during inflation, such as higher order correlation
functions.
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At this stage, there are, a priori, two possibilities. Either one uses a model-independent,
necessarily approximate, shape for Pζ or, on the contrary, one scans the inflationary land-
scape, model by model, and for each of them, calculates Pζ exactly.

The advantage of working with a model-independent technique is obvious. However,
it often requires an approximation scheme that may not be available for all models. In
practice, an approximate method, the slow-roll approach, is known for the category IA and
for the category IC, see the recent papers [114, 115]. In this case, the set of inflationary
parameters θinf becomes the Hubble flow functions: θinf = {ǫn} where the ǫn are defined in
Eq. (2.3) and the corresponding expression of Pζ(k; ǫn) is provided in Eqs. (2.18), (2.20),
(2.21) and (2.22). Assuming some priors π(ǫn) on the Hubble flow functions, this method
yields the posterior distributions P (ǫn|Cmeas

ℓ ) for the Hubble flow functions evaluated at the
pivot scale. This approach has already been successfully implemented for the WMAP data
in Refs. [64, 116–119].

The second approach is more ambitious. It consists in treating exactly all the inflation-
ary models that have been proposed so far and in a systematic manner. For each model, the
power spectrum is determined exactly by means of a mode by mode numerical integration,
for instance using the FieldInf code1. Such an approach can also be used with the higher
correlation functions with, for instance, the recent release of the BINGO code calculating the
inflationary bispectrum [120].

In this case, the set of parameters θinf differs according to the model considered. For
instance, Large Field Inflation (LFI) for which V (φ) =M4 (φ/MPl)

p, has θinf = (M,p) while
Small Field Inflation (SFI) with V (φ) =M4 [1− (φ/µ)p] has θinf = (M,p, µ). From FieldInf

one can then compute Pζ(k;M,p) for LFI and Pζ(k;M,p, µ) for SFI without any other
assumptions than linear perturbation theory and General Relativity. Starting from some
priors on the model parameters, e.g. in the case of LFI, π(M) and π(p), this method allows
us to determine the posterior distributions P (M |Cmeas

ℓ ) and P (p|Cmeas
ℓ ), thereby providing

parameter inference about the corresponding inflationary model. This approach, which was
successfully implemented for the first time in Refs. [117, 121–123], and subsequently used in
Ref. [124], has several advantages that we now discuss.

Firstly, the most obvious advantage is that the result is exact. The slow-roll method is
an approximation and, for this reason, remains somehow limited. As mentioned before, there
are plethora of models, such as single field models with features or multiple field scenarios,
for which a numerical integration is mandatory.

A second reason is that a full numerical approach permits a new treatment of reheating.
In the standard approach, the influence of the reheating is only marginally taken into account.
Any observable predictions depend on the number of e-folds associated with a reheating era.
From the fact that the reheating must proceed after the end of inflation and before the elec-
troweak scale, one can put an order of magnitude bound on this number of e-folds [125]. This
causes small uncertainties in the inflationary predictions that were not crucial in the past.
However, with the accuracy of the present and future data this question now matters. This
is illustrated in Fig. 2 which represents the slow-roll predictions of LFI for which V (φ) ∝ φp.
Each colored segment represents the range of observable predictions for a given value of p,
each point within a segment corresponding to a given number of e-folds for the reheating
or, equivalently, to a given reheating temperature Treh. We see that, for relatively small
values of p, it is necessary to know the number of e-folds the Universe reheated to decide

1See http://theory.physics.unige.ch/~ringeval/fieldinf.html.
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Figure 2. Observational predictions for the LFI models, V (φ) ∝ φp, in the plane (nS, r) (i.e. scalar
spectral index and gravity wave contribution) compared to the WMAP data. Each continuous line
and each color represent a different value of p. Along each line, each point (i.e. each small “cross”)
denotes a different reheating temperature compatible with the constraint ρend > ρreh > ρnuc (the
annotations give the logarithm of the reheating temperature in GeV). We see that the details of the
reheating stage now matter: along a given line, some reheating temperatures are compatible with the
observational constraints while others are not. This means that the CMB observations can now put
constraints on Treh.

whether the model is compatible with the data or not. Conversely, the data are becoming so
accurate that one can start constraining the reheating epoch. Therefore, instead of viewing
the reheating parameters as external source of uncertainties, it is more accurate to include
them in the numerical approach and consider they are part of the inflationary model. In its
simplest description, the reheating epoch can be modeled as a cosmological fluid with a mean
equation of state wreh > −1/3. For a simple quadratic potential, one would have wreh = 0.
In this way, both wreh and Treh are added to the inflationary parameters, e.g. we now have
θinf = (M,p, Treh, wreh) for LFI, and FieldInf computes Pζ(k;M,p, Treh, wreh). Starting
from some priors π(Treh) and π(wreh) one can then obtain the corresponding posterior distri-
butions P (Treh|Cmeas

ℓ ) and P (wreh|Cmeas
ℓ ). The feasibility of this method has already been

demonstrated in Refs. [64, 117] where constraints on the reheating temperature for LFI and
SFI have been derived for the first time (see also Ref. [126]). In view of the expected accu-
racy for the future data, the preheating/reheating era should become a compulsory element
of inflationary model testing. This issue plays an important role in the proposal put forward
in this article. In addition, let us also emphasize that a proper treatment of the reheating
and preheating stages is mandatory in multiple field inflation because they can affect the
evolution of Pζ on large scales. Only a numerical approach can deal with this problem.

A third advantage of the numerical approach is to address the question of the priors
choice in a particularly well-defined way. A crucial aspect of the Bayesian method is that
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the result depends on the choice of the priors. Therefore, these ones must be chosen and
discussed carefully. In the slow-roll (approximated) approach described before, the priors
are chosen on the slow-roll parameters themselves. For instance, a Jeffrey’s prior is typically
chosen on ǫ1 (i.e. uniform prior on log ǫ1), as appropriate when the order of magnitude of
a parameter is not known. However, from a physical point of view, it is better to choose
the priors directly on the parameters of the model, i.e. the parameters of the potential.
For instance, several potentials that we will treat are the results of a one-loop calculation,
namely a perturbative calculation with the coupling constant playing the role of the small
parameter. It is clear that the prior must encode the fact that this parameter is small. With
the numerical approach, this is very conveniently done since we directly compute the power
spectrum from the potential itself. As another example, let us consider the case of LFI where
ǫ1 ≃ p/ (4∆N∗ + p/4) (∆N∗ is the number of e-folds between Hubble exit and the end of
inflation, see below). Owing to the non-trivial relation between the first slow-roll parameter
and p, a Jeffreys’ prior π(ǫ1) on ǫ1 implies a complicated prior π(p) on p while a natural
choice would be a flat prior. Again, implementing the priors directly on the parameters of
the model is a more theoretically justified choice. Conversely, who could dispute that, beside
the posterior P (ǫ1|Cmeas

ℓ ), it is theoretically interesting to know the posterior distribution of
p, i.e. P (p|Cmeas

ℓ ). The exact numerical integration is a reliable technique to obtain such
distributions.

The numerical approach, however, has also some disadvantages. Firstly, one needs to
specify the inflationary scenarios explicitly and, therefore, the constraints obtained are not
model-independent. Although this shortcoming can in fact never be avoided (we always need
to make some assumptions even in the slow-roll approach) it may be partially overcome
by scanning the complete inflationary landscape. Secondly, and more importantly, it is
time consuming since the exact integration of the cosmological perturbations and of the
corresponding correlation functions is heavy and can take up to a few minutes for complicated
models. Finally, one should expect multiple degeneracies for models having a high number of
inflationary parameters since the data have a limited sensitivity to the shape of the primordial
observables.

Based on the previous considerations, we conclude that it would be very interesting to
have an intermediate method that would allow us to get most of the results that can be derived
using the exact numerical approach while being less time consuming and immune to high
parameter degeneracies. This is what we suggest in the following. Our strategy is to use the
slow-roll approximation in order to skip the numerical calculation of the power spectrum,
but, combined with a systematic scan of the whole inflationary landscape and reheating
properties. Moreover, since we have argued that inflation should be tested starting with the
simplest models first (unless the data force us to move on to more complicated scenarios), our
method needs to be implemented for the class of scenarios IA only. More precisely, instead
of inferring the posterior distributions of the Hubble flow parameters ǫn only, as one would
naturally do in the approximate approach discussed before, we take advantage of the fact
that the ǫn’s can be computed in terms of the parameters describing the reheating and V (φ).
In particular, for each model, this permits a quick and efficient extraction of the posterior
distributions of those parameters.

In our opinion, however, this third technique should not be viewed as a competitor of
the two other ones mentioned earlier but rather as complementary and the corresponding
results should be compared. Let us also notice that, if, in order to scan all the inflationary
scenarios, the full exact numerical approach needs to be carried out at some point, this would
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Figure 3. Exact slow-roll predictions for SFI models, V (φ) ∝ 1 − (φ/µ)
4
, compared to the WMAP

data. Each colored segment represents a different value of µ, the color bar giving the corresponding
range of variation. Each segment is made of different points associated with different reheating
temperatures. The yellow-only segments on the left represent the approximated slow-roll predictions.
We see that they coincide with the exact predictions for µ/mPl ≪ 1 but differ in the regime µ/mPl ≫ 1
where the approximation becomes inaccurate. Moreover, the approximation would indicate that this
class of models is disfavored while the correct slow-roll predictions show that, on the contrary, they
remain compatible with the data.

by no means render the results derived in the present article useless. Indeed, the slow-roll
approach is often a very useful guide of which kind of physics one should expect for a given
model (initial conditions, range of the parameters, etc . . . ). In particular it allows us to
understand any eventual parameter degeneracies within the primordial observables. In other
words, the slow-roll method is an ideal tool to prepare a full numerical study.

At this point, it is worth making the following remark. The method put forward in this
article uses an approximate shape for the power spectrum, namely (k∗ is the pivot scale)

Pζ(k) ∝ a0 (ǫn) + a1 (ǫn) ln

(

k

k∗

)

+
1

2
a2 (ǫn) ln

2

(

k

k∗

)

+ . . . , (1.3)

in order to shortcut a numerical integration of Pζ but is otherwise exact. In other words,
once the slow-roll approximation is accepted, no additional approximation should be made.
But it is important to realize that this may require additional numerical calculations in
order to determine the coefficients ai exactly, or more precisely the explicit expression, at
Hubble crossing, of ai = ai [ǫn (θinf)]. This issue is now very important given the accuracy
of the data. This point is illustrated in Fig. 3 and more about this question can also be
found in Ref. [117]. In this figure, we have represented the slow-roll predictions of a SFI
model, V (φ) ∝ 1 − (φ/µ)4. Each colored segment represents the exact slow-roll predictions
of a model given the parameter µ and for different numbers of e-folds during the reheating.
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Figure 4. Predictions of the RCHI model in the plane (nS, r). These predictions depend on one free
parameter, A

I
, for details see section 4.1. The colored segments represent the exact predictions (same

conventions as in Fig. 3), obtained when the coefficients ai = ai [ǫn (θinf)] are numerically evaluated.
On the contrary, the thick red dashed line indicates some approximated predictions. We see that
there is a significant difference for A

I
& 15.

These predictions have been computed by solving numerically the slow-roll equations. But, in
the same plot, there are also other segments, on the left, and represented in yellow only. They
are the slow-roll predictions for different values of µ but based on widespread approximate
slow-roll formulas used in the literature. We see that, given the accuracy of the data, the
approximated formulas are no longer accurate enough: the approximate results would predict
that models with µ/MPl > 1 are strongly disfavored while the correct slow-roll results show
that they are still compatible with the data. Another textbook example is provided by
Higgs inflation with radiative corrections (RCHI) and is presented in Fig. 4. This scenario is
studied in detail in section 4.1 and depends on one free parameter, A

I
. The colored segments

represent the exact predictions for different values of A
I
(see the color bar on the side of

the plot). The red dashed line indicates predictions based on a commonly used approximate
equation for the coefficients ai = ai (ǫn) at Hubble crossing during inflation. We see that
this is no longer sufficient in the range A

I
& 15. From these two examples, we conclude that

it is safer to use the slow-roll approximation (which is usually extremely good) and nothing
else, in particular no extra approximation on top of the slow-roll approximation. The fact
that we still need to use numerical calculations to establish the observational predictions of
a model does not make our approach useless. Indeed, the numerical calculations needed to
estimate the ai = ai [ǫn (θinf)] are, by far, much easier than those needed to exactly compute
Pζ . Therefore, the gain in computational time mentioned above is huge and allows for a fast
and reliable method to constrain the inflationary landscape.
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1.2 The ASPIC library

The project described before contains many different aspects that we intend to publish in
several companion articles. We now explain the purpose of the present paper and put it
in context with the other works that are in preparation. We have coded a public runtime
library, named ASPIC for “Accurate Slow-roll Predictions for Inflationary Cosmology”, which
is supposed to contain all the inflationary models that can be treated with the method
described above. ASPIC already has 64 different inflationary scenarios, a number that should
be compared to the three or four models that are usually considered. The ASPIC library
is an open source evolutive project and, although it already contains all the most popular
inflationary scenarios, aims at including more models. In this way, it will converge towards
a situation where all the category IA models published since the advent of inflation are
implemented thereby allowing us to exhaustively scan this part of the inflationary landscape.
This article describes the ASPIC project and presents its first release and others will follow.
The list of the 64 ASPICmodels, as well as their acronym, is presented in Table 1 at the end of
this introduction. If future cosmological data force us to move to more complicated scenarios,
the ASPIC library will be upgraded accordingly. It can, moreover, already be interfaced with
FieldInf thereby allowing for a full numerical approach, if needed. This would be especially
relevant for all the single field models with modified kinetic terms (category IB) such as DBI
models, models with features (category IC) such as the Starobinsky model [127] or multiple
field inflationary scenarios (category II) such as double inflation [128–131], double inflation
with an interaction term [132], the different versions of hybrid inflation [57, 133, 134] and
more [121]. However, if the data turns out to favor simple models, such as those producing
negligible non-Gaussianities and isocurvature perturbations, the ASPIC library in its present
form already contains the most relevant inflationary scenarios. The ASPIC library is publicly
available at http://cp3.irmp.ucl.ac.be/~ringeval/aspic.html.

The ASPIC library contains the numerical codes that allow us to compare the predictions
of any of the 64 different models to high-accuracy data. The present article presents the
general architecture of the ASPIC project and the calculations needed to understand and
write these codes. In practice, for each model, we give the calculation of the three first slow-
roll parameters, a discussion of how inflation ends, a discussion of the priors, a calculation of
the relevant range of variation of the reheating temperature and an exact integration of the
slow-roll trajectory. Then, we work out the theoretical predictions and compare them to the
WMAP data in the planes (ǫ1, ǫ2) and (nS, r). Let us stress again that, beside slow-roll, no
other approximation is used in the numerical codes of ASPIC.

Of course, the ASPICmodels have already been partially studied in the literature but it is
crucial to emphasize that, for each of them, this paper contains new results. In other words, it
does not aim at being a review and, therefore, the presentation of already derived results have
been kept to the minimal. Firstly, we should stress that, for all the models studied here, this
is the first time that their observational predictions are worked out when the constraints on
the reheating phase are accurately taken into account. As explained in Ref. [64], and briefly
reviewed in section 2, it has become too inaccurate to derive the predictions of a model by
simply assuming a fixed range for ∆N∗. For instance, this could lead to a reheating energy
density larger than the energy density at the end of inflation which is physically irrelevant.
Therefore, the predictions have been re-worked in such a consistent fashion (except for the LFI
and SFI models which had been studied before [64]). This already constitutes a significant
result which goes beyond the current state-of-the-art. Secondly, in the appendix, we present
a series of plots which give the predictions of the various ASPIC models in the planes (nS, r)
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and (ǫ1, ǫ2) for different values of the free parameters characterizing each potential. Most
often, this is the first time that these predictions are worked out for such a wide range of
parameters and, moreover, this is the first time that these predictions are presented in this
fashion. In some sense, our paper can be viewed as the first Encyclopædia Inflationaris.

1.3 New results

In order to be completely clear about the fact that this paper is not a review, we now highlight,
in a non-exhaustive way, some of the new results obtained in this paper. In this way, we hope
it gives a taste of all the new findings described later and the methods advocated earlier.

In the case of Higgs Inflation (HI), for instance, we have found an exact expression
of the slow-roll trajectory and discuss the reheating parameter in the case of scalar-tensor
theories of gravity. The exact trajectory is also found for radiatively corrected inflation
(RCHI) and we show that the exact predictions can differ from the commonly used ones in a
certain regime, see also Fig. 4. In the case of Mixed Large Field Inflation (MLFI), the exact
expressions of the slow-roll parameters ǫ2 and ǫ3 are new. We also calculate exactly φend,
the vev at which inflation stops, as well as the exact trajectory N(φ) and its inverse, φ(N).
Interestingly, since the potential is the sum of a quadratic and a quartic term, one would
expect the corresponding predictions to be located between the two lines in the plane (nS, r)
representing the quadratic LFI and the quartic LFI models, see for instance Fig. 2. We show
that this is not the case. For Natural Inflation (NI), we provide the exact expression of φend,
of the trajectory and its inverse. In addition, it is often claimed that, in the limit f/MPl ≫ 1,
the model is indistinguishable from a quadratic one (LFI with p = 2). We show that it is
true for nS and r but is not accurate for ǫ3, that is to say for the running αS. For the Kähler
Moduli Inflation I (KMII) and Kähler Moduli Inflation II (KMIII) models, all our results are
basically new. We present, for the first time, the exact expressions of the slow-roll parameters,
of the trajectories, their inverses, the possible values of α, a free parameter characterizing the
shape of the potentials (not to be confused with the running). We also emphasize the role
played by the running in this model: nS and r are perfectly compatible with the data while
αS seems to constrain the model more efficiently. However, contrary to what is commonly
claimed in the literature, we demonstrate that this does not rule out these models. Within
the Logamediate inflation scenario, we have derived an analytic expression for the trajectory
in terms of hypergeometric functions and exhibited a new inflationary domain LMI2, which
is however like almost a pure de Sitter era and currently disfavored. We also have new results
for the Coleman Weinberg Inflation (CWI) scenario. We find exact expressions for ǫ3 and an
exact determination of the end of inflation. We discuss, for the first time, the predictions of
the model in the full parameter space. In the case of Double Well Inflation (DWI), we present
a clear slow-roll analysis. The expressions of ǫ3, φend, the slow-roll trajectory, its inverse are all
new. Moreover, a detailed comparison with SFI is made and we show that the corresponding
predictions actually differ, contrary to what is sometimes written in the literature. In the
case of the Minimal Super-Symmetric Model (MSSMI) scenario, we demonstrate several new
results. We give the exact expression of the slow-roll parameters ǫ2 and ǫ3, the location
and the value of the maximum of the first slow-roll parameter ǫ1, an approximated formula
for φend, the exact slow-roll trajectory and a useful approximated version of it. We also
provide a parameter independent treatment of the quantum diffusion regime: usually this is
always done using specific values of the parameters whereas we show that the corresponding
conclusions are in fact completely general. We also explain why the model is quite strongly
disfavored due to the observational constraints on the spectral index. For the Renormalizable
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Inflection Point Inflation (RIPI) scenario, the slow roll parameters ǫ2 and ǫ3, the location and
the value of the maximum of ǫ1, the approximated determination of φend, the exact slow-roll
trajectory and a useful approximated version of it are all new. We also discuss the CMB
normalization and calculate the energy scale of inflation very accurately. Last but not the
least, we show that the model is strongly disfavored by the data. We have also explored the
Generalized MSSM Inflation (GMSSMI) scenario. We provide new formulas for ǫ2, ǫ3 and
the trajectory. We also give new bounds on the parameters characterizing the potential from
the requirement of having a sufficient number of e-folds during inflation. Finally, we show
that the model is disfavored by the data. Concerning the Brane Susy Breaking Scenario
(BSUSYBI), we have studied the effects coming from the the field value at which inflation
ends, in the slow-roll regime. For the ArcTan Inflation (AI) scenario, we work out the slow-
roll analysis beyond the approximation of vacuum domination and give an exact expression
for ǫ3 and the slow-roll trajectory. For the class of models leading to a constant spectral
index, CNAI, CNBI, CNCI and CNDI, we show how to calculate φend and the trajectory
exactly. We also demonstrate that the spectral index is in fact constant only in a limited
region of the parameter space which turns out to be already disfavored by the data. In
the case of Intermediate Inflation (II), we present an analysis which takes into account the
two terms of the potential while it is common to keep only the dominant one. We give
new expressions for ǫ3, the slow-roll trajectory and its relation with the exact, non slow-roll,
one. In the case of Twisted Inflation (TWI), we study this model for the first time in a
regime where it is not equivalent to DSI. We give new expressions for ǫ3, the exact trajectory
and the CMB normalization. We also discuss how inflation ends and show, contrary to a
naive expectation, that it cannot happen by violation of the slow-roll conditions. For the
Pseudo Natural Inflation (PSNI) scenario, we present new formulas for ǫ2, ǫ3, φend and the
trajectory. This is the first time that a slow-roll analysis of Orientifold Inflation (OI) is made.
As a consequence, all the corresponding results are new. In particular, we demonstrate that
the model is in bad shape because it predicts a too important amount of gravitational waves.
The scenario of Spontaneous Symmetry Breaking Inflation (SSBI) is important because it
can cover many physically different situations. This model actually contains six different
sub-models. The third slow-roll parameter, the trajectory and the CMB normalization are
new results obtained for the first time in this paper. In the case of Dynamical Symmetric
Inflation (DSI), we present new expressions for ǫ3, the trajectory and the CMB normalization.
Another important result is also a careful analysis of the prior space and the limits derived
on the parameters of the model which are such that it is disfavored by observations due to its
blue tilt. For the Generalized Mixed Large Field Inflation (GMLFI) model, we present new
equations for ǫ2 and ǫ3 and the trajectory. Concerning the LPI models, we have exhibited
three domains in which inflation could take place, thereafter denoted by LPI1, LPI2 and
LPI3. For the Non Canonical Kähler Inflation model (NCKI), we provide new results for
ǫ2 and ǫ3, the trajectory and the CMB normalization. We also analyze the predictions for
different values of β, a parameter characterizing the potential. We show that the case β < 0 is
ruled out while β > 0 is disfavored by the observations. We have also studied Loop Inflation
(LI). For this model, we give new expressions of ǫ3, φend, the trajectory and its inverse in
terms of a Lambert function. Also, the slow-roll analysis is carried out in the case where the
correcting term is negative which we could not find elsewhere. In the case of Tip Inflation
(TI), we also give ǫ3, φend and the trajectory. We also study which amounts of fine tuning
is required by the model and finally show that it is ruled out because its spectrum deviates
too strongly from scale invariance. Many other new results are given in this article but, as
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mentioned above, we do not summarize all of them here due to space limitation. They can
be found in the sections devoted to the various models listed in Table 1.

Before concluding this introduction, let us remark that this article and the ASPIC library
represent important tools to carry out our final goal which consists in assessing how good is
a model and in comparing the various inflationary models. This problem can be dealt within
Bayesian inference for model comparison. For this purpose, one has to calculate, for each
model, the global likelihood which is obtained by integrating the usual likelihood over all of
the model parameter values, weighted by their respective prior probability distribution. The
resulting quantity is a number associated with each model which gives the “evidence” that
the model explains the data [this is the number N in Eq. (1.1)]. Their respective ratios give
the odds that one model explains all data compared to the others. Bayesian methods have
the advantage to automatically incorporate the “Occam’s razor”: complicated inflationary
models will be assigned large probability only if the complexity is required by the data.
On the practical side, these two steps can be implemented by the use of Markov–Chains–
Monte–Carlo (MCMC) methods, which is especially well suited with the exact numerical
approach advocated before. These techniques have already been successfully implemented
first in Ref. [135], and later on in Ref. [126], and we plan to extent them to all the models of
the ASPIC library. As a matter of fact, this will allow us to scan the inflationary landscape in
a statistically well-defined way and to address the question of “the best model of inflation”.

This article is organized as follows. In the next section, section 2, we briefly summarize
slow-roll inflation and give the equations needed for the rest of this article. We also discuss
the reheating stage and explains how it can be implemented. Then, in section 3, we study
inflationary models which, up to the potential normalization, do not contain any free param-
eter (concretely, at this stage, Higgs inflation). In sections 4, 5 and 6, we analyze scenarios
characterized by one, two and three free parameters, respectively. Finally, in section 7, we
present our conclusions and discuss future works. In the appendix A, we give, in the planes
(nS, r) and (ǫ1, ǫ2), the predictions of all the 64 ASPIC models.
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Name Parameters Sub-models V (φ)

HI 0 1 M4
(

1− e−
√

2/3φ/MPl

)

RCHI 1 1 M4
(

1− 2e−
√

2/3φ/MPl +
A

I
16π2

φ√
6MPl

)

LFI 1 1 M4
(

φ
MPl

)p

MLFI 1 1 M4 φ2

M2
Pl

[

1 + α φ2

M2
Pl

]

RCMI 1 1 M4
(

φ
MPl

)2 [

1− 2α φ2

M2
Pl
ln
(

φ
MPl

)]

RCQI 1 1 M4
(

φ
MPl

)4 [

1− α ln
(

φ
MPl

)]

NI 1 1 M4
[

1 + cos
(

φ
f

)]

ESI 1 1 M4
(

1− e−qφ/MPl
)

PLI 1 1 M4e−αφ/MPl

KMII 1 2 M4
(

1− α φ
MPl

e−φ/MPl

)

HF1I 1 1 M4

(

1 +A1
φ

MPl

)2 [

1− 2
3

(

A1
1+A1φ/MPl

)2
]

CWI 1 1 M4

[

1 + α
(

φ
Q

)4
ln
(

φ
Q

)

]

LI 1 2 M4
[

1 + α ln
(

φ
MPl

)]

RpI 1 3 M4e−2
√

2/3φ/MPl

∣

∣

∣e
√

2/3φ/MPl − 1
∣

∣

∣

2p/(2p−1)

DWI 1 1 M4

[

(

φ
φ0

)2
− 1

]2

MHI 1 1 M4
[

1− sech
(

φ
µ

)]

RGI 1 1 M4 (φ/MPl)
2

α+(φ/MPl)
2

MSSMI 1 1 M4

[

(

φ
φ0

)2
− 2

3

(

φ
φ0

)6
+ 1

5

(

φ
φ0

)10
]

RIPI 1 1 M4

[

(

φ
φ0

)2
−
(

φ
φ0

)3
+ 9

32

(

φ
φ0

)4
]

AI 1 1 M4
[

1− 2
π arctan

(

φ
µ

)]

CNAI 1 1 M4
[

3−
(

3 + α2
)

tanh2
(

α√
2

φ
MPl

)]

CNBI 1 1 M4
[

(

3− α2
)

tan2
(

α√
2

φ
MPl

)

− 3
]

SFI 2 1 M4
[

1−
(

φ
µ

)p]

II 2 1 M4
(

φ−φ0
MPl

)−β
−M4 β2

6

(

φ−φ0
MPl

)−β−2

KMIII 2 1 M4
[

1− α φ
MPl

exp
(

−β φ
MPl

)]
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LMI 2 2 M4
(

φ
MPl

)α
exp [−β(φ/MPl)

γ ]

TWI 2 1 M4

[

1−A
(

φ
φ0

)2
e−φ/φ0

]

GMSSMI 2 1 M4

[

(

φ
φ0

)2
− 2

3α
(

φ
φ0

)6
+ α

5

(

φ
φ0

)10
]

BSUSYBI 2 1 M4

(

e
√
6 φ
MPl + e

√
6γ φ

MPl

)

TI 2 3 M4
(

1 + cos φµ + α sin2 φµ

)

BEI 2 1 M4 exp1−β

(

−λ φ
MPl

)

PSNI 2 1 M4
[

1 + α ln
(

cos φf

)]

NCKI 2 2 M4

[

1 + α ln
(

φ
MPl

)

+ β
(

φ
MPl

)2
]

CSI 2 1 M4
(

1−α φ
MPl

)2

OI 2 1 M4
(

φ
φ0

)4
[

(

ln φ
φ0

)2
− α

]

CNCI 2 1 M4
[

(

3 + α2
)

coth2
(

α√
2

φ
MPl

)

− 3
]

SBI 2 2 M4

{

1 +
[

−α+ β ln
(

φ
MPl

)](

φ
MPl

)4
}

SSBI 2 6 M4

[

1 + α
(

φ
MPl

)2
+ β

(

φ
MPl

)4
]

RMI 3 4 M4
[

1− c
2

(

−1
2 + ln φ

φ0

)

φ2

M2
Pl

]

VHI 3 1 M4
[

1 +
(

φ
µ

)p]

DSI 3 1 M4

[

1 +
(

φ
µ

)−p
]

GMLFI 3 1 M4
(

φ
MPl

)p [

1 + α
(

φ
MPl

)q]

LPI 3 3 M4
(

φ
φ0

)p (

ln φ
φ0

)q

CNDI 3 3 M4

{

1+β cos

[

α

(

φ− φ0

MPl

)]}2

Table 1: Models contained in the first release of the ASPIC

library. For each model, we give the corresponding acronym,
the number of free paramaters characterizing the potential,
the number of sub-models and the shape of the potential.
The total number of models is 64.
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2 Basic Equations

In this section, we very briefly recall the theoretical foundations of inflation and we present
the main tools and equations that will be used in the rest of this paper. We start with
reviewing the slow-roll phase, where the cosmological fluctuations are generated and, then,
we describe how the end of inflation and the transition to the standard hot Big Bang phase
can be modeled.

2.1 The slow-roll phase

Let us consider a single-field inflationary model with a minimal kinetic term and a potential
V (φ). The behavior of the system is controlled by the Friedmann-Lemâıtre and Klein-Gordon
equations, namely

H2 =
1

3M2
Pl

[

φ̇2

2
+ V (φ)

]

, (2.1)

φ̈+ 3Hφ̇+ Vφ = 0, (2.2)

whereH ≡ ȧ/a denotes the Hubble parameter, a(t) being the Friedmann-Lemâıtre-Robertson
Walker (FLRW) scale factor and ȧ its derivative with respect to cosmic time t. MPl = 8πG
denotes the reduced Planck mass. A subscript φ means a derivative with respect to the
inflaton field. In order to describe the evolution of the background, it is convenient to
introduce the Hubble flow functions ǫn defined by

ǫn+1 ≡
d ln |ǫn|
dN

, n ≥ 0, (2.3)

where ǫ0 ≡ Hini/H and N ≡ ln(a/aini) is the number of e-folds. By definition, inflation is a
phase of accelerated expansion, ä/a > 0, or, equivalently, ǫ1 < 1. As a consequence, the end
of inflation is defined by the condition ǫ1 = 1. On the other hand, the slow-roll conditions
(or slow-roll approximation) refer to a situation where all the ǫn’s satisfy ǫn ≪ 1. If this is
the case, then the parameters ǫn can also be expressed in terms of the successive derivatives
of the potential, namely [17]

ǫ1 ≃
M2

Pl

2

(

Vφ
V

)2

, (2.4)

ǫ2 ≃ 2M2
Pl

[

(

Vφ
V

)2

− Vφφ
V

]

, (2.5)

ǫ2ǫ3 ≃ 2M4
Pl

[

VφφφVφ
V 2

− 3
Vφφ
V

(

Vφ
V

)2

+ 2

(

Vφ
V

)4
]

. (2.6)

Therefore, a measurement of the ǫn’s also provides information with regards to the shape of
the inflationary potential.

In terms of the number of e-folds, one can decouple Eqs. (2.1) and (2.2) to only the field
evolution

1

3− ǫ1

d2φ

dN2
+

dφ

dN
= −M2

Pl

d lnV

dφ
, (2.7)
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showing that the potential driving the field in FLRW spacetime is ln[V (φ)]. This equation
can be further simplified by using the definition of ǫ1 and ǫ2 to get ride of the second order
derivatives. From

ǫ1 =
1

2M2
Pl

(

dφ

dN

)2

, (2.8)

one gets
(

1 +
ǫ2

6− 2ǫ1

)

dφ

dN
= −M2

Pl

d lnV

dφ
. (2.9)

As a result, in the slow-roll approximation, one gets

dφ

dN
≃ −M2

Pl

d lnV

dφ
. (2.10)

This equation can be integrated to give an explicit expression of the classical trajectory. One
arrives at

N −Nini = − 1

M2
Pl

∫ φ

φini

V (χ)

Vχ(χ)
dχ . (2.11)

In this article, for each model, we provide the expressions of the first three Hubble flow
parameters, a determination of φend, the value of the field at which inflation comes to an
end (and the corresponding discussion) and an explicit expression of the slow-roll trajectory
Eq. (2.11).

Let us now consider the behavior of inflationary cosmological perturbations. The evo-
lution of scalar (density) perturbations can be reduced to the study of a single variable,
the so-called Mukhanov–Sasaki variable vk. In Fourier space, its equation of motion can be
expressed as [6–8, 16]

v′′k +

[

k2 −
(

a
√
ǫ1
)′′

a
√
ǫ1

]

vk = 0. (2.12)

Here, a prime denotes a derivative with respect to conformal time and the quantity k is
the comoving wave number of the Fourier mode under consideration. This equation is the
equation of a parametric oscillator, i.e. an oscillator with a time-dependent frequency. The
time-dependence of the effective frequency is controlled by the dynamics of the background,
more precisely by the scale factor and its derivatives (up to fourth order). The quantity vk
is related to the curvature perturbation ζk through the following expression:

ζk =
1

MPl

vk
a
√
2ǫ1

. (2.13)

The importance of ζk lies in the fact that it can be viewed as a “tracer” of the fluctuations on
super-Hubble scales, i.e. for all kη ≪ 1, where η denotes the conformal time. Indeed, in the
case of single-field inflation, this quantity becomes constant in this limit. Therefore, it can
be used to “propagate” the perturbations from inflation to the subsequent cosmological eras.
The statistical properties of the fluctuations can be characterized by the n-point correlation
functions of ζk. In particular, the two-point correlation function can be written as an integral
over wave numbers (in a logarithmic interval) of the power spectrum Pζ(k), which can be
expressed as

Pζ(k) ≡
k3

2π2
|ζk|2 =

k3

4π2M2
Pl

∣

∣

∣

∣

vk
a
√
ǫ1

∣

∣

∣

∣

2

. (2.14)
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In order to calculate Pζ(k), one needs to integrate Eq. (2.12), which requires the knowledge
of the initial conditions for the mode function vk. Since, at the beginning of inflation, all the
modes of cosmological interest today were much smaller than the Hubble radius, the initial
conditions are chosen to be the Bunch-Davis vacuum which amounts to

lim
kη→+∞

vk =
1√
2k
e−ikη , (2.15)

where H = aH is the conformal Hubble parameter.
The evolution of tensor perturbations (or primordial gravity waves) can also be reduced

to the study of a parametric oscillator. The amplitude of each transverse Fourier mode of
the gravity wave, µk(η), obeys the following equation

µ′′k +

(

k2 − a′′

a

)

µk = 0. (2.16)

We notice that the time-dependence of the effective frequency differs from that of the scalar
case and now involves the derivative of the scale factor up to second order only. It is then
straightforward to determine the resulting power spectrum. From a calculation of the two-
point correlation function, one obtains

Ph(k) =
2k3

π2

∣

∣

∣

µk
a

∣

∣

∣

2
. (2.17)

In order to calculate this quantity, the equation of motion Eq. (2.16) needs to be solved. As
it is the case for density perturbations, the initial state is chosen to be the Bunch-Davies
vacuum.

The power spectra can be computed exactly by means of a mode by mode integration
of Eqs. (2.12) and (2.16), which also requires an exact integration of the background, i.e.
of Eqs. (2.1) and (2.2). As discussed in the introduction, this can be done with the help of
publicly available codes such as FieldInf. We have seen above that the slow-roll approxi-
mation can be used to calculate the classical background trajectory. Quite remarkably, the
same approximation also permits the derivation of the scalar and tensor power spectra. This
involves a double expansion. The power spectra are expanded around a chosen pivot scale
k∗ such that

P(k)

P0(k∗)
= a0 + a1 ln

(

k

k∗

)

+
a2
2

ln2
(

k

k∗

)

+ . . . , (2.18)

where

Pζ0 =
H2

8π2ǫ1M2
Pl

, Ph0 =
2H2

π2M2
Pl

, (2.19)

and, then, the coefficients ai are determined in terms of the Hubble flow functions. For scalar
perturbations, one gets [114, 115, 136–140, 140–142]

a(S)

0 = 1− 2 (C + 1) ǫ1 − Cǫ2 +

(

2C2 + 2C +
π2

2
− f

)

ǫ21

+

(

C2 −C +
7π2

12
− g

)

ǫ1ǫ2 +

(

1

2
C2 +

π2

8
− 1

)

ǫ22

+

(

−1

2
C2 +

π2

24

)

ǫ2ǫ3 , (2.20)

a(S)

1 = −2ǫ1 − ǫ2 + 2(2C + 1)ǫ21 + (2C − 1)ǫ1ǫ2 + Cǫ22 − Cǫ2ǫ3 , (2.21)

a(S)

2 = 4ǫ21 + 2ǫ1ǫ2 + ǫ22 − ǫ2ǫ3 , (2.22)
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where C ≡ γE + ln 2 − 2 ≈ −0.7296, γE being the Euler constant, f = 5 and g = 7. For the
gravitational waves, the coefficients ai read

a(T)

0 = 1− 2 (C + 1) ǫ1 +

(

2C2 + 2C +
π2

2
− f

)

ǫ21

+

(

−C2 − 2C +
π2

12
− 2

)

ǫ1ǫ2 , (2.23)

a(T)

1 = −2ǫ1 + 2(2C + 1)ǫ21 − 2(C + 1)ǫ1ǫ2 , (2.24)

a(T)

2 = 4ǫ21 − 2ǫ1ǫ2 . (2.25)

The Hubble flow functions are time-dependent quantities such that in the above expression,
it is understood that they should be evaluated at the time at which the pivot scale crosses
the Hubble radius during inflation, i.e. at a time η∗ such that k∗ = H(η∗). Let us notice
that setting the pivot at another time affects the previous expression. For instance, setting
η∗ such that k∗η∗ = −1 would set f = 3 and g = 6. We will see below that this introduces a
dependence in the parameters describing the reheating stage.

The properties of the power spectra can also be characterized by the spectral indices
and their “running”. They are defined by the coefficients of the Taylor expansions of the
power spectra logarithm with respect to ln k, evaluated at the pivot scale k∗. This gives

nS − 1 ≡ d lnPζ
d ln k

∣

∣

∣

∣

k∗

, nT ≡ d lnPh
d ln k

∣

∣

∣

∣

k∗

. (2.26)

For the runnings, one similarly has the two following expressions

αS ≡
d2 lnPζ
d(ln k)2

∣

∣

∣

∣

k∗

, αT ≡ d2 lnPh
d(ln k)2

∣

∣

∣

∣

k∗

, (2.27)

and, in principle, we could also define the running of the running and so on. The slow-roll
approximation allows us to calculate the quantities defined above. For instance, we have at
first order in the Hubble flow parameters

nS = 1− 2ǫ1 − ǫ2, nT = −2ǫ1. (2.28)

Let us also notice that the tensor-to-scalar ratio at leading order can be expressed as

r ≡ Ph
Pζ

= 16ǫ1. (2.29)

In the rest of this article, we give the observational predictions of each inflationary model of
the ASPIC library in the planes (ǫ1, ǫ2) but also (nS, r).

Each inflationary model must also be CMB normalized, that is to say the amplitude
of the power spectra, say at k = k∗, is completely fixed by the amplitude of the CMB
anisotropies measured today. On the largest length scales, this is given to a good approxi-
mation by the CMB quadrupole Qrms−PS/T ≡

√

5C2/(4π) ≃ 6 × 10−6, where T ≃ 2.725K
is the CMB blackbody temperature. This is achieved if Pζ0 ≃ 60Q2

rms−PS/T
2. Using the

slow-roll approximation of the Friedmann-Lemâıtre equation and writing the potential as
V (φ) =M4v(φ), such that the mass scale M is singled out, one arrives at

(

M

MPl

)4

= 1440π2
ǫ1∗
v(φ∗)

Q2
rms−PS

T 2
. (2.30)
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This is a model-depend expression (it depends on v) in which we have rendered explicit the
dependence in the pivot time. On a more robust basis, CMB data are strongly constraining
the value of P∗ ≡ Pζ(k∗) and using the WMAP nine years data one gets the one-sigma
confidence interval [66, 67]

ln
[

1010P∗
]

= 3.08 ± 0.03 . (2.31)

This constraint and the one- and two-sigma contours in the planes (ǫ1, ǫ2) and (nS, r) repre-
sented in all the figures have been obtained from a slow-roll analysis of the WMAP nine years
data. Since the analysis is in all point identical to the one of the WMAP seven years data
performed in Ref. [64], we do not repeat it here. The interested reader can find all the details
in the appendix B of Ref. [64]. Let us just stress that we have used only the WMAP9 data
together with the Hubble Space Telescope bound on H0 [143]. Moreover, in order to get a
robust inference, we have used the second order expression for the power spectra. Therefore,
all the results presented below are marginalized over the second order slow-roll parameters.

Since at leading order in the slow-roll expansion we have P∗ ≃ H2
∗/(8π

2ǫ1∗M2
Pl), the

Friedmann–Lemâıtre equation allows us to derive the relation

(

M

MPl

)4

= 24π2
ǫ1∗
v(φ∗)

P∗ , (2.32)

which is, as expected, formally identical to Eq. (2.30) with

Q2
rms−PS

T 2
= 60P∗. (2.33)

It has however the advantage of using P∗ which is a well inferred quantity because it is fitted
against all the Cℓ. In the following we will make no-distinction between the so-called COBE
normalisation and the CMB normalisation, both being identical provided the above equation
is used. For each inflationary model, these expressions will completely fix the allowed values
for M .

We have shown how to calculate the two point correlation functions in the slow-roll
approximation. The next logical step would be to determine the higher correlation functions.
However, for the type of models considered here (i.e. category IA models), it is well-known
that the corresponding signal is so small that it will stay out of reach for a while [91–95].
Therefore, we now consider the question of how to calculate the values of ǫ1 and ǫ2 when
the pivot scale exits the Hubble radius and how this result depends on the details of the
reheating period.

2.2 The reheating phase

In the last subsection, we have seen that the power spectrum (2.18) can be calculated with
the help of the slow-roll approximation and expressed in terms of the Hubble flow param-
eters evaluated at Hubble radius crossing. Here, we briefly explain how these Hubble flow
parameters can be determined. It is easy to calculate ǫ1, ǫ2 and ǫ3 as a function of φ from
Eqs. (2.4), (2.5) and (2.6). Then, from the trajectory (2.11), one can calculate Nend, the
total number of e-folds during inflation and N∗, the number of e-folds at the point when the
pivot scale crosses the Hubble radius. If we denote by I the following primitive

I(φ) =
∫ φ V (ψ)

Vψ(ψ)
dψ, (2.34)
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which is also the slow-roll trajectory of Eq. (2.11), then we have

Nend = − 1

M2
Pl

[I(φend)− I(φini)] , N∗ = − 1

M2
Pl

[I(φ∗)− I(φini)] , (2.35)

where φ∗ is the vacuum expectation value of the field, again evaluated when the pivot scale
crosses the Hubble radius. From these two expressions, it follows that

φ∗ = I−1
[

I(φend) +M2
Pl∆N∗

]

, (2.36)

where ∆N∗ ≡ Nend − N∗. Inserting this formula into the expressions of the Hubble flow
parameters allows us to find ǫn∗ and, therefore, r and nS.

However, in order to make the above-described calculation concrete, we need to say
something about the quantity ∆N∗. As was explained in details in Ref. [64], this requires
to take into account the reheating stage. Let ρ and P be the energy density and pressure of
the effective fluid dominating the Universe during reheating. Conservation of energy implies
that

ρ (N) = ρend exp

{

−3

∫ N

Nend

[1 + wreh (n)] dn

}

, (2.37)

where wreh ≡ P/ρ is the “instantaneous” equation of state during reheating. One can also
define the mean equation of state parameter, wreh, by

2

wreh ≡ 1

∆N

∫ Nreh

Nend

wreh(n)dn, (2.38)

where
∆N ≡ Nreh −Nend, (2.39)

is the total number of e-folds during reheating, Nreh being the number of e-folds at which
reheating is completed and the radiation dominated era begins. Then, one introduces a new
parameter

Rrad ≡ aend
areh

(

ρend
ρreh

)4

, (2.40)

where ρreh has to be understood as the energy density at the end of the reheating era, i.e.
ρ(Nreh). This definition shows that Rrad encodes any deviations the reheating may have
compared to a pure radiation era. In fact, Rrad completely characterizes the reheating stage
and can be expressed in terms of

lnRrad ≡ ∆N

4
(−1 + 3wreh) , (2.41)

which renders explicit that if wreh = 1/3, i.e. the effective fluid during reheating is equivalent
to radiation, then reheating cannot be distinguished from the subsequent radiation dominated
era. In this case, one simply has Rrad = 1. Let us notice that it is also possible to express
(or define) lnRrad as

lnRrad =
1− 3wreh

12(1 + wreh)
ln

(

ρreh
ρend

)

. (2.42)

2In the figures, wreh has been denoted by w for simplicity.
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Using entropy conservation till the beginning of the radiation era, the redshift at which
inflation ended can be expressed in terms of Rrad as

1 + zend =
1

Rrad

(

ρend
ρ̃γ

)1/4

, ρ̃γ ≡ Qrehργ . (2.43)

The quantity ργ = 3H2
0M

2
PlΩγ is the total energy density of radiation today (Ωγ ≃ 2.471 ×

10−5h−2) while Qreh ≡ q
4/3
0 greh/(q

4/3
reh g0) is the measure of the change of relativistic degrees

of freedom between the reheating epoch and today. In this expression q and g respectively
denotes the number of entropy and energetic relativistic degrees of freedom. In view of the
current CMB data, the precise value for Qreh is unimportant as this factor has only a minimal
effect. At most it can shift the values of lnRrad by a O(1) number.

Then, straightforward considerations [64, 144] show that the quantities ∆N∗ and Rrad

are related by

∆N∗ = lnRrad −N0 −
1

4
ln

[

9

ǫ1∗(3− ǫ1end)

Vend
V∗

]

+
1

4
ln(8π2P∗) . (2.44)

where we have defined

N0 ≡ ln

[

k∗/a0

ρ̃
1/4
γ

]

, (2.45)

which roughly measures the number of e-folds of deceleration of the Friedmann-Lemâıtre
model. From Eq. (2.42), we see that the quantity lnRrad is not arbitrary since −1/3 <
wreh < 1 and ρnuc < ρreh < ρend. As a consequence, the quantity ∆N∗ is also constrained to
vary in a given range, i.e. ∆N∗ ∈ [∆Nnuc

∗ ,∆N end
∗ ]. Moreover, this range is model-dependent

since ρend or Vend/V∗ differ for different inflationary scenarios. In fact, for each allowed value
of lnRrad, Eq. (2.44) must be viewed as an algebraic equation allowing us to determine the
corresponding φ∗. Explicitly, using Eq. (2.35), this equation reads

− 1

M2
Pl

[I(φ∗)− I(φend)] = lnRrad−N0 −
1

4
ln

{

9

ǫ1(φ∗)[3− ǫ1(φend)]

V (φend)

V (φ∗)

}

+
1

4
ln(8π2P∗) .

(2.46)
Of course, in general, this equation can not be solved explicitly (except for LFI models, see
Ref. [64]) and we have to rely on numerical calculations. Solving for each allowed value of
lnRrad, one can determine the range of variation of φ∗ ∈ [φnuc∗ , φend∗ ] and, therefore, find
the corresponding dispersion in r and nS. In this paper, this task is carried out for all the
models of the ASPIC library. Let us notice that it is compulsory to do so otherwise, assuming
blindly say ∆N∗ ∈ [40, 60], would lead to inconsistent reheating energy densities, either larger
than ρend or smaller than ρnuc. Clearly, this method also allows us to put model-dependent
constraints on the reheating temperature. Indeed, for some values of ρreh, the corresponding
ǫn∗ will turn out to be outside the 1σ or 2σ contours (depending on the criterion one wishes
to adopt) thus signaling an inconsistency with the data, see the discussion in the Introduction
and Fig. 2.

Before closing this section, let us remind that, for each inflationary model, ASPIC gives
the expression of the first three Hubble flow parameters, a discussion of the mechanism that
ends inflation and the value of φend, the classical trajectory I(φ), the CMB normalization
M/MPl and a determination of the exact range [φnuc∗ , φend∗ ]. Then all these informations are
compared to CMB data in the planes (ǫ1, ǫ2) and (nS, r). This provides a powerful tool to

– 22 –



systematically derive the predictions for the ASPIC models and, therefore, to exactly scan
the inflationary landscape. In the next section, we start the systematic exploration of the
category IA models that have been studied in the literature since the advent of inflation.

3 Zero Parameter Models

3.1 Higgs Inflation (HI)

This model postulates that the inflaton field is the Higgs field h (recently discovered at the
Large Hadron Collider, see Refs. [145, 146]) non-minimally coupled to gravity, see Refs. [147–
149]. Indeed, one can argue that, in curved spacetime, the simplest model compatible with
our knowledge of particle physics is described by a Lagrangian which is the standard model
Lagrangian plus an extra term of the form ξH†HR. This last term is compulsory since, in
curved spacetime, it will automatically be generated by quantum corrections, see Ref. [150].
In the Jordan frame, the action of the model can be written as

S =
M̄2

2

∫

d4x
√−ḡ

[

F (h) R̄− Z (h) ḡµν∂µh∂νh− 2U (h)
]

. (3.1)

The quantity M̄ is a mass scale that, for the moment, is not identified with the Planck
scale and the tensor ḡµν denotes the metric in the Jordan frame (in what follows, all the
quantities with a bar denote quantities evaluated in the Jordan frame; quantities without
a bar are quantities evaluated in the Einstein frame). The three functions F (h), Z(h) and
U(h) completely characterize the model and are chosen to be

F (h) = 1 + ξh2, Z(h) = 1, U(h) = M̄2λ

4

(

h2 − v2

M̄2

)2

, (3.2)

where ξ is a new dimensionless parameter and U(h) is the standard Higgs boson potential
with v the Higgs (current) vacuum expectation value and λ the self-interacting coupling
constant. Here, the field h is dimensionless (as the functions F and Z) while the potential
U is of dimension two. The effective gravitational constant (measured in Cavendish-type
experiments) is given by Ref. [151]

1

M2
Pl

=
1

M̄2

2(1 + ξh2) + 16ξ2h2

(1 + ξh2)[2(1 + ξh2) + 12ξ2h2]
. (3.3)

Since, today, one has h ≃ v/M̄ ≪ 1, it follows that M̄ ≃ MPl with very good accuracy and,
from now on, we will always consider that this identification is valid.

The above-described model can also be written in the Einstein frame where the corre-
sponding slow-roll analysis is easier. Denoting the metric tensor in this frame by gµν , the
action now takes the form

S = 2M2
Pl

∫

d4x
√−g

[

R

4
− 1

2
gµν∂µχ∂νχ−W (χ)

]

, (3.4)

where the fields h and χ are related by

dχ

dh
=

√

1 + ξ(1 + 6ξ)h2√
2(1 + ξh2)

, (3.5)
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and the potential is given V ≡ 2M2
PlW = M2

PlU/F
2. Notice also that the canonically nor-

malized field in the Einstein frame can be expressed as φ ≡
√
2MPlχ. It is also important

to recall that, in the Einstein frame, matter is now explicitly coupled to the scalar field φ.
This has of course important consequences for the description of the reheating period, see
Refs. [152–154] and below. The differential equation (3.5) can be integrated exactly and the
result reads

χ =

√

1 + 6ξ

2ξ
arcsinh

[

h
√

ξ(1 + 6ξ)
]

−
√
3 arctanh

[

ξ
√
6h

√

1 + ξ(1 + 6ξ)h2

]

. (3.6)

The inverse hyperbolic tangent is always well-defined since its argument is always smaller
than one. This exact formula between the Einstein and Jordan frame fields was also derived
in Ref. [152]. In fact, we are interested in the regime ξ ≫ 1 and ξh≫ 1. In this case, one can
derive an approximated expression for χ. Notice that this limit must be carefully calculated
because if one just replaces 1+6ξ with ξ in the above expression, one finds that χ = 0! Using

the identity arcsinhx = ln
(

x+
√
1 + x2

)

, the first term in Eq. (3.6) can be approximated

as ≃
√
3 ln

(

2ξ
√
6h
)

. Then, one can use the identity arctanh x = 1/2 ln [(1 + x)/(1 − x)] and
expand the argument of this logarithm in 1/ξ and 1/(ξh)2. One finds that the latter reduces
to ∼ 24ξ2h2/(1 + ξh2). Finally, combining the two terms in Eq. (3.6), one arrives at

χ =

√
3

2
ln
(

1 + ξh2
)

. (3.7)

The same expression can also be directly derived from Eq. (3.5) which, in the regime studied
here, can be approximated as

dχ

dh
≃

√
6ξh√

2(1 + ξh2)
. (3.8)

The solution to this equation is exactly Eq. (3.7). The last step consists in inserting the
expression of h in terms of χ (and, therefore, in terms of φ) into the definition of the potential
V in the Einstein frame. This leads to the following expression

V (φ) =
M4

Plλ

4ξ2

(

1− e−
√

2/3φ/MPl

)2
. (3.9)

Interestingly enough, the parameters ξ and λ enter the potential only through its overall
amplitude. In the following, we defineM byM4 ≡M4

Plλ/(4ξ
2). In this sense, Higgs inflation

is a “zero parameter model” since the scale M is entirely determined by the amplitude of the
CMB anisotropies.

Having established the shape of the potential in the Einstein frame, we can now proceed
to the slow-roll analysis. For convenience, let us define x by x ≡ φ/MPl. Then, the first three
slow-roll parameters are given by

ǫ1 =
4

3

(

1− e
√

2/3x
)−2

, ǫ2 =
2

3

[

sinh

(

x√
6

)]−2

,

ǫ3 =
2

3

[

coth

(

x√
6

)

− 1

]

coth

(

x√
6

)

.

(3.10)

These quantities are represented in Fig. 5 (left and right bottom panels) together with the
potential.
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Figure 5. Higgs Inflation (HI). Top left panel: Higgs potential corresponding to Eq. (3.9). Top right
panel: logarithm of the Higgs potential. It is clear from these two plots that inflation proceeds from
the left to the right. Bottom left panel: slow-roll parameter ǫ1 as a function of the field φ. The shaded
area indicates the breakdown of the slow-roll inflation (strictly speaking when the acceleration stops)
and we see that, in this model, the end of inflation occurs by violation of the slow-roll condition.
Bottom right panel: slow-roll parameters ǫ2 (solid line) and ǫ3 (dotted line) for the same potential.

In this model, as can be noticed on these plots, inflation stops by violation of the slow-
roll conditions. The condition ǫ1 = 1 occurs for x = xend where xend can be expressed
as

xend =

√

3

2
ln

(

1 +
2√
3

)

≃ 0.94 . (3.11)

In fact, before the end of inflation, the slow-roll approximation breaks down when ǫ2 becomes
greater than 1. This happens for x = xǫ2=1 where

xǫ2=1 =
√
6 arcsinh

(

√

2

3

)

≃ 1.83 . (3.12)

The third slow-roll parameter ǫ3 also becomes greater than 1 before the end of inflation
(but after the second slow-roll parameter has become unity). The corresponding vacuum
expectation value can be written as

xǫ3=1 =
√
6 arctanh

(

2

1 +
√
7

)

≃ 1.51 . (3.13)
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Figure 6. Lambert functions W0(x) (dashed line) and W−1(x) (solid line). During Higgs inflation,
inflation proceeds along the “−1” branch in the direction specified by the arrow in the figure.

Of course, these three vacuum expectation values do not depend on the parameter ξ since
this parameter is “hidden” in the mass scale M .

We are now in a position where one can calculate the slow-roll trajectory. Using
Eq. (3.9), it can be integrated exactly and yields to

N −Nini =
1

2

√

3

2
(x− xini)−

3

4

(

e

√

2
3
x − e

√

2
3
xini

)

. (3.14)

In the regime where x≫ 1, the last term is dominant and this is the one usually considered
in the literature, see Ref. [147]. The trajectory can be inverted and expressed in term of the
“−1-branch” of the Lambert function W−1, leading to

x =

√

3

2

{

4

3
N +

√

2

3
xini − e

√

2
3
xini −W−1

[

− exp

(

4

3
N +

√

2

3
xini − e

√

2
3
xini

)]}

. (3.15)

The fact that inflation proceeds on the −1 branch of the Lambert function W−1, as can be
seen in Fig. 6, can be justified by the following considerations. When N = 0, the value taken
by the Lambert function is − exp(

√

2/3xini), which is smaller than −1. On the other hand,
if x = 0, the value given for N by Eq. (3.14) can be inserted in Eq. (3.15) and one finds
that the argument of the Lambert function is −1, i.e. the connection point between the −1
branch and the 0 branch. Therefore inflation takes place between these two points.

Finally, the value of the inflaton field, x∗, calculated ∆N∗ = Nend − N∗ e-folds before
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the end of inflation reads

x∗ =

√

3

2

(

−4

3
∆N∗ + ln

(

1 +
2√
3

)

−
(

1 +
2√
3

)

−W−1

{

− exp

[

−4

3
∆N∗ + ln

(

1 +
2√
3

)

−
(

1 +
2√
3

)]})

.

(3.16)

In principle, inserting this formula into the expressions of the slow-roll parameters (3.10)
allows us to determine the observational predictions of the model.

At this stage, however, a comment is in order about reheating. As explained above, all
the previous considerations are derived in the Einstein frame. In this frame, matter is not
universally coupled to the metric tensor and, therefore, it is compulsory to re-consider the
parametrization presented in section 2.2. In the Einstein frame, the matter action is given
by Smat[ψ,A

2(φ)gµν ], where ψ denotes some generic matter field and gµν ≡ F (h)ḡµν with
A ≡ F−1/2, see Ref. [151] (recall that quantities in the Jordan frame are denoted with a
bar). In the Jordan frame, the energy density of a (conserved) fluid with equation of state
w = p̄/ρ̄ scales as ρ̄ ∝ ā−3(1+w) while, in the Einstein frame, ρ ∝ A4ρ̄ ∝ A1−3wa−3(1+w)

since the scale factors in the two frames are related by ā = Aa (here, we have assumed
a constant w, see the discussion below). As explained in Ref. [64] and briefly reviewed in
section 2.2, the dependence of the observational predictions on reheating originates from
the gradient term k/H present in the Mukhanov-Sasaki variable equation of motion. In
order to evaluate concretely this term, one must relate the comoving wave-number k during
inflation with physical scales measured now. Clearly, this depends on the whole history of
the Universe and, therefore, explains why the final result depends on the reheating duration.
In the Einstein frame, one can show that the gradient term takes the standard form, namely

k

H =
eNend−N

H

k

a0

(

ρend
ργ

)1/4 1

Rrad
, (3.17)

with

lnRrad =
1− 3wreh

12(1 + wreh)
ln

(

ρreh
ρend

)

− 1− 3wreh

3(1 +wreh)
ln

(

Areh

Aend

)

, (3.18)

where wreh is the equation of state of the effective dominant fluid during reheating. In
the above expressions, it is important to emphasize that all the quantities are defined in the
Einstein frame and that the non-standard scaling of the various energy densities (pressureless
matter and radiation) has been systematically taken into account. All the extra terms cancel
out except in the definition of the parameter Rrad where there is an additional term depending
on the function A. Remarkably, this additional term is exactly such that the parameter Rrad

in the Einstein frame can be re-expressed in terms of the energy densities in the Jordan frame
only, namely

lnRrad =
1− 3wreh

12(1 + wreh)
ln

(

ρ̄reh
ρ̄end

)

. (3.19)

Let us stress again that the above equation has an unusual form: it is a quantity in the
Einstein frame expressed in terms of quantities defined in the Jordan frame.

It is also important to notice an additional limitation compared to the standard case:
in presence of non-minimal coupling to gravity, our parametrization of the reheating stage
works only for a constant equation of state wreh while in Ref. [64] it was valid for any wreh.
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We now explain the origin of this limitation. In the Einstein frame, the general expression
of the parameter Rrad is given by

1

Rrad
=

(

ρreh
ρend

)1/4 areh
aend

. (3.20)

In order to obtain Eq. (3.18) from that formula, one should express the Einstein frame scale
factor in term of the energy density ρ. If the equation of state wreh is a constant, then
a ∝ A(1−3wreh)/(3+3wreh)a−1/(3+3wreh). This what what has been used above and this led to
Eqs. (3.18) and (3.19). But let us now assume that wreh is not a constant (notice that one
always has w = w̄ since the energy density and the pressure scales with the same power of
the function A in the Einstein frame). Then, ρ and a are related by

dρ

ρ
= (1− 3wreh)

dA

A
− 3 (1 + wreh)

da

a
. (3.21)

If A is a constant, as explained in Ref. [64], one can always write

areh
aend

=

(

ρreh
ρend

)−1/(3+3w̄reh)

, (3.22)

where w̄reh is the mean equation of state during reheating, namely

w̄reh ≡ 1

Nreh −Nend

∫ Nreh

Nend

wreh(n)dn. (3.23)

If A and wreh, however, are not constant, it is no longer possible to express the final formula
in terms of wreh. In particular, we do not obtain a term A1−3wreh as desired. Therefore, in
what follows, we restrict our considerations to the case where the effective fluid dominating
the matter content of the Universe has a constant equation of state.

Then, from Eq. (3.17), one can re-express Rrad in terms of quantities defined at Hubble
radius crossing. One obtains

∆N∗ = lnRrad − ln

(

k/a0

ρ
1/4
γ

)

+
1

4
ln

(

H2
∗

M2
Plǫ1∗

)

− 1

4
ln

(

3

ǫ1∗

Vend
V∗

3− ǫ1∗
3− ǫ1end

)

. (3.24)

Of course, this equation resembles a lot Eq. (2.44) but one has to realize that it involves

quantities defined in the Einstein frame only. The term ln
[

(k/a0) /ρ
1/4
γ

]

= ln
[

(k/ā0) /ρ̄
1/4
γ

]

and, therefore, its numerical value remains unchanged. The other quantities appearing in this
equation are obtained using our standard procedures since they refer to the inflaton sector
only. Then, the range of variation of ∆N∗ in Eq. (3.24) is determined by putting limits on
lnRrad coming from the fact that reheating must proceed between the end of inflation and
the BBN. This means that the physical value of the energy density, that is to say ρ̄reh, must
be such that ρ̄nuc ≡ (10MeV)4 < ρ̄reh < ρ̄end. We emphasize that physical limits must of
course refer to quantities defined in the Jordan frame. But, precisely, we have shown that
lnRrad in the Einstein frame can be expressed according to the standard formula, provided
the energy densities in the argument of the logarithm are Jordan frame energy densities.
Therefore, in practice, we have ∆N∗ ∈

[

∆Nnuc
∗ ,∆N end

∗
]

with

∆N end
∗ = −N0 + ln

(

H∗
MPl

)

− 1

4
ln

(

ρend
M4

Pl

)

, (3.25)
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where all the quantities in the above equation are calculated in the Einstein frame and, hence,
are directly available since they are, by definition, the outcomes of the ASPIC library code.
The other limit can be expressed as

∆Nnuc
∗ = −N0 + ln

(

H∗
MPl

)

− 1

3(1 + w)
ln

(

ρ̄end
M4

Pl

)

− 1− 3w

12(1 + w)
ln

(

ρ̄nuc
M4

Pl

)

. (3.26)

The quantity ρ̄nuc is defined in the Jordan frame but its value is explicitly known, see above.
On the other hand, we need to evaluate ρ̄end since the code only delivers ρend. By definition,
we have

ρ̄end =
ρend
A4

end

= F 2
endρend =

(

1 + ξh2end
)2
ρend. (3.27)

But 1 + ξh2end = e2χend/
√
3 and χend = φend/(

√
2MPl) =

√
3/2 ln

(

1 + 2/
√
3
)

. As a conse-
quence, the relation between the two final energy densities in the two frames can be written
as

ρ̄end =

(

1 +
2√
3

)2

ρend ≃ 2.15 ρend. (3.28)

Therefore, the lower bound is only slightly modified (recall that ρ̄end appears in a logarithmic
term). Anyway, given the uncertainty in the definition of ρ̄nuc, it is irrelevant to include this
tiny correction in our determination of ∆N∗. Consequently, we conclude that the range of
variation of ∆N∗ can be obtained without modifying anything to our usual way to calculate
it and one can use the ASPIC code without introducing these negligible corrections.

The reheating consistent observational predictions of Higgs inflation are represented in
Fig. 73 where we have displayed their dependence in the reheating temperature defined in the

Jordan frame by g
1/4
∗ T̄reh =

(

30ρ̄reh/π
2
)1/4

. Notice that, a priori, the reheating temperature
can be calculated exactly in Higgs inflation since all the couplings between the Higgs and the
other fields in the standard model are known. This gives a spectral index which is in good
agreement with the data and a small contribution of gravity waves. At this stage, we do not
have constraints on the parameter ξ since it is hidden in the mass scale M . Its observational
value therefore comes from the amplitude of the CMB anisotropies and reads

M4

M4
Pl

= 1920π2
(

1− e

√

2
3
x∗

)−4

e
2
√

2
3
x∗Q

2
rms−PS

T 2
. (3.29)

Upon using the trajectory given by Eq. (3.16), the mass scale M can be written as M/MPl ≃
0.02 (∆N∗)

−3/2, which for the fiducial value ∆N∗ = 55, implies that M ≃ 4× 10−5MPl, i.e.,
roughly speaking, inflation takes place at the GUT scale in this model. Then, using this
expression of M , one obtains the following numerical value for the parameter ξ,

ξ ≃ 49000
√
λ, (3.30)

where we have considered λ = mH/v, with v ≃ 175GeV and mH ≃ 125GeV (see Refs. [145,
146]). These considerations are in agreement with the conclusions obtained in Refs. [147–149].

4 One Parameter Models

4.1 Radiatively Corrected Higgs Inflation (RCHI)

Let us consider again the model given by Eq. (3.1). The three functions describing this
action are modified when quantum corrections are taken into account. As a consequence,
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Figure 7. Top left panel: the solid blue line represents the radiatively corrected Higgs potential, see
Eq. (4.11), with A

I
= 5. It is compared to the tree level potential given by Eq. (3.9) (dashed green

line) and to Eq. (4.11) with A
I
= 0 (solid red line) which is supposed to be a good approximation of

the tree level potential. It is obvious that this is indeed the case in the regime of interest, where the
vev of the Higgs field is not too small. Top right panel: logarithm of potential, the three lines and the
color code having the same meaning as in the top left panel. Bottom left panel: slow-roll parameter
ǫ1 as a function of the field φ, still with the same convention. As can be seen in this plot, even in
presence of radiative corrections, the end of inflation occurs by violation of the slow-roll condition.
Bottom right panel: slow-roll parameters ǫ2 (solid blue line) and ǫ3 (dashed blue line) for A

I
= 5

compared to their tree level counter parts (solid and dashed green lines, respectively).

the potential which supports inflation is also modified and this leads to a new inflationary
scenario that we call Radiatively Corrected Higgs Inflation (RCHI). This scenario has been
studied in Refs. [155] and [156–159]. At first order, the corrections to the function Z(h) can
be neglected while the corrections to F (h) and to U(h) read

F (h) = 1 + ξh2 +
C

16π2
h2 ln

(

M2
Plh

2

µ2

)

, (4.1)

U(h) =M2
Pl

λ

4

(

h2 − v2

M2
Pl

)2

+
λA

128π2
M2

Plh
4 ln

(

M2
Plh

2

µ2

)

, (4.2)
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where µ is the renormalization scale and A and C are two new constants given by

A =
3

8λ

[

2g4 +
(

g2 + g′2
)

− 16y4t
]

+ 6λ+O
(

ξ−2
)

, (4.3)

C = 3ξλ+O
(

ξ0
)

, (4.4)

yt being the Yukawa coupling of the top quark and g and g′ the coupling constants of the
SU(2)L and U(1)Y groups. The presence of quantum corrections modifies the relation between
the Jordan and the Einstein frames and changes the shape of the potential in the Einstein
frame. Assuming the smallness of A/(32π2) ≪ 1 and C/(8π2ξ) ≪ 1, which is necessary
for the consistence of the one-loop calculation (the second condition is in fact equivalent to
Cλ/(8π2) ≪ 1 because C is proportional to ξ), one obtains the following expression

V ≃ M4
Plλ

4ξ2
ξ2h4

(1 + ξh2)2

[

1− ξh2

1 + ξh2
C

8π2ξ
ln

(

M2
Plh

2

µ2

)

+
A

32π2
ln

(

M2
Plh

2

µ2

)]

. (4.5)

Of course, if A = C = 0, one checks that this potential reduces to the potential of the
previous section. Notice that, at this stage, we have not assumed that ξh2 ≫ 1. If we further
postulate that ξh2 ≫ 1 and approximate ξ2h4/

(

1 + ξh2
)2 ≃ 1 − 2/(ξh2), then the above

formula reduces to

V ≃ M4
Plλ

4ξ2

[

1− 2

ξh2
+

A
I

16π2
ln

(

MPlh

µ

)]

, (4.6)

where A
I
≡ A−12λ is the inflationary anomalous scaling. This formula coincides with Eq. (6)

of Ref. [157] and Eq. (9) of Ref. [159]. Although the above formulas give V in the Einstein
frame, it is still expressed in term of h. The expression for the field in the Einstein frame, χ,
remains to be established. Assuming the smallness of the loop corrections (but, here, we do
not assume that ξh2 ≫ 1), we obtain

dχ

dh
≃

√
3hξ

(1 + ξh2)

[

1 +
C

16π2ξ
+

C

8π2ξ

1

1 + ξh2
ln

(

MPlh

µ

)]

. (4.7)

Notice that, in order to obtain this equation, we have also neglected a term proportional to
1/(ξh)2 ≪ 1. Contrary to the assumption ξh2 ≫ 1, the condition (ξh)2 ≫ 1 was also used
in section 3.1. Then, it is easy to integrate this differential equation and this leads to

χ ≃
√
3

2
ln
(

1 + ξh2
)

+

√
3C

16π2ξ

[

lnh− 1

1 + ξh2
ln

(

MPlh

µ

)]

. (4.8)

In the limit ξh2 ≫ 1, this expression reduces to

χ ≃
√
3

2
ln
(

ξh2
)

+

√
3C

16π2ξ
lnh. (4.9)

As expected the relation between the Jordan frame field h and the Einstein frame field χ is
modified by the quantum corrections. Inverting the above formula gives

ξ1/2h ≃ eχ/
√
3 − C

16π2ξ
eχ/

√
3

(

χ√
3
− 1

2
ln ξ

)

. (4.10)
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This equation allows us to find the expression of the potential in the Einstein frame. Inserting
Eq. (4.10) into Eq. (4.6) and introducing the canonically normalized field φ ≡

√
2MPlχ, one

obtains

V (φ) ≃M
4
Plλ

4ξ2

[

1− 2e−2φ/(
√
6MPl) − C

4π2ξ
e−2φ/(

√
6MPl)

(

φ√
6MPl

− 1

2
ln ξ

)

+
A

I

16π2
ln

(

MPl

µ
√
ξ

)

+
A

I

16π2
φ√
6MPl

]

≃M
4
Plλ

4ξ2

[

1− 2e−2φ/(
√
6MPl) +

A
I

16π2
φ√
6MPl

]

. (4.11)

We see that we now deal with a “one parameter model”, A
I
, since, as usual, the mass scale

M4 ≡ M4
Plλ/(4ξ

2) will be determined by the COBE normalization. In the case A
I
= 0, it

is also interesting to compare the above potential with the one given by Eq. (3.9). We see

that this corresponds to assuming that the exponential e−2φ/(
√
6MPl) ≪ 1 (or, equivalently,

φ/MPl ≫ 1) and to expand the corresponding expression at first order in this small parameter.

This leads to the following formula: V ≃M4
[

1− 2e−2φ/(
√
6MPl)

]

, i.e. exactly Eq. (4.11) for

A
I
= 0. It is worth remarking that this approximation is not very good towards the end of

inflation. Indeed, it is easy to show that (see below), for the potential (4.11) with A
I
= 0,

φend/MPl =
√

3/2 ln
(

2 + 2/
√
3
)

≃ 1.4 which should be compared with Eq. (3.11) for the
potential (3.9) according to which φend/MPl ≃ 0.94. The potential (4.11) is represented and
compared with its tree level counterpart in Fig. 7.

Given the potential (4.11), we can now proceed to the slow-roll analysis. Defining
x ≡ φ/MPl, the three first slow-roll parameters can be written as

ǫ1 =
1

12

[

4e−
√

2/3x +A
I
/(16π2)

1− 2e−
√

2/3x +AI/(32π
2)
√

2/3x

]2

, (4.12)

ǫ2 =
1

3

8e−
√

2/3x
[

1 +A
I
/(16π2) +A

I
/(32π2)

√

2/3x
]

+A2
I
/(256π4)

[

1− 2e−
√

2/3x +AI/(32π
2)
√

2/3x
]2 , (4.13)

and

ǫ3 = 12

(

4 +
AI

16π2
e
√

2/3x

)

{

48 + 8
AI

16π2

(

9 +
√
6x
)

+ 3
A3

I

4096π6
e2
√

2/3x

+ 2e
√

2/3x

[

12 + 18
AI

16π2

(

1 +
AI

16π2

)

+
√
6
AI

16π2

(

4 + 3
AI

16π2

)

x+ 2
A2

I

256π4
x2

]}

×
[

24 +
AI

16π2

(

24 + 4
√
6x+ 3

AI

16π2
e
√

2/3x

)]−1 [

−12 + e
√

2/3x

(

6 +
√
6
AI

16π2
x

)]−2

.

(4.14)

These three slow-roll parameters are represented in Fig. 7 (bottom panels). It is interesting
to compare these formulas with the expressions derived in Ref. [155] [see Eqs. (22) and (23)
of that paper]. An approximate equation for the first slow-roll parameter is obtained by
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neglecting the second and third terms in the denominator of Eq. (4.12), which, as a matter
of fact, consists in writing V (φ) ≃M4. Then, it follows that

ǫ1 ≃
4

3
e−2

√
2/3x

(

1 +
A

I

64π2
e
√

2/3x

)2

≃ 4

3

1

ξ2h4

(

1 +
h2

h2
I

)2

, (4.15)

where we have defined h2
I

≡ 64π2/(ξAI) in agreement with Ref. [155]. The same ap-
proximation is made for the second slow-roll parameter (except that Ref. [155] calculates
η̂ ≡ M2

PlVφφ/V rather than ǫ2). The second field derivative of the potential can be writ-

ten as Vφφ = −4M4e−
√

2/3x/(3M2
Pl) and, therefore, if one considers that V (φ) ≃ M4, then

η̂ ≃ −4/(3ξh2). We conclude that our expressions of ǫ1 and ǫ2 reproduce Eqs. (22) and (23)
of Ref. [155] in the limit where V (φ) ≃M4.

Let us now study how inflation ends in this model. From Fig. 7, it is clear that this
occurs by violation of the slow-roll conditions. Working out the condition ǫ1 = 1, it follows
that

xend =
1√
2
−
√

3

2

32π2

A
I

+

√

3

2
W 0

−1

[

64π2

A
I

(

1 +
1√
3

)

e32π
2/A

I
−1/

√
3

]

, (4.16)

where, if A
I
> 0, W 0

−1
= W0 while, if A

I
< 0, W 0

−1
= W−1.

We now turn to the slow-roll trajectory. It can be integrated exactly and straightforward
manipulations lead to the following expression

N −Nini =

√

3

2
x− 48π2

AI

[

1 +
A

I

32π2

(

1 +

√

2

3
x

)]

ln

(

1 +
A

I

64π2
e
√

2/3x

)

− 3

2
Li2

(

− AI

64π2
e
√

2/3x

)

−
√

3

2
xini +

48π2

AI

[

1 +
AI

32π2

(

1 +

√

2

3
xini

)]

× ln

(

1 +
A

I

64π2
e
√

2/3 xini

)

+
3

2
Li2

(

− A
I

64π2
e
√

2/3xini

)

, (4.17)

where Li2 denotes the dilogarithm function [160, 161]. Let us also notice that if we use the
approximation V (φ) ≃ M4 already discussed before, then one can obtain a much simpler
formula, namely

N −Nini = −48π2

AI

ln

(

1 +
A

I

64π2
e
√

2/3 x

)

+
48π2

AI

ln

(

1 +
A

I

64π2
e
√

2/3 xini

)

. (4.18)

This expression is in agreement with Eq. (24) of Ref. [155]. In this case, the trajectory can
even be inverted and the corresponding expression for the field φ reads

x =

√

3

2
ln

[(

64π2

A
I

+ e
√

2/3 xini

)

eAI
(N−Nini)/(48π

2) − 64π2

A
I

]

. (4.19)

We are now in a position where the predictions of the models can be calculated. They
are presented in Fig. 73. We see that very negative values of A

I
are incompatible with the

CMB while large values of A
I
fall right in the center of the allowed contours. Of course |A

I
|

cannot be too large since we have required A
I
/(64π2) ≪ 1. We have chosen the upper bound

in Fig. 73 to be A
I
= 100 for which A

I
/(64π2) ≃ 0.16, i.e. still a reasonable number. It
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Figure 8. Predictions of the RCHI model in the plane (nS, r). The exact slow-roll predictions (colored
segments starting in black/green at the bottom/left part of the plot and ending in red right in the
middle of the allowed contours) are compared to various approximations represented by the second
collection of colored segments, by the red thick dashed line and by the yellow dotted-dashed line, see
the text for a detailed explanation. In the regime 10 < A

I
< 100, the exact predictions significantly

differ from the approximate ones.

is interesting to compare these findings with the existing literature. Using the approximate
trajectory (4.18) and neglecting the contribution originating from the end of inflation, one
obtains

x∗ =

√

3

2
ln

[

64π2

A
I

(exBKS − 1)

]

, (4.20)

where x
BKS

≡ A
I
∆N∗/(48π2), not to be confused with x (x

BKS
is denoted x in Ref. [155]).

The above formula giving x∗ is in agreement with Eq. (27) of Ref. [155]. Then, from Eq. (4.15)
and the fact that ǫ2 = 4ǫ1 − 2η̂, it follows that

ǫ1 =
4

3

(

A
I

64π2

)2( exBKS

exBKS − 1

)2

=
3

4∆N2
∗

(

x
BKS

exBKS

exBKS − 1

)2

, (4.21)

ǫ2 = 4ǫ1 +
8

3

AI

64π2
1

exBKS − 1
= 4ǫ1 +

2

∆N∗

xBKS

exBKS − 1
. (4.22)

From these two expressions, one deduces that

nS = 1− 2

∆N∗

x
BKS

exBKS − 1
, r =

12

∆N2
∗

(

x
BKS

exBKS

exBKS − 1

)2

. (4.23)

Notice that, in the formula giving the spectral index, the contribution originating from ǫ1 has
been neglected since it scales ∝ 1/∆N2

∗ . These expressions are exactly similar to Eqs. (32)
and (34) of Ref. [155]. For ∆N∗ = 60, they can be represented as a line r = r(nS) in the
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plane (nS, r), the parameter along the curve being A
I
. This line has been plotted in Fig. 8

for −30 < A
I
< 100 (red dashed line; notice that, for this line, the color code indicated by

the bare on the side does not apply). Requiring 0.934 < nS < 0.988, which is the 2σ range
coming from combining the WMAP data, the Baryon Acoustic Oscillations (BAO) data and
the Supernovae measurements (notice that this range is obtained from different data sets and
this is why it slightly differs from the range one might infer from the CMB contours only in
Fig. 8), one obtains the solid thick red segment. It follows that −12 . A

I
. 14, again in

agreement with Ref. [155]. These predictions are compared to the exact slow-roll predictions
of Fig. 73. As usual, the exact predictions are represented by a collection of segments, each
segment corresponding to different values of A

I
(that can be read by means of the color code)

and each point of a given segment being in one-to-one correspondence with a given reheating
temperature. The exact predictions are such that, for A

I
< 0, the black/green segments go

to the bottom left side of the figure while for A
I
→ 100, the pink/red segments fall right in

the middle of the allowed contours. If one wants to identify even better the exact predictions,
one can also directly look at Fig. 73 and then compare it with Fig. 8. We see on this last
plot that, in the limit of “large” positive values of A

I
, the exact slow-roll predictions and

the predictions based on Eqs. (4.23) significantly differ. While, in order to remain inside the
allowed contour, Eqs. (4.23) tell us that A

I
. 14, the exact predictions show that it is in fact

the case for any positive values of AI . 100 [let us stress once more that AI/(64π
2) must

remain a small quantity; values of AI . 100 are fine while values such that AI > 100 are
probably meaningless, see the discussion above]. We conclude that the upper bound A

I
. 14

is inaccurate and is just an artifact due to the inaccurate nature of the “approximation to the
slow-roll approximation”. Let us try to identify the origin of this discrepancy more precisely.
In order to investigate this issue, we have also represented in Fig. 8, the predictions obtained
when the approximate trajectory (4.18), the approximate expression of the first slow-roll
parameter (4.15) and the relation ǫ2 = 4ǫ1 − 2η̂ (but, now, without neglecting ǫ1) are used
together with an exact expression for φend. They are represented by the second collections
of segments in Fig. 8. We see that for A

I
& 0, they differ from the red thick solid line

and bend toward the upper left part of the plot which is also the direction taken by the
exact predictions. This suggests that neglecting the term 4ǫ1 in the expression of ǫ2 causes
a non-negligible error. This is confirmed if, instead of using Eq. (4.23) for nS, we now take

nS = 1− 3

2∆N2
∗

(

xBKSe
x
BKS

exBKS − 1

)2

− 2

∆N∗

xBKS

exBKS − 1
, (4.24)

and plot again the line r = r(nS). This gives the yellow dotted-dashed curve which follows
the second collection of segments. If, however, we compare the red segments (namely those
with A

I
“large”) corresponding the exact predictions to the approximate red ones, we see

that including the term 4ǫ1 is not sufficient. For A
I
≃ 20, the exact predictions are perfectly

compatible with the data while the segments corresponding to the approximate formulas are
not (the corresponding “red region” predicts a spectrum which is too red and a too large
gravity waves contribution). We conclude that RCHI represents a textbook case for ASPIC.
It illustrates that, sometimes, “approximating the slow-roll approximation” can lead to too
drastic conclusions, especially given the current accuracy of the data. It is therefore safer
to use the slow-roll method without any other scheme of approximations and this is the
essence of the ASPIC project presented in this article. A last word is in order concerning
the constraints on the parameter A

I
. Particle physics implies that −48 . A

I
. −20. If the

upper limit A
I
< 14 is not accurate, we see in Fig. 8 that the bound −12 . A

I
is. Therefore,
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unfortunately, RCHI remains disfavored when particle physics and cosmological data are
simultaneously taken into account in agreement with the conclusions of Ref. [155].

Finally, let us briefly discuss how the scale M can be determined. The CMB normal-
ization leads to the following expression

M4

M4
Pl

=
1080π2

∆N2
∗

(

x
BKS

exBKS

exBKS − 1

)2 Q2
rms−PS

T 2
, (4.25)

which, using the expression of the scale M in terms of the parameters λ and ξ, implies that

λ

ξ2
≃ 0.5× 10−9

(

x
BKS

exBKS

exBKS − 1

)2

. (4.26)

This is in agreement with Eq. (31) of Ref. [155]. If, instead, one wishes to determine M
exactly, then the following formula should be used

M4

M4
Pl

= 120π2
Q2

rms−PS

T 2

[

4 e−
√

2/3x∗ +A
I
/(16π2)

]2

[

1− 2 e−
√

2/3x∗ +A
I
/(32π2)

√

2/3x∗
]3 . (4.27)

As usual, the knowledge of φ∗ allows us to find the posterior distribution of M , that is to
say of λ/ξ2 or ξ, since the Higgs self coupling, λ = mH/v, is now known.

4.2 Large Field Inflation (LFI)

Large fields models, also referred to as chaotic inflation [162], are characterized by the mono-
mial potential [163–167]

V (φ) =M4

(

φ

MPl

)p

. (4.28)

The index p is usually a positive integer but various models have been proposed in which it
can also be a rational number [168–171]. This is the only model parameter, in addition to
the normalization M of the potential. The potential is represented in Fig. 9 for p = 2.

The three Hubble flow functions are straightforwardly obtained from Eqs. (2.4), (2.5)
and (2.6). Defining x ≡ φ/MPl, one gets

ǫ1 =
p2

2x2
, ǫ2 =

2p

x2
, ǫ3 = ǫ2 . (4.29)

These functions are represented in the two bottom panels of Fig. 9. They are monotonic
decreasing functions of φ. One can immediately deduce that, for a given p, the model in the
plane (ǫ1, ǫ2) is contained in the line ǫ1 = (p/4)ǫ2.

The slow-roll trajectory is completely explicit and obtained by quadrature from Eq. (2.11)

N −Nend = − 1

M2
Pl

∫ φ

φend

V (χ)

V ′(χ)
dχ = −1

p

∫ φ/MPl

φend/MPl

xdx =
1

2p

(

x2end − x2
)

. (4.30)

This expression can be inverted and reads

x =
√

x2end − 2p (N −Nend) . (4.31)
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Figure 9. Large Field Inflation (LFI). Top left panel: large field potential for p = 2. Top right panel:
logarithm of the potential for the same value of p. The required flatness of the potential becomes
obvious on this plot. Bottom left panel: slow-roll parameter ǫ1 for a large field potential with p = 2.
The shaded area indicates where acceleration stops. Bottom right panel: slow-roll parameters ǫ2 and
ǫ3 for a large field potential with p = 2. Only one curve appears because ǫ2 = ǫ3. On this plot, the
shaded region signals the breakdown of the slow-roll approximation, which is not necessarily the end
of the accelerated phase.

For the large field models, inflation ends naturally when ǫ1 = 1 (see section 1). Along
the φ > 0 branch of the potential, this leads to

xend =
p√
2
. (4.32)

This expression also allows us to obtain the total number of e-folds. Plugging Eq. (4.32) into
Eq. (4.30), one arrives at

Nend −Nini =
1

2p
x2ini −

p

4
, (4.33)

which can be very large if the initial field value is super-Planckian. Notice that this does not
imply that the energy density is close to the Planck scale as this one is typically given by
the potential and proportional to M4. In fact, the model remains under control only if the
initial energy density is smaller than M4

Pl and this imposes a constraint on both φini and M
which reads

xini =
φini
MPl

.

(

MPl

M

)4/p

. (4.34)
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Let us notice that, when the inflaton energy density approaches the Planck energy density,
quantum effects become important. In this case, the stochastic inflation formalism must be
used [172–178].

We now turn to the explicit determination of the slow-roll parameters. We have seen
that the model is represented by the trajectory ǫ1 = (p/4)ǫ2 but observable models only
lie in a limited portion of this straight line. Indeed, the Hubble flow parameters should
be evaluated when the scales of astrophysical interest today left the Hubble radius during
inflation. Following the discussion of section 2.2, we assume the pivot mode crossed the
Hubble radius for φ = φ∗ at the e-fold number N∗. From the trajectory, we have

x2∗ = 2p
(

∆N∗ +
p

4

)

, (4.35)

and the slow-roll parameters read

ǫ1∗ =
p

4 (∆N∗ + p/4)
, ǫ2∗ =

1

∆N∗ + p/4
, ǫ3∗ = ǫ2∗ . (4.36)

Solving Eq. (2.46) for φ∗ yields the slow-roll predictions represented in Fig. 75. As expected,
the whole family lies in the region ǫ2 > 0 and verifies ǫ1 = p/4ǫ2. From Fig. 75, we see that all
the models with p & 4 lie outside the 2σ contour. The quadratic (or massive) model remains
compatible with the data and predicts quite a high contribution of gravitational waves, up
to r ∼ 15% level.

Finally, the parameterM can be determined from the amplitude of the CMB anisotropies,
and one gets

Q2
rms−PS

T 2
=

1

480π2ǫ1∗

H2
∗

M2
Pl

=
1

1440π2ǫ1∗

V∗
M4

Pl

. (4.37)

In the case of large fields model, this implies

(

M

MPl

)4

=
720π2p2

(x2∗)
p/2+1

Q2
rms−PS

T 2
, (4.38)

and given the constraints on p and ∆N∗, this leads to M/MPl ≃ 3 × 10−3. We recover the
conclusion that, for large field models, inflation takes place close to the Grand Unified Theory
(GUT) scale.

4.3 Mixed Large Field Inflation (MLFI)

This model is a generalization of the LFI model V (φ) ∝ φp, see section 4.2, where two
monomials ∝ φ2 and ∝ φ4 are added. The MLFI potential reads

V (φ) =M4 φ
2

M2
Pl

[

1 + α
φ2

M2
Pl

]

, (4.39)

where α is a positive dimensionless parameter. If φ/MPl ≪ 1/
√
α, then the potential is of

the LFI type with p = 2, i.e. V (φ) ≃ M4φ2/M2
Pl, whereas if φ/MPl ≫ 1/

√
α, the potential

is of the LFI type with p = 4, i.e. V (φ) ≃ M4αφ4/M4
Pl. Clearly, the interesting regime is

when φ/MPl ∼ 1/
√
α, where the two terms are of equal importance. The potential and its

logarithm are displayed in Fig. 10. We notice that V (φ) is an increasing function of the field
vev and, as a consequence, that inflation proceeds from the right to the left.
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Figure 10. Top left panel: mixed large field (MLFI) potential, see Eq. (4.39), for α = 0.05. Top
right panel: logarithm of the potential for the same value of α. The dotted line indicates the potential
V (φ) ≃M4φ2/M2

Pl
which is the limit of the MLFI potential in the regime φ/MPl ≪ 1/

√
α while the

dashed line represents the expression V (φ) ≃ M4αφ4/M4
Pl
, the limit of V (φ) when φ/MPl ≫ 1/

√
α.

For α = 0.05 the two lines meet at the following value, 1/
√
α ≃ 4.5, as can be directly checked in

the figure. The arrow in the top left and right panels indicate in which direction inflation proceeds.
Bottom left panel: slow-roll parameter ǫ1 for a mixed large field potential with α = 0.05. Bottom
right panel: slow-roll parameters ǫ2 (solid line) and ǫ3 (dotted line) still for α = 0.05.

This model has been investigated in different contexts. Of course, the shape of the
potential appears to be natural and well-motivated since it just represents a free theory (with
particles of mass 2M4/M2

Pl) corrected by the usual self-interacting quartic term. Therefore,
it does not come as a surprise that this potential has been used in many different works.
In Ref. [179], this model is studied in the case where a bulk scalar field is driving inflation
in large extra dimensions. In Ref. [180], it is considered in a situation where inflation is
driven by highly excited quantum states. In Refs. [181, 182], the MLFI potential is utilized
in the context of “fresh inflation”. The same potential was again considered in Ref. [183]
where the role of inflaton is played by the Higgs triplet in a model where the type II seesaw
mechanism is used to generate the small masses of left-handed neutrinos. Finally, it is also
studied in Ref. [184] where supersymmetric hybrid inflation (in the framework of the Randall-
Sundrum type II Braneworld model) is considered. The only constraint on the parameters
of the model that is (sometimes) required is that the self-interacting term should be sub-
dominant. This leads to the condition αM4/M4

Pl ≪ 1. Given the typical values imposed by
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CMB normalization, i.e. M/MPl ≃ 10−3 [see Eq. (4.38)], this is not very stringent and α can
in fact vary in a quite large range of values.

Let us now define x by x ≡ φ/MPl. Then, the three first slow-roll parameters can be
expressed as

ǫ1 =
2

x2

(

1 + 2αx2

1 + αx2

)2

, ǫ2 =
4

x2
1 + αx2 + 2α2x4

(1 + αx2)2
, (4.40)

and

ǫ3 =
M2

Pl

x2
1 + 2αx2

(1 + αx2)2
4 + 12αx2 + 8α3x6

1 + αx2 + 2α2x4
. (4.41)

They are displayed in Fig. 10. We see that the three slow-roll parameters are decreasing
functions of the field vev , which means that they are all increasing functions during inflation.
As a consequence, inflation can stop by violation of the slow-roll conditions at xend given by
ǫ1 = 1 (see below). We also notice that ǫ2 and ǫ3 are larger than one at xend. This means
that the slow-roll approximation breaks down slightly before the end of inflation and that the
few last e-folds of inflation may be not properly described by the slow-roll approximation.

Let us now study the slow-roll trajectory. It is given by

Nend −N = −1

8

[

x2end +
1

2α
ln
(

1 + 2αx2end
)

− x2 − 1

2α
ln
(

1 + 2αx2
)

]

, (4.42)

whereNend is the number of e-folds at the end of inflation. One can check that this expression
is asymptotically correct. Indeed, when α≪ 1, the slow-roll trajectory reduces to

x2end = x2 − 4 (Nend −N) , (4.43)

which is the trajectory in the massive case, i.e. LFI with p = 2, see Eq. (4.30). On the other
hand, in the limit α→ ∞, one obtains

x2end = x2 − 8 (Nend −N) , (4.44)

which is, as expected, the slow-roll trajectory in the quartic case, i.e. LFI with p = 4.
In general, the trajectory can be inverted and expressed in terms of the Lambert func-

tion. Straightforward manipulations lead to

x =
1√
2α

√

−1 +W0

[

e1+2αx2end
(

1 + 2αx2end
)

e−16α(N−Nend)
]

. (4.45)

The corresponding Lambert function is displayed in Fig. 11, together with the region where
inflation proceeds.

We have seen that, in MLFI, inflation stops by violation of the slow-roll condition. Let
us therefore determine the corresponding vev of the field. The condition ǫ1 = 1 leads to

αx3end − 2
√
2αx2end + xend −

√
2 = 0 . (4.46)

This is a cubic algebraic equation that can be solved exactly. In the limit α≫ 1, the solution
reads xend ≃ 2

√
2 which is indeed the solution for the quartic case, see Eq. (4.32). On the
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Figure 11. Lambert functions W0(x) (dashed line) and W−1(x) (solid line). During Mixed Large
Field inflation, inflation proceeds along the “0” branch above the lineW = 1 in the direction specified
by the arrow.

other hand, if α≪ 1, then xend ≃
√
2 which is also the correct result for the quadratic case.

The general solution writes

xend =
2
√
2

3
+

1

3α

{

1

4
√
2

[

4α2 (32α + 9) + 2α

√

4α2 (32α + 9)2 − 8α (8α − 3)3

]}1/3

+
1

3
(8α − 3)

{

1

4
√
2

[

4α2 (32α + 9) + 2α

√

4α2 (32α + 9)2 − 8α (8α− 3)3
]}−1/3

.

(4.47)
Numerically, it is especially convenient to have an exact solution and ASPIC makes use of the
above one.

Finally, the parameterM can be determined from the amplitude of the CMB anisotropies,
and one gets

(

M

MPl

)4

=
2880π2

x4

(

1 + 2αx2∗
)2

(1 + αx2∗)
3

Q2
rms−PS

T 2
. (4.48)

Similarly to LFI (see section 4.2), this gives rise to M/MPl ∼ 10−3.
The reheating consistent slow-roll predictions for the MLFI models are displayed in

Fig. 76. The reheating equation of state parameter wreh has been taken to 0 which is consis-
tent with the fact that the potential is quadratic close to its minimum. As expected, when
α ≪ 1 the predictions of the model match those of LFI with p = 2 and are aligned along
the ǫ1 = ǫ2/2 line. On the other hand, if α ≫ 1, then the predictions are consistent with
those of LFI with p = 4 and are aligned along the ǫ1 = ǫ2 line. In the intermediate regime,
it is interesting to notice that the MLFI predictions continuously interpolate between these
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Figure 12. Radiatively Corrected Massive Inflation (RCMI) for α = 0.01. Top panels: potential (left)
and logarithm of the potential (right). Bottom left panel: slow-roll parameter ǫ1 with respect to field
values. The shaded area indicates where inflation stops. Bottom right panel: slow-roll parameters ǫ2
(solid line) and ǫ3 (dotted line).

two asymptotic solutions but do not remain inside the domain delimited by the two lines
ǫ1 = ǫ2/2 and ǫ1 = ǫ2/2. Indeed, when α is larger than some value, one has ǫ1 > ǫ2. This
means that, if one starts from a pure quartic potential (LFI with p = 4) and adds a small
quadratic term, this extra term has the effect of increasing the “effective value” of p, which
is quite counter intuitive. On the other hand, however, since the quadratic model better fits
the data than the quartic one, small values for the parameter α are favored (all the models
with α > 10−3 lie outside the 2σ contour of the WMAP data). High reheating temperatures
are also preferred.

4.4 Radiatively Corrected Massive Inflation (RCMI)

This model is based on Ref. [185] and implements radiative corrections due to fermion cou-
plings over the massive (p = 2) large field model (see section 4.2). With an appropriate
choice of the renormalization scale µ = gMPl, g denoting the Yukawa coupling, the potential
is given by

V (φ) =
1

2
m2φ2 − g4

16π2
φ4 ln

(

φ

MPl

)

=M4

(

φ

MPl

)2 [

1− 2α
φ2

M2
Pl

ln

(

φ

MPl

)]

, (4.49)
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where

M4 ≡ 1

2
m2M2

Pl, α ≡ g4M2
Pl

16π2m2
. (4.50)

This expression is obtained in the large field regime φ ≫ m/g, i.e. assuming that the
inflationary regime takes place under the condition

φ4

M4
Pl

≫ 1

8π2α

M4

M4
Pl

. (4.51)

Defining x ≡ φ/MPl, the Hubble flow functions are given by

ǫ1 =
2

x2

[

1− αx2 − 4αx2 ln(x)

1− 2αx2 ln(x)

]2

, (4.52)

ǫ2 =
4

x2

(

1 + αx2
) (

1 + 2αx2
)

− 2αx2 lnx
(

1− αx2 − 4αx2 lnx
)

(1− 2αx2 lnx)2
, (4.53)

and

ǫ3 =
4

x2
1− αx2 − 4αx2 lnx

(1− 2αx2 lnx)2

× 1− αx2
[

αx2
(

4αx2 + 9
)

+ 1
]

− αx2 lnx
[

4α2x4 lnx(4 ln x+ 1) +
(

αx2 + 3
) (

6αx2 + 2
)]

(1 + αx2) (1 + 2αx2)− 2αx2 lnx (1− αx2 − 4αx2 lnx)
.

(4.54)
If α = 0, one recovers the slow-roll parameters of the massive case (namely LFI with p = 2,
see section 4.2) as expected.

Let us now discuss the field domains in which inflation can take place. It is clear that
the above potential is not positive definite for all field values. It becomes negative at the
point

xV=0 =
φV=0

MPl

=

√

1

αW0 (1/α)
, (4.55)

where W0 is the 0-branch of the Lambert function. The model is defined only in the regime
φ < φV=0. On the other hand, the top of the potential, where V ′ = 0 (or equivalently ǫ1 = 0),
is given by

xtop =
φtop
MPl

=

√

√

√

√

√

1

2αW0

(√
e

2α

) . (4.56)

As the model makes sense only if the logarithmic terms do not dominate the potential, the
acceptable regime is φ < φtop < φV=0, and a large field region only exists for φtop/MPl ≫ 1.
From the above expression, this means that we must be in the regime α ≪ 1. This is the
potential validity range as for φ < φtop one can check from Eqs. (4.49) and (4.56) that the
loop corrections never exceed α/e.

Let us now turn to the slow-roll trajectory. It is given by

N −Nend = −1

2

∫ φ/MPl

φend/MPl

x− 2αx3 lnx

1− αx2 − 4αx2 lnx
dx, (4.57)
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an integral that cannot be performed analytically. For the purpose of this section, we can
nevertheless make an expansion in α to obtain an approximate expression

N −Nend = −x
2

4

[

1 + α
x2

4
(1 + 4 lnx)

]

+
x2end
4

[

1 + α
x2end
4

(1 + 4 lnxend)

]

+O
(

α2
)

.

(4.58)
Inflation stops close to the minimum of the potential when ǫ1 = 1. This last equation cannot
be solved analytically but we can also perform an expansion at first order in α and one gets

xend =
φend
MPl

≃ 1
√

√

√

√2αW0

[

e1+1/(4α)

2α

]

≃
√
2− 2

√
2α . (4.59)

In the limit α→ 0, we recover the large field result for p = 2, i.e. xend →
√
2. The maximum

total number of e-folds one can realize between φ = φtop and φ = φend can be calculated
from the previous expressions. It reads

∆Nmax = Nend −Ntop =
5

32αW0

(√
e

2α

) +

1 + 2α− 20αW0

[

e1+1/(4α)

2α

]

128α2W2
0

[

e1+1/(4α)

2α

]

≃ − 5

32α ln (α)
.

(4.60)

This is a decreasing function of α, so that α has to be small enough if one wants a sufficiently
high number of e-folds to take place. Indeed, if one wants at least ∆Nmin e-folds to occur,
one needs to work with

α <
5

32∆Nmin

1

ln
(

32∆Nmin
10

) . (4.61)

For example, ∆Nmin = 50 imposes α < 6 × 10−4. The fact that α is bounded from above
can be directly checked in Fig. 77. The field φ∗ value at which the pivot mode crossed the
Hubble radius during inflation is obtained from Eq. (2.46) whereas the corresponding e-fold
number can be obtained from the trajectory.

Finally, the parameterM can be determined from the amplitude of the CMB anisotropies,
and one gets

(

M

MPl

)4

=
2880π2

x4∗

(

1− 2αx2∗ lnx∗
)3

(1− αx2∗ − 4αx2∗ lnx∗)
2

Q2
rms−PS

T 2
. (4.62)

The reheating consistent slow-roll predictions for the RCMI models are represented in Fig. 77.
As expected, the LFI quadratic model case is properly recovered for α→ 0. From this figure,
we see that all models having α > 10−3.5 lie outside the 2σ contour. Let us emphasize
that the value of α cannot be infinitely small due to Eq. (4.51). At zero order, one has
φ > φend ≃

√
2MPl such that Eq. (4.51) can be recast into

α >
M4

8π2M4
Pl

=
m2

16π2M2
Pl

. (4.63)

From the COBE normalization, and in the limit of small α, one gets M/MPl & 10−3 and the
lower bound reads α > 10−15.
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4.5 Radiatively Corrected Quartic Inflation (RCQI)

This model is similar to RCMI discussed in section 6.1 but implements radiative corrections
due to fermion couplings over a quartic (p = 4) large field model [185] (see section 4.2). The
potential is given by

V = λφ4 − g4

16π2
φ4 ln

(

φ

MPl

)

=M4

(

φ

MPl

)4 [

1− α ln

(

φ

MPl

)]

, (4.64)

where

M4 = λM4
Pl, α ≡ g4

16π2λ
. (4.65)

Defining x = φ/MPl, the Hubble flow functions in the slow-roll approximation read

ǫ1 =
8

x2





1− α

4
− α lnx

1− α lnx





2

, ǫ2 =
8

x2

1 +
α

4
(α− 1) + α

(α

4
− 2
)

lnx+ α2 ln2 x

(1− α lnx)2
, (4.66)

and

ǫ3 =
8

x2

(1− α

2
− α lnx)(1− α

4
− α lnx)

[

1 +
α2

2
+
α

4
− α

(

2 +
α

4
− α lnx

)

lnx

]

(1− α lnx)2
[

1 +
α

4
(α− 1)− α

(

2− α

4
− α lnx

)

lnx
] . (4.67)

The shape of the potential and the Hubble flow functions are very similar to the ones of the
RCMI model and have been represented in Fig. 13. In particular, the potential is vanishing
and maximal at the field values

xV=0 =
φV=0

MPl

= e1/α, xtop =
φtop
MPl

= e1/α−1/4, (4.68)

respectively. As the model makes sense only if the corrections are small compared to the
quartic term, one should consider α≪ 1 and not too large super-Planckian field values.

The slow-roll trajectory can integrated analytically from Eqs. (2.11) and (4.64) and one
gets

N −Nend = − 1

16

[

2x2 − e−1/2+2/α Ei

(

1

2
− 2

α
+ 2 ln x

)

− 2x2end + e−1/2+2/α Ei

(

1

2
− 2

α
+ 2 ln xend

)

]

,

(4.69)

where the exponential integral function is defined by

Ei(x) ≡ −
∫ +∞

−x

e−t

t
dt. (4.70)

The quartic limit α→ 0 is recovered by noticing that

Ei(−2/α) ∼
α→0

−α
2
e−2/α. (4.71)

Contrary to the RCMI model, the top of the potential is flat enough to support inflation.
Indeed, one sees from Eq. (4.68) that the argument of the exponential integral function
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Figure 13. Radiatively Corrected Quartic Inflation (RCQI) for α = 0.8. Top panels: the potential
and its logarithm as a function of the field values. Bottom left panel: slow-roll parameter ǫ1. The
shaded area indicates where inflation stops. Bottom right panel: slow-roll parameters ǫ2 (solid line)
and ǫ3 (dotted line). The shaded region for ǫ2 and ǫ3 shows where the slow-roll approximation is
violated for that value of α.

vanishes at x = xtop. Since for y → 0, one has Ei(y) ∼ γ + ln y, whatever the value of
xend the total number of e-folds is divergent. This means that it is always possible to realize
the required ∆N∗ number of e-folds provided inflation starts close enough to the top of the
potential.

As for RCMI, inflation stops at ǫ1 = 1 but this equation can only be solved numerically.
For illustrative purpose, one can nevertheless solve it at first order in α to get

xend =
φend
MPl

≃ 2
√
2−

√
2

2
α. (4.72)

The link between φ∗ and ∆N∗ is given by the slow-roll trajectory with φ∗ given by Eq. (2.46).
Finally, the parameterM can be determined from the amplitude of the CMB anisotropies,

and one gets

λ =
M4

M4
Pl

=
11520π2

x6∗

(

1− α
4 − α lnx∗

)2

(1− α lnx∗)
3

Q2
rms−PS

T 2
. (4.73)

The slow-roll predictions for RCQI are represented in Fig. 78 and 79. As expected, the
quartic model case is properly recovered in the limit α → 0. From Fig. 78, we see that all
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the models seem to lie outside the 2σ contour for wreh = 0. As the reheating phase takes
place at the bottom of a quartic-like potential, we have also represented the prediction for
wreh = 1/3 in Fig. 79. For a radiation-dominated reheating, ∆N∗ is fixed and for each value
of α one has only a single point. In that situation, all these models are still disfavored at the
two-sigma level.

4.6 Natural Inflation (NI)

Natural inflation was first proposed as an attempt to solve the so-called “fine tuning” problem
of inflation. Indeed, to satisfy the usual constraints on inflationary models, in particular, suf-
ficient inflation and microwave background anisotropies, the potential V of the inflaton must
be sufficiently flat. It is argued that such a flatness is not robust under radiative corrections,
unless it is protected by some symmetry. This is why it was proposed in Ref. [186, 187] an
approach, Natural Inflation, in which the inflaton potential is flat due to shift symmetries.
Nambu-Goldstone bosons are made use of, which arise whenever a global symmetry is spon-
taneously broken. When the shift symmetry φ(x) → φ(x) + constant of their potential is
broken by some additional shift symmetry breaking, these particles become pseudo-Nambu
Goldstone bosons [188, 189], with nearly flat potentials, exactly as required by inflation,
protected from radiative corrections, and thus generated in a “natural” way. In practice, a
decay constant f determines the periodicity of the canonically normalized field, which is now
invariant under φ→ φ+ 2πf (the continuous shift symmetry has left the floor to a discrete
symmetry). More precisely, the pseudo-Nambu Goldstone boson potential resulting from
explicit breaking of a shift symmetry in single field models (in four spacetime dimensions) is
generally of the form

V (φ) =M4

[

1 + cos

(

φ

f

)]

. (4.74)

This model has been widely studied in Refs. [190–205]. Many types of candidates have
subsequently been explored for natural inflation. For example, in Ref. [206], it was suggested
to use a pseudo-Nambu Goldstone boson as the rolling field in double field inflation. Then,
NI potentials generated by radiative corrections in models with explicitly broken Abelian
[207] and non-Abelian [208] symmetries were considered, showing that NI models with f ∼
MPl and f ≪ MPl can both be generated. In Refs. [209, 210], shift symmetries in Kähler
potentials enabled to obtain a flat potential and drive natural chaotic inflation in supergravity.
Additionally, Refs. [211, 212] examined natural inflation in the context of extra dimensions
and Ref. [213] used pseudo-Nambu Goldstone bosons from little Higgs models to drive hybrid
inflation. Also, Refs. [214, 215] used the natural inflation idea of pseudo-Nambu Goldstone
bosons in the context of braneworld scenarios to drive inflation, and in Ref. [216], it was
studied in 5-D warped backgrounds. The same potential has also been obtained and studied
in Ref. [217] when studying instantons in non linear sigma models, and in Ref. [218] as
providing quintessential inflation. In some of these references the potential is sometimes found
with the minus sign in front of the cosine term, which is, up to a shift in the field vev φ/f →
φ/f +π, the same potential. This model was also derived and studied in Refs. [211, 212, 219]
in the context of orbifold GUT inflation, where the potential is given by

V (φ) =M4

[

f

(

φ

φ0

)

+ f

(

2
φ

φ0

)

+
f(0)

2

]

, (4.75)

– 47 –



Figure 14. Natural Inflation (NI). Top left panel: potential for f/MPl = 1.5. Top right panel:
logarithm of the potential for the same value of f . Bottom left panel: slow-roll parameter ǫ1 for
a potential with f/MPl = 1.5. The shaded area indicates the breakdown of the slow-roll inflation
(strictly speaking when the acceleration stops). Bottom right panel: slow-roll parameters ǫ2 (solid
line) and ǫ3 (dotted line) for a potential with f/MPl = 1.5.

with

f(x) = −
∞
∑

n=1

cos (nπx)

n5
. (4.76)

This potential aims at being studied in its increasing branch, and in the small field limit.
At leading order, one recovers the natural inflation form of Eq. (4.74). In Refs. [220–222],
it is argued that because the axion is very weakly coupled, the energy density stored in the
classical axion field does not dissipate rapidly during preheating when the field classically
oscillates at the bottom of its potential, and that it exceeds the critical density needed to close
the universe unless f / 1012GeV. However, as pointed out in Ref. [223] on general grounds,
this constraint may not apply in the context of cosmological inflation. More precisely, in
Ref. [224], it was explained how the mechanism of N -flation [225] can produce an effective
potential with f ≫MPl from two or more axions, each with sub-Planckian scales. For these
reasons, we will assume that f can take values in a wide range, above and below the Planck
mass MPl.

The potential of Eq. (4.74) is displayed with its logarithm in Fig. 14. Since it is a periodic
and even function of the field vev φ, it is enough to study it in the range φ ∈ [0, πf ] where
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inflation proceeds from the left to the right. If one lets x ≡ φ/f , the slow-roll parameters
can be expressed as

ǫ1 =
M2

Pl

2f2
sin2 (x)

[1 + cos (x)]2
, ǫ2 =

2M2
Pl

f2
1

1 + cos (x)
, ǫ3 = 2ǫ1 . (4.77)

They are displayed in Fig. 14, where one can see that they are all increasing functions of the
field vev , which means that they all increase during inflation. Inflation stops at the position
xend given by ǫ1 = 1 (see below), and one can see that ǫ2 and ǫ3 are already greater than one
at this point. This means that the slow-roll approximation stops being valid slightly before
the end of inflation, and the few last e-folds may not be properly described in this frame of
approximations. Another remark to be made is the fact that one generically has

ǫ2 >
M2

Pl

f2
. (4.78)

This means that in order for the slow-roll approximation to be valid, one must require
f/MPl ≫ 1, which makes the above discussion about having this condition satisfied in the
framework of N -flation, of crucial importance.

The end of inflation occurs when ǫ1 = 1, i.e. at a position given by

xend = arccos

(

1− 2f2/M2
Pl

1 + 2f2/M2
Pl

)

. (4.79)

From this expression, one can calculate the value of the other slow roll parameters at the
end of inflation, namely ǫend2 = 2+M2

Pl/f
2 and ǫend3 = 2ǫend2 , which confirms that the last few

e-folds may not be described properly in the slow-roll approximation.
Let us now calculate the slow-roll trajectory. It is given by

Nend −N =
f2

M2
Pl

ln

[

1− cos (xend)

1− cos (x)

]

, (4.80)

where Nend is the number of e-folds at the end of inflation, and N is the number of e-folds at
some point when the scaled field vev is x. This trajectory can be inverted and one obtains

x = arccos

{

1− [1− cos (xend)] exp

[

−M
2
Pl

f2
(Nend −N)

]}

. (4.81)

Replacing xend by its value [see Eq. (4.79)] gives

x = arccos

{

1− 4f2

M2
Pl + 2f2

exp

[

−M
2
Pl

f2
(Nend −N)

]}

. (4.82)

Finally, the amplitude of the CMB anisotropies fixes the parameter M to

(

M

MPl

)4

= 720π2
Q2

rms−PS

T 2

M2
Pl

f2
sin2 (x∗)

[1 + cos (x∗)]
3 . (4.83)

If f ∼ O(1), this expression simplifies to

(

M

MPl

)4

≃ 720π2
Q2

rms−PS

T 2

e−2M2
Pl/f

2∆N∗

1 + 2f2/M2
Pl

, (4.84)
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which gives rise to M/MPl ∼ 10−13. On the contrary, if f/MPl ≫ 1 one has

(

M

MPl

)4

≃ 360π2
Q2

rms−PS

T 2

(

f

MPl

)2 1

∆N2
∗
, (4.85)

and the potential energy scale goes up. For instance, if f/MPl = 102 one has M/MPl ∼ 10−2.
The reheating consistent slow-roll predictions for the natural inflation models are dis-

played in Fig. 80. The reheating equation of state parameter wreh has been taken to 0 since
the potential is quadratic close to its minimum. In the limit f/MPl → ∞, the quadratic
model predictions (LFI with p = 2, see section 4.2) seem to be recovered. Indeed, from the
above formula, one can check that in this limit both xend and x∗ approach π and the potential
is, at leading order, a parabola. More precisely, one can check from Eq. (4.82) that in the
limit f/MPl → ∞, one has cos(x∗) ≃ −1+ (1 + 2∆N∗)M2

Pl/f
2, from which one deduces that

ǫ1∗ ≃ 1/ (1 + 2∆N∗) and ǫ2∗ ≃ 2/ (1 + 2∆N∗) ≃ 2ǫ1∗. This relations are characteristic of the
LFI quadratic models, see Eq. (4.36). However, one has ǫ3∗ = 2ǫ2∗ which differs from the LFI
quadratic relationship ǫ3∗ = ǫ2∗, and therefore quantities sensitive to ǫ3, such as the running
αS, would break the degeneracy between NI and the LFI quadratic model. As expected, large
values of f/MPl seem to be favored by the data (as well as high reheating temperatures), and
in practice, f/MPl < 4 appears to be disfavored at the 2σ level by the WMAP data.

4.7 Exponential SUSY Inflation (ESI)

This model has been discussed in Ref. [226] in the context of spin-driven inflation and derived
in Ref. [227] in the context of supergravity and superstrings. The potential is given by

V (φ) =M4
(

1− e−qφ/MPl

)

, (4.86)

where q is a positive dimensionless parameter and inflation proceeds at decreasing field values
in the region where φ/MPl > 0. The same potential also appears in Ref. [228] in the context
of brane inflation, in Ref. [229] in the context of type IIB string compactification as fiber
inflation and more recently in Ref. [230] as unitarized Higgs inflation models.

Defining x ≡ φ/MPl, the Hubble flow functions in the slow-roll approximation read

ǫ1 =
q2

2

e−2qx

(1− e−qx)2
, ǫ2 = 2q2

e−qx

(1− e−qx)2
, ǫ3 = q2

e−qx (1 + e−qx)

(1− e−qx)2
. (4.87)

The potential and the Hubble flow functions with respect to the field values are represented
in Fig. 15.

The slow-roll trajectory can be integrated analytically from Eq. (2.11) and one finds

N −Nend = −e
qx − qx

q2
+
eqxend − qxend

q2
. (4.88)

This equation can also be inverted in terms of the Lambert function to get the field value in
terms of the number of e-folds:

x = q(N−Nend)−
eqxend − qxend

q
−1

q
W−1

{

− exp
[

q2(N −Nend)− (eqxend − qxend)
]}

. (4.89)

The fact that one should choose the branch W−1 is justified below. The argument of the
Lambert function is always negative as the exponential is always positive. Moreover, since
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Figure 15. Exponential SUSY Inflation (ESI) for q =
√
2. Top panels: the potential and its

logarithm. Bottom left panel: slow-roll parameter ǫ1. The shaded area indicates where acceleration
stops. Bottom right panel: slow-roll parameters ǫ2 (solid line) and ǫ3 (dotted line). For those, the
shaded region signals the breakdown of the slow-roll approximation but not necessarily the end of the
accelerated expansion.

xend > 0 andN < Nend, the maximal value of exponential argument is saturated for xend → 0,
i.e. for a Lambert function argument equals to −1/e. As the result the Lambert function
argument varies, at most, in [−1/e, 0]. Finally, since x > 0, we see directly from Eq. (4.89)
that the Lambert function values have to be negative thereby ensuring that inflation proceeds
only along the “−1”-branch (see Fig. 16).

With such a potential, inflation ends naturally at ǫ1 = 1, i.e. at the field value

xend =
1

q
ln

(

1 +
q√
2

)

. (4.90)

From this equation and the trajectory, we have an explicit relation between the field value φ∗
at which the pivot mode crossed the Hubble radius during inflation and the corresponding
e-fold number ∆N∗.

Finally, the parameterM can be determined from the amplitude of the CMB anisotropies,
and one gets

(

M

MPl

)4

= 720q2π2
e−2qx∗

(1− e−qx∗)3
Q2

rms−PS

T 2
, (4.91)
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Figure 16. Lambert functions W0(x) (dashed line) and W−1(x) (solid line). During Exponential
SUSY inflation, inflation proceeds along the “−1” branch in the direction specified by the arrow on
the figure.

where the value of φ∗ (or ∆N∗) is obtained from Eq. (2.46). The reheating consistent slow-roll
prediction for the exponential Susy models are represented in Figs. 81 and 82. In the limit
q → 0, we recover the same prediction as a linear large field model. From Fig. 81, we see
that all the models remains compatible with the current data. These figures correspond to
wreh = 0, but one could argue that wreh & −1/3 make more sense if a parametric reheating
would feel the linear shape of the potential. This quite extreme situation is represented in
Fig. 82. In that case, the low reheating temperatures are clearly disfavored.

4.8 Power Law Inflation (PLI)

These models refer to inflationary potentials of the form

V (φ) =M4e−αφ/MPl , (4.92)

where α is a dimensionless parameter. They have been intensively studied as test cases
because they provide an exact inflationary dynamics, of the power law form, hence their
name.

It was first introduced in Ref. [231, 232] as providing quintessential inflation,i.e. models
in which the energy of the scalar field redshifts as a power law with respect to the scale factor
ρ ∝ a−q. In that case α =

√

q/2. The same potential has also been studied in Ref. [233, 234]
as arising when implementing large field inflation (LFI, see section 4.2) with non minimal
coupling of the inflaton with the gravity sector. In Ref. [235], a cosmic no-hair theorem for
Bianchi models was proven assuming that the potential of the inflaton is of type (4.92). It
was shown that one must have 0 < α <

√

2/3 so that the isotropic power law solution is
the unique attractor for any initially expanding Bianchi type model (except type IX). In
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Figure 17. Power Law Inflation (PLI) for α = 0.3. Top panels: power law potential (left) and its
logarithm (right). Bottom left panel: slow-roll parameter ǫ1. Bottom right panel: slow-roll parameters
ǫ2 = ǫ3 = 0. On these plots, the shaded area indicates the region where slow-roll is violated.

Ref. [236], the potential (4.92) has been studied in the Kantowski-Sachs metric, and it was
found that the production of particles by the scalar field act as viscous forces which enlarge
the range of initial conditions leading to successful inflation. In Ref. [237], the nature of
the potential V (φ) relevant to having inflation in a minimally coupled scalar field cosmology
along with a causal viscous fluid was investigated using the same potential. In Ref. [238–
240], it was used to describe the dynamics of a tachyonic matter field. In Ref. [241], the
general transformations that leave unchanged the form of the field equations for Bianchi V
cosmologies were investigated, and it was found that they admit asymptotic stable points
that lead to power law solutions of the type (4.92). In Ref. [242], inflation was studied in the
context of M-theory on S1/Z2 via the non-perturbative dynamics of M5-branes. The open
membrane instanton interactions between the branes give rise to potentials of the type (4.92).
Ref. [243] has used the exponential potential (4.92) in the context of Randall-Sandrum type
II Braneworld model. Finally, the general dynamics of power law inflation was widely studied
in Refs. [244–253], where various aspects of its phenomenology were highlighted.

The potential and its logarithm are displayed in Fig. 17. They are decreasing functions
of the field, hence inflation proceeds from the left to the right. The slow-roll parameters take
a simple form given by

ǫ1 =
α2

2
, ǫi>1 = 0. (4.93)
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Since the first slow-roll parameter is constant, inflation cannot stop by slow-roll violation
but at some point φend where e.g. a tachyonic instability is triggered. A priori, this provides
the model with a new free parameter. However, because the slow-roll parameters do not
depend on φ, as well as all the inflationary dynamics features, even outside the slow-roll
approximation (see below), the predictions of the model cannot depend on φend and this
parameter is irrelevant for the observable predictions.

The slow-roll hierarchy being almost trivial, the whole dynamics of the model can be
worked out even out of the slow-roll approximation. Indeed, let us first notice that the
slow-roll trajectory can be explicitly integrated, and gives

φ/MPl = φend/MPl + α (Nend −N) . (4.94)

Now, one can notice that this trajectory is also a solution of the exact Klein-Gordon equation
of motion, which writes, in terms of the number of e-folds N ,

H2 ∂
2φ

∂N2
+

(

3H2 +H∂
∂H

∂N

)

∂φ

∂N
+

dV

dφ
= 0. (4.95)

Indeed, the first term vanishes, and the second term requires to compute

H2 =
V + φ̇2/2

3M2
Pl

=

V +
H2

2

(

∂φ

∂N

)2

3M2
Pl

=
V +

H2

2
α2M2

Pl

3M2
Pl

, (4.96)

from which one gets

H2 =
V

3M2
Pl

1

1− α2

6

. (4.97)

From there, one can evaluate all terms in the Klein-Gordon equation, and verify that Eq. (4.94)
is indeed a solution of Eq. (4.95). Since it is a second order differential equation, other solu-
tions exist, but it can be shown [231, 232] that the exact solution is an attractor of all the
possible solutions. Let us also notice that combining Eq. (4.97) with Eq. (4.94) gives rise to

H = Hend

(aend
a

)α2/2
, (4.98)

which can be integrated and gives

a(t) = aend

(

t

tend

)2/α2

. (4.99)

Finally, the equation of state w = P/ρ can also be worked out exactly and one gets

w = −1 +
α2

3
. (4.100)

Again, all the previous expressions are valid outside the slow-roll approximation. One can see
that pure de Sitter corresponds to α = 0, in this case the potential is constant, the equation
of state is −1 and the scale factor expands exponentially.
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Another nice feature of power-law inflation is that the spectrum of the perturbations
can be computed exactly without relying on any approximation. Defining the parameter
β ≤ −2 by α2/2 = (β + 2)/(β + 1), it is given by

Pζ =
H2

∗
πǫ1(8πM

2
Pl)
f(β)

(

k

k∗

)2β+4

, (4.101)

where

f(β) ≡ 1

π

[

(1 + β)1+β

21+β
Γ

(

1

2
+ β

)]2

. (4.102)

In particular, f(β = −2) = 1. The power spectrum of gravitational waves can also be
deduced from the definitions of the power spectra

Pζ =
k3

8π2

∣

∣

∣

∣

µS

a
√
ǫ1

∣

∣

∣

∣

2

, Ph =
2k3

π2

∣

∣

∣

µT

a

∣

∣

∣

2
. (4.103)

For power law inflation, we have µS = µT, and therefore

r ≡ Ph
Pζ

= 16ǫ1 =
16nT

nT − 2
, (4.104)

since nT = nS − 1 = 2β + 4.
Finally, the COBE normalization gives

(

M

MPl

)4

= 720π2α2eαφ∗/MPl
Q2

rms−PS

T 2
. (4.105)

Obviously, this normalization depends on the value of φend, and it is more relevant to express
it in terms of the potential energy, say, at the end of inflation:

Vend
M4

Pl

= 720π2α2e−α
2∆N∗

Q2
rms−PS

T 2
, (4.106)

from which one typically gets V
1/4
end /MPl ∼ 10−4.

The reheating consistent slow-roll predictions for the power law inflation models are
displayed in Fig. 83. Because the slow-roll parameters are constant during inflation, one
can check that the predictions of the models do not depend on the energy scale at which
the power law reheating ends. One has nS = 1 − α2 and r = 8α2, and from the WMAP
constraints, the models with α > 0.2 are excluded at two sigma confidence level.

4.9 Kähler Moduli Inflation I (KMII)

These models are stringy models and arise when type IIB string theories via Calabi-Yau flux
compactification are used. KMII scenarios have been derived and studied in Refs. [254–260].
More specifically, when internal spaces are weighted projective spaces, one of the Kähler
moduli can play the role of an inflaton field and its potential, in the large field limit, reads

V (φ) =M4

(

1− α
φ

MPl

e−φ/MPl

)

, (4.107)

α being a positive dimensionless parameter. Actually, since we deal with a modulus, φ usually
possesses a non-minimal kinetic term. Then, once the inflaton field has been canonically
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Figure 18. Top left panel: Kähler moduli inflation (KMII) potential for α = 1.5. The two arrows
indicate the two regions of the potential where inflation can take place. Top right panel: logarithm
of the potential for the same value of α. Bottom left panel: slow-roll parameter ǫ1 for α = 0.5 (solid
green line), α = 1.5 (solid blue line) and α = 2.5 (solid pink line). Obviously, the number of solutions
of the equation ǫ1 = 1 depends on the value of α. Bottom right panel: slow-roll parameters ǫ2 (solid
line) and ǫ3 (dotted line) for α = 1.5.

normalized, φ has to be replaced with ∝ φ4/3. The corresponding corrected potential is
studied as “Kähler Moduli Inflation II” (KMIII) in section 5.3. However, sometimes, the
potential (4.107) (with φ already canonically normalized) is also studied as a toy model
(notably in Ref. [260]), the hope being that it can give a simpler description of the physics
that naturally appears in the context of moduli inflation. Therefore, in this section, we also
consider this scenario.

The potential in Eq. (4.107) depends on one free parameter, α. A priori, there does not
exist any bound on its value. However, as explained below, in order for slow-roll inflation
to occur, one must restrict the range of possible values for α. Within this range, we will
show that the predictions of the model turn out to be almost independent of α (in fact,
they logarithmically depend on α). The potential (4.107) and its logarithm are displayed in
Fig. 18. It decreases from φ = 0 (where it blows up), reaches a minimum at φ = MPl, and
then increases to the asymptotic value V = M4 when φ → +∞. Therefore, two regimes of
inflation may a priori exist: either inflation proceeds from the left to the right in the decreasing
φ < MPl branch of the potential (in this branch the vev φ increases during inflation) or it
proceeds from the right to the left in the increasing φ > MPl branch of the potential (and
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the vev decreases during inflation). However, one should keep in mind that the potential is
derived under the large field assumption and, consequently, only the second regime is in fact
meaningful. As a toy model, one might nevertheless want to study both regimes but it turns
out that, in the first one, inflation could not stop by violation of the slow-roll conditions. This
is why we will mainly focus on the second regime in the rest of this section. Let us also notice
that the minimum value of the potential is located at φ = MPl and is Vmin = M4 (1− α/e).
Therefore, if one requires the potential to be positive definite everywhere, then one must
have 0 < α < e ≃ 2.72. However, this condition may also be ignored if one considers that
the potential (4.107) is in any case not valid at φ/MPl . 1.

Defining x by x ≡ φ/MPl, the three first slow-roll parameters can be expressed as

ǫ1 =
α2

2
e−2x (1− x)2

(1− αe−xx)2
, ǫ2 =

2αe−x

(1− αe−xx)2
(

αe−x + x− 2
)

, (4.108)

and

ǫ3 =
αe−x (x− 1)

(1− αe−xx)2 (αe−x + x− 2)

[

x− 3 + αe−x
(

x2 − 3x+ 6
)

− 2α2e−2x

]

. (4.109)

Let us now study in more detail how inflation stops in this model. Let us first solve the
equation ǫ1 = 1. As can be seen in Fig. 18, the number of solutions depends on the value of
α. We now define the numbers α1 and α2 by

α1 ≡
√
2√

2− 1
e

2−
√

2

1−
√

2 ≃ 0.83, α2 ≡
√
2√

2 + 1
e

2+
√

2

1+
√

2 ≃ 2.41. (4.110)

If 0 < α < α1, then there is no solution (this corresponds to the green line in the bottom
left panel in Fig. 18). The inflaton field eventually oscillates around the minimum of its
potential but remains in a region where inflation continues forever. In this case, in order to
stop inflation, one must add an auxiliary field to the model such that a tachyonic instability
is triggered at some value xend. This of course increases the number of parameters of this
model. If α1 < α < α2 (which corresponds to the blue line in Fig. 18), then two solutions
appear:

x−ǫ1=1|x<1 = xend|x<1 =
1

1−
√
2
−W0

[ √
2

1−
√
2

e
1

1−
√

2

α

]

≃ −2.4−W0

(

−0.3

α

)

,(4.111)

x+ǫ1=1|x<1 =
1

1−
√
2
−W−1

[ √
2

1−
√
2

e
1

1−
√

2

α

]

≃ −2.4−W−1

(

−0.3

α

)

, (4.112)

where W0 and W−1 denotes the “0-branch” and the “−1-branch” of the Lambert function
respectively. These two solutions are both smaller than one so that they both lie in the
decreasing branch of the potential. Correspondingly, two regimes of inflation exist. The first
one proceeds from the left to the right and stops at xend|x<1. However, using the expression
for the slow-roll parameters (4.108), it is easy to see that ǫ1 is always larger than 1/2 in this
domain. Therefore, the slow-roll approximation breaks down in this case. The second regime
takes place in the φ/MPl > 1 branch of the potential but inflation cannot stop by slow-roll
violation. Finally, if α2 < α (this situation corresponds to the pink line in the bottom left
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panel in Fig. 18), then four solutions exist: two were already given in Eqs. (4.111), (4.112)
and the two new ones read

x−ǫ1=1|x>1 =
1

1 +
√
2
−W0

[

−
√
2

1 +
√
2

e
1

1+
√

2

α

]

≃ 0.4−W0

(−0.9

α

)

, (4.113)

x+ǫ1=1|x>1 = xend|x>1 =
1

1 +
√
2
−W−1

[

−
√
2

1 +
√
2

e
1

1+
√

2

α

]

≃ 0.4−W−1

(−0.9

α

)

.(4.114)

The two new solutions are greater than one and therefore lie in the increasing branch of
the potential. Thus two regimes exist in this situation. The first one is the same as before,
proceeds again from the left to right, stops at xend|x<1 and suffers from the fact that ǫ1 is
always larger than 1/2. The second one proceeds from the right to the left and ends at
xend|x>1. We conclude that this regime is the regime of interest for the KMII model and that
we must therefore require α > α2.

Let us now study the slow-roll trajectory. It can be integrated exactly and its expression
can be written as

Nend −N =xend −
e

α
Ei (xend − 1) + ln (xend − 1)

− x+
e

α
Ei (x− 1)− ln (x− 1) ,

(4.115)

where Ei is the exponential integral function [160, 161]. At this point, a few remarks are in
order. First, let us notice that N goes to ∞ when x tends to 1. This means that, in the
slow-roll approximation, the field can never cross the minimum of its potential. In particular,
if α < α2, that is to say if one starts from the φ/MPl < 1 branch and rolls down from the left
to the right, then one can never reach the physical φ/MPl > 1 branch of the potential and
inflation can never come to an end. Second, when x≫ 1, the trajectory can be approximated
by

Nend −N ≃ e

α

(

ex

x
− exend

xend

)

. (4.116)

Moreover, in this approximation, it can be inverted exactly and one obtains

x ≃ −W−1

[

− 1

α (Nend −N) /e+ exend/xend

]

, (4.117)

in agreement with what was obtained in Ref. [260]. In the above expression, W−1 is the
−1 branch of the Lambert function. Let us also notice that, in Ref. [260], the branch of the
Lambert function was in fact incorrectly chosen. The fact that the −1 branch of the Lambert
function has to be considered comes from the following argument. When Nend−N → ∞, the
argument of the Lambert function goes to 0− and, therefore, since x must tend towards +∞
in this limit, the −1 branch must be chosen. In addition, if Nend − N → 0, then one must
have x→ xend > 1 which is also the case if the −1 branch is retained. This is represented in
Fig. 19 where the arrow indicates the direction along which inflation proceeds. Third, since,
when x→ ∞, one has Nend −N → ∞, a sufficient number of e-folds can always be realized
in this model. Four, in fact, it is inaccurate to assume that xend ≫ 1 and, therefore, the
above approximated trajectory is not so useful. However, if one only assumes that x ≫ 1
(which can be checked to be a good approximation, especially at x = x∗) but not xend ≫ 1,
then one can write

Nend −N ≃ e

α

ex

x
+ xend −

e

α
Ei (xend − 1) , (4.118)
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Figure 19. Lambert functions W0(x) (dashed line) and W−1(x) (solid line). During Kähler moduli
inflation, inflation proceeds along the “−1” branch in the direction specified by the arrow.

which, moreover, can be inverted into

x ≃ −W−1

[

− 1

α (Nend −N) e+ Ei (xend − 1)− αxend/e

]

, (4.119)

and which is valid whenever x ≫ 1. However, one should keep in mind that, now, and
contrary to the former approximated trajectory, taking the limit N → Nend in the above
expression is meaningless.

Finally, it is interesting to determine the energy scaleM . Using the CMB normalization,
one obtains the following expression

(

M

MPl

)4

= 720π2α2 (1− x∗)
2

(1− αx∗e−x∗)
3 e

−2x∗
Q2

rms−PS

T 2
. (4.120)

If one uses the x∗ ≫ 1 approximation, then Eq. (4.119) tells us that x∗ ≃ log (α∆N∗) and
Eq. (4.120) can be re-written as

(

M

MPl

)4

= O(1) 720
π2

∆N2
∗

Q2
rms−PS

T 2
. (4.121)

It is remarkable that this equation does not depend on α. Using a fiducial value for ∆N∗,
one typically gets M/MPl ∼ 10−3.

The predictions of KMII models are displayed in Fig. 84, for α > α2. The reheating
equation of state parameter wreh has been taken to 0 since the potential is quadratic close to
its minimum [but, it should be reminded that, in principle, the potential Eq. (4.107) cannot
be trusted close to its minimum]. One can see that, as announced at the beginning of this
section, the predictions depend on α in a very mild way, a conclusion which is in agreement
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with Refs. [254, 260]. This can be understood as follows. If one assumes that x∗ ≫ 1, then
we have already noticed that Eq. (4.119) implies that x∗ ≃ log (α∆N∗). From this result,
one obtains that

ǫ1∗ ≃
1

2∆N2
∗
ln2 (α∆N∗) , ǫ2∗ ≃

2

∆N∗
ln (α∆N∗) , ǫ3∗ ≃

1

∆N∗
ln (α∆N∗) . (4.122)

In these expressions, we notice that the slow-roll parameters (at Hubble crossing) logarith-
mically depend on α. This explains the weak α dependence observed in Fig. 84. Of course,
one can also calculate the corresponding expressions of the spectral index, tensor to scalar
ratio and running. One arrives at

nS ≃ 1− 2
ln (α∆N∗)

∆N∗
, r ≃ 8

ln2 (α∆N∗)

∆N2
∗

, αS ≃ −2
ln2 (α∆N∗)

∆N2
∗

. (4.123)

These expressions are in accordance with the estimates derived in Refs. [254, 260]. However,
contrary to what is claimed in Refs. [260], the predicted value of the running is not excluded
by the CMB observations since, according to WMAP9 [66, 67], one has αS = −0.019±0.025.

4.10 Horizon Flow Inflation at first order (HF1I)

The horizon flow models have been introduced in Ref. [261] and consist into designing field
potentials to exactly produce a truncated Taylor expansion of the Hubble parameter with
respect to the field. As such they constitute a whole class of phenomenological inflationary
models. Here, we are considering a potential designed such that H(φ) = H0(1 + A1φ/MPl),
where A1 is a free dimensionless parameter. The shape of the potential reads [261]

V (φ) =M4

(

1 +A1
φ

MPl

)2









1− 2

3









A1

1 +A1
φ

MPl









2







. (4.124)

Denoting x ≡ φ/MPl, the potential admits a global minimum at xV min = −1/A1, which is
negative

Vmin = V (φV min) = −2

3
M4A2

1 < 0. (4.125)

As a result, there are two disconnected field domains in which the potential remains definite
positive, either x > x+V=0 or x < x−V=0 where x±V=0 are the two roots of V (x±V =0) = 0, i.e.

x+V=0 =

√

2

3
− 1

A1
, x−V=0 = −

√

2

3
− 1

A1
. (4.126)

An interesting consequence of the horizon flow approach is that the Hubble flow func-
tions can be calculated exactly, i.e. out of the slow-roll approximation becauseH(φ) is exactly
known. As discussed in Ref. [17, 262], one could compare them with the other hierarchy of
parameters, ǫVi , that are defined over the successive logarithmic derivatives of the potential.
In the slow-roll approximation, one precisely uses the potential derivatives to approximate
the Hubble flow functions, and this consists into identifying both hierarchies at a given order
of approximation. ¿From H ∝ 1 +A1x, one gets the exact Hubble flow functions

ǫ1 = 2

(

A1

1 +A1x

)2

, ǫ2 = ǫ3 = 2ǫ1, (4.127)
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whereas the slow-roll functions associated with the potential are

ǫV1 =
18A2

1(A1x+ 1)2

[3 + 6A1x+A2 (3x2 − 2)]2
, ǫV2 =

12A2
1

[

3 + 6A1x+A2
1

(

3x2 + 2
)]

[

3 + 6A1x+A2
1 (3x

2 − 2)
]2 , (4.128)

and

ǫV3 =
108A2

1(A1x+ 1)2
[

1 + 2A1x+A2
1

(

x2 + 2
)]

[

3 + 6A1x+A2
1 (3x

2 − 2)
]2 [

3 + 6A1x+A2
1 (3x

2 + 2)
]
. (4.129)

As shown in Ref. [17], the link between the two hierarchies can be made explicit and one has

ǫV1 = ǫ1

(

1− η/3

1− ǫ1/3

)2

. (4.130)

The η parameter is defined as

η ≡ 2

H

d2H

dx2
, (4.131)

and vanishes in our case. As a result, provided ǫ1 ≪ 1, i.e. we are in the slow-roll approxima-
tion, both hierarchies give the same results at first order. In order to establish Eq. (4.130),
one has to show first that

η = ǫ1 +
1√
2ǫ1

dǫ1
dx

, (4.132)

and then that3
dǫ1
dx

= (ǫ1 − 3)

(

d lnV

dx
−

√
2ǫ1

)

. (4.133)

The potential and the exact Hubble flow functions have been represented in Fig. 20.
Inflation can take place inside the two positive definite domains of the potential, i.e. at

negative or positive field values. However, the Hubble parameter has to be positive such that
H0 has to be chosen negative if 1 + A1x < 0 along the field trajectory. Since the potential
is completely symmetric with respect to its minimum xV min, we can study in full generality
only the x > x+V=0 branch. In particular, as the Hubble flow functions are exact, we can also
derive the exact field trajectory

N −Nend = − 1

2A1

(

x+
1

2
A1x

2 − xend −
1

2
A1x

2
end

)

. (4.134)

Let us notice that, in the slow-roll approximation, one would have derived the trajectory
from ǫV1 . Doing so, one would have obtained

N −Nend = − 1

2A1

(

x+
1

2
A1x

2 − xend −
1

2
A1x

2
end −

2

3
A1 ln

∣

∣

∣

∣

1 +A1x

1 +A1xend

∣

∣

∣

∣

)

. (4.135)

It is amusing to remark that here, the simplest formula is not given by the slow-roll derived
one, but rather by the exact one. From this remark one should keep in mind that, in order
to simplify trajectories integration, one can always add factors of order O(ǫ1). The exact
trajectory (4.134) can be inverted and one finds

x = − 1

A1
+

1

A1

√

1 + 2A1xend +A2
1

[

x2end − 4(N −Nend)
]

. (4.136)

3A sign in these two equations differs from the ones typeset in Ref. [17], most probably due to a misprint.
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Figure 20. Top left panel: Horizon Flow Inflation at first order potential for A1 = 0.1. Top panels:
the potential and its logarithm with respect to the field values. Bottom left panel: the first Hubble
flow function ǫ1 (exact) and the corresponding shaded area where inflation stops. Bottom right panel:
Hubble flow functions ǫ2 (solid line) and ǫ3 (dotted line) for the same potential. These two functions
are equal to 2ǫ1.

Along both the positive and negative branch of the potential, inflation ends naturally
at ǫ1 = 1, that is at

x±ǫ1=1 =
1±

√
2A1

A1
. (4.137)

Along the positive branch we are interested in, we therefore have

xend = x+ǫ1=1 =
1 +

√
2A1

A1
. (4.138)

Plugging this expression into Eq. (4.136) gives the field value x∗ at which the pivot mode
crossed the Hubble radius during inflation in terms of the e-fold number ∆N∗ = Nend −N∗.
Let us remember that solving for x∗ (or ∆N∗) is made through Eq. (2.46). From Eq. (4.127),
one gets

ǫ1∗ =
1

1 + 2∆N∗
(4.139)

which, together with ǫ2 = 2ǫ1, yields

nS − 1 = 2nT, r = 4(1− nS). (4.140)
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Notice that this relation is different from the power law case and consistent with Ref. [263].
In that reference, the authors mention that the horizon flow models predicts r ≃ 4.8(1− nS)
as a result of Monte-Carlo simulations.

Finally, the potential parameter M can be determined from the COBE normalization

(

M

MPl

)4

= 960π2
A2

1

(1 +A1x∗)4
Q2

rms−PS

T 2
. (4.141)

The reheating consistent (exact) predictions for the horizon flow inflation I models are rep-
resented in Fig. 85. As expected, the relation ǫ2 = 2ǫ1, which is the same as for the LFI
quadratic case, is properly recovered. Clearly, the predictions do not depend much on the
potential parameter A1.

4.11 Colemann-Weinberg Inflation (CWI)

The potential of this model was first introduced by Coleman and Weinberg in Ref. [264],
in the context of spontaneous symmetry breaking generated by radiative corrections. The
starting point of this work is to calculate the effective potential for a massless charged meson
minimally coupled to the electrodynamic field.

In that reference, the effective action is explicitly constructed from a Legendre transform
of the partition function, and expanded into one-particle-irreducible Feynman diagrams with
n external lines (and summing up over n). The exact knowledge of the effective potential
requires an infinite summation of all these Feynman diagrams, which is in practice intractable.
It is thus made use of the one loop expansion method where all diagrams with no closed
loops are first summed, then all diagrams with one closed loop are added, and all higher
loops diagrams neglected. Starting with a quartic interacting scalar field, and requiring that
the renormalized mass vanishes, one obtains a potential of the form

V (φ) =M4

[

1 + α

(

φ

Q

)4

ln

(

φ

Q

)

]

. (4.142)

Let us emphasize that another useful frame of approximation is the Gaussian effective po-
tential method. The Gaussian effective potential is a non perturbative approach to quantum
field theory [265–273], originally developed in the context of quantum mechanics, and gen-
eralized to field theory afterwards. In quantum mechanics, when studying systems governed
by Hamiltonians of the form H = p2/2 + V (φ), the idea is to calculate en effective potential
VGEP defined as

VGEP (φ0) = min
Ω

[

〈ψ|H |ψ〉 , ψ (φ) =

(

Ω

~π

)1/4

e−Ω(φ−φ0)2/(2~)
]

, (4.143)

i.e. the minimum possible quantum mean energy of a Gaussian wavefunction centered over
φ0. Such an object turns out to be a powerful tool to addressing the effects of quantum
fluctuations on the physical behavior of a system in a non perturbative way. It can be easily
generalized to quantum field theories, expanding the field operator Φ only over Ω-massive
excitations around the classical value Φ0 in d dimensions,

Φ (t,x) = Φ0 + (2π)(1−d)/2
∫

dd−1
k

√

2
√
k2 +Ω2

(

ake
−i

√
k2+Ω2t+ik.x + a†

k
ei
√
k2+Ω2t−ik.x

)

,

(4.144)
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where a†
k

and ak are the usual creation and annihilation operators, and minimizing the
quantum mean value of the Hamiltonian density over Ω. In Ref. [266], the quartic interacting
scalar field has been worked out with this method, i.e. starting from V (φ) = m2φ2/2 + λφ4.
The Gaussian effective potential VGEP obtained in this way can expanded in power of ~ to
show that the first order terms match with the potential of Coleman and Weinberg. This
is not surprising as this is equivalent of performing a one loop expansion over the effective
action. However, it should be stressed that the Gaussian effective potential method provides
a much more general expression for the potential, that is valid beyond this perturbative limit
and that can address regimes where quantum diffusion dominates the dynamics of the scalar
field.

The model is defined such that inflation ends by violation of the slow-roll conditions,
and is followed by a preheating stage in which the inflaton field oscillates at the bottom of
its potential. Therefore this potential minimum must be set to zero, which implies

α = 4e . (4.145)

One is thus left with one mass parameter, Q, which sets the typical vev at which inflation takes
place, and which is related to the bare initial mass of the scalar field and to its self quartic
coupling constant. The value taken for Q thus depends on the physical initial embodiment
of the quartic massless theory.

The CWI potential appears in various other contexts. In Ref. [2], the SU(5) → SU(3)×
SU(2)×U(1) phase transition in GUTs is investigated and it is shown that if the temperature
T is smaller than the inflaton vev φ0 at the minimum of the potential, the potential takes
the form

V (φ) =
5325

512
π2g4

[

φ4 ln

(

φ

φ0

)

− φ4

4
+
φ40
4

]

, (4.146)

where φ0 ≃ 1014 − 1015 GeV, and g2 ≃ 1/3 is the gauge coupling constant. In this context,
inflation proceeds along the decreasing branch of the potential, from the left to the right.
Mapping back to our notations, one gets M4 = 5625π2g4φ40/2048 ≃

(

10−13 − 10−17
)

M4
Pl,

Q/MPl = e1/4φ0/MPl ≃ 5× 10−5 − 5× 10−4, and the condition α = 4e is ensured. However,
the value of M4/M4

Pl is in principle fixed by the amplitude of the CMB anisotropies and
contrary to what arises from Eq. (4.146),M = O(Q), one should have instead [see Eq. (4.153)]
M2/M2

Pl = O(MPl/Q), which a priori contradicts the previous considering the typical values
given for Q. The same problem is present in Ref. [274], where a gravitational coupling
−Rφ2 in the lagrangian drives the same SU(5) breaking phase transition at a temperature
of about 1010 GeV. The same Coleman-Weinberg potential is studied, with the same typical
value for Q, but where the value suggested for M4 is closer to M4/M4

Pl ≃ 10−20. Again, in
Refs. [3, 275, 276], the same phase transition is discussed and the inflaton field φ arises as a
specific direction of the adjoint Higgs field. The potential is still the same with an identical
typical value for Q. However, the value of M is relaxed to be a free parameter (except in
Ref. [276] where M4/M4

Pl ≃ 10−20).
In Ref. [277] the same model is studied but in a supersymmetric context instead of

conventional GUTs. Then, in Ref. [278], still with the same SU(5) breaking scheme, the
CWI potential is studied and the remark that without fine tuned small couplings, it cannot
satisfy the COBE normalization, is explicitly made. The typical value for Q which arises in
that work is closer to Q ≃ 1018 GeV. In Ref. [279] the same issue is investigated and the
typical value for Q is revisited as in the original works, i.e. Q ≃ 1015 GeV. In Ref. [280], the

– 64 –



CWI potential is obtained in the context of Kaluza-Klein inflation, i.e. in higher dimensions
and with higher derivative terms and logarithmic dependence on the curvature scalar. Again,
the typical value for Q ≃ 1015 GeV.

In Ref. [281] the same potential is studied, but the value used for Q is rather different,
Q = 0.223MPl, and is fine tuned in order to have two phases of inflation, a “chaotic infla-
tionary” phase followed by a “new inflationary” phase. In Ref. [282], the Coleman-Weinberg
potential is studied in the framework of Einstein-Brans-Dicke gravity, with the same typical
value for Q ≃ 1015 GeV and the same typical value for M4/M4

Pl ≃ 10−15 as in the original
paper. Finally, in Ref. [283] the same potential is studied as arising in non supersymmetric
GUTs such as SU(5) and SO(10), and the constraint on Q is relaxed to compare the pre-
dictions of the Coleman-Weinberg potential with the WMAP observations on more general
grounds. It is found that the inflationary energy scale should be of the order M ≃ 1016 GeV,
and that Q ≃ 10MPl in order to match nS ∼ 0.96.

Considering these developments, the parameter Q/MPl shall be taken in the range
[

10−5, 10−3
]

, and the mass parameter M will be let free to allow for a normalization with re-
spect to the amplitude of the CMB anisotropies. The potential is displayed Fig. 21 for α = 4e.
It starts decreasing with the inflaton vev at φ = 0, reaches a minimum at φ/Q = e−1/4 where
it vanishes, and then increases and diverges as φ goes to ∞. As mentioned above, inflation
proceeds along the decreasing branch of the potential, in the direction specified by the arrow
in the figure.

Let us compute the first slow-roll parameters. Defining x ≡ φ/Q, they are given by

ǫ1 =
M2

Pl

Q2

α2

2
x6
[

1 + 4 ln (x)

1 + αx4 ln (x)

]2

, (4.147)

while

ǫ2 = 2
M2

Pl

Q2
αx2

−7− 12 ln (x) + αx4 + αx4 ln (x) + 4αx4 ln (x)2

[1 + αx4 ln (x)]2
, (4.148)

and finally

ǫ3 =
M2

Pl

Q2

[

−26αx2 + 21α2x6 − 2α3x10 − 128αx2 ln (x)

+152α2x6 ln (x)− 11α3x10 ln (x)− 96αx2 ln (x)2

+368α2x6 ln (x)2 − 14α3x10 ln (x)2 + 384α2x6 ln (x)3

−16α3x10 ln (x)3 − 32α3x10 ln (x)4
]

[

1 + αx4 ln (x)
]−2

×
[

7− αx4 + 12 ln (x)− αx4 ln (x)− 4αx4 ln (x)2
]−1

.

(4.149)

The three of them have the same general behavior. They vanish at x = 0, increase with
x in the decreasing branch of the potential and diverge at the minimum of the potential.
Then they decrease from diverging values in the increasing branch of the potential, and
reach asymptotically vanishing values when the field vev goes to infinity. Inflation stops by
slow-roll violation when ǫ1 = 1. The value of x at which this happens needs to be determined
numerically, but in the limit Q/MPl ≪ 1 (remember that Q/MPl ≃ 10−4) where one expects
xend ≪ 1, one can derive an analytic approximated formula, namely

xend ≃ e−1/4 exp

[

W−1

(

−3
√
2

4α

Q

MPl

e3/4

)]

, (4.150)
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Figure 21. Colemann-Weinberg Inflation (CWI) for α = 4e. Top left panel: Colemann-Weinberg
Inflation potential as a function of φ/Q. Top right panel: logarithm of the potential for the same value
of α. Bottom left panel: normalized first slow-roll parameter Q2/M2

Pl
ǫ1. The shaded area indicates

the where inflation stops if Q = MPl. Bottom right panel: normalized second and third slow-roll
parameters Q2/M2

Pl
ǫ2 (solid line) and Q2/M2

Pl
ǫ3 (dotted line) for the same potential.

where W−1 is the −1 branch of the Lambert function. A comparison between this approxi-
mated formula and the numerical solution for xend is displayed in Fig. 22. The agreement is
excellent.

Let us now calculate the slow-roll trajectory from Eq. (2.11). It is given by

Nend −N =
Q2

M2
Pl

√
e

4α

{

Ei

[

−1

2
− 2 ln (x)

]

− Ei

[

−1

2
− 2 ln (xend)

]}

+
Q2

M2
Pl

1

16
√
e

{

Ei

[

1

2
+ 2 ln (xend)

]

− Ei

[

1

2
+ 2 ln (x)

]}

+
1

8

Q2

M2
Pl

(

x2 − x2end
)

,

(4.151)

where Ei is the exponential integral function, Nend is the number of e-folds at the end of
inflation and N is the number of e-folds at some point when the scaled field vev is x. In the
Q/MPl ≪ 1 limit where x≪ 1, the first term of this expression dominates. Since α = 4e, the
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Figure 22. End of inflation in Coleman-Weinberg inflation. The approximated formula of Eq. (4.150)
for xend (red dashed line) is compared with the exact numerical solution of ǫ1 = 1 (blue solid line), for
α = 4e, in the physically relevant range of values for Q/MPl. The agreement is obviously excellent.

previous expression can be slightly simplified:

Nend −N =
Q2

M2
Pl

1

16
√
e

{

Ei

[

−1

2
− 2 ln (x)

]

− Ei

[

−1

2
− 2 ln (xend)

]

+ Ei

[

1

2
+ 2 ln (xend)

]

− Ei

[

1

2
+ 2 ln (x)

]}

+
1

8

Q2

M2
Pl

(

x2end − x2
)

.

(4.152)

After having solved the previous equation for x∗, the field value at which the pivot
scale crossed the Hubble radius during inflation, M is fixed by the amplitude of the CMB
anisotropies to

(

M

MPl

)4

= 720π2α2M
2
Pl

Q2
x6∗ [1 + 4 ln (x∗)]

2 [1 + αx4∗ ln (x∗)
]−3 Q

2
rms−PS

T 2
. (4.153)

The reheating consistent slow-roll predictions of the Coleman-Weinberg models are dis-
played Fig. 86 in the physical range Q/MPl ∈

[

10−5, 10−3
]

. The reheating equation of state
parameter wreh has been taken to 0 since the potential is quadratic close to its minimum

V (x) ≃ 2αM4e−1/2
(

x− e−1/4
)2
. The typical predicted amount of gravitational waves is ex-

tremely small, and a non negligible deviation from nS = 1 is noticed. Also, one could choose
to relax the constraint on the parameter Q and study the Coleman-Weinberg potential in
general. This was done for instance in Ref. [283] where the Coleman-Weinberg potential pre-
dictions are compared with the WMAP observations on general grounds. It is found that the
potential normalization should be of the order M ≃ 1016 GeV, and that Q ≃ 10MPl in order
to match nS ∼ 0.96. For this reason the reheating consistent slow-roll predictions are dis-
played in Fig. 87 in the extended range Q/MPl ∈ [1, 100]. In the limit Q/MPl ≫ 1, the model
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Figure 23. Loop Inflation (LI). Top left panel: Loop Inflation potential for α = ±0.5, the case
α = 0.5 being displayed in blue and the case α = −0.5 being displayed in pink. Top right panel:
logarithm of the potential for the same values of α. Bottom left panel: slow-roll parameter ǫ1 with
the same values of α. The shaded area indicates where inflation stops. Bottom right panel: slow-roll
parameters ǫ2 (solid line) and ǫ3 (dotted line) for the same values of α.

is well approximated by a quadratic potential around its minimum, and one asymptotically
approaches the LFI predictions with p = 2 (see section 4.2).

4.12 Loop Inflation (LI)

The flatness of an inflationary potential is in general altered by radiative corrections. One
loop order corrections generically take the form of a logarithmic function, log(φ/µ), where µ
is the renormalization scale. Starting from a perfectly flat potential, one obtains a potential
of the form

V (φ) =M4

[

1 + α ln

(

φ

MPl

)]

, (4.154)

where α is a dimensionless parameter, that can a priori be either positive or negative, and
that tunes the strength of the radiative effects. Studying such potentials is therefore a simple
way to discuss in which cases the quantum correction “spoil” the flatness of a potential, and
how this happens.

Since this potential is very general, it has been derived and studied in various contexts.
In Ref. [284], it is obtained in a supersymmetric model, where the coupling constant α is
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explicitly negative and can depend on temperature. In Ref. [285] it is investigated in the
context of supersymmetric cosmic string theories, in Ref. [286] in the context of spontaneous
susy breaking in hybrid inflation, in Refs. [287–290] in the context of brane inflation, in
Refs. [291–305] in the context of D-term inflation, in Ref. [306] in the context of F-term
inflation, in Refs. [184, 307] in the context of fluxbrane inflation, in Refs. [212, 308] in the
context of pseudonatural inflation, and in Ref. [309] in the context of Wess- Zumino models.

Let us define x ≡ φ/MPl. The potential Eq. (4.154), as well as its logarithm, is displayed
in Fig. 23. If α > 0, it is an increasing function of the field vev , and vanishes at

xV=0 = e−1/α . (4.155)

Hence inflation proceeds from the right to the left at x > xV=0 in that case. If α < 0
however, the potential is a decreasing function of the field, which vanishes at xV=0, still
given by Eq. (4.155), hence inflation proceeds from the left to the right at x < xV=0 in that
case.

The three first Hubble flow functions in the slow-roll approximation are given by

ǫ1 =
α2

2

1

x2
[1 + α ln (x)]−2 , ǫ2 = 2α

1

x2
1 + α+ α ln (x)

[1 + α ln (x)]2
, (4.156)

and

ǫ3 =2α
1

x2
[1 + α ln (x)]−2

[

1 + α+ α ln (x)

]−1

×
[

1 +
3α

2
+ α2 +

(

2α+
3

2
α2

)

ln (x) + α2 ln2 (x)

]

.

(4.157)

If α > 0, the first slow-roll parameter is a decreasing function of the field vev , which diverges
at xV=0 and vanishes when x → ∞. Therefore inflation stops by slow-roll violation in that
case, at the point xend satisfying ǫ1 = 1 and given by

xend =
1√
2

[

W0

(

e1/α√
2

)]−1

, (4.158)

where W0 is the 0-branch of the Lambert function. One can check that since W0(y) < y for
any y, one always has xend > xV=0, as required. When α ≪ 1, one has xend ≃ α/

√
2. If

α < 0 on the other hand, the first slow-roll parameter diverges at x = 0, decreases with x,
reaches a minimum at xǫ2=0 = exp (−1− 1/α), then increases with x and diverges at xV=0.
The minimum value of ǫ1 equals ǫ1 (xǫ2=0) = exp(2 + 2/α)/2 and it smaller than unity only
if α > 2/(log 2 − 2) ≃ −1.53. Otherwise ǫ1(x) > 1 all over the domain and inflation cannot
take place. If α > 2/(log 2−2), the inflationary domain lies between x−ǫ1=1 and xend = x+ǫ1=1,
with

x−ǫ1=1 = − 1√
2

[

W−1

(

−e1/α√
2

)]−1

and xend = x+ǫ1=1 = − 1√
2

[

W0

(

−e1/α√
2

)]−1

,

(4.159)
and where W−1 is the −1-branch of the Lambert function. When |α| ≪ 1, one has xend ≃
e−1/α−1/

√
2 ≫ 1. Let us notice that the end of inflation occurs in the region φ≫MPl, where
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Figure 24. Lambert functions W0(x) (dashed line) and W−1(x) (solide line). During loop inflation,
inflation proceeds along the “0” branch in the direction specified by the green arrow on the figure if
α > 0, and along the “−1” branch in the direction specified by the pink arrow on the figure if α < 0.

Eq. (4.154) may not be well defined. Therefore, depending on the underlying theoretical
setting, the end of inflation by slow-roll violation may not be meaningful.

Let us now turn to the slow-roll trajectory. It can be integrated, giving rise to

Nend −N =
x2

2

[

ln (x) +
1

α
− 1

2

]

− x2end
2

[

ln (xend) +
1

α
− 1

2

]

. (4.160)

When |α| ≪ 1, it approximately takes the form 2α (Nend −N) = x2 − x2end. The trajectory
Eq. (4.160) can be inverted making use of the Lambert function, and one obtains

x2 =

4 (Nend −N)− x2end

[

1− 2

α
− ln

(

x2end
)

]

W 0
−1

{

4 (Nend −N) e−(1−2/α) −
[

1− 2

α
− ln

(

x2end
)

]

exp

[

−1 +
2

α
+ ln

(

x2end
)

]

} ,

(4.161)
where the 0 branch of the Lambert function must be chosen if α > 0, while the −1 branch
must be chosen if α < 0. The Lambert function is displayed in Fig. 24, together with the
regions where inflation proceeds.

Let us now comment and check that this expression is valid. Firstly, if N = Nend, the
Lambert function is of the form W(−zende−zend) = −zend, where z ≡ (1− 2/α)− ln(x2), and
this automatically cancels the numerator such that one has indeed x = xend. Secondly, if
α > 0, the condition xend > xV=0 implies that zend < 1, and the Lambert function at Nend

is equal to −zend > −1. Therefore, at the end of inflation, one should use the zero branch of
the Lambert function.
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Finally, as inflation is under way, the argument of the Lambert function is decreasing
which implies that the whole inflationary stage takes place on the zero branch. On the other
hand, if α < 0 using similar arguments, the whole inflationary stage can be shown to take
place on the −1 branch.

Then, making use of the approximated trajectories and expressions for xend the predic-
tions for the models can be derived in the case α > 0. The observable field value x∗, and its
associated number of e-folds ∆N∗ = Nend −N∗ at which the pivot mode crossed the Hubble
radius during inflation are obtained from the above equations together with Eq. (2.46). In
the limit α≪ 1, one obtains the approximate expressions

ǫ1∗ ≃
α

4∆N∗
, ǫ2∗ ≃ ǫ3∗ ≃

1

∆N∗
, (4.162)

hence

r ≃ α

64∆N∗
, nS − 1 ≃ − 1

∆N∗
, and αS ≃

1

∆N2
∗
. (4.163)

Finally, the parameter M can be determined from the amplitude of the CMB anisotropies,
and one gets

(

M

MPl

)4

= 720π2
α2

x2∗

Q2
rms−PS

T 2
[1 + α ln (x∗)]

−3 . (4.164)

In the small |α| limit, for α > 0, one obtains M4/M4
Pl ≃ 360π2α/∆N∗Q2

rms−PS/T
2, and for

α < 0, M4/M4
Pl ≃ 720π2α2e2/αQ2

rms−PS/T
2.

The reheating consistent slow-roll predictions of the loop inflation models are displayed
in Fig. 88 for α > 0, and in Fig. 89 for α < 0. For α > 0 and α ≪ 1, the approximations
Eqs. (4.162) give a good description of what is obtained, namely a deviation from scale
invariance which almost does not depend on α, and an amount of gravitational waves which
grows linearly with α. For α < 0, the typical predicted amount of gravitational waves is
very small, and the predictions almost do not depend on the energy scale at which reheating
ends (hence on ∆N∗). Interestingly enough, the parameter α does not seem to be much
constrained when it is positive, whereas close-to-zero values seem to be favored when it is
negative.

4.13 (R +Rp) Inflation (RpI)

This model is the Einstein frame description of a scalar-tensor theory equivalent to f(R) =
R+ǫR2p/µ4p−2, where µ is some mass scale, and ǫ = ±1. It generalizes the original Starobin-
ski model [310] obtained for p = 1. Such theories are quite generic and appear as limiting
cases of more general modified gravity theories [311–315] (see Ref. [316] for a review).

Following Ref. [313, 316], one can introduce the scalar degree of freedom

φ

MPl

=

√

3

2
ln (|F (R)|) , (4.165)

where F (R) ≡ ∂f/∂R. The quantity F = Ω2, is also the conformal factor squared inducing
the transformation from the Jordan frame to the Einstein frame. In the Einstein frame, the
field φ evolves in a potential given by

V (φ) =
M2

Pl

2

|F |
F

RF − f

F 2
. (4.166)

– 71 –



In our case, one has

F (R) = 1 + 2ǫp

(

R

µ2

)2p−1

, (4.167)

which, for small departures with respect to the Einstein-Hilbert action R ≪ µ2, implies
that F (R) > 0 as needed. Let us notice that in the opposite situation, accelerated (and
super-accelerated) solutions have been shown to exist [316]. Defining

y ≡
√

2

3

φ

MPl

, (4.168)

and plugging Eq. (4.167) into Eq. (4.166) one finally gets the Einstein frame potential

V =M4e−2y |ey − 1|2p/(2p−1) . (4.169)

The normalization constant M4 is related to the modified gravity scale µ through

M4 =
2p− 1

4p

M2
Plµ

2

(2p)1/(2p−1)
. (4.170)

For F (R) > 0, Eq. (4.165) implies that for ǫ = 1, the model is defined in the domain y > 0,
whereas for ǫ = −1 one should consider only the domain y < 0. Such a potential has also
been studied in Ref. [317] for p = 1, in Ref. [313, 318] for p = 4 and in Ref. [319] for p = 2.
Let us notice that the case p = 1 is also the Higgs inflation potential studied in section 3.1.
Taking the limit p→ ∞, the potential asymptotes V →M4e−2y |ey − 1| such that varying p
allows to explore intermediate potential shapes.

Considering first the case y > 0 (ǫ = 1), the potential admits a maximum at

ymax = ln

(

2p − 1

p− 1

)

, (4.171)

such that inflation can proceed either for 0 < y < ymax or y > ymax. The Hubble flow
functions in the slow-roll approximation read

ǫ1 =
4

3

[1 + (p− 1) ey − 2p]2

(2p − 1)2 (ey − 1)2
, ǫ2 =

8

3

p ey

(2p − 1) (ey − 1)2
, (4.172)

and

ǫ3 = −4

3

(ey + 1) [1 + (p− 1) ey − 2p]

(2p − 1) (ey − 1)2
. (4.173)

The potential and the Hubble flow functions for y > 0 have been represented in Fig. 25.
As one can check on these figures, inflation never stops along the branch y > ymax and one
needs to complement the model by an ending mechanism, as for instance with an extra-field
and a tachyonic instability. Although this adds one additional parameter to the model, it
is not expected to affect the observable predictions. Indeed, in the large field limit, all the
three Hubble flow functions admit asymptotically constant values:

lim
y→∞

ǫ1 =
4

3

(

p− 1

2p − 1

)2

, lim
y→∞

ǫ2 = 0, lim
y→∞

ǫ3 = −4

3

p− 1

2p− 1
. (4.174)
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Figure 25. (R + Rp) Inflation (RpI) in the Einstein frame for p = 2. Top panels: the potential
and its logarithm. The potential admits a maximum at y = ymax such that inflation can take place
either for y > ymax or 0 < y < ymax. Bottom left panel: slow-roll parameter ǫ1 with the region in
which inflation stops (shaded area). For y > ymax, inflation never stops and one has to consider an
extra-mechanism to end inflation. Bottom right panel: slow-roll parameters ǫ2 (solid line) and ǫ3
(dotted line). Other values of p would give similar curves.

Except for the special case p = 1 (see section 3.1), these values are always smaller that
unity, but not particularly small. As such, all these models predict large deviation from scale
invariance. As a consequence, the spectral index at first order is given by

nS − 1 = −8

3

(

p− 1

2p − 1

)2

, (4.175)

which, for p ≥ 2, remains always smaller than −8/27 ≃ −0.3. This is strongly disfavored by
current CMB measurements.

Along the other branch, namely 0 < y < ymax, inflation stops naturally when ǫ1 = 1,
i.e. at the field value

yend = ln

[

(2p − 1)
1 + 2p(

√
3 + 1)

8p2 − 4p− 1

]

. (4.176)

However, the second Hubble flow function can only take relatively large value. From Eq. (4.172),
since y < ymax, one gets

ǫ2 > ǫ2(ymax) =
8

3

p− 1

p
. (4.177)
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For p ≥ 2, we are in the situation where ǫ2 > 4/3 and the slow-roll approximation is violated.
As a result, one should not trust the slow-roll results and in particular the field value yend. On
the other hand, this also suggests that the spectral index is again far from scale invariance and
therefore the model is certainly not compatible with CMB data. We have directly checked
that this is indeed the case by means of an exact numerical integration.

For completeness, we give the slow-roll trajectory for the branch y > ymax (in which
slow-roll is still applicable)

N −Nend =
3

4

{

p

p− 1
ln

[

(p− 1)ey + 1− 2p

(p − 1)eyend + 1− 2p

]

+ y − yend

}

. (4.178)

This expression is not properly defined for p = 1 but, as before, this case is dealt within
the Higgs inflation model. If y = ymax, the argument of the logarithm vanishes and the
total number of e-folds diverges. As a result, provided inflation starts close enough to the
top of the potential, it is always possible to find a long enough inflationary period. The
slow-roll trajectory cannot be analytically inverted, but using the same reheating model as
in section 3.1, one can solve for the field value y∗ at which the pivot mode crossed the Hubble
radius. The associated number of e-fold ∆N∗ = Nend −N∗ being given by Eq. (4.178).

Concerning the case ǫ = −1, i.e. the domain y < 0, all of the previous formula still
apply but the potential is now a monotonic decreasing function of the field vev which is too
steep to support inflation. In particular, over the whole negative domain, Eq. (4.172) implies
that ǫ1(y < 0) > ǫ1(y → −∞) = 4/3.

Finally, the constantM can be determined from the amplitude of the CMB anisotropies.
Using the COBE normalization, one has

M4

M4
Pl

= 1920π2
[1 + (p− 1) ey∗ − 2p]2 e2y∗

(2p − 1)2 (ey∗ − 1)
6p−2
2p−1

Q2
rms−PS

T 2
. (4.179)

As those models are far from being in the two-sigma confidence region for the spectral index,
we do not have represented their reheating-consistent predictions in the appendix.

4.14 Double-Well Inflation (DWI)

In this section, we study the famous “Mexican hat” potential given by

V (φ) =M4

[

(

φ

φ0

)2

− 1

]2

. (4.180)

Except for the mass M determined by the CMB normalization, it depends on one parameter,
the vev φ0 . Historically, this potential was first introduced by Goldstone in Ref. [320] as a toy
model for dynamical symmetry breaking. In cosmology, it is of course utilized to investigate
the formation and the microscopic structure of topological defects. In the context of inflation,
it was first used to construct scenarios of topological inflation, see Refs. [321, 322]. In this
case, it is made use of the fact that the discrete Z2 symmetry, φ → −φ, makes the state
φ = 0 unstable. Therefore, the Universe will split into two different regions separated by
a domain wall. One can then show that inflation takes place within this topological defect.
The potential (4.180) was also used in Refs. [323, 324] in the context of open inflation. In
a rather different theoretical framework, Eq. (4.180) was studied in Refs. [325, 326] where it
was derived in N = 1 supergravity coupled to matter. It is also interesting to notice that
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Figure 26. Top left panel: Double Well Inflation (DWI) potential as a function of φ/φ
0
. Only

the φ > 0 region is displayed since the potential is symmetric under φ → −φ. Top right panel:
logarithm of the potential. The arrow indicates in which direction inflation can proceed. Bottom left
panel: slow-roll parameter ǫ1, rescaled by the quantityM2

Pl
/φ2

0
, such that the corresponding expression

becomes universal, i.e. independent of φ
0
. Bottom right panel: slow-roll parameters ǫ2 (solid line)

and ǫ3 (dotted line), rescaled by M2
Pl
/φ2

0
for the same reason as mentioned before.

it was obtained using various stringy constructions as early as the 80’s, see Refs. [327, 328].
More recently, this potential was found to be relevant in a large number of different physical
situations, see Refs. [283, 329–339]. Let us also mention that this model is sometimes viewed
as a realistic version of Small Field Inflation (SFI) with p = 2 (see section 5.1), the extra
quartic term preventing the potential from becoming negative. However, as will be shown in
the following, these two classes of models should actually be described separately since their
predictions differ in the relevant range of parameters.

The parameter φ0 sets the typical vev at which inflation proceeds and depends on the
symmetry breaking scale one considers. In principle, it could vary over a wide range of
values, from φ0 ∼ 1015 GeV for GUT symmetry breaking schemes to super-Planckian vev in
a stringy or supergravity context. As will be shown in the following, it is in fact constrained
to be large (super-Planckian) in order for the predictions of the model to be compatible with
the CMB data. The DWI potential is displayed in Fig. 26 together with its logarithm. One
has represented the region φ > 0 only because the potential is symmetric under φ → −φ.
We see that it decreases for φ < φ0 , vanishes at φ0 and then increases for φ > φ0 . As was
already mentioned before, this potential is used to describe dynamical symmetry breaking
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and, as a consequence, inflation should proceed from the left to the right at φ < φ0 , in the
direction specified by the arrow in Fig. 26.

Let us now calculate the slow-roll parameters. If one defines x by x ≡ φ/φ0 , then they
are given by

ǫ1 =

(

MPl

φ0

)2 8x2

(x2 − 1)2
, ǫ2 =

(

MPl

φ0

)2 8(1 + x2)

(x2 − 1)2
, ǫ3 =

(

MPl

φ0

)2 8(x4 + 3x2)

(x2 − 1)2 (x2 + 1)
.

(4.181)
The behavior of these parameters is represented in Fig. 26. The first slow-roll parameter ǫ1
is an increasing function of φ in the range x ∈ [0, 1]. It vanishes at x = 0 and blows up
at x = 1. Then, for x > 1, it becomes a decreasing function going to zero when x goes to
infinity. Clearly, we see in Fig. 26 that inflation stops by violation of the slow-roll conditions.
The slow roll parameters ǫ2 and ǫ3 have similar behaviors, except that ǫ2 does not vanish
when x = 0 but is equal to ǫ2(x = 0) = 8 (MPl/φ0)

2. Therefore, in order for slow-roll to be
valid, this last value should be less than one, which amounts to

φ0

MPl

> 2
√
2 . (4.182)

This constraint on the parameter φ0 shows that the symmetry breaking scale needs to be
super-Planckian. If this last condition is verified, then ǫ2 becomes greater than one during
inflation at φǫ2=1 defined by

φǫ2=1

φ0

=

√

√

√

√

√1 + 4

(

MPl

φ0

)2


1−
√

1 +

(

φ0

MPl

)2


 . (4.183)

This happens before the end of inflation (ǫ1 = 1) which occurs at the following value of the
field

φend
MPl

=

√

2 +

(

φ0

MPl

)2

−
√
2 . (4.184)

Let us now turn to the slow-roll trajectory. It can be integrated exactly and yields the
following formula

Nend −N =
1

4

(

φ0

MPl

)2 [

ln
(xend

x

)

− 1

2

(

x2end − x2
)

]

, (4.185)

whereNend is the number of e-folds at the end of inflation. Using the 0-branch of the Lambert
function W0, this trajectory can be inverted. One obtains

x =

√

√

√

√−W0

[

−x2ende−x
2
ende

8
(

MPl
φ0

)2
(N−Nend)

]

. (4.186)

The fact that the 0-branch of the Lambert function should be chosen comes from the re-
quirement that x < 1. The corresponding “trajectory” along the Lambert curve is displayed
in Fig. 27, the arrow indicating in which direction inflation proceeds. This trajectory is
remarkably similar to the one of SFI with p = 2, see section 5.1 and Eq. (5.6), the only
difference being that the factor 8 in front of N −Nend is just 4 in the case of SFI. Therefore
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Figure 27. Lambert functions W0(x) (dashed line) and W−1(x) (solide line). In DWI, inflation
proceeds along the negative part of the “0” branch in the direction specified by the arrow.

not only these two potentials coincide at small fields, but they also give rise to the same kind
of slow-roll trajectory. This is why these two models are sometimes identified, DWI being
considered as a realistic realization of SFI. However, as shown below, the observations favors
super-Planckian values of φ0 and, in this limit, the two models are not equivalent (of course,
this also has something to do with the debate about whether having super-Planckian vev is
meaningful or not). In fact, in the regime φ0/MPl ≫ 1, one can write

x∗ ≃ 1−
√
2
MPl

φ0

√

1 + 2∆N∗ +
1

3

(

MPl

φ0

)2(

1 + 2∆N∗ +
2√

1 + 2∆N∗

)

+ . . . . (4.187)

From this expression it is clear that, for super-Planckian values of φ0 , φ∗ is close to the
minimum of the potential where the quartic term plays an important role and, consequently,
where the SFI potential is not a good approximation. A calculation of the Hubble flow
parameters at Hubble crossing confirms this conclusion. They are given by

ǫ1∗ ≃
1

1 + 2∆N∗
, ǫ2∗ ≃

2

1 + 2∆N∗
, ǫ3∗ ≃

2

1 + 2∆N∗
. (4.188)

This allows us to establish the corresponding expressions of the tensor to scalar ratio, spectral
index and running. One obtains

r ≃ 16

1 + 2∆N∗
, nS − 1 ≃ − 4

1 + 2∆N∗
, αS ≃ − 8

1 + 2∆N∗
. (4.189)

These expressions should be compared with Eqs. (5.17). We see that the first Hubble flow
parameter for SFI and DWI differ by a factor of ≃ 4 and that the ǫ2 differ by a factor of
≃ 2. As a consequence, as can be checked in Fig. 90, the DWI predictions are such that

– 77 –



ǫ2∗ = 2ǫ1∗ [or equivalently, r = 4(1 − nS)], whereas, as can be checked in Fig. 99, we have
ǫ2∗ = 4ǫ1∗ for SFI [or equivalently, r = 8/3(1 − nS)]. This explains why the two models can
in fact lead to quite different predictions and why DWI cannot be simply viewed as a mere
realistic continuation of SFI.

Finally, it is also interesting to constrain the energy scale M . For this purpose, we use
the CMB normalization which gives

M4

M4
Pl

= 11520π2
(

MPl

φ0

)2 x2∗
(x2∗ − 1)4

Q2
rms−PS

T 2
. (4.190)

Then, using the approximated trajectory x∗ ≃ 1−√
2 + 4∆N∗MPl/φ0 in the above formula,

one obtains the following expression

M4

M4
Pl

≃ 1440π2
(

φ0

MPl

)2 1

(1 + 2∆N∗)
2

Q2
rms−PS

T 2
. (4.191)

Then, requiring that M < MPl leads to the following upper bound on the value of φ0 ,
φ0/MPl . 1.5 × 105. Combined with the lower limit (4.182), we see that the possible range
of variation of φ0 is quite large.

The reheating consistent slow-roll predictions for the DWI models are displayed in
Fig. 90. The reheating equation of state parameter wreh has been chosen to be 0 since the
potential is quadratic close to its minimum V (φ) ≃ 4M4/φ20 (φ− φ0)

2. As claimed before, one
can check that only super-Planckian values of the symmetry breaking scale φ0 are compatible
with the data. Actually, this is also true for the SFI models, see section 5.1 and Fig. 99. As
already mentioned before, in this regime, the two models differ while, as expected, they are
very similar for sub-Planckian values of the field vev .

4.15 Mutated Hilltop Inflation (MHI)

This model is a variant of the hilltop model [340, 341], referred to as small field inflation in
section 5.1. From supergravity motivations, it was first introduced and discussed in Refs. [342,
343]. The potential is given by

V =M4

[

1− sech

(

φ

µ

)]

, (4.192)

with sech(x) = 1/ cosh(x). From its supergravity motivations, reasonable values of the
parameter µ are such that µ < MPl but in other contexts such a bound may not be necessary.
This is why the model is studied here on general grounds, for any value of µ, but approximated
formula are also derived in the µ≪MPl for discussion.

Defining x ≡ φ/µ, the three first Hubble flow functions in the slow-roll approximation
are given by

ǫ1 =
M2

Pl

2µ2
coth2

(x

2

)

sech2 (x) , ǫ2 =
M2

Pl

µ2

[

csch2
(x

2

)

+ 2 sech2 (x)
]

, (4.193)

ǫ3 =
M2

Pl

µ2

cosh(x) coth2
(x

2

)

+ 2 tanh2(x)

cosh(x) + sinh2(x)
. (4.194)
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Figure 28. Mutated Hilltop Inflation (MHI). The top panels show the potential and its logarithm
as a function of x = φ/µ. Bottom left panel: Rescaled slow-roll parameter ǫ1 (divided by M2

Pl
/µ2).

The shaded area represents the region in which inflation stops if µ = MPl. It should be accordingly
rescaled for other values of µ. Bottom right panel: slow-roll parameters ǫ2 (solid line) and ǫ3 (dotted
line), again rescaled by M2

Pl
/µ2 together with the region of slow-roll violation for µ =MPl.

where csch (x) = 1/ sinh (x). These three quantities are monotonically decreasing functions
of the field values and inflation proceeds from large field values towards small field values.
Together with the potential, they are represented as a function of x in Fig. 28.

The slow-roll trajectory can be integrated exactly from Eq. (2.11) and reads

N −Nend =
µ2

M2
Pl

{

2 ln

[

cosh (x/2)

cosh (xend/2)

]

− cosh (x) + cosh (xend)

}

. (4.195)

It can also be inverted analytically to give the field values in terms of the number of e-folds
using the Lambert function W−1. One obtains

x = arccosh

(

−1−W−1

{

− [1 + cosh(xend)] exp

[

M2
Pl

µ2
(N −Nend)− 1− cosh(xend)

]})

.

(4.196)
Since N − Nend < 0 and the function ye−y has a global maximum equals to 1/e, inflation
proceeds along the −1 branch of the Lambert function as represented in Fig. 29. Note that
in the µ≪MPl limit, this trajectory simply becomes N −Nend ≃ µ2/(2M2

Pl) (e
xend − ex).
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Figure 29. Lambert functions W0(x) (dashed line) and W−1(x) (solide line). During Mutated Hilltop
inflation, inflation proceeds along the “−1” branch in the direction specified by the arrow on the figure.

For MHI, inflation naturally stops when ǫ1 = 1, which has an unique solution given by

xend = arcsech



−1

3
+

1

3

(

1− 6
µ2

M2
Pl

)

(

−1 + 36
µ2

M2
Pl

+ 3
√
6
µ

MPl

√

4
µ4

M4
Pl

+ 22
µ2

M2
Pl

− 1

)−1/3

+
1

3

(

−1 + 36
µ2

M2
Pl

+ 3
√
6
µ

MPl

√

4
µ4

M4
Pl

+ 22
µ2

M2
Pl

− 1

)1/3


 ,

(4.197)
and with arcsech(x) = arccosh(1/x). One should note that the previous equation is always
well defined, regardless of the sign of the square root argument by analytic continuation. Let
us notice that from Eq. (4.193) one has

ǫ2 − ǫ1 =
1

2
csch2

(x

2

)

+ sech(x) +
5

2
sech2(x) > 0. (4.198)

Consequently, the slow-roll approximation may become inaccurate before the end of inflation
because ǫ2 > 1 occurs just before ǫ1 = 1. However, one can check that this happens during a
negligible number of e-folds and the observable predictions for MHI remain mostly unaffected.
Also, in the limit µ≪MPl, Eq. (4.197) gives xend ≃ ln

(√
2MPl/µ

)

.
The value x∗ = φ∗/µ at which the pivot mode crossed the Hubble radius during inflation

is obtained by solving Eq. (2.46) for a given reheating energy. In terms of ∆N∗, and in the
limit µ ≪ MPl, one has x∗ ≃ ln

(

2∆N∗M2
Pl/µ

2
)

. This enables to give estimates for the
slow-roll parameters at Hubble crossing, namely

ǫ1∗ ≃
1

2∆N2
∗

(

µ

MPl

)2

, ǫ2∗ ≃
6

∆N∗
, ǫ3∗ ≃

1

∆N∗
, (4.199)

– 80 –



hence, at first order in slow-roll

r ≃ 8

∆N2
∗

(

µ

MPl

)2

, nS − 1 ≃ − 6

∆N∗
, αS ≃ − 6

∆N2
∗
. (4.200)

One can see that for µ/MPl ≪ 1, the typical predicted amount of gravitational waves is very
small, and the deviation from scale invariance almost does not depend on µ.

Finally, the constantM can be determined from the amplitude of the CMB anisotropies

M4

M4
Pl

= 90π2
M2

Pl

µ2
csch6

(x∗
2

)

sinh (x∗) tanh (x∗)
Q2

rms−PS

T 2
. (4.201)

In the µ/MPl ≪ 1 limit, one obtains

M4

M4
Pl

≃ 720π2

∆N2
∗

µ2

M2
Pl

Q2
rms−PS

T 2
. (4.202)

Typically, for µ/MPl ∼ 10−2, one has M/MPl ∼ 10−4.
The reheating consistent slow-roll predictions for MHI have been represented in Fig. 91.

As expected, for small values of µ/MPl, the predicted amount of gravitational waves is ex-
tremely small and the deviation from scale invariance almost does not depend on µ.

4.16 Radion Gauge Inflation (RGI)

This model was studied in Ref. [344]. It is an extension of the gauge inflation scenario in
which the radius modulus field around which the Wilson loop is wrapped assists inflation as
it shrinks [186]. Assuming that the radion field value is such that the potential energy is
minimal, for each value of the inflaton field φ, one can derive an effective potential

V (φ) =M4 (φ/MPl)
2

α+ (φ/MPl)
2 , (4.203)

where α is a dimensionless positive parameter. In the context of Ref. [344], the model is
natural for α < 1 but larger than unity values are not forbidden. The same potential has
been obtained in Ref. [345] in the context of S-dual superstring models. In that case, α
represents a typical vev for the inflaton, in Planck units. Defining x = φ/MPl, the first three
slow-roll parameters read

ǫ1 =
2α2

x2 (α+ x2)2
, ǫ2 = 4α

α+ 3x2

x2 (α+ x2)2
, ǫ3 = 4α

α2 + 3αx2 + 6x4

x2 (α+ x2)2 (α+ 3x2)
. (4.204)

The potential, its logarithm, and the Hubble flow functions are represented in Fig. 30.
The slow-roll trajectory can be integrated analytically from Eq. (2.11) to obtain

N −Nend =
x2end
4

+
x4end
8α

− x2

4
− x4

8α
. (4.205)

Moreover, it can be inverted explicitly to give the field values in terms of the number of
e-folds as

x =

√

−α+
√

−8α(N −Nend) + (α+ x2end)
2 . (4.206)
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Figure 30. Radion Inflation (RGI) for α = 10−4. Top frames: the potential and its logarithm.
Bottom left panel: slow-roll parameter ǫ1 and the shaded area in which inflation stops (ǫ1 > 1).
Bottom right panel: slow-roll parameters ǫ2 (solid line) and ǫ3 (dotted line).

The end of inflation naturally occurs for ǫ1 = 1, i.e., from Eq. (4.204), at the field value
xend given by

xend =
− 3
√
6α+

[

9α+
√

3α2(2α + 27)
]2/3

1621/6
[

9α+
√

3α2(2α+ 27)
]1/3

. (4.207)

As for the MHI models, one should pay attention that

ǫ2 − ǫ1 = 2α
α+ 6x2

x2(α+ x2)2
> 0, (4.208)

for any positive values of α. As a result, slow-roll violation, i.e. ǫ2 > 1, occurs in RGI before
inflation ends. However, since the first Hubble flow function is monotonic, this is not very
problematic as it happens only during a negligible number of e-folds and only around Nend.
The slow-roll observable predictions therefore remain accurate.

As before, the observable field value x∗ is obtained by solving Eq. (2.46) for a given
reheating model and allows the determination of the parameter M from the amplitude of the
CMB anisotropies. One gets

M4

M4
Pl

=
2880π2α2

x4∗ (α+ x2∗)

Q2
rms−PS

T 2
. (4.209)
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The reheating consistent slow-roll predictions for these models are displayed in Fig. 92. Large
values of α give back the same predictions as the large field models with p = 2 (see section 4.2)
having ǫ2∗ = 2ǫ1∗.

4.17 MSSM Inflation (MSSMI)

The Minimal Supersymmetric Standard Model (MSSM) is an extension of the Standard
Model with nearly 300 gauge invariant flat directions made up of squarks, sleptons, and
Higgses, whose potentials are vanishing in the supersymmetric (SUSY) limit. However, they
are lifted by a soft supersymmetry breaking mass term and by superpotential corrections
at scales below the Planck scale. Flat directions do exist in the resulting potential, and
in Ref. [346], a catalog of the flat directions of the renormalizable and supersymmetry-
preserving part of the scalar potential of the MSSM is presented. These directions are made
of combinations of squarks, sleptons, and Higgses. Among them, it was found in Ref. [347]
that two combinations, namely LLe and udd, could provide promising candidates for the
inflaton. Starting from a superpotential of the form W = λn/nΦ

nM3−n
Pl , where Φ = φeiθ is

the superfield which contains the flat direction, the following potential was worked out,

V (φ) =
1

2
m2
φφ

2 +A cos(nθ + θ0)
λn
n

φn

Mn−3
Pl

+ λ2n
φ2(n−1)

M
2(n−3)
Pl

, (4.210)

where the first term corresponds to a soft SUSY breaking mass term, the second term involves
the angular part of the superfield via a term cos(nθ + θ0), which in practice is fixed at −1
to maximize its contribution. The third term is a non renormalizable correction to the
superpotential, the amplitude of which is generically such that λn . 1. As explained below,
the second term which appears with a negative coefficient plays a crucial role in making this
scenario a credible inflationary one, and it is present only when n ≥ 6. An interesting feature
of this model is that it provides inflation at sub-Planckian vev and low scale, with typical
values mφ ∼ 1TeV and V ∼ (109 GeV)4.

Together with the global minimum at φ = 0, under the condition A2 ≥ 8(n− 1)m2
φ, the

potential has a secondary minimum at φ0 ≃
(

mφM
n−3
Pl

)1/(n−2)
. If A2 ≫ 8(n − 1)m2

φ, this
secondary minimum becomes the deepest and thus the true minimum, but that would break
charge and/or color symmetry. The curvature of the potential at this minimum is of the
scale m2

φ. If inflation occurs there, one gets H ≃ mφ(mφ/MPl)
1/(n−2), which is much smaller

than the potential curvature for mφ ≪ MPl. This implies that the potential is too steep
for quantum effects during inflaton to kick φ out of the false minimum. Such a situation
is similar to the old inflationary scenario. However, this barrier disappears if one saturates
the previous inequality and takes A2 = 8(n − 1)m2

φ. In that case, the potential has a flat
inflection point at φ0 and inflation can proceed between this plateau and φ = 0.

As noticed in Ref. [347], higher indexes than n = 6 would produce too small amplitude
for the scalar perturbations. This is why the model is commonly studied with n = 6 (with
n = 3, this is RIPI, see section 4.18). The typical field vev put forward in Ref. [347]
approaches φ0 ≃ 1014 GeV.

In order to summarize the constraints the parameters have to verified we rewrite the
potential of Eq. (4.210) with the new parameters

M8 =
M3

Plm
5
φ

4
√
10λ6

, φ8
0
=
M6

Plm
2
φ

10λ26
. (4.211)
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Figure 31. MSSM Inflation (MSSMI). Top left panel: MSSM Inflation potential Eq. (4.212) as a
function of φ/φ0. Top right panel: logarithm of the potential. Bottom left panel: slow-roll parameter
ǫ1 scaled by φ20/M

2
Pl
. Bottom right panel: slow-roll parameters ǫ2 (solid line) and ǫ3 (dotted line)

scaled by φ20/M
2
Pl
.

This definition ensures that φ0 is the inflection point and one obtains

V (φ) =M4

[

(

φ

φ0

)2

− 2

3

(

φ

φ0

)6

+
1

5

(

φ

φ0

)10
]

. (4.212)

As we will see below, taking φ0 ≃ 1014 GeV, the amplitude of the CMB anisotropies typically
fixes M ≃ 108 GeV.

This potential have been studied in Refs. [348–358]. Let us notice that when p = 3,
the same potential appears in Refs. [359, 360] as “Generalized Chaotic Inflation”, and later
in Refs. [361–363] as “Punctuated Inflation”. In these references, it is shown that slow-roll
inflation is briefly interrupted when the inflaton crosses the flat inflection point and this can
produce step-like features in the primordial power spectra. These effects are outside the scope
of the following slow-roll analysis as we will be dealing with the last slow-roll inflationary
stage within this scenario.

The potential Eq. (4.212) is displayed in Fig. 31, together with its logarithm. It is
an increasing function of the field, the derivative of which vanishes at φ = 0 and at its
second inflection point φ = φ0 , the position of the first inflection point being given by
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φ−V ′′=0 = φ0/
√
3. Inflation proceeds between φ = 0 and φ = φ0 , in the direction specified by

the arrow in Fig. 31.
Defining

x ≡ φ

φ0

, (4.213)

the first three Hubble flow functions in the slow-roll approximation are given by

ǫ1 = 450
M2

Pl

φ2
0

(

x4 − 1
)4

x2 (3x8 − 10x4 + 15)2
, ǫ2 = 60

M2
Pl

φ2
0

3x16 − 58x8 + 40x4 + 15

x2 (3x8 − 10x4 + 15)2
, (4.214)

and

ǫ3 =
M2

Pl

φ2
0

60

x2
(

−225 + 1575x4 − 3165x8 + 395x12 + 2605x16 − 1275x20 + 81x24 + 9x28
)

×
(

3x8 − 10x4 + 15
)−2 ×

(

−15− 55x4 + 3x8 + 3x12
)−1

.
(4.215)

These two slow-roll parameters diverge when the field vev goes to 0, and vanish when the
field vev goes to infinity. The first slow roll parameter ǫ1 first decreases, vanishes at the
flat inflection point where ǫ2 vanishes too, then increases to reach a local maximum where
ǫ2 vanishes again, and eventually decreases again, to vanish at infinity together with ǫ2.
Denoting by x+ǫ2=0 the position of the second extremum, one has

x+ǫ2=0 =

(

1

3

)1/4 [

24/3
(

i
√
685− 1

)1/3
+ 14× 22/3

(

i
√
685− 1

)−1/3
− 1

]1/4

≃ 1.41022 .

(4.216)
In between the two local extrema of ǫ1, the second slow-roll parameter ǫ2 is negative whereas
it is positive elsewhere. The value of ǫ1 at its local maximum is given by

ǫmax
1 = ǫ1

(

x+ǫ2=0

)

≃ 34.459
M2

Pl

φ2
0

. (4.217)

With the typical above-mentioned value for φ0 ≃ 1014GeV, one has M2
Pl/φ

2
0
≃ 108 and

ǫmax
1 > 1. This means that if inflation proceeds beyond the flat inflection point, it can
naturally stop by slow-roll violation. However, if this happens, inflation proceeds at x ≫ 1
and the potential is effectively very close to a large field model one (LFI, see section 4.2)
with p = 10.

For this reason, we will be focused to the case in which inflation occurs below the flat
inflection point. In this case, the value of xend at which inflation stops by slow-roll violation
must be determined numerically. In the limit φ0/MPl ≪ 1 however, one has xend ≃ 1 and an
approximate analytic formula can be derived

xend ≃ 1− 1

23/4
√
15

√

φ0

MPl

. (4.218)

A comparison between this expression and the numerical solution of ǫ1 = 1 is displayed in
Fig. 32. For physical values φ0 ≃ 10−4MPl, the agreement is excellent.
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Figure 32. Location of the slow-roll violation induced end of inflation xend = φend/φ for the MSSM
inflation models, as a function of φ

0
/MPl. The blue solid curve represents a numerical solution of

ǫ1 = 1, while the red dotted curve corresponds to the approximated analytic solution Eq. (4.218). For
physical values φ

0
∼ 10−4MPl, the agreement is obviously excellent.

Let us now turn to the slow-roll trajectory. It can be integrated from Eq. (2.11) and
leads to

Nend −N =

(

φ0

MPl

)2{x2 − x2end
20

+
1

15

(

x2end
x4end − 1

− x2

x4 − 1

)

− 2

15

[

arctanh
(

x2end
)

− arctanh
(

x2
)]

}

,

where Nend is the number of e-folds at the end of inflation and N is the number of e-folds
at some point when the scaled field vev is x. A few remarks are in order. Firstly, when
x ≃ 1, the second term of the previous expression dominates, and one has Nend − N ≃
1/15 (φ0/MPl)

2[1/(x4end − 1)− 1/(x4 − 1)], which can be inverted and gives

x ≃ 1− 1

4

[

2−5/4
√
15

√

MPl

φ0

+ 15
M2

Pl

φ2
0

(Nend −N)

]−1

. (4.219)

Secondly, one could wonder if a sufficient number of e-folds can be realized in the regime
studied here. When x→ 1, the corresponding number of e-folds diverges, but in practice, the
inflationary dynamics close to the flat inflection point is governed by the quantum diffusion
and the classical equation of motion can not be trusted in this domain.

If one introduces the ratio η between the quantum kicks amplitude H/(2π) and the
classical drift M2

PlVφ/V , when x ≃ 1, one has

η ≃ 1

90
√
30π

M2φ0M
−3
Pl (x− 1)−2 ≃ 4

√
10

π
√
3
M2MPlφ

−3
0

(Nend −N)2 , (4.220)
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where the last equality comes from the approximate trajectory. In order to estimate the value
of η, one needs the value of M which is fixed by the amplitude of the CMB anisotropies.
With x∗ the observable field value associated with ∆N∗ = Nend −N∗, one gets

(

M

MPl

)4

= 2880π2
M2

Pl

φ2
0

(

1− x4∗
)4

x4∗

(

1− 2

3
x4∗ +

1

5
x8∗

)3

Q2
rms−PS

T 2
. (4.221)

In the x∗ ≃ 1 approximation, this gives

M4

M4
Pl

≃ 3

8
π2
Q2

rms−PS

T 2

φ6
0

M6
Pl (Nend −N∗)

4 , (4.222)

and thus

η ≃

√

20
Q2

rms−PS

T 2

(

Nend −N

∆N∗

)2

. (4.223)

It is quite remarkable that this formula does not depend on φ0 anymore but only on the ratio
(Nend −N)/∆N∗. From Qrms−PS/T ≃ 6× 10−6, one has Nend −Nmin ≃ 104 in the classical
regime [347]. For φ0 ≃ 1014 GeV, one obtains M ∼ 108GeV, in agreement with what was
announced earlier.

Finally, it can be interesting to write down the approximated slow-roll parameters at
Hubble crossing and in the limit φ0/MPl ≪ 1. One obtains

ǫ1∗ ≃
(

φ0

MPl

)6 1

7200∆N4
∗
, ǫ2∗ ≃

4

∆N∗
, ǫ3∗ ≃

1

∆N∗
, (4.224)

hence

r ≃
(

φ0

MPl

)6 1

450∆N4
∗
, nS ≃ 1− 4

∆N∗
, αS ≃ − 4

∆N2
∗
. (4.225)

They are similar with the typical predictions of the RIPI models [see Eq. (4.238)].
The reheating consistent slow-roll predictions of the MSSMI models are displayed in

Fig. 93. The reheating equation of state parameter wreh has been taken to 0 since the
potential is quadratic close to its minimum. One can check that in the limit φ0/MPl ≪ 1, the
first slow-roll parameter is indeed extremely small, while the second slow-roll parameter does
not depend much on φ0 . Remembering that φ0/MPl ≃ 10−4, one can see that these models
seem to be disfavored by the data since they predict a too much important deviation from
scale invariance. In order to comply with the spectral index, these models should be such that
φ0/MPl ≫ 1, for which they are close to the large field quadratic models (LFI with p = 2, see
section 4.2). This can be seen from the previous formula in the limit x≪ 1. Unfortunately,
such values for φ0 are, a priori, outside the range of the MSSM. Finally, comparing Fig. 94
with Fig. 93, one can see that the general features of MSSMI are very close to the RIPI ones,
and that the conclusions drawn here are rather robust against the power index n appearing
in Eq. (4.210).

4.18 Renormalizable Inflection Point Inflation (RIPI)

In section 4.17 inflaton is implemented within the Minimal Supersymmetric Standard Model
(MSSM) around a flat inflection point. Refs. [364–366] have argued that n = 3, as opposed
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to n = 6 dealt in section 4.17, is a case of interest. The potential is given by

V (φ) =M4

[

(

φ

φ0

)2

−
(

φ

φ0

)3

+
9

32

(

φ

φ0

)4
]

, (4.226)

where φ0 is the typical vev at which inflation occurs and is of order φ0 ≃ 1014 GeV. A
discussion on the fine-tuning required to get a the flat inflection point can be found in
section 5.6 as only extremely small deviations from this condition are allowed. This is why in
Ref. [364], an auxiliary hybrid field is introduced that dynamically uplifts the potential with
a subsequent phase transition to end inflation at the necessary point in order to alleviate the
fine-tuning issues. Here we study the model in its original single field form summarized in
Eq. (4.226).

Let us define

x ≡ φ

φ0

. (4.227)

The potential is an increasing function of the field vev , hence inflation proceeds from the
right to the left. It has two inflection points x±V ′′=0, given by

x−V ′′=0 =
4

9
and x+V ′′=0 =

4

3
, (4.228)

the second one being a flat inflection point [i.e. V ′ (x+V ′′=0

)

= 0], close to which inflation
takes place. This potential is displayed in Fig. 33, together with its logarithm.

Let us now turn to the slow-roll parameters. The first three Hubble flow functions in
the slow-roll approximation are given by

ǫ1 =
M2

Pl

φ2
0

8 (4− 3x)4

(9x3 − 32x2 + 32x)2
, ǫ2 = 8

M2
Pl

φ2
0

(3x− 4)
27x3 − 108x2 + 160x − 128

(9x3 − 32x2 + 32x)2
,

(4.229)
and

ǫ3 = 8
M2

Pl

φ2
0

(3x− 4)
(

16384 − 49152x + 62976x2 − 45312x3 + 20736x4

− 5832x5 + 729x6
) (

9x3 − 32x2 + 32x
)−2 (

27x3 − 108x2 + 160x − 128
)−1

.

(4.230)

Both ǫ1(x) and ǫ2(x) diverge when the field vev goes to 0, and vanish when the field vev
goes to infinity. The first slow-roll parameter ǫ1 first decreases, vanishes at x+V ′′=0 where ǫ2
vanishes too, x−ǫ2=0 = x+V ′′=0, then increases to reach a local maximum at x+ǫ2=0 where ǫ2
vanishes again, and eventually decreases again. The value of x+ǫ2=0 is given by

x+ǫ2=0 =
4

9

[

3−
(

9 +
√
82
)−1/3

+
(

9 +
√
82
)1/3

]

≃ 2.33 . (4.231)

In between these two local extrema of ǫ1, the second slow roll parameter ǫ2 is negative, and
it is positive elsewhere. The value of ǫ1 at its local maximum, ǫmax

1 , is given by

ǫmax
1 =

M2
Pl

φ2
0

1

192

[

−70 +
(

35030267 − 1673784
√
82
)1/3

+
(

35030267 + 1673784
√
82
)1/3

]

≃ 2.96734
M2

Pl

φ2
0

(4.232)
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Figure 33. Renormalizable Inflection Point Inflation (RIPI). Top left panel: renormalizable inflection
point inflation potential as a function of φ/φ

0
. Top right panel: logarithm of the potential, the required

flatness of the potential close to its inflection point becomes obvious on this plot. Bottom left panel:
slow-roll parameter ǫ1 normalized by M2

Pl
/φ2

0
. The shaded area indicates the region in which ǫ1 > 1

and thus where inflation stops (this has to be rescaled for φ
0
6= MPl). Bottom right panel: slow-roll

parameters ǫ2 (solid line) and ǫ3 (dotted line), normalized by M2
Pl
/φ2

0
.

Therefore, if φ0/MPl <
√
2.96734... ≃ 1.72, inflation can stop by slow-roll violation beyond

the second inflection point x+ǫ2=0 if it proceeds in that part of the potential. Remembering
that typically φ0 ≃ 1014 GeV ≃ 0.4 × 10−4MPl, this condition is commonly satisfied. An
expression for the ending point of inflation x+ǫ1=1 in that case can be obtained, but is does
not add much to the discussion, since for reasonable values of φ0 , it is extremely far from the
flat inflection point (e.g. for φ0/MPl = 10−4, one has x+ǫ1=1 ≃ 71000). Since the potential is
introduced to study inflation close to a flat inflection point, it should be studied in the other
regime, as it is the case for MSSM inflation (see section 4.17), i.e. when inflation takes place
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between x = 0 and the second inflection point x−ǫ2=0. In that situation, it ends at

xend = x−ǫ1=1 =
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(4.233)

For φ0/MPl ≪ 1, one can numerically check that this expression is very close to the flat
inflection point location x−ǫ2=0, namely

xend ≃ 4

3
−
√

16
√
2

81

φ0

MPl

. (4.234)

This means that in that case, the whole inflationary stage proceeds very close to this point.
The slow-roll trajectory is obtained from Eq. (2.11) and reads

Nend −N =
φ2

0

M2
Pl

[

−2x

9
+
x2

8
− 16

27

1

3x− 4
− 4

27
ln (4− 3x)

+
2xend
9

− x2end
8

+
16

27

1

3xend − 4
+

4

27
ln (4− 3xend)

]

.

(4.235)

Several remarks are in order. Firstly, from this expression, one can see that the number
of e-folds diverges when the field goes to the inflection point of the potential. This means
that this point is never crossed and if inflation proceeds beyond it, the field approaches the
inflection point asymptotically. However, it turns out that an exact numerical integration of
the equations of motion reveals that any deviation from slow-roll preceding the neighborhood
of the flat inflection point can boost the field with a sufficient speed to cross it. On the other
hand, the field dynamics at the exact location of the inflection point is dominated by quantum
diffusion, and a more careful study must be carried out to describe what exactly happens
there. Following the considerations of section 4.17, we will be focused on the inflationary
regime only below the flat inflection, where deviations from slow-roll and quantum diffusion
plays a negligible role. Then, since for φ0/MPl ≪ 1 inflation takes place relatively close to
the inflection point and the two last of Eq. (4.235) dominate over the two first ones. In this
limit, the trajectory can be inverted to get

x∗ ≃
4

3
− 4

3
W−1

0

{

4 exp

[

27

4

(

MPl

φ0

)2

∆N∗ +
4

3xend − 4
− log (4− 3xend)

]}

. (4.236)
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Making use of Eq. (4.234), and keeping only the dominant terms in φ0/MPl, one obtains

x∗ ≃
4

3
− 16

81

(

φ0

MPl

)2 1

∆N∗
. (4.237)

This expression can be useful to determine typical values for the slow-roll parameters evalu-
ated at Hubble crossing. One obtains

ǫ1∗ ≃
128

6561

1

∆N4
∗

φ6
0

M6
Pl

, ǫ2∗ ≃
4

∆N∗
ǫ3∗ ≃

1

∆N∗
, (4.238)

hence

r ≃ 2048

6561

1

∆N4
∗

φ6
0

M6
Pl

, nS − 1 ≃ − 4

∆N∗
αS ≃ − 4

∆N2
∗
. (4.239)

One can see that these models typically predict a tiny amount of gravitational waves, but
a substantial deviation from scale invariance nS − 1 ≃ −4/∆N∗ ∼ 0.1. The similarity with
Eqs. (4.224) is obvious.

Finally, the parameterM can be determined from the amplitude of the CMB anisotropies
and the observable field value x∗ = x(N∗) by

(

M

MPl

)4

= 368640
M2

Pl

φ2
0

π2
(4− 3x∗)

4

x4∗ (9x
2
∗ − 32x∗ + 32)3

Q2
rms−PS

T 2
. (4.240)

For φ0/MPl ≪ 1, one can make use of Eq. (4.237) to get the approximate expression

(

M

MPl

)4

≃ 2560

27

π2

∆N4
∗

(

φ0

MPl

)6 Q2
rms−PS

T 2
. (4.241)

Using the typical value φ0 ≃ 1014 GeV, one gets M/MPl ≃ 8× 10−10.
The reheating consistent slow-roll predictions of the renormalizable inflection point mod-

els are displayed in Fig. 94. The reheating equation of state parameter wreh has been taken
to 0 since the potential is quadratic close to its minimum. One can check that in the limit
φ0/MPl ≪ 1, the first slow-roll parameter is indeed extremely small, while the second slow-
roll parameter does not depend much on φ0 . Remembering that φ0/MPl ≃ 10−4, one can see
that these models are disfavored by the CMB data since they predict a too large deviation
from scale invariance. In order to remain inside the two-sigma confidence intervals, these
models should be such that φ0/MPl ≫ 1, for which they are close to quadratic models (LFI
with p = 2, see section 4.2). However, such values for φ0 are, a priori, outside the range
of RIPI. Finally, comparing Fig. 94 with Fig. 93, one can see that the general features of
RIPI are very close to the MSSMI ones, and that the conclusions drawn are therefore robust
against the power index n of Eq. (4.210).

4.19 Arctan Inflation (AI)

This scenario was originally introduced in Ref. [367] as a toy model where the equation of
state changes rapidly around φ = 0. The potential reads

V (φ) =M4

[

1− 2

π
arctan

(

φ

µ

)]

, (4.242)
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Figure 34. Top left panel: Arctan Inflation (AI) potential as a function of φ/µ. Top right panel:
logarithm of the potential. Bottom left panel: slow-roll parameter ǫ1 rescaled by M2

Pl
/µ2 which

renders the corresponding expression “universal”, i.e. independent of the free parameter µ. Bottom
right panel: slow-roll parameters ǫ2 (solid line) and ǫ3 (dotted line) rescaled by M2

Pl
/µ2 (for the same

reason as mentioned before).

and depends on one free parameter, µ. This model was considered in order to test the
reliability of different computational methods and schemes of approximation used in the
calculations of the inflationary cosmological perturbations power spectrum, see Ref. [367].
More precisely, in Ref. [142], it was also used to study with which accuracy the first and second
slow-roll order power spectra can approximate the actual power spectrum of the fluctuations
in the case where the underlying model has both quite large tilt and running. This potential
was considered again in Refs. [368, 369] in order to study whether it can lead to the formation
of long-lived primordial black holes. In the following slow-roll analysis, µ will be viewed as
a free parameter with no restricted range of variation. Let us notice, however, that since it
characterizes the typical vev at which inflation takes place, it could also be limited to the
sub-Planckian regime if one wants inflaton to proceed in a small field regime. As a matter
of fact, it will be shown below that this needs to be the case if one wants inflation to end by
slow-roll violation.

The potential (4.242), as well as its logarithm, are displayed in Fig. 34. They are
decreasing functions of the field and, hence, inflation proceed from the left to the right, in
the direction specified by the arrow in Fig. 34.
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Let us now compute the three first slow-roll parameters. If one defines x by x ≡ φ/µ,
their expressions are given by

ǫ1 =
M2

Pl

µ2
2

(1 + x2)2 [π − 2 arctan (x)]2
, ǫ2 = 8

M2
Pl

µ2
1− πx+ 2x arctan (x)

(1 + x2)2 [π − 2 arctan (x)]2
,

(4.243)
and

ǫ3 = 2
M2

Pl

µ2
[

−4 + 6πx+ π2
(

1− 3x2
)

+ 4
(

3πx2 − 3x− π
)

arctan (x)

+ 4
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1− 3x2
)

arctan2 (x)
]

{

(

1 + x2
)2

[π − 2 arctan (x)]2 [−1 + πx− 2x arctan (x)]
}−1

.

(4.244)
They are displayed in Fig. 34. The first slow-roll parameter ǫ1 increases during inflation,
reaches a maximum at xǫmax

1
and then decreases. Whether inflation can stop by violation of

slow-roll or not depends on the value of ǫ1, ǫ
max
1 , at its maximum. This value is a solution of

the following equation
2xǫmax

1
arctan

(

xǫmax
1

)

+ 1 = πxǫmax
1

. (4.245)

This equation can only be solved numerically, and one obtains xǫmax
1

≃ 0.428978, from which
one deduces that

ǫmax
1 ≃ 0.262531

M2
Pl

µ2
. (4.246)

Therefore, in order for inflation to end by slow-roll violation, one needs to work under the
assumption that µ/MPl < 0.512378. In that case, inflation proceeds along the plateau located
at values of x such that x < xǫmax

1
, in the direction specified by the arrow in Fig. 34 (i.e. from

the left to the right). Otherwise, if one wants inflation to occur in other parts of the potential
and/or for values of µ such that µ/MPl > 0.512378, another mechanism needs to be consider
in order to stop it (typically, we imagine a tachyonic instability in another direction in field
space). This means that we also need to introduce an extra parameter xend which gives the
location of the vev at which the tachyonic instability is triggered. Let us remark that we
could also consider a model where the inflaton starts at x < xǫmax

1
, then crosses the region

where ǫ1 has its maximum and then causes the end of inflation by tachyonic instability. This
case would give a bump in the power spectrum and, clearly, cannot be properly described
in the slow-roll framework. In this article, we restrict ourselves to the first version of the
scenario mentioned above. In this situation xend is given by the smallest solution of the
equation ǫ1 = 1 and needs to be computed numerically. Before inflation stops, one can
see in Fig. 34 that the second slow-roll parameter ǫ2 reaches a maximum, the location of
which can be numerically computed to be xǫmax

2
≃ −0.28539 < xǫmax

1
. At this point, one has

ǫmax
2 ≃ 1.02827M2

Pl/µ
2 > ǫmax

1 . As a consequence, the slow-roll approximation break down
before the end of inflation. This conclusion is reinforced by the fact that ǫ3 diverges at xǫmax

1
.

This means that the last e-folds of inflation cannot be properly described in the slow-roll
framework.

Let us now turn to the slow-roll trajectory. It can be integrated exactly and yields the
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following expression

Nend −N =
µ2
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Pl

[

πxend
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x arctan (x) +
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ln
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]

,

(4.247)
where Nend is the number of e-folds at the end of inflation. In the vacuum dominated
approximation where the potential is just given by V (φ) ≃ M4, this trajectory can be
approximated by Nend −N = µ2/M2

Pl(πxend + x2end/6 + πx3/3− πx− x2/6 − πx3/3), which
can be inverted exactly if needed. This formula is valid if µ ≪ 1, since in that case, xend ≃
−
√

MPl/
(

µπ
√
2
)

≪ −1. Under this assumption, one has x3∗ ≃ −3M2
Pl/
(

πµ2
)

∆N∗, from

which one can compute the values of the three first Hubble flow parameters at Hubble radius
crossing

ǫ1∗ =
(µ/MPl)

2/3

2 (π∆N2
∗ )

2/3
, ǫ2∗ =

4

3∆N∗
, ǫ3∗ =

1

∆N∗
, (4.248)

Then, one can calculate the tensor to scalar ratio, the spectral index and the running. One
obtains the following expressions

r =
8 (µ/MPl)

2/3

(π∆N2
∗ )

2/3
, nS − 1 = − 4

3∆N∗
≃ −0.03 , αS = − 4

3∆N2
∗
≃ −5× 10−4 .

(4.249)
These formulas are in agreement with the consistency relation αS = −3/4 (nS − 1)2 obtained
in Ref. [368].

Finally, it is interesting to estimate the energy scale M . As usual, this can be done by
CMB-normalizing the model. This leads to

(

M

MPl

)4

=
2880π3M2

Pl/µ
2

(1 + x2∗)
2 [π − 2 arctan (x∗)]

3

Q2
rms−PS

T 2
. (4.250)

Under the vacuum dominated approximation (µ/MPl ≪ 1), the above equation can be re-
expressed as

(

M

MPl

)4

≃ 40× 32/3π4/3

∆N∗

(

µ

MPl

)2/3 Q2
rms−PS

T 2
. (4.251)

The requirement M < MPl leads to an upper bound on µ, namely µ/MPl . 830 (strictly
speaking, this upper bound is not totally correct since the corresponding value of µ is super-
Planckian while it has been derived in the vacuum dominated approximation). The typical
value M/MPl ∼ 10−3 corresponds to µ/MPl ∼ 10−2.

The slow-roll predictions of the AI models are displayed in Fig. 95, in the range µ/MPl <
0.512378 (so that inflation can end by slow-roll violation). The reheating equation of state
parameter wreh has been taken to be 0 but since there is no potential minimum around which
the inflaton field can oscillate at the end of inflation, this parameter is a priori unspecified.
One can see that this model typically predicts a small amount of gravitational waves, and a
deviation from scale invariance which is in accordance with the observations. The predictions
in the planes (nS, r) are qualitatively well described by the vacuum dominated analysis (4.249)
presented before.
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Figure 35. Constant nS A Inflation (CNAI) potential and slow-roll parameters versus the vacuum
expectation value of the inflaton field. Top left panel: Constant nS A Inflation potential for α = 1.
Top right panel: logarithm of the potential for the same value of α. Bottom left panel: slow-roll
parameter ǫ1 (same value of α): it is clear from this plot that, in this model, inflation stops by
violation of the slow-roll approximation. Bottom right panel: slow-roll parameters ǫ2 and ǫ3 (α = 1).

4.20 Constant nS A Inflation (CNAI)

This class of models is designed in order to produce power spectra with constant spectral
index. It was studied for the first time in Ref. [370]. The rational behind this approach is
that, so far, no evidence for a significant running has been found in the cosmological data.
Since, from a Bayesian point of view, one should avoid introducing parameters that are
unnecessary in order to reproduce the observations, it makes sense to consider models which
lead to exact power-law power spectra. This is of course the case for power-law inflation as
discussed in section 4.8 and we will see other examples in sections 4.21, 5.14 and 6.6. In
fact, in Ref. [370], a systematic analysis of potentials that yield constant spectral index was
carried out. It was found that the following potential belongs to this category of models

V (φ) =M4

[

3−
(

3 + α2
)

tanh2
(

α√
2

φ

MPl

)]

, (4.252)

where α is a positive massless parameter (denoted n20 in Ref. [370]) and, in this section, we
study this case. This potential is represented in Fig. 35 and, since it is symmetrical under
the transformation φ → −φ, only the φ > 0 part is displayed. The potential is a decreasing
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function of the field vev and, therefore, inflation proceeds from the left to the right. It is
positive provided φ < φ0 , where

φ0

MPl

=

√
2

α
arctanh

(

√

3

3 + α2

)

. (4.253)

There is no value of α for which the potential is always positive. Defining x = φ/MPl, the
slow-roll parameters are given by
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)2
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(
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(4.256)
These slow-roll parameters are displayed in Fig. 35. They all increase as inflation proceeds
and diverge when the field approaches φ0 . Hence inflation ends by slow-roll violation. Notice
that the equation ǫ1 = 1 can be solved analytically. If we define y ≡ sinh2(αxend/

√
2), then

one has to solve the following cubic equation α4y3+(α4−6α2)y2+[9−6α2−α2(3+α2)]y+9 = 0.
The relevant solution reads

y =
6− α2

3α2
− 1− i

√
3

3× 21/3
(3 + α2)2(1 + 3α2)P−1/3 − 1 + i

√
3

6× 21/3α4
P 1/3, (4.257)

where we have defined P by

P ≡− α6
(

3 + α2
)2 (

6− 52α2 + 9α4
)

+

√

−27α14 (3 + α2)4 (36− 60α2 + 96α4 + 25α6 + 4α8). (4.258)

Of course, φend can also be found numerically. The slow-roll parameters ǫ1 and ǫ3 both
vanish when the field vev goes to 0, whereas ǫ2 has a non vanishing minimum value, given
by ǫ2 → 2α2

(

3 + α2
)

/3 when x = 0. Therefore, if α is larger than some maximum value

αmax =

√

1

2

(√
15− 3

)

≃ 0.66 , (4.259)

then ǫ2 is larger than 1 in the whole inflationary regime and the slow-roll approximation does
not hold. It is therefore necessary to work under the assumption α < αmax which we assume
in the following.

Let now us check that the spectral index nS − 1 = −2ǫ1− ǫ2 (at first order in slow-roll),
is indeed constant, as announced previously. Expanding the slow-roll parameters ǫ1 and ǫ2
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Figure 36. Lambert functions W0(x) (dashed line) and W−1(x) (solide line). During CNAI inflation,
inflation proceeds along the “0” branch in the direction specified by the arrow on the figure.

in α ≪ 1, one obtains ǫ1 = O
(

α4
)

and ǫ2 = 2α2 +O
(

α4
)

, so that nS − 1 = −2α2 +O
(

α4
)

.
Therefore, the corresponding expression is indeed a constant (i.e. no longer depends on φ∗).
Since we have |nS − 1| ≪ 1, this implies that α ≪ 1 which is consistent with the condition
α < αmax derived above.

Let us now study the slow-roll trajectory of the system. This one can be integrated
exactly leading to the following formula

N −Nini =
1

α2 (3 + α2)

{

3 ln

[

sinh
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2
x

)]
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2
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α√
2
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+
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2
sinh2

(

α√
2
xini

)}

. (4.260)

Moreover, this trajectory can be inverted which allows us to explicitly express the vev of the
inflaton field in terms of the e-folds number. One obtains

x =

√
2

α
arcsinh

[

− 3

α2
W0

(

−α
2

3
exp

{

2

3
α2
(
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+ 2 ln
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(

α√
2
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)]

− α2

3
sinh2

(

α√
2
xini

)})]1/2

,

(4.261)

where W0 is the 0 branch of the Lambert function as required since x (N) is an increasing
function of N . It is displayed in Fig. 36 where the CNAI trajectory takes place between
φ/MPl = 0 at the origin of the plot, and x = φ0/MPl at the junction between the −1 branch
and the 0 branch.

The slow-roll predictions of the constant nS A models are displayed in Fig. 96. When
α is small (but not too small), the value of nS is indeed constant (and compatible with

– 97 –



the considerations presented above) but, unfortunately, too far from scale invariance to be
compatible with CMB data. When α ≪ 10−1, the predictions become roughly compatible
with the data but, clearly, nS is no longer constant and no longer given by −2α2. At first
sight, this is surprising since we expect the spectral index to tend towards −2α2 when α
goes to zero (see above). In order to understand this point, let us remark that, in the
limit where α vanishes, one can expand Eq. (4.257) to find y ≃ 3/α2 − 3/α + O (α) (the
term at order α0 is absent and this plays an important role in what follows). This leads to
φend/MPl ≃ (

√
2/α) ln

(

2
√
3/α

)

− 1/
√
2 +O (α). Notice that this last equation can be easily

interpreted. Indeed, the behavior of the first horizon-flow parameter (4.254) in the vicinity
of φ0 is given by ǫ1 ≃ M2

Pl/[2(φ − φ0)
2]. Therefore, the expression of φend found before

corresponds in fact to writing ǫ1 = 1 with this approximated ǫ1. Then, using the slow-roll
trajectory (4.261), it is easy to show that

sinh2
(

αx∗√
2

)

= − 3

α2
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(

−α
2

3
e−2A/3

)

, (4.262)

where A is given by the following expression

A ≡ α2
(

3 + α2
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∆N∗ − 3 ln

[
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αxend√
2
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+
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2
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. (4.263)

This quantity can be expanded in α using the equation for y derived above and, at leading
order, one obtains

− 2

3
A ≃ −2

3
α2∆N∗ + ln

(

3

α2

)

− 1− α2

2
. (4.264)

For simplicity, the last term in the previous expression can be ignored since 2∆N∗ ≫ 1/2. It
follows that, introducing the formula for −2A/3, Eq. (4.264), into Eq. (4.262), one arrives at

sinh2
(

αx∗√
2

)

= − 3

α2
W0

(

−1

e
e−2α2∆N∗

)

. (4.265)

If we ignore the exponential in the argument of the Lambert function (since α≪ 1) and use
the identity arcsinh(x) = ln(x +

√
x2 + 1), one finally arrives at αx∗ ≃

√
2 ln(2

√
3/α). We

now understand why, in the limit α → 0, the spectral index is no longer constant. In order
to arrive at the conclusion nS ≃ −2α2, we have expanded the expressions of ǫ1 and ǫ2 in
α, including the hyperbolic function of argument αx∗. But we have just shown that, when
α ≪ 1, αx∗ is not small and, therefore, the Taylor expansion of those terms is not justified.
This is why, in Fig. 96, we see a deviation from the region where nS is constant for very small
values of α. In fact, this questions the interest of this model since the condition of constant
spectral index is obtained only for values of nS that are already ruled out by the CMB data.
On the other hand, when α ≪ 1, the model seems compatible with the data and, therefore,
represents a legitimate inflationary scenario even if the spectral index is not constant in this
case.

Finally, it is also interesting to study the energy scale at which inflation takes place in
this model. The COBE normalization gives

(

M

MPl

)4

=
11520π2α2

(

α2 + 3
)2

sinh2
(

α√
2
x∗
)

[

α2 + 6− α2 cosh
(√

2αx∗
)]3

Q2
rms−PS

T 2
. (4.266)
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Figure 37. Top left panel: constant nS B Inflation (CNBI) potential for α = 0.1, see Eq. (4.268).
Top right panel: logarithm of this potential (for the same value of α). Bottom left panel: slow-roll
parameter ǫ1 still for α = 0.1. Bottom right panel: slow-roll parameters ǫ2 and ǫ3 again for α = 0.1.

Since we have established the expression of x∗ above, it is sufficient to use it in the above
formula. We have, however, to be careful about the calculation of the denominator. Indeed,
if we neglect again the exponential in the argument of the Lambert function, Eq. (4.262),
then sinh2(αx∗/

√
2) ≃ 3/α2 and the denominator in Eq. (4.266) vanishes. Therefore, one

needs to evaluate the Lambert function more precisely and to keep the corrections propor-
tional to ∆N∗. This can be done with the help of Eq. (33) of Ref. [371] which implies that
sinh2(αx∗/

√
2) ≃ 3/α2 − 6

√
∆N∗/α. Using this expression, one arrives at

M

MPl

≃ 0.016α−3/4 (∆N∗)
−3/8 . (4.267)

For an order of magnitude estimate, one can use the fiducial value ∆N∗ ≃ 55. This leads to
M/MPl ≃ 0.0035α−3/4 . RequiringM < MPl puts a lower bound on the parameter α, namely
α & 5× 10−4. This roughly corresponds to the range studied in Fig. 96.

4.21 Constant nS B Inflation (CNBI)

This model is another representative of the class of scenarios studied in Ref. [370]. As was
already discussed in section 4.20, it is designed such that the corresponding power spectrum
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has a constant spectral index. The potential is given by

V (φ) =M4

[

(

3− α2
)

tan2
(

α√
2

φ

MPl

)

− 3

]

, (4.268)

where α is a positive dimensionless parameter corresponding to −n20 > 0 in Ref. [370]. Since
the potential is periodic with period π

√
2/α and, moreover, invariant under φ → −φ, one

can restrict ourselves to the range 0 < φ/MPl < π/
(√

2α
)

without loss of generality. The
potential is an increasing function of the field and, as a consequence, inflation proceeds from
the right to the left. Finally, V (φ) is positive provided φ > φ0 , where

φ0

MPl

=

√
2

α
arctan

(

√

3

3− α2

)

. (4.269)

Obviously, in order for the potential not to be negative everywhere, one needs to impose
that α <

√
3 and, as a result, the previous expression is well defined. The potential (and its

logarithm) is displayed in Fig. 37, in the relevant range φ0/MPl < φ/MPl < π/
(√

2α
)

.
Then, defining x = φ/MPl, the slow-roll parameters are given by

ǫ1 =

4α2
(

α2 − 3
)2

tan2
(

α√
2
x

)

[

α2 + (6− α2) cos
(√

2αx
)]2 , (4.270)

ǫ2 =
α2
(

3− α2
) [

6 + α2 + 2
(

6− α2
)

cos
(√

2αx
)

+
(

α2 − 6
)

cos
(

2
√
2αx

)]

2 cos6
(

α√
2
x

)[

3 + (α2 − 3) tan2
(

αx√
2

)]2 , (4.271)

and

ǫ3 = 2α2
(

α2 − 3
)

tan2
(

α√
2
x

)

[

6
(

−72 + 14α2 − α4
)

+
(

α2 − 6
) (

7α2 + 78
)

cos
(√

2αx
)

−2
(

α4 − 18α2 + 72
)

cos
(

2
√
2αx

)

+
(

α2 − 6
)2

cos
(

3
√
2αx

)]

×
[

α2 +
(

6− α2
)

cos
(√

2αx
)]−2 [

6 + α2 + 2
(

6− α2
)

cos
(√

2αx
)

+
(

α2 − 6
)

cos
(

2
√
2αx

)]−1
.

(4.272)
These slow-roll parameters are displayed in Fig. 37 (bottom panels). The first slow-roll
parameter ǫ1 first decreases as the field vev increases and reaches a minimum value at xǫ2=0

where ǫ2 vanishes and then increases. The value of xǫ2=0 is given by

xǫ2=0 =
1

α
√
2
arccos

[

α2 − 6 +
√
α4 − 36α2 + 180

2 (α2 − 6)

]

. (4.273)

The second slow-roll parameter, ǫ2, always decreases as inflation proceeds, crossing ǫ2 = 0
at xǫ2=0. The third slow-roll parameter, ǫ3, is positive for x < xǫ2=0. In this domain, it
decreases to reach a minimum and then increases and diverges when x approaches xǫ2=0.
On the contrary, for x > xǫ2=0, ǫ3 becomes negative. It first increases and reaches a local
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maximum, then decreases and goes to −∞ at x = π/
(√

2α
)

. The three slow roll parameters

diverge when φ goes to φ0 and to MPlπ/
(√

2α
)

.
The minimum value of ǫ1 at xǫ2=0 turns out to be smaller than 1 only if α < αmax ≃

0.2975. A (rather long) analytic expression for αmax can be derived, but it does not provide
much information to the present discussion. Therefore, one must require α < 0.2975 in
order to realize slow-roll inflation in this model. Then, assuming this is the case, it is
clear from Fig. 37 and from the previous considerations that inflation ends by slow-roll
violation. If we define y ≡ sin2(αxend/

√
2), then the condition ǫ1 = 1 is equivalent to

4(6−α2)2y3−4(12−α2)(6−α2)y2+4(45+3α2−6α4+α6)y−36 = 0. The relevant solution
is given by

y =
12− α2

3(6− α2)
+

4

3
2−2/3

(

1− i
√
3
)

(

3α2 − 1
) (

18− 9α2 + α4
)2

(6− α2)2
P−1/3

−
(

1 + i
√
3
) 2−1/3

24 (6− α2)2
P 1/3, (4.274)

where we have defined the quantity P by

P ≡ 64
(

−6 + α2
)3 (−3 + α2

)2
(

−6 + 110α2 − 9α4 + 3α
√
3

×
√

−36 + 408α2 − 12α4 − 25α6 + 4α8

)

. (4.275)

If α≪ 1, then y ≃ 1/2 and xend ≃
√
2/α arcsin(1/

√
2) = π/(2

√
2α).

Now, let us check that the spectral index, nS − 1 = −2ǫ1 − ǫ2, at first order in slow-roll,
is indeed constant as announced previously. Expanding the slow-roll parameters ǫ1 and ǫ2 in
α≪ 1, one obtains ǫ1 = x2α4/2+O

(

α6
)

and ǫ2 = 2α2+O
(

α4
)

, so that nS−1 = −2α2+O
(

α4
)

.
Therefore, approximate scale-invariance, |nS − 1| ≪ 1, implies α2 ≪ 1 and a first order
approximation in slow-roll is in fact an expansion to second order in α≪ 1.

Let us now turn to the slow-roll trajectory. This one can be integrated exactly, leading
to the following formula

N −Nini =
1

α2 (3− α2)

{

3 ln

[

sin

(

α√
2
x

)]

− 6− α2

2
sin2

(

α√
2
x

)

−3 ln

[

sin

(

α√
2
xini

)]

+
6− α2

2
sin2

(

α√
2
xini

)}

. (4.276)

This formula can be inverted and x can be expressed explicitly in terms of the e-folds number.
One obtains

x =

√
2

α
arcsin

[

− 3

6− α2
W−1

(

−6− α2

3
exp

{

2

3
α2
(

3− α2
)

(N −Nini)

+2 ln

[

sin

(

α√
2
xini

)]

− 6− α2

3
sin2

(

α√
2
xini

)})]1/2

, (4.277)

where W−1 is the −1 branch of the Lambert function. It is displayed in Fig. 38. When
x = π/

(√
2α
)

, the argument of the Lambert function is
(

α2 − 6
)

exp
(

α2/3− 2
)

/3 which is

always larger than −1/e for any value of α (this expression decreases with α when α <
√
3),
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Figure 38. Lambert functions W0(x) (dashed line) and W−1(x) (solide line). During Constant nS B
Inflation, inflation proceeds along the “−1” branch in the direction specified by the arrow.

whereas when x = φ0/MPl, the argument of the Lambert function is just given by −1/e. For
x > φ0/MPl, the value taken by the Lambert function must be less than −1 which indicates
that the −1 branch is the relevant one. Therefore, inflation proceeds in the domain displayed
in Fig. 38 in which one easily checks that the above trajectory is always well defined.

The slow-roll predictions of the constant nS B models are displayed in Fig. 97 for the
range 10−5 . α . 10−1.3. For very small values of α, the predictions are in agreement with
the data with a value of nS centered around the constant value nS ≃ 0.97 and an amount of
gravitational waves such that r & 0.07. But one also notices that the spectral index is not
constant and, therefore, not given by ≃ 1−2α2 although one seems to approach this behavior
when α increases (but, unfortunately, when the corresponding predictions leave the allowed
region). In fact, it does not come as a surprise that the same phenomenon highlighted in
section 4.20 is at work here. Indeed, using the slow-roll trajectory (4.276), it is easy to show
that

sin2
(

αx∗√
2

)

= − 3

6− α2
W−1

(

−6− α2

3
e−2A/3

)

, (4.278)

where A is given by the following expression

A ≡ α2
(

3− α2
)

∆N∗ − 3 ln

[

sin

(

αxend√
2

)]

+
6− α2

2
sin2

(

αxend√
2

)

. (4.279)

Using the formula for xend derived above, one obtains, in the limit α ≪ 1 and at this order
of approximation that x∗ ≃ xend. Therefore, as in section 4.20, αx∗ is not a small quantity
and one cannot Taylor expand the trigonometric functions that appear in the expressions of
the slow-roll parameters. This explains why, in the limit α≪ 1, the spectral index is in fact
not constant.
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Finally, the COBE normalization gives

(

M

MPl

)4

=
11520π2α2

(

3− α2
)2

sin2
(

α√
2
x∗
)

[

(α2 − 6) cos
(√

2αx∗
)

− α2
]3

Q2
rms−PS

T 2
. (4.280)

In the limit α ≪ 1 we are interested in (since we have seen that, if α is not small, then the

model is ruled out), the above expression takes the formM/MPl ≃ 0.02α−1/4 (∆N∗)
−3/8. We

obtain almost exactly the same result as for CNAI, see Eq. (4.266), except that the power
of α is different. Taking the value ∆N∗ = 55, it follows that M/MPl ≃ 0.0044α−1/4 and
requiring M < MPl, one obtains the following lower bound, α & 3.8× 10−10.

5 Two Parameters Models

5.1 Small Field Inflation (SFI)

This model is proto-typical of inflation occurring at the top of a flat-enough potential. As
such it appears in very different contexts. It has been introduced in Ref. [2, 326] and de-
rived in Ref. [3] in the context of radiatively induced symmetry breaking. It appears within
superstring models [372], low scale symmetry breaking [208, 373], supersymmetry [286, 374]
and supergravity [186, 187, 191, 207, 375–379]. It is also obtained in non-linear sigma mod-
els [217] or using moduli as inflatons [380]. It has been discussed in braneworld cosmology
in Refs. [381–383] and is more recently referred to as “hilltop inflation” from Ref. [340, 341].
The potential is given by

V (φ) =M4

[

1−
(

φ

µ

)p]

, (5.1)

and has two parameters in addition to the overall normalization M : a typical vev µ and the
power index p. As this potential can be associated with very different physical frameworks,
µ can take any values while p > 0 for being at the top of a potential (in the small field limit,
namely φ ≪ µ). In particular, we will allow super-Planckian values for µ even though, in
the supergravity context, one would require µ < MPl. Let us stress that Eq. (5.1) is defined
only in the domain φ < µ as one assumes that the small field potential describes only the
field dynamics during inflation. The equation of state during reheating is thus not specified
by Eq. (5.1). Defining

x ≡ φ

µ
, (5.2)

the first three Hubble flow functions read

ǫ1 =
p2

2

(

MPl

µ

)2 x2p−2

(1− xp)2
, ǫ2 = 2p

(

MPl

µ

)2

xp−2 p− 1 + xp

(1− xp)2
, (5.3)

and

ǫ3 = p

(

MPl

µ

)2 xp−2
[

2x2p + (p− 1)(p + 4)xp + (p− 1)(p − 2)
]

(1− xp)2 (p− 1 + xp)
. (5.4)

They are monotonic functions of the field value but also decreasing functions of the vev µ.
The potential, its logarithm and the Hubble flow functions are represented in Fig. 39.

The slow-roll trajectory is obtained by integrating Eq. (2.11) to get

N −Nend =
1

2p

µ2

M2
Pl

[

−x2 + x2end +
2

2− p

(

x2−p − x2−pend

)

]

. (5.5)
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Figure 39. Small Field Inflation (SFI) for p = 4 and µ = MPl. Upper panels: the potential and its
logarithm as a function of φ/µ. Bottom left panel: slow-roll parameter ǫ1, the shaded area indicates
where inflation stops. Bottom right panel: slow-roll parameters ǫ2 (solid line) and ǫ3 (dotted line).

This equation seems to be well-defined only for p 6= 2. However, the particular case p = 2
can be directly obtained from Eqs. (2.11) and (5.1) directly to get

N −Nend =
1

4

µ2

M2
Pl

[

−x2 + x2end + 2 ln

(

x

xend

)]

. (5.6)

This expression can also be viewed as the limit of Eq. (5.5) for p → 2. In general, the
trajectory cannot be analytically inverted to give the field value x(N) but one can find some
analytical form for almost all integer values of p (e.g. for p = 1, p = 2, p = 3, p = 4, p = 6)
that we do not write down for the sake of clarity.

¿From the potential Eq. (5.1), inflation can stop naturally at ǫ1(xend) = 1 with xend < 1.
This condition gives the algebraic equation

xpend +
p√
2

MPl

µ
xp−1
end = 1, (5.7)

which cannot be solved analytically in full generality. As for the trajectory, there are however
explicit solutions for almost all integer values of p, the first two being

x
(p=1)
end = 1− MPl√

2µ
, x

(p=2)
end =

MPl√
2µ



−1 +

√

1 + 2
µ2

M2
Pl



 . (5.8)
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Together with Eq. (2.46), these equations are enough to allow the determination of the
field value x∗ at which the observable modes crossed the Hubble radius during inflation. This
fixes the value of the parameterM to match the observed amplitude of the CMB anisotropies
at

M4

M4
Pl

= 720π2p2
M2

Pl

µ2
x2p−2
∗

(1− xp∗)
3

Q2
rms−PS

T 2
. (5.9)

The reheating consistent slow-roll predictions for the small field models are represented in
Figs. 98 to 100 for p = 1, p = 2 and p = 4. The p = 1 case is trivial since one then has
ǫ2∗ = 4ǫ1∗. For p = 2 or p = 4, one sees that the reheating temperature is limited from below
to fit in the observable range. For instance, with p = 2, values of µ such that µ/MPl < 10
are clearly disfavored. Let us notice that the relation ǫ2∗ = 4ǫ1∗ is recovered in the limit
µ/MPl ≫ 1 whereas one clearly observes a systematic shift in nS (or ǫ2) when µ ≪ MPl.
These behaviors can in fact be understood analytically.

Small field models in the supergravity context are commonly studied in the limit µ ≪
MPl. In this situation it is possible to find some approximate solution to both the trajectory
and xend. Keeping only the dominant term in Eq. (5.7), one gets

x
(p 6=1)
end ≃

(√
2

p

µ

MPl

)1/(p−1)

, (5.10)

the case p ≤ 1 being incompatible with the limit µ ≪ MPl and the consistency requirement
that xend < 1. The small vev limit can also be used to invert Eq. (5.5). Assuming µ ≪MPl

and xend ≪ 1, neglecting the quadratic terms for p > 1, the approximate trajectory reads

N −Nend ≃ µ2

M2
Pl

x2−p − x2−pend

p(2− p)
, (5.11)

which can be inverted to

x ≃
[

x2−pend − M2
Pl

µ2
p(2− p) (Nend −N)

]1/(2−p)
. (5.12)

Notice that far from the end of inflation, i.e. N ≪ Nend, the first term can be neglected (for
p > 2) since xend < 1 and MPl/µ ≫ 1. Defining ∆N∗ = Nend − N∗, one can now plug this
expression for x∗ into the Hubble flow functions of Eqs. (5.3) and (5.4) to get their observable
values:

ǫ1∗ ≃
p2

2

(

MPl

µ

)2
[

∆N∗p(p− 2)

(

MPl

µ

)2
]− 2(p−1)

p−2

, ǫ2∗ ≃
2

∆N∗

p− 1

p− 2
, ǫ3∗ ≃

1

∆N∗
.

(5.13)
It is crucial to keep in mind that the above formulas are valid only in the limit µ ≪ MPl

and p > 2. As before, the limiting case p → 2 has to be taken with care and, starting with
Eq. (5.6), one obtains

ǫ
(p=2)
1∗ = exp

(

−4
M2

Pl

µ2
∆N∗

)

, ǫ
(p=2)
2∗ = 4

M2
Pl

µ2
, ǫ

(p=2)
3∗ = 6ǫ

(p=2)
1∗ . (5.14)

Both Eqs. (5.13) and (5.14) describes the observed behavior in Figs. 98 to 100 when µ/MPl →
0 but they do fail in the intermediate region as we have discussed in the introduction (see
Fig. 3).
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If the theoretical motivations underlying the potential 5.1 do not require the vev to
be small, one can similarly derive approximate expressions for the observables in the limit
µ/MPl ≫ 1 (but still with x < 1). Defining ε ≡ MPl/µ, one has xend(ε) and we can search
for a Taylor expanded solution of Eq. (5.7) to get

xend = 1− ε√
2
+
p− 1

4
ε2 +O

(

ε3
)

. (5.15)

Similarly one can search for a Taylor expanded solution for the trajectory Eq. (5.5), plugging
in the previous expression for xend. Doing so yields

x∗ = 1− ε

√

1

2
+ 2∆N∗ +O

(

ε2
)

. (5.16)

¿From this, one gets the corresponding Hubble flow functions

ǫ1∗ ≃
1

4∆N∗ + 1
ǫ2∗ ≃ 4ǫ1∗, ǫ3∗ ≃ ǫ1 . (5.17)

This result is quite remarkable since the observable slow-roll parameters become µ and p
independent. Performing the same calculation in the singular case p → 2 yields exactly the
same result. The spectral index, tensor-to-scalar ratio and running are immediately obtained
from Eq. (5.17) with r = 16ǫ1∗, nS−1 ≃ −3r/8 and α ≃ −r. Again, these expressions match
with Figs. 98 to 100 when µ/MPl → ∞.

5.2 Intermediate Inflation (II)

This model was introduced in Refs. [384–387] as an implementation of an equation of state
of the form

ρ+ p = γρλ , (5.18)

where ρ is then energy density, p the pressure. Both γ > 0 and λ > 0 are dimensionless
constants. As will be made explicit, this equation of state leads to a scale factor which is
given by a(t) ∝ exp

(

Atf
)

where 0 < f < 1. In some sense the expansion is thus faster than
power law but slower than de Sitter, hence the name of the model. The pure de Sitter case
corresponds to f = 1. Inserting the Friedmann-Lemâıtre equation, 3M2

PlH
2 = ρ as well as

the equation of state Eq. (5.18) into the equation of conservation ρ̇ + 3H (ρ+ p) = 0, one
obtains a closed equation for ρ which is solved by

ρ = ρ0

[

3γ (λ− 1) ln

(

a

a0

)]1/(1−λ)
, (5.19)

where ρ0 and a0 are positive constants. Making use of the Friedmann-Lemâıtre equation
again, one deduces the behavior for a,

ln

(

a

a0

)

= 3λ/(1−2λ)γ1/(1−2λ)

(

λ− 1
2

)(1−λ)/(1−2λ)

λ− 1

(

t

t0

)(1−λ)/(1−2λ)

, (5.20)

i.e. the announced behavior, a(t) ∝ exp
(

Atf
)

, with f = 2(1 − λ)/(1 − 2λ). Since λ > 0,
this means that 0 < f < 1. Then, one can notice that it is possible to reinterpret the matter
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source as that of a scalar field with the potential V (φ) given by

V (φ) = 3A2f2M4
Pl

[

φ− φ0

MPl

√

8A (f−1 − 1)

]4(1−1/f)

−M4
PlAf (1− f)

[

φ− φ0

MPl

√

8A (f−1 − 1)

]2−4/f

.

(5.21)

Indeed, starting from this potential, the Klein-Gordon equation with H = Aftf−1, has an
exact non-trivial solution given by

φ = φ0 +MPl

√

8A (f−1 − 1)

(

t

t0

)f/2

. (5.22)

It is then straightforward to calculate ρ = φ̇2/2 + V and p = φ̇2/2 − V , and to show that
they satisfy the equation of state Eq. (5.18). The potential can be recast in the form

V (φ) =M4

(

φ− φ0

MPl

)−β
−M4β

2

6

(

φ− φ0

MPl

)−β−2

, (5.23)

with β = 4(1/f − 1). The constraint 0 < f < 1 means that β > 0. Defining

x ≡ φ− φ0

MPl

, (5.24)

it is shown below that the model predictions do not depend on φ0 . Therefore Intermediate
Inflation is a priori a one parameter family of models, but as explained below, one needs an
extra parameter xend specifying the field value at which an unspecified mechanism is triggered
to end of inflation. It is thus a two parameters model.

This potential appears in the earlier work of Ref. [388] as a solution for a cosmological
model containing a string creation term. It is also discussed in the context of tachyon
fields in Refs. [389, 390]. Warm intermediate inflation was considered in Refs. [391, 392],
intermediate inflation within a Gauss-Bonnet braneworld was studied in Ref. [393], and with
Jordan-Brans-Dicke theory in Refs. [394, 395].

The potential (5.23), as well as its logarithm, are displayed in Fig. 40. It is positive
definite for x > xV=0 ≡ β/

√
6. Therefore, one must restrict the inflaton vev to lie beyond

this value. The potential increases with x, reaches a maximum at xV ′=0 ≡
√

β(β + 2)/6,
then decreases with x to asymptotically vanish when x goes to infinity. Therefore, a priori,
two regimes of inflation exist. Either inflation proceeds at x < xV ′=0 from the right to the
left, either it proceeds at x > xV ′=0 from the left to the right. However, in Eq. (5.22), one
can see that the inflaton vev has to increase with time. Therefore only the branch x > xV ′=0

can produce an equation of state of the form of Eq. (5.18), which is where the model will be
studied in the following.

Let us now turn to the slow-roll parameters. The first three Hubble flow functions in
the slow-roll approximation are given by

ǫ1 =
1

2

[

β2(β + 2)− 6βx2

−β2x+ 6x3

]2

, ǫ2 =
−2βx4 +

β2

3
(2β + 6) x2 − β4

18
(β + 2)

(

x3 − β2x

6

)2 , (5.25)
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Figure 40. Intermediate Inflation (II). Upper panels: the potential and its logarithm for β = 2.5.
Bottom left panel: slow-roll parameter ǫ1 for a potential with β = 2.5 and β = 12. The position
of the maximum of ǫ1 with respect to one depends on β. The shaded area indicates where inflation
stops.. Bottom right panel: slow-roll parameters ǫ2 (solid line) and ǫ3 (dotted line) for a potential
with β = 2.5.

and

ǫ3 =

β
[

6x2 − β (2 + β)
]

[

β5

18
(2 + β)− β3 (2 + β)x2 + 6β (4 + β)x4 − 12x6

]

(

x3 − β2

6
x

)2

[β3 (β + 2)− 12β (β + 3) x2 + 36x4]

. (5.26)

They are displayed in Fig. 40. The first slow-roll parameter diverges where the potential
vanishes at xV=0, decreases from here and vanishes at the maximum of the potential xV ′=0.
Then it increases again, reaches a local maximum at xǫmax

1
, and decreases to asymptotically

vanish when x goes to infinity. The location xǫmax
1

is given by

xǫmax
1

=

√

√

√

√

β

2

(

1 +
β

3
+

√

1 +
4β

9

)

. (5.27)
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At this point, the maximum value of ǫ1 is

ǫmax
1 =

β

9

(

1 + 3
√

1 + 4β/9
)2

(

1 +
√

1 + 4β/9
)2 (

1 + β/3 +
√

1 + 4β/9
)
. (5.28)

If β < 9/2
(

1 +
√
2
)

≃ 10.86, this maximum value is smaller than one. In this case inflation
cannot stop by slow-roll violation in the decreasing branch of the potential and an extra
parameter xend must be added to the model to specify the location where another mechanism
such as e.g. tachyonic instability could trigger the end of inflation. If β > 9/2

(

1 +
√
2
)

≃
10.86, the local maximum value of ǫ1 is higher than one and in the decreasing branch of the
potential, either inflation takes place between xV ′=0 and the first solution of ǫ1 = 1, either it
takes place between the second solution of ǫ1 = 1 and x = ∞. As will be shown below, only
the latter case is consistent with the exact trajectory Eq. (5.22) which allows for an equation
of state of the form of Eq. (5.18).

The slow-roll trajectory of the model can be obtained from Eq. (2.11). However, as
already mentioned, a non-trivial and exact field evolution is given by Eq. (5.22). Written in
terms of the number of e-folds N −N0 = ln(a/a0) = A(tf − tf

0
), one obtains

x =
√

x2end + 2β (N −Nend) . (5.29)

This expression is exact and does not involve any approximations. It can be compared to
slow-roll trajectory which reads

Nend −N =
1

2β

(

x2end − x2
)

+
1

6
ln

[

x2end −
β (β + 2)

6

]

− ln

[

x2 − β (β + 2)

6

]

, (5.30)

where Nend is the number of e-folds at the end of inflation and N is the number of e-folds at
some point when the scaled field vev is x. As mentioned above, the slow-roll trajectory should
match the exact one in the decreasing branch of the potential. For x → ∞, one can neglect
the logarithmic terms in Eq. (5.30) and one indeed recovers Eq. (5.29). This is expected since.
in this limit, the slow-roll parameters all go to zero and the slow-roll approximation becomes
increasingly accurate. As a result, the domain of validity lies at x ≫ xV ′=0, i.e. between
the second solution of ǫ1 = 1 and x = ∞ and inflation cannot stop by slow-roll violation.
This justifies the need of the extra-parameter xend. This parameter is thus constrained to
xend > xV ′=0 and should be large enough to allow for a sufficient number of e-folding. In
order to get Nend −Nini e-folds, making use of Eq. (5.29), one gets

xend =
√

x2ini + 2β(Nend −Nini) . (5.31)

If β > 9/2
(

1 +
√
2
)

≃ 10.86, xini is bounded from below by the highest solution of the
equation ǫ1 = 1. This equation admits three solutions in that case, which, from the smallest
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to the biggest, are given by

x0
ǫ1=1 = − β

3
√
2
+

√
2

3

β4/3

3

√

9 + 2β + i
√

−81− 36β + 4β2

+
β2/3

3
√
2

3

√

9 + 2β + i
√

−81− 36β + 4β2 , (5.32)

x∓ǫ1=1 =
β

3
√
2
+

1∓ i
√
3

3
√
2

β4/3

3

√

9 + 2β + i
√

−81− 36β + 4β2

+
(

1± i
√
3
) β2/3

6
√
2

3

√

9 + 2β + i
√

−81− 36β + 4β2 . (5.33)

The first solution is located below the maximum of the potential x0
ǫ1=1 < xV ′=0, while the

two other ones are located beyond it x∓ǫ1=1 > xV ′=0. Using the larger solution as a lower
bound for xini, one gets

xend >

√

(

x+ǫ1=1

)2
+ 2β(Nend −Nini) . (5.34)

If β < 9/2
(

1 +
√
2
)

, only one solution to ǫ1 = 1 exists,

xǫ1=1 = − β

3
√
2
+

√
2

3

β4/3

3

√

9 + 2β +
√

81 + 36β − 4β2
+
β2/3

3
√
2

3

√

9 + 2β +
√

81 + 36β − 4β2 ,

(5.35)
which is located below the maximum of the potential x0

ǫ1=1 < xV ′=0. In principle xini is only
bounded from below by xV ′=0 in this case and the number of e-folds given by the slow-roll
trajectory Eq. (5.30) diverges close to this potential maximum. As a result, provided xini
is fine-tuned close to xV ′=0, there is no bound on xend. The prior space described by these
relations is displayed in Fig. 41.

According to the previous discussion, the observable field value, at which the pivot mode
crossed the Hubble radius during inflation, is such that x∗ ≫ 1. In this limit, it is possible
to approximate the slow-roll parameters at Hubble crossing with

ǫ∗1 ≃
β2

2x2∗
, ǫ∗2 ≃ ǫ∗3 ≃ − 2β

2x2∗
, (5.36)

hence

r ≃ 8β2

x2∗
, nS − 1 ≃ β (2− β)

x2∗
, αS =

2β2 (β − 2)

x4∗
. (5.37)

These estimates match with those of Ref. [387]. Finally, the parameter M is obtained from
the amplitude of the CMB anisotropies

(

M

MPl

)4

= 720π2
[

β2 (β + 2)

6
− βx2∗

]2 [

x3∗ −
β2x∗
6

]−2 [

x−β∗ − β2

6
x−β−2
∗

]

Q2
rms−PS

T 2
. (5.38)

In the x∗ ≫ 1 limit, this gives

M4

M4
Pl

≃ 720π2β2x−2−β
∗

Q2
rms−PS

T 2
, (5.39)
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Figure 41. Prior space on xend derived from Eq. (5.34) with Nend −Nini = 60, as a function of β >
9/2

(

1 +
√
2
)

(black solid line). The black dotted line corresponds to xV ′=0. For β < 9/2
(

1 +
√
2
)

,
provided some fine-tuning on the initial conditions, xend can take any values. The dashed area
corresponds to parameters for the model which produce at least the required number of e-folds.

which yields M/MPl . 10−2.
The reheating consistent slow-roll predictions for the intermediate inflation models are

displayed in Fig. 101, for different values of β > 0, and for xend describing the prior space
displayed in Fig. 41. The reheating equation of state parameter wreh has been taken to 0
but since there is no potential minimum around which the inflaton field can oscillate at the
end of inflation, this parameter is a priori unspecified and can take different values. In any
case the reheating temperature is fully degenerate with the parameter xend, and therefore
these two parameters can not be constrained independently. However one can see that xend is
clearly limited from below as expected. The black solid lines represent the locus of the points
such that ǫ∗1 = −β/4ǫ∗2, or equivalently, nS − 1 = (1/β − 1/2) r/4, these consistency relations
arising from Eqs. (5.36). One can check that they provide a good qualitative description of
the model predictions. In particular, they explain why, for β < 2, one has a blue tilt nS > 1.

5.3 Kähler Moduli Inflation II (KMIII)

These models are string motivated scenarios. They arise in the context of type IIB string the-
ory via Calabi-Yau flux compactification. They have been derived and studied in Refs. [254–
260], and a two-field generalization of this model has been investigated in Refs. [255–259] .
More precisely, when the internal spaces are weighted projective spaces, one of the Kähler
moduli can play the role of an inflaton field, and its potential reads, in the “large field limit”
(an accurate definition is given below), V (φ) = M4 [1− αφ/MPl exp(−βφ/MPl)]. This toy
model potential is studied as “Kähler Moduli Inflation I (KMII)” in section 4.9. But, in
fact, the field is not canonically normalized since it is a modulus. It is therefore necessary to
first canonically normalize it and, then, re-derive the potential in terms of this canonically
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Figure 42. Top left panel: Kähler moduli inflation II (KMIII) potential for α = 2.3 and β = 1. Top
right panel: logarithm of the potential for the same value of α and β. Bottom left panel: slow-roll
parameter ǫ1 for a potential with α = 1.6 (green solid line), 2 (pink solid line), 2.3 (blue solid line)
and β = 1. Clearly, the number of solutions of the equation ǫ1 = 1 depends on the value of α and
β. The shaded area indicates the breakdown of the slow-roll inflation (strictly speaking when the
acceleration stops). Bottom right panel: slow-roll parameters ǫ2 (solid line) and ǫ3 (dotted line) for
α = 2.3 and β = 1. The values of α and β chosen here may not be physical: they have just been
chosen for the sake of illustration.

normalized inflaton field. Following this procedure, one arrives at

V (φ) =M4

[

1− α

(

φ

MPl

)4/3

e−β(φ/MPl)
4/3

]

. (5.40)

which is the potential that we study in this section. Let us now see what are the typical
values that the parameters can take. In the context of IIB flux compactification, making use
of the canonical notations used in the references cited above, they can be expressed as

M4 =
3

4
ξ
Ŵ 2

0

V3
s

, α = an

(

3Vs
4λ

)2/3

, β =
4Ŵ0anÂn
M4V2

s

(

3Vs
4λ

)2/3

. (5.41)

The quantity Vs represents the Calabi-Yau volume and is supposed to be such that Vs ≫ 1.
In Ref. [260] the typical value Vs ∼ 3 × 106 was chosen. The parameter An depends on the
complex structure moduli and is typically of order O(1). One has an = 2π/N , where N is a
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positive integer (for D3-brane instantons, one has N = 1). The dimensionless parameter Ŵ0

is defined by Ŵ0 =W0/ℓ
4
s ,W0 being the tree level value of the superpotential and ℓs being the

string length. It is usually considered that Ŵ0 is of order O(1). The dimensionless parameter
λ is model dependent but is considered to be of order O(1). Finally, ξ = ζ(3)ξ(M)/

[

2(2π)3
]

,
where ξ(M) is the Euler number of the internal Calabi-Yau space M, is also of order O(1).
Making use of these values, one typically obtains α ∼ 105 and β ∼ 1012. More generally, to
summarize this discussion, one should remember that

α = O
(

V2/3
s

)

, β = O
(

V5/3
s

)

, (5.42)

where Vs ≫ 1 is the Calabi-Yau volume. Finally, the potential Eq. (5.40) is derived under

the assumption that exp
[

β (φ/MPl)
4/3
]

≫ V2
s , which shall be referred to as the “large field”

condition in the following.
The potential (5.40) and its logarithm are displayed in Fig. 42. V (φ) decreases from

V/M4 = 1 at φ = 0, reaches a minimum at φ/MPl = β−3/4, and then increases to the
asymptotic value V/M4 = 1 when φ → +∞. However, since the potential is derived under
the large field assumption, only the increasing branch of the potential is relevant. Inflation
proceeds from the right to the left along this branch. The minimum value of the potential at
φ = MPlβ

−3/4 is given by Vmin = M4 [1− α/ (βe)]. Therefore, if one wants the potential to
be definite positive everywhere, one must have α/β < e. From Eq. (5.42), we see that this
condition is naturally satisfied since α/β = O(V−1

s ) ≪ 1. Anyway, since the potential (5.40)
is only valid in the large field region, this criterion does not play a crucial role in what follows.

Let us now calculate the three first Hubble flow parameters. Defining x ≡ φ/MPl, they
are given by

ǫ1 =
8α2

9
x2/3e−2βx4/3

(

1− βx4/3

1− αx4/3e−βx4/3

)2

, (5.43)

ǫ2 =
8α

9
x−2/3e−2βx4/3 3αx

4/3 + αβx8/3 + eβx
4/3 (

1− 9βx4/3 + 4β2x8/3
)

(

1− αx4/3e−βx4/3
)2 , (5.44)

and

ǫ3 =

{

8α
(

1− βx4/3
)

[

α2x8/3
(

9 + βx4/3
)

− 2αeβx
4/3
x4/3

(

−4 + 19βx4/3 − 9β2x8/3

+ 4β3x4
)

− e2βx
4/3
(

1 + 11βx4/3 − 30β2x8/3 + 8β3x4
)

]

}{

9x2/3
(

eβx
4/3 − αx4/3

)2

×
[

αx4/3
(

3 + βx4/3
)

+ eβx
4/3
(

1− 9βx4/3 + 4β2x8/3
)]

}−1

.

(5.45)
Let us now study how inflation ends in this model. Inflation stops by violation of the

slow-roll conditions, when ǫ1 = 1. As can be seen in Fig. 42, the number of solutions to
this last equation depends on the value of α and β. For α/β < e (remember that α/β ≪ 1
is necessary in this model), the first slow-roll parameter ǫ1 starts increasing from ǫ1 = 0 at
x = 0, reaches a first local maximum, and then decreases to vanish at x = β−3/4. Then, it
increases again, reaches a second local maximum and, finally, asymptotically vanishes when
x→ ∞. Whether this second maximum is larger than one or not depends on the value of α
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Figure 43. Left panel: allowed region (“prior space”) in the parameter plane (α, β) for the KMIII
model. For a given β, the lower bound on α is determined from the condition that inflation stops
by violation of the slow-roll conditions, i.e. such that a solution to the equation ǫ1 = 1 exists in
the increasing branch of the potential. This lower bound must be determined numerically due to the
complexity of the equation ǫ1 = 1. Recalling that α/β = O(V−1

s ) ∼ 10−6 ≪ 1, the condition α <
β/10−4 is a reasonable choice for an upper bound. It is represented by the dotted line. Therefore, the
allowed region corresponds to the shaded region where the two conditions are satisfied. Right panel:
comparison between the exact numerical value of xend(β) (blue solid line), and the approximated
formula given by Eq. (5.46) (blue dotted line) for α = 10αmin(β). The agreement is good enough for
a qualitative discussion, but a numerical calculation of xend is required for an accurate computation.

and β. It turns out that this is the case if α is large enough, α > αmin (β), where the function
αmin (β) needs to be computed numerically and is displayed in the left panel in Fig. 43. The
condition αmin(β) < α ≪ β thus defines the allowed range of variation for the parameter α.
For the value of xend itself, it is not possible to find an exact expression due to the complexity
of the equations but one can provide the following approximated formula,

xend = x+ǫ1=1|x>1 ≃
[

− 1

4β
W−1

(

− 81

16β

)]3/4

, (5.46)

where W−1 is the Lambert function. It is interesting to notice that the above expression is
in fact independent of α. It is compared to the exact numerical solution for xend in the right
panel of Fig. 43. The agreement is good enough for a qualitative discussion but not sufficient
for an accurate competition. In the ASPIC code, the exact solution is of course used.

Let us now turn to the slow-roll trajectory. Unfortunately, KMIII is one of the rare
cases where it cannot be integrated analytically (of course, in the ASPIC code, the slow-roll
trajectory is determined exactly). However, in the large field limit x≫ β−3/4, one can obtain
the following expression

Nend −N ≃ 9

16αβ2

(

eβx
4/3

x2
− eβx

4/3
end

x2end

)

, (5.47)

from which one deduces that

x =



− 3

2β
W−1







−2

3
β

[

eβx
4/3
end

x2end
+

16αβ2

9
(Nend −N)

]−2/3










3/4

, (5.48)
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Figure 44. Lambert functions W0(x) (dashed line) and W−1(x) (solid line). During Kähler moduli
inflation II, inflation proceeds along the “−1” branch in the direction specified by the arrow.

in agreement with what was obtained in Ref. [260] (despite the fact that, in Ref. [260], the
wrong branch of the Lambert function was chosen). The Lambert function is displayed in
Fig. 44 and the part of the curve where inflation proceeds is indicated by the arrow. The
fact that the −1 branch of the Lambert function has to be chosen comes from the fact that,
when Nend − N → ∞, one must have x → ∞. On the other hand, when Nend − N → 0,
x→ xend > β−3/4 and this is consistent with the choice of the −1 branch.

Finally, one can use the CMB normalization to calculate the mass scale M . Without
any approximation this time, this leads to the following expression gives

(

M

MPl

)4

= 1280π2α2x
2/3
∗ e−2βx

4/3
∗

(

1− βx
4/3
∗
)2 (

1− αx4/3e−βx
4/3
∗

)−2 Q2
rms−PS

T 2
. (5.49)

Making use of the approximated trajectory, one has x∗ ∝ ln
(

α
√
β
)

/β, from which one
roughly obtains M4/M4

Pl ∝ 1280π2
√
βQ2

rms−PS/T
2, and the scale M is of the order of the

Planck mass.
The reheating consistent slow-roll predictions for the Kähler moduli inflation II models

are displayed in Fig. 102, for 109 < β < 1015, and αmin(β) < α < β/100. For a given value of
β, the slow-roll predictions do not depend significantly on α, so that the predictions are the
same for different values of α within the allowed range. Also, we notice that ǫ1 is typically
extremely small and that ǫ2 is almost independent of β. Let us see how one can get analytical
estimates describing these results. Working out Eq. (5.46) and Eqs. (5.43), (5.44), and (5.45)
in the large field limit, one obtains

ǫ1∗ ≃
9

2∆N∗β3/2
ln−1/2

(

16αβ2

9
∆N∗

)

, ǫ2∗ ≃
2

∆N∗
, ǫ3∗ ≃

1

∆N∗
, (5.50)
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from which one deduces that

nS ≃ 1− 2

∆N∗
, r ≃ 72

∆N∗β3/2
ln−1/2

(

16αβ2

9
∆N∗

)

, αS ≃ − 2

∆N2
∗
. (5.51)

Several comments are in order here. First, we see that the slow-roll parameters at Hubble
crossing depend on α logarithmically only. This explains the weak dependence noticed in
Fig. 102 and discussed before. Second, we also notice that ǫ2∗ and ǫ3∗ do not depend on β.
Third, ǫ1 is a very small number since it is proportional to the inverse of β3/2. This also means
that, when β increase, ǫ1 decreases. All these considerations can be checked in Fig. 102. This
implies that the amount of gravitational waves predicted by this model is very small. This is
in agreement with the rough estimates given in Refs. [254, 257, 258, 260]. However, contrary
to what is claimed in Ref. [260], the predicted value for the running of the spectral index
is not excluded by observations since, according to WMAP9 [66, 67], αS = −0.019 ± 0.025
while, for the fiducial value ∆N∗ ≃ 55, one obtains αS ≃ −0.0006.

5.4 Logamediate Inflation (LMI)

Logamediate inflation has been discussed in Refs. [396, 397] and refers to inflationary sce-
narios in which the scale factor evolves according to

a (t) = a0 exp

[

A

(

ln
t

t0

)λ
]

, (5.52)

where A and λ are two dimensionless parameters and where t0 has the dimension of a cosmic
time. This evolution form for the scale factor is required to occur “at late times”, i.e. when
t≫ t0. If λ = 1, one recovers the power law model (see section 4.8), and in that case, t0 can
be absorbed in a rescaling of the scale factor. Otherwise, these three parameters are relevant
and one therefore expects LMI to be a two parameters models according to our classification.
Following Ref. [396], from Eq. (5.52), one has

H ≡ ȧ

a
=
Aλ

t

(

ln
t

t0

)λ−1

, (5.53)

from which one deduces that Aλ > 0 in order to have expansion (H > 0). From Eq. (5.52),
one can also establish that

ä

a
=
Aλ

t2

(

ln
t

t0

)λ−1
[

(λ− 1)

(

ln
t

t0

)−1

− 1 +Aλ

(

ln
t

t0

)λ−1
]

, (5.54)

from which one deduces that in order to have inflation at late times (when t≫ t0), one must
have λ > 1, or if λ = 1, A > 1.

If this inflationary scenario is implemented within a single minimally coupled scalar field
φ, one can derive the corresponding potential. From the Friedmann-Lemâıtre and Klein-
Gordon equations one can show that [396]

φ̇ (t)

MPl

=

√
2Aλ

t

(

ln
t

t0

)
λ−1
2

. (5.55)
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This equation can easily be integrated into

φ (t)

MPl

=
φ0

MPl

+ 2

√
2Aλ

λ+ 1

(

ln
t

t0

)
λ+1
2

. (5.56)

Combining the Friedmann-Lemâıtre equation 3M2
PlH

2 = V (φ) + φ̇2/2 and the relation
2M2

PlḢ = −φ̇2, one obtains V (φ) = 3M2
PlH

2 +M2
PlḢ, namely

V (φ) =
3M2

PlA
2λ2

t2

(

ln
t

t0

)2(λ−1)

+
M2

PlAλ

t2
(λ− 1)

(

ln
t

t0

)λ−2

−M2
PlAλ

t2

(

ln
t

t0

)λ−1

. (5.57)

Together with Eq. (5.56), this gives a parametric representation of the field potential in
terms of t. It can be further simplified since the logamediate regime occurs in the limit
t ≫ t0. If λ > 1, the first term of this expression dominates at late times and one has
V (φ) = 3M2

PlA
2λ2 (ln t/t0)

2(λ−1) /t2. Defining x ≡ (φ− φ0) /MPl, one makes use of Eq. (5.56)
to obtain

V (φ) =M4xα exp (−βxγ) , (5.58)

where the new parameters are defined by

α = 4
λ− 1

λ+ 1
, β = 2

[

λ+ 1

2
√
2Aλ

]2/(λ+1)

, γ =
2

λ+ 1
, (5.59)

and

M4

M4
Pl

=
3A2λ2

M2
Plt

2
0

(

λ+ 1

2
√
2Aλ

)4λ−1
λ+1

. (5.60)

The same potential has been studied for α = 2, β = 1/8 and γ = 2 within tachyon inflation
models in Ref. [398]. The case λ = 1 is particular. At late times, the first term and the last
term must be kept in Eq. (5.57), such that V (φ) = (3A− 1)AM2

Pl/t
2. In that situation, one

has x =
√
2A ln t/t0, and the derived potential shares the same expressions for α, β and γ as

in Eq. (5.59) but evaluated at λ = 1. There is a difference however because M4 now reads
M4 = (3A− 1)AM2

Pl/t
2
0. We recover explicitly that λ = 1 corresponds to power law inflation

and has already been treated in section 4.8.
In the following, we will work only with the derived parameters β, γ and M4, noticing

that
α = 4 (1− γ) . (5.61)

The restrictions Aλ > 0 and λ ≥ 1 translates into the conditions 0 < γ ≤ 1 and β > 0.
Following Ref. [397], since there is no fundamental reasons preventing it, we will generalize
this model to any possible values of these parameters supporting inflation.

The three first Hubble flow functions in the slow-roll approximation read

ǫ1 =
(α− βγxγ)2

2x2
, ǫ2 =

2

x2
[α+ β (γ − 1) γxγ ] , (5.62)

ǫ3 =
α− βγxγ

x2
2α− β (γ − 2) (γ − 1) γxγ

α+ β (γ − 1) γxγ
. (5.63)

The potential and the Hubble flow functions in the slow-roll approximation have been rep-
resented in Fig. 45.
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Figure 45. Logamediate Inflation (LMI). Upper panels: the potential and its logarithm for β =
2, γ = 0.95. Bottom left panel: Hubble flow function ǫ1 for a potential with β = 2, γ = 0.95 (blue
curve) and β = 2, γ = 0.8 (green curve). The position of the maximum of ǫ1 with respect to one
depends on γ. The shaded region indicates where inflation stops. Bottom right panel: slow-roll
parameters ǫ2 (solid line) and ǫ3 (dotted line) for a potential with β = 2, γ = 0.7.

Inflation can proceed in two regimes: either at decreasing field values, left to the top of
the potential (LMI1), or at increasing field values, right to the top of the potential (LMI2).
Notice that from Eq. (5.56), φ has to increase with time to reproduce the scale factor expan-
sion Eq. (5.52) and this happens only in the regime LMI2 for large values of x. As can be
seen in Fig. 45, the slow-roll parameter ǫ1 diverges when x approaches zero, it vanishes at
the top of the potential for x = xV max and it is maximal at x = xǫmax

1
with

xV max ≡
(

α

βγ

)1/γ

, xǫmax
1

=

[

α

βγ (1− γ)

]1/γ

. (5.64)

Finally it asymptotes to zero for large values of the field. The value of the local maximum
of ǫ1 reads

ǫmax
1 =

α2

2

[

βγ (1− γ)

α

]
2
γ
(

γ

1− γ

)2

. (5.65)

Thus in the regime LMI1, inflation always stops naturally as ǫ1 becomes larger than unity
whereas in the regime LMI2, this may occur only if ǫmax

1 > 1 and if inflation has started
from xini < xǫmax

1
. Otherwise, if inflation starts with xini > xǫmax

1
, or if ǫmax

1 < 1, one needs
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to add an extra-parameter xend encoding an unspecified mechanism to end inflation. In that
situation, the model becomes a three parameters one. If one makes use of α = 4 (1− γ), one

obtains ǫmax
1 = 8γ2 (βγ/4)2/γ . Solving ǫmax

1 ≥ 1 for β gives

β ≥ 4

γ (8γ2)γ/2
. (5.66)

This condition is therefore required for the model LMI2, if one wants inflation to end natu-
rally. As we will see below, LMI2 inflating in the domain xV max < x < xǫmax

1
is a very fine

tuned situation which is strongly disfavored by the observations. Notice that if one assumes
0 < γ ≤ 1, this conditions translates into β >

√
2.

The slow-roll trajectory can be integrated thanks to the hypergeometric function [160,
161] 2F1, leading to

N −Nend =
x2end
2α

2F1

[

1,
2

γ
,
2

γ
+ 1,

(

xend
xV max

)γ]

− x2

2α
2F1

[

1,
2

γ
,
2

γ
+ 1,

(

x

xV max

)γ]

. (5.67)

One can notice that inserting α = 4(1 − γ), as a function of x/xV max , this trajectory only
involves γ. Plugging x = xV max into Eq. (5.67) one gets an infinite number of e-folds.
This means that the required number of e-folds to solve the problems of the standard Big-
Bang scenario can always be realized, both in the decreasing branch of the potential and
the increasing one, provided that inflation starts close enough to xV max . However, it can
numerically be checked that in the case of LMI2 with ǫmax

1 > 1 and inside the xV max < x <
xǫmax

1
region, one has to fine tune xini and x∗ extremely close to xV max . In that situation

nS = 1, with vanishing r and vanishing running of the spectral index, can be considered as
generic predictions of the model. For this reason, it is more natural to consider LMI2 in the
large field regime, namely x > max(xV max , xǫmax

1
), together with the extra-parameter xend.

The trajectory in Eq. (5.67) cannot be inverted analytically. However, one can perform
some consistency checks in the limit x/xV max ≫ 1 in which

N −Nend ≃ 1

βγ (2− γ)

(

x2−γ − x2−γend

)

, (5.68)

and

x ≃
[

x2−γend + βγ (2− γ) (N −Nend)
] 1

2−γ
. (5.69)

These expressions can be compared to Eq. (5.56)

x = 2

√
2Aλ

λ+ 1

(

ln
t

t0

)
λ+1
2

, (5.70)

where t in terms of the number of e-folds N can be obtained from Eq. (5.52). With N−N0 =
A (ln t/t0)

λ, one gets

x = 2

√
2Aλ

λ+ 1

(

N −N0

A

)
λ+1
2λ

. (5.71)

The previous calculations are consistent since, making use of Eq. (5.59), Eq. (5.69) and
Eq. (5.71) are the same when setting the constants N0 = Nini and x0 = xini = 0. This means
that in the late times limit x/xV max ≫ 1, the slow-roll trajectory coincides with the exact
one, as expected.
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Figure 46. Top left panel: Twisted Potential Inflation (TWI) for φ
0
= 0.02MPl. Top right panel:

logarithm of the potential for the same value of φ
0
. Bottom left panel: slow-roll parameter ǫ1 with

φ
0
= 0.02MPl (solid blue line) and φ

0
= 0.05MPl (solid green line). The shaded area indicates the

non-inflationary region. Bottom right panel: slow-roll parameters ǫ2 (solid line) and ǫ3 (dotted line)
with φ

0
= 0.02MPl.

The amplitude of the CMB anisotropies fixes the value of the parameter M according
to

M4

M4
Pl

= 720π2 (α− βγxγ∗)
2 eβx

γ
∗x−α−2

∗
Q2

rms−PS

T 2
, (5.72)

where x∗ is the observable field value obtained by solving Eq. (2.46) given some assumptions
on the reheating. The reheating consistent slow-roll predictions for the models LMI1 and
LMI2 (at x > xǫmax

1
) are displayed in Figs. 103, 104, and 105 for LMI1, and in Figs. 106, 107,

and 108 for LMI2. In the case of LMI2, the turning points in the plots precisely correspond
to the case where inflation occurs in the fine-tuned domain xV max < x∗ < xǫmax

1
and in which

the model behaves like a pure de Sitter era.

5.5 Twisted Inflation (TWI)

This model was introduced in Ref. [399] and is based on higher dimensional supersymmetric
gauge theory compactified to four dimensions and with twisted supersymmetry breaking
boundary conditions. These boundary conditions lead to a potential for directions in field
space that would have been flat if supersymmetry were not broken. If the field values in
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these directions are much larger than the supersymmetry-breaking scale, then the flatness
of the potential is nearly restored. In a 4 + 1 dimensional maximally supersymmetric gauge
theory on a circle, with antiperiodic boundary conditions for fermions, the inflaton potential
can be calculated directly in field theory by integrating out the heavy W-bosons and their
superpartners (if the theory is weakly coupled at the compactification scale). This leads to
the following expression

V (φ) =M4

[

1−A

(

φ

φ0

)2

e−φ/φ0

]

, (5.73)

where A is a constant parameter given by

A ≡ 32

93ζ (5)
≃ 0.33 , (5.74)

and where φ0 is the supersymmetry breaking scale, which must be sub-Planckian in order
for Planck suppressed operators to be ignored in the derivation of the model, φ0 ≪ MPl.
The potential (5.73) is the small coupling limit of the model, while the strong coupling limit
corresponds to a DSI model with p = 3, see section 6.3.

The potential Eq. (5.73), as well as its logarithm, is displayed in Fig. 46. Inflation
is supposed to take place above the supersymmetry scale, at φ > φ0 , i.e. in the increasing
branch of the potential. This means that it proceeds from the right to the left in the direction
indicated by the arrow. The minimum of the potential is located at φ/φ0 = 2.

Let us now turn to the calculation of the Hubble flow parameters. If one defines x by
x ≡ φ/φ0 , then they are given by

ǫ1 =
A2

2

(

MPl

φ0

)2

e−2x

[

x (x− 2)

1−Ax2e−x

]2

, ǫ2 = 2A

(

MPl

φ0

)2

e−2x 2Ax
2 + ex

(

x2 − 4x+ 2
)

(1−Ax2e−x)2
,

(5.75)
and

ǫ3 = A

(

MPl

φ0

)2

x (2− x) e−2x 4A
2x3 − e2x

(

x2 − 6x+ 6
)

−Axex
(

x3 − 6x2 + 18x− 12
)

(1−Ax2e−x)2 [2Ax2 + ex (x2 − 4x+ 2)]
.

(5.76)
They are displayed in Fig. 46. The first slow-roll parameter ǫ1 vanishes at the minimum of
the potential when x = 2, then increases with x and reaches a maximum at xǫmax

1
, and then

decreases to zero when x goes to infinity. The value of ǫ1 at this local maximum is larger
than one if φ0 is smaller than some value that can only be determined numerically. We find

φ0 < 0.04228MPl . (5.77)

Therefore, a priori, one could conclude that inflation can stop by slow-roll violation. However,
if one numerically integrates the exact trajectory (i.e. if one does not make use of the slow-
roll approximation) and computes the evolution of the first slow-roll first parameter, which
is defined by ǫH1 = −Ḣ/H2, then one observes that it always remains smaller than one,
see Fig. 47. This is due to the fact that while the inflaton rolls down its potential and
approaches its minimum, the slow-roll parameters continuously increase. When ǫ1 becomes
of order O(1), the slow-roll approximation breaks down. Usually, this leads only to small
corrections at the end of inflation. However, in the case of twisted inflation, this leads to
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Figure 47. Left panel: slow-roll parameter ǫ1 as a function of the field vev φ/φ
0
, for φ

0
/MPl = 0.02 <

0.04228, see Eq. (5.77). The solid black line corresponds to the approximated slow-roll formula (5.75),
i.e. ǫV1 = M2

Pl
/2V 2

φ /V
2, while the solid blue line represents the exact ǫH1 = −Ḣ/H2 obtained from a

numerical integration starting at φini/MPl = 0.33 and vanishing initial velocity. We see that the exact
ǫH1 remains in fact always smaller than one and that inflation never stops. The inflaton eventually
oscillates around the minimum of its potential located at φ = 2φ

0
(the arrows indicate the direction

of the first oscillations). Right panel: Maximum value taken by ǫV1 (solid black line) and ǫH1 (solid
blue line) for different values of φ

0
. One can see that ǫH1 remains smaller than one for any value of

φ
0
. When φ

0
increases, the slow-roll parameters, which scale proportional to M2

Pl
/φ2

0
, decrease so

that the slow-roll approximation becomes more and more efficient and eventually starts matching the
numerical exact predictions.

a radically different picture. The reason behind this phenomenon is just that the potential
does not vanish at its minimum and, therefore, acts as a cosmological constant. In practice,
the numerical calculations indicate that the field oscillate around its minimum but always
such that ǫH1 < 1 and independently on the value of φ0 , see Fig. 47. This means that, in
principle, inflation can never stops since the final stage of the evolution just corresponds to
an inflaton field sitting for ever at the bottom of the potential and, as already mentioned,
acting like a cosmological constant. However, as explained in Ref. [399], the interactions of
the inflaton field with the other degrees of freedom of the standard model starts to play a
role in this regime. As a consequence, the energy contained in the inflaton field is quickly
transferred to other fields and a phase of reheating starts. The details of this process are
complicated and are discussed in Ref. [399]. In order to model the end of inflation, one can
just introduce an extra free parameter xend that gives the vev at which inflation stops. As a
consequence, TWI is in fact a two parameter model, φ0 and φend.

Let us now turn to the slow-roll trajectory. It can be integrated exactly leads to the
following expression

Nend −N =

(

φ0

MPl

)2{ 1

2A
[Ei (xend)− Ei (x)]− e2

2A
[Ei (xend − 2)− Ei (x− 2)]

+ xend − x+ 2 ln

(

xend − 2

x− 2

)}

,

(5.78)

where Nend is the number of e-folds at the end of inflation and Ei is the exponential integral
function [160, 161]. If one makes the vacuum dominated approximation, x≫ 1, then a simpler
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formula can be derived for the trajectory, namelyNend−N ≃ (φ0/MPl)
2 /A

(

ex/x2 − exend/x
2
end

)

.
Of course, the TWI ASPIC code makes use of the exact trajectory. Then, this allows us to
obtain an approximated expression for the vev of the field at Hubble radius crossing. One
obtains

x∗ ∼ ln

[

4A∆N∗

(

MPl

φ0

)2
]

, (5.79)

which is valid if the condition φ0/MPl ≪ 1 holds, i.e. precisely in the regime for which the
TWI potential was derived. Using this formula, one can estimate the value of the three first
Hubble flow parameters at Hubble crossing. One arrives at

ǫ1∗ ≃
A2

2

(

MPl

φ0

)2

e−2x∗x4∗ ∼
1

32∆N2
∗

(

φ0

MPl

)2

,

ǫ2∗ ≃
ǫ3∗
2

≃ 2A

(

MPl

φ0

)2

e−x∗x2∗ ∼
1

2∆N∗
.

(5.80)

Finally, we can derive an expression for the tensor to scalar ratio, the spectral index

r ≃ 8A2

(

MPl

φ0

)2

e−2x∗x4∗ ∼
1

2∆N2
∗

(

φ0

MPl

)2

, nS−1 ≃ −2A

(

MPl

φ0

)2

x2∗e
−x∗ ∼ 1

2∆N∗
,

(5.81)
and the running

αS ≃ −2A2

(

MPl

φ0

)4

x4∗e
−2x∗ ∼ − 1

8∆N2
∗
. (5.82)

These estimates are in agreement with the ones of Ref. [399], the only difference being that
the factor 4 appearing in Eq. (5.79) was not taken into account in that paper. However, we
have checked that this does not affect the predictions in a significant way.

It is also interesting to discuss the value of the scale M since this is important from the
model building point of view. The CMB normalization gives

M4

M4
Pl

= 720π2A2

(

MPl

φ0

)2 [e−x∗x∗ (x∗ − 2)]
2

(1−Ax2∗e
−x∗)3

Q2
rms−PS

T 2
. (5.83)

In vacuum dominated approximation, the above expression simplifies and gives M4/M4
Pl ≃

45π2/∆N2
∗φ

2
0
/M2

PlQ
2
rms−PS/T

2. Typically, this leads to M/MPl ∼ 10−5 for φ0/MPl ∼ 10−4.
We are now in a position where we can discuss the exact predictions of the TWI model.

The are presented in Fig. 109. The reheating equation of state parameter wreh has been taken
to be 0 since the potential is quadratic close to its minimum. However, since the details of
reheating depend on the details of the interactions between the inflaton field and the others
degrees of freedom in the theory, this parameter is a priori unspecified and could very well take
different values. In the ASPIC code, wreh can be freely chosen. Anyway, since the reheating
temperature is in fact fully degenerate with the parameter xend, these two parameters can
not be constrained independently. One can check that the rough description provided by
Eqs. (5.81) is correct: the model typically predicts a small amount of gravitational waves
which increases with φ0 , and a deviation from scale invariance which does not significantly
depends on φ0 . When φ0/MPl ∼ O(1), however, one notices a turning point in the line
representing the predictions (at fixed values of φ0). This corresponds to the separation
between two regimes, one where x∗ < xǫmax

1
and ǫ1 is an increasing function of x (hence ǫ1∗
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increases with xend) and another where x∗ > xǫmax
1

and ǫ1 is a decreasing function of x (hence
ǫ1∗ decreases with xend). If a sufficient number of e-folds can be realized in the 2 < x < xǫmax

1

part of the potential, then ǫ2∗ can become negative. However, this mostly happens for values
of xend fine tuned around xend ≃ 2.

5.6 Generalized MSSM Inflation (GMSSMI)

As for the MSSMI models, GMSSMI are based on the Minimal Supersymmetric Model
(MSSM) in which the vanishing directions are lifted by a soft supersymmetry breaking mass
term and by superpotential corrections The potential is of the form

V (φ) =
1

2
m2
φφ

2 −A
λn
n

φn

Mn−3
Pl

+ λ2n
φ2(n−1)

M
2(n−3)
Pl

. (5.84)

Details about this potential, the meaning of its parameters as well as typical values for them
are given in section 4.17. There, it was discussed with n = 6 and in the particular case for
which it contains a flat inflection point, i.e. when A2 = 8(n−1)m2

φ. Following Refs. [351, 400–
403], one may wonder whether the model is robust when this relation is not exactly satisfied,
that is to say what is the amount of fine tuning involved in this flat inflection point condition.
In this more general case, the potential can be reparametrized in the form

V (φ) =M4

[

(

φ

φ0

)2

− 2

3
α

(

φ

φ0

)6

+
α

5

(

φ

φ0

)10
]

, (5.85)

where φ0 ≃ 1014 GeV andM ≃ 108 GeV, the later being obtained by the CMB normalization
as in section 4.17. The positive dimensionless parameter α encodes any deviations from the
MSSM case for which it equals unity, αMSSM = 1.

The potential is displayed in Fig. 48, where four cases can be distinguished. In the
following, we define

x ≡ φ

φ0

. (5.86)

If α < 9/25, the second derivative of the potential do not vanish and the potential is convex
everywhere. This corresponds to the case α = 0.1 case in Fig. 48. If 9/25 < α < 1, the
potential has two inflection points x±V ′′=0 and is concave in between. It remains an increasing
function of the field since its first derivative never vanishes. This is illustrated with the case
α = 0.7 in Fig. 48. If α = 1, this is the MSSM inflation models (see section 4.17) where the
potential has a flat inflection point. If 1 < α < 9/5, the potential decreases in between x±V ′=0
but remains positive everywhere. This is typical of the case α = 1.5 in Fig. 48. Finally, if
α > 9/5, the potential becomes negative (hence is not properly defined) in between x±V=0

(see α = 2.5 in Fig. 48). The values of the field vev appearing in this discussion are given by
the following formulas:

x±V ′′=0 =

[

5

9

(

1±
√

1− 9

25α

)]1/4

, x±V ′=0 =

(

1±
√

1− 1

α

)1/4

, (5.87)

and

x±V=0 =

[

5

3

(

1±
√

1− 9

5α

)]1/4

. (5.88)
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Figure 48. GMSSM Inflation (GMSSMI). Top left panel: GMSSM Inflation potential Eq. (5.85)
for α = 0.1, 0.7, 1.5, 2.5, as a function of φ/φ

0
. Top right panel: logarithm of the potentials for the

same value of α. Bottom left panel: slow-roll parameter ǫ1 for a potential with the same values of α.
Bottom right panel: slow-roll parameter ǫ2 for a potential with the same values of α. See discussion
in the text body.

Let us now calculate the first Hubble flow functions in the slow-roll approximation.
They are given by

ǫ1 = 450

(

MPl

φ0

)2
(

1− 2αx4 + αx8
)2

x2 (15− 10αx4 + 3αx8)2
,

ǫ2 = 60

(

MPl

φ0

)2 15 + 40αx4 + α (20α − 78) x8 + 3α2x16

x2 (15− 10αx4 + 3αx8)2
,

(5.89)

and

ǫ3 = 60

(

MPl

φ0

)2
[

225 − 1800αx4 + 60α (69 + 10α) x8 − 40 (189 − 100α)α2x12

+10α2
(

243− 504α + 402α2
)

x16 + 40α3 (117 − 20α) x20 + 12α3 (10α− 123) x24

+72α4x28 + 9α4x32
]

×
[

3375x2 + 4500αx6 − 600α (27 + 10α) x10

+100α2 (261− 20α) x14 + 10α2
(

200α2 − 840α − 621
)

x18 + 60α3 (69− 20α) x22

+48α3 (10α − 9) x26 − 180α4x30 + 27α4x34
]−1

.

(5.90)
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The first two slow-roll parameters diverge when x→ 0 and vanish asymptotically. In between,
their shape depends on α as it is represented in Fig. 48. If α < 1, ǫ1 first decreases, reaches a
local non zero minimum where ǫ2 vanishes, then increases to reach a local maximum where
ǫ2 vanishes again, and eventually decreases again. Let x±ǫ2=0 be the position of these two
local extrema. From Ferrari’s solutions for depressed quartic equations one gets

x±ǫ2=0 =

[

1

2α

√

5

3

(

√
Σ± 2

√

39

5
α− 2α2 − Σ

4
− 12√

15Σ
α2

)]1/4

, (5.91)

where

δ =
736α2

25
− 208α3

15
+

16α4

9
,

∆ = −430336α4

625
+

612352α5

1125
− 20992α6

225
+

256α8

243
,

σ = −12896α3

125
+

2944α4

25
− 416α5

15
+

64α6

27
+

6

5

√
15∆α ,

Σ =
52α

5
− 8α2

3
+

δ

σ1/3
+ σ1/3 ,

(5.92)

are intermediate quantities introduced solely to reduce the size of Eq. (5.91). If α > 1, ǫ1
has two local minimums located at x±V ′=0 where it vanishes. In between it reaches a local
maximum or may even diverges for α > 9/5 (see Fig. 48). The slow-roll parameter ǫ2 vanishes
when ǫ1 reaches these local maxima, or diverge when ǫ1 does (for α > 9/5). As explained in
section 4.17, inflation is meant to proceed at φ . φ0 . Let us assume that inflation ends by
violation of slow-roll when ǫ1 > 1 between x = 0 and the position of the first minimum xǫmin

1
.

Following the previous considerations, this latter location is defined as

xǫmin
1

=

{

x−ǫ2=0 if α < 1

x−V ′=0 if α > 1
, (5.93)

and provides a numerical upper bound to determine xend the solution of ǫ1(xend) = 1. This
one can only be determined numerically. The values of x±ǫ2=0 and x±V ′=0 in terms of α are
displayed in the left panel of Fig. 49 together with xǫmin

1
. The right panel of Fig. 49 represents

the value of the first slow-roll parameter at this minimum, ǫmin
1 = ǫ1(xǫmin

1
). For α < 1, one

can see that ǫmin
1 < 1 only if the parameter α . 1. This defines a minimum value for α, which

depends on φ0 , allowing for inflation to take place inside this domain. When α ≃ 1, one can
derive an approximated version of Eq. (5.91), namely, x−ǫ2=0 ≃ 1 − (1 − α)/32. Plugging it
into the expression for ǫ1 one obtains

ǫmin
1 ≃ 225

32
(α− 1)2

M2
Pl

φ2
0

, (5.94)

from which one gets

α > 1− 4
√
12

15

φ0

MPl

. (5.95)

For the value suggested in Ref. [347], φ0/MPl ≃ 10−4, one obtains α > 1− 10−5, which is in
agreement with Ref. [400], and shows that the model needs to be sufficiently fine tuned close
to regular MSSM inflation in order to be a viable inflationary model.
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Figure 49. GMSSM Inflation (GMSSMI). Left panel: x±ǫ2=0
defined in Eq. (5.91) and x±V ′=0

defined
in Eq. (5.87) together with xǫmin

1
(see Eq. (5.93)) as a function of α. Right panel: minimal value of

the slow-roll parameter ǫ1 (rescaled by φ2
0
/M2

Pl
) as a function of α. When it is greater than unity,

inflation cannot occur.

On top of that, as shall be seen now, the constraints on α are even tighter if one wants
a sufficient number of e-folds to be produced. Let us thus turn to the slow-roll trajectory. It
can be integrated, and leads to

Nend −N =
φ2

0

M2
Pl

{

−x
2
end − x2

20
− b+

10
√
a+

[

arctan
(√
a+x

2
end

)

− arctan
(√
a+x

2
)]

− b−
10
√
a−

[

arctan
(√
a−x

2
end

)

− arctan
(√
a−x

2
)]

}

.

(5.96)

where

a± = −α±
√

α2 − α , b± = 2
a± +

1

3
α

a± − a∓
, (5.97)

A few remarks are in order. Firstly, even if the terms appearing in the previous expression
are complex, their imaginary contributions cancel out and the resulting expression is truly a
real quantity. Then, one can check that formally, when α→ 0, one has a± → 0 and b± → 1,
hence N ≃ −

(

x2 − x2ini
)

/4, which is precisely the LFI slow-roll trajectory for p = 2, see
section 4.2. This is just a formal check since α is meant to be tuned close to 1 within the
GMSSMI scenario. Finally, let us notice that in the case α < 1, and contrary to the MSSM
models (α = 1), the number of e-folds never diverges at a given point x. Therefore, the total
number of e-folds is bounded by some maximal value all over the domain under scrutiny.
Working out the limit of Eq. (5.96) when α→ 1, one has

Nend −Nini ≤
(

φ0

MPl

)2 π

30

1√
1− α

. (5.98)

Therefore, if one require to realize at least ∆N = Nend −Nini e-folds, one has to fine tune α
to

α > 1−
(

φ0

MPl

)4 π2

900∆N2
. (5.99)
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Remembering that the small parameter here is φ0/MPl, one can see that it is a much tighter
constraint than the one of Eq. (5.95). Taking φ0/MPl ≃ 10−4 and ∆N ≃ 50, one obtains
α > 1− 10−22. This makes the fine-tuning even worse and the model rather difficult to track
down on a numerical side. As explained below, the same condition |α− 1| < φ4

0
/M4

Pl/∆N
2

also applies to the case α > 1 to maintain a deviation from scale invariance acceptable. This
makes the whole class of models fine-tuned.

Finally, the amplitude of the CMB anisotropies fixes the parameter M to

(

M

MPl

)4

= 2880π2
M2

Pl

φ2
0

(

1− 2αx4∗ + αx8∗
)2

x4∗
(

1− 2
3αx

4
∗ +

α
5 x

8
∗
)3

Q2
rms−PS

T 2
. (5.100)

As explained in section 4.17, this leads to M/MPl ≃ 108 GeV for φ0/MPl ≃ 10−4.
The reheating consistent slow-roll predictions of the GMSSMI models are displayed in

Figs. 110, 111, for α > 1 and α < 1, respectively. The reheating equation of state parameter
wreh has been taken to 0 since the potential is quadratic close to its minimum. In both
cases, one can see that in the limit α → 1, the standard MSSM predictions are recovered,
see Fig. 93. The amount of gravitational waves r seems to be quite independent on α and
comply with its regular MSSM counterpart, while the spectral index nS strongly depends on
α. In the case α > 1, pushing α out of 1 worsens the spectral index problem, already present
in standard MSSMI. These models are therefore strongly disfavored by the data. In the case
α < 1 however, there is a very narrow range of acceptable values for α. They are well inside
the |α− 1| < φ4

0
/M4

Pl/∆N
2 condition and the spectral index inside the two-sigma confidence

intervals. But as can be seen in Fig. 111, the spectral index varies so quickly with α that
the fine-tuning is absolute. In Refs. [351, 400–403], it is argued that since the flat saddle
point condition is robust against radiative corrections, such a fine tuning may not a problem.
However, as explained here, even if the flat saddle point condition is exactly satisfied, the
models are disfavored by the observations, and the deviation from that condition must be
set to a well defined non-zero value.

5.7 Brane SUSY breaking Inflation (BSUSYBI)

This model has been studied in Ref. [404] in the context of superstrings models4. The
potential is a sum of two exponential terms

V (φ) =M4

(

e
√
6 φ
MPl + e

√
6γ φ

MPl

)

, (5.101)

one is a “hard” exponential brought about by a SUSY breaking mechanism and the other
is a “slow-roll term” having 0 < γ < 1/

√
3 and that dominates the eventual inflationary

dynamics. It was shown in Ref. [404] that the scalar is forced to emerge from an initial
singularity climbing up the mild portion of the potential in the fast-roll regime, so that
at some point it experiences the hard exponential and bounces against it. The ensuing
dynamics approaches rather slowly the eventual attractor and can also generate superimposed
oscillations in the primordial power spectrum. Let us notice that if the term in

√
6 in the first

exponential function is relaxed to be a free parameter, the potential becomes as in Ref. [405],
i.e. a general exponential brane potential. Defining

x ≡ φ

MPl

, (5.102)

4see Eq. (1.1) and Eq. (2.9) in that reference.
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Figure 50. Brane SUSY breaking Inflation (BSUSYBI) for γ = 0.1. Upper panels: the potential and
its logarithm. Bottom left panel: the first slow-roll parameter ǫ1 as a function of the field value, the
shaded area indicates where inflation stops. Bottom right panel: slow-roll parameter ǫ2 and ǫ3.

the first three Hubble flow functions in the slow-roll approximation read

ǫ1 = 3

(

e
√
6x + γe

√
6γx

e
√
6x + e

√
6γx

)2

, ǫ2 = −12 (γ − 1)2
e
√
6(γ+1)x

(

e
√
6x + e

√
6γx
)2 , (5.103)

and

ǫ3 = 6 (1− γ)

(

e
√
6x − e

√
6γx
)(

e
√
6x + γe

√
6γx
)

(

e
√
6x + e

√
6γx
)2 . (5.104)

These functions together with the potential are displayed in Fig. 50. The two exponential
components are clearly visible on the plot of the logarithm of the potential. The required
flatness of the potential is realized only along the γ branch and for negative values of x.
The first Hubble flow function ǫ1 is an increasing function of x which varies between its
asymptotic values:

lim
x→−∞

ǫ1 = 3γ2, lim
x→+∞

= 3. (5.105)
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Figure 51. Maximum value of xend in order to realize N e-folds of inflation between xǫ1=1 and xend
as a function of 0 < γ < 1/

√
3. This condition defines a prior for the model parameter xend, which is

the region lying under the curves on the figure.

For γ small enough (γ < 1/
√
3), it is greater than unity at positive field values, i.e. for

x > xǫ1=1 with

xǫ1=1 =
1√

6 (γ − 1)
ln

( √
3− 1

1− γ
√
3

)

. (5.106)

As a result, inflation can only proceed in the domain x < xǫ1=1 and it never stops. Hence
the need for an extra-parameter xend encoding the field value at which some unspecified
mechanism (such as a tachyonic instability) is triggered and stops inflation. Let us notice
that the slow-roll parameter ǫ2 is always negative and goes to zero at large |x| with a local
minimum in x = 0 equals to ǫmin

2 = −3 (γ − 1)2. Finally, the slow-roll parameter ǫ3 vanishes
when x = 0 and shares the same sign as x. Its asymptotic values are

lim
x→−∞

ǫ3 = 6γ (γ − 1) , lim
x→+∞

ǫ3 = 6 (1− γ) . (5.107)

The slow-roll trajectory can be integrated and gives

N −Nend = − 1√
6
(x− xend) +

1

6γ
ln

[

1 + γe
√
6(γ−1)x

1 + γe
√
6(γ−1)xend

]

. (5.108)

This equation cannot be analytically inverted but since inflation requires x < xǫ1=1, it shows
that xend should not be too close to xǫ1=1 in order to realize enough e-folds of inflation. This
puts some upper bound on xend, that can be computed numerically and that is displayed in
Fig. 51. This value xmax

end defines a prior for the model parameter xend, which is the region
lying under the curves on the figure.
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Integrating Eq. (2.46) finally gives the field value x∗ at which the pivot mode crossed
the Hubble radius during inflation. The parameter M being fixed by the amplitude of the
CMB anisotropies

(

M

MPl

)4

= 4320π2

(

e
√
6x∗ + γe

√
6γx∗

)2

(

e
√
6x∗ + e

√
6γx∗

)3

Q2
rms−PS

T 2
. (5.109)

The reheating consistent slow-roll predictions of the BSUSYBI models have been plotted in
Fig. 112. The parameter xend varies between 2xmax

end < xend < xmax
end (xmax

end < 0), under which
the predictions of the model coincide with those of PLI (see section 4.8). Large values for
the parameter γ are disfavored and it has to be smaller than . 10−1 for the predictions to
remain inside the two sigma confidence intervals. For γ . 3 × 10−2, we also see that the
parameter xend is bounded from below.

5.8 Tip Inflation (TI)

In Ref. [406], the motion of a space filling D3-brane at the tip of a warped deformed conifold is
studied, where no anti D3-brane is present and the inflaton potential is induced by threshold
corrections to the superpotential. For the canonically normalized inflaton field, this potential
is given by

V =M4

(

1 + cos
φ

µ
+ α sin2

φ

µ

)

, (5.110)

where inflation proceeds in the region 0 < φ/µ < π. As φ describes the position of a D3-
brane in some angular direction, its kinetic term comes from the DBI action. However, as
explained in Ref. [406], in the slow-roll regime the DBI kinetic term reduces to the canonical
one. The constant in front of the cosine has been set to 1 in order to have a vanishing
cosmological constant at the end of inflation. The mass scale µ can be interpreted as an
axion decay constant, when the potential is derived for an axionic field (as for the Natural
Inflation model, see section 4.6). As discussed in Ref. [406], it is not possible to obtain a
large axion decay constant in the underlying string theory model, hence µ/MPl ≪ 1 (typically
µ/MPl ≃ 10−4). When α ≪ 1, the potential reduces to the natural inflation (NI) one. Yet,
it was shown in section 4.6 that only super-Planckian decay constants µ/MPl > O(1) could
make the natural inflation models compatible with observations (see e.g. Fig. 80). As noticed
in Ref. [406], this means that the tip inflation models with α≪ 1 are not viable. On the other
hand, it is noticed that if α is fine tuned to α ≃ 1/2, the potential of Eq. (5.110) becomes
very flat close to the top and that a phenomenologically successful slow-roll inflationary stage
could occur. This is why these models are studied for µ/MPl ≃ 10−4 ≪ 1, and α ≃ 1/2.

Defining

x ≡ φ

µ
, (5.111)

the potential of Eq. (5.110) and its logarithm with respect to x are displayed in Fig. 52. Its
general shape depends on the value of α. If α < 1/2, it is a decreasing function of the field
vev , hence inflation proceeds from the left to the right, and it has a vanishing minimum at
x = π. Its first derivative vanishes at the top of the potential for x = 0 while its second
derivative V ′′(x = 0) ∝ 2α − 1. It vanishes there when α = 1/2 and the potential becomes
flat enough to support inflation. If α > 1/2, the potential maximum is not located at x = 0
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Figure 52. Tip Inflation (TI). Upper panels: Tip Inflation potential and its logarithm for α = 0.1
(blue line) and α = 1 (pink line), as a function of φ/µ. Bottom left panel: slow-roll parameter ǫ1
normalized by M2

Pl
/µ2. The shaded area indicates the breakdown of the slow-roll inflation if µ =MPl

(strictly speaking when the acceleration stops). Bottom right panel: slow-roll parameter ǫ2 (solid
line) and ǫ3 (dotted line), again rescaled by M2

Pl
/µ2.

anymore but at x = arccos [1/(2α)]. Let us thus define

xV ′=0 =











0 if α < 1/2,

arccos

(

1

2α

)

if α > 1/2.
(5.112)

If α > 1/2, the potential decreases with the field vev in the range xV ′=0 < x < π, where
inflation proceeds from the left to the right. Again, the first derivative of the potential
vanishes at the top of the potential while its second derivative V ′′(x = xV ′=0) ∝ 1/(2α)− 2α
again vanishes when α = 1/2. This is why α must be close enough to 1/2 in order for a
viable slow-roll inflationary regime to take place.

Let us calculate the Hubble flow functions within the slow-roll approximation. They
read

ǫ1 =
M2

Pl

µ2
(1− 2α cos x)2 sin2 x

2
(

1 + cos x+ α sin2 x
)2 , (5.113)

ǫ2 =
M2

Pl

µ2
2 cos2 x2

(

1 + cos x+ α sin2 x
)2 [2 + α (3 + 4α)− 2α (3 + 2α) cosx− α cos 2x] , (5.114)
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and

ǫ3 =
M2

Pl

µ2

{

−2− 2 + 4α

(1 + α− α cos x)2
+

5 + 3α

1 + α− α cos x
+

1

cos2 x2

+
4
(

1 + α+ 3α2
)

− 2α (7 + 4α) cosx

α [cos 2x+ (6 + 4α) cos x− 3− 4α]− 2

}

.

(5.115)

They are displayed in Fig. 52. They are increasing functions of the field vev in the inflationary
domain xV ′=0 < x < π, and diverge when x→ π. The first and third slow-roll parameters ǫ1
and ǫ3 vanish at the potential maximum. However, the second slow-roll parameter ǫ2 takes
a non vanishing positive value given by

ǫ2 (x = xV ′=0) =















M2
Pl

µ2
(1− 2α) if α < 1/2,

4
M2

Pl

µ2
2α− 1

2α+ 1
if α > 1/2.

(5.116)

This means that in order for a slow-rolling inflationary regime to take place, |ǫ2| < 1, one
needs again to adjust α close to 1/2, such that |α − 1/2| ≪ µ2/M2

Pl ≪ 1 with a typically
value being given by µ ≃ 10−4MPl.

Inflation stops by violation of slow-roll, when ǫ1 = 1 at the position xend given by

xend = arccos






Σ+

(

1 + i
√
3
)

σ

3× 22/3
(

δ +
√
∆
)1/3

−
(

1− i
√
3
)

σ′

6× 21/3

(

δ +
√
∆
)1/3






. (5.117)

In this formula, we have defined

∆ = −864α6 (2α + 1)3
µ2

M2
Pl

(

µ2

M2
Pl

+ 2

)2

×
{

(2α− 1)3 + 2 (2α+ 1) [(α− 10)α− 2]
µ2

M2
Pl

− 4 (2α+ 1)2
µ4

M4
Pl

}

,

(5.118)

and

δ = 8α3

[

2 (2α − 1)3 − 3 (1 + 2α) (5 + 2α) (1 + 4α)
µ2

M2
Pl

− 15 (1 + α) (1 + 2α)2
µ4

M4
Pl

− 2 (1 + 2α)3
µ6

M6
Pl

]

,

(5.119)

together with

σ = 3 + 4α (1− α)− 2
µ2

M2
Pl

(1 + 2α)2 − 8

2 +
µ2

M2
Pl

, σ′ =
1

2α2

(

2 +
µ2

M2
Pl

) . (5.120)

Let us now turn to the slow-roll trajectory. It can be integrated explicitly, leading to

Nend −N =
µ2

M2
Pl

1

2α − 1
ln

(

1− cos x

1− cos xend

)

− µ2

2M2
Pl

2α+ 1

2α− 1
ln

(

1− 2α cos x

1− 2α cos xend

)

. (5.121)
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For α = 1/2, this expression is singular, and one has

Nend −N =
µ2

M2
Pl

[

1

1− cosx
− 1

1− cos xend
− 1

2
ln

(

1− cos x

1− cos xend

)]

. (5.122)

Finally, the parameterM can be determined from the amplitude of the CMB anisotropies
and the observable field value x∗ [see Eq. (2.46)], and one gets

(

M

MPl

)4

= 720π2
M2

Pl

µ2
(1− 2α cosx∗)

2 sin2 x∗
(

1 + cos x∗ + α sin2 x∗
)3

Q2
rms−PS

T 2
. (5.123)

The reheating consistent slow-roll predictions of the TI models are displayed in Fig. 113
for α < 1/2 and in Fig. 114 for α > 1/2, with µ/MPl = 10−6, 10−4 and 10−2. In both
cases, one can see that α needs to be sufficiently adjusted to 1/2, namely |2α− 1| ≪ µ2/M2

Pl,
otherwise the deviation from scale invariance is too important, as expected. The typical
amount of gravitational waves is very small. To see how µ/MPl is constrained, the slow-roll
predictions are displayed for α = 1/2 in Fig. 115, and with µ varying. One can see that
even if one allows values of µ larger than the typical ones (µ/MPl ≃ 10−4) these models are
disfavored by the observations since they deviate too much from scale invariance.

5.9 β exponential inflation (BEI)

This model was introduced and studied in Ref. [407] as a phenomenological generalization of
the PLI exponential potential (see section 4.8). The proposed potential is given by

V (φ) =M4 exp1−β

(

−λ φ

MPl

)

, (5.124)

where the generalized exponential function exp1−β is defined by

exp1−β (f) =

{

(1 + βf)1/β for 1 + βf > 0 ,
0 otherwise .

(5.125)

As discussed in Ref. [407], for f > 0 and g > 0, this function satisfies the following identities:

exp1−β [ln1−β (f)] = f, ln1−β (f) + ln1−β (g) = ln1−β (fg)− β [ln1−β (f) ln1−β (g)] ,
(5.126)

where ln1−β (f) =
(

fβ − 1
)

/β is the generalized logarithmic function. As the parameter
β → 0, all the above expressions reproduce the usual exponential and logarithm properties.
The limit β → 0 therefore matches with the PLI potential (see section 4.8), but as discussed
below, this is not the case for the observable predictions which remain in a separate branch.
Defining

x ≡ φ

MPl

, (5.127)

the domain of definition depends on the sign of β. For β > 0, the field values are such that
x < 1/(βλ), whereas if β < 0, the potential is defined for x > 1/(βλ). In both cases, inflation
proceeds at increasing field values, i.e. from the left to the right. The first three Hubble flow
functions in the slow-roll approximation are given by

ǫ1 =
λ2

2 (1− βλx)2
, ǫ2 =

2βλ2

(1− βλx)2
= 4βǫ1, ǫ3 = ǫ2. (5.128)
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Figure 53. β exponential inflation (BEI) for β = 0.1. Upper panels: the potential and its logarithm.
Bottom left panel: slow-roll parameter ǫ1 with respect to the field values. The shaded area indicates
where inflation stops if λ = 1. Bottom right panel: slow-roll parameters ǫ2 = ǫ3.

Together with the potential, they have been represented in Fig. 53.
One immediately sees that ǫ1 is an increasing function of x only for the case where

β > 0. Therefore inflation can naturally stop at xend such that ǫ1(xend) = 1. In the opposite
situation, namely β < 0, inflation has to be ended by some additional mechanism and xend
would become an extra-parameter. Since this model is purely phenomenological, we will be
focused in the following to the case β > 0 for which

xend =
1

β

(

1

λ
− 1√

2

)

. (5.129)

The slow-roll trajectory can be integrated explicitly and reads

N −Nend =
1

λ
(x− xend)−

β

2

(

x2 − x2end
)

. (5.130)

It can also be inverted into

x =
1

λβ
−
√

(

xend −
1

λβ

)2

− 2

β
(N −Nend) . (5.131)

From there, the observable field value x∗ can be linked to the number of e-folds ∆N∗ =
Nend −N∗ at which the pivot mode crossed the Hubble radius during inflation. Making use
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of Eq. (5.129), one gets

x∗ =
1

λβ
−
√

1

2β2
+

2

β
∆N∗ . (5.132)

Inserting this expression into the slow-roll parameters formulas yields

ǫ1∗ =
1

1 + 4β∆N∗
, ǫ2∗ = ǫ3∗ = 4βǫ1∗ . (5.133)

Therefore, the slow-roll predictions of these models do not depend on the potential parameter
λ. Moreover, the limit β → 0 does not give the same observable predictions as for the PLI
models due to the singular behavior of xend. These models can therefore be viewed as a
completely different class.

Finally, the amplitude of the CMB anisotropies fixes the parameter M with

(

M

MPl

)4

= 720π2λ2 (1− βλx∗)
−2− 1

β
Q2

rms−PS

T 2
. (5.134)

Notice that from Eq. (5.132), the above expression can be written in terms of ∆N∗ and it
does not depend on λ anymore. The reheating consistent slow-roll predictions for the BEI
models are displayed in Fig. 116. The potential parameter β is bounded from below β & 0.6
for the predictions to remain inside the two-sigma confidence intervals, while the potential
parameter λ is totally unconstrained.

5.10 Pseudo Natural Inflation (PSNI)

Pseudo Natural Inflation (PSNI) was introduced and studied in Ref. [212]. This model has
common points with NI, see section 4.6. Indeed, in PSNI, the inflaton field is also a pseudo-
Nambu Goldstone boson which appears after symmetry breaking. As is well-known, the
corresponding potential is nearly flat and is, therefore, well-suited for inflation. The main
ideas behind this construction are reviewed in section 4.6. The main difference with respect
to natural inflation, for which the broken symmetry is a shift symmetry, is that in pseudo
natural inflation the broken symmetry is now a U(1) one. A concrete implementation of this
idea has been proposed in Ref. [212]. Suppose that we have the following supersymmetric
hybrid superpotential

W = λ0S
(

ψ2
1 + ψ2

2 − f2
)

+
λ1
2
ψ1ϕ

2 + λ2X
(

ϕ2 − v2
)

, (5.135)

with λ21f
2 > 2λ22v

2, where ψ1, ψ2 and ϕ are scalar fields and λ0, λ1 and λ2 are coupling
constants. The flat directions of this superpotential can be reparametrized as

ψ1 + iψ2 ≡ (f + σ) eiφ/f , ψ1 − iψ2 ≡ (f − σ) e−iφ/f , (5.136)

where φ is the Nambu-Goldstone boson associated to the broken U(1) symmetry and σ is a
modulus. One can assume that σ is stabilized and sits at σ = 0, the minimum of a potential
originating from supersymmetry breaking. The field φ plays the role of the inflaton. Using
the above expressions and the conditions σ = 0, one obtains that ψ1 = f cos (φ/f) and
ψ2 = f sin (φ/f). The U(1) symmetry is explicitly broken by the term proportional to λ1
and this generates a potential for φ. If the initial condition in the early Universe is such that
φ ≃ 0, it will force ϕ = 0, because of the large mass (i.e. λ1f) it receives from ψ1 through
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Figure 54. Top left panel: Pseudo Natural Inflation (PSNI) potential, for α = 0.1, as a function of
φ/f . Top right panel: logarithm of the potential for the same value of α. Bottom left panel: slow-roll
parameter ǫ1, rescaled by the quantity M2

Pl
/f2 such that it acquires a universal form, for the same

value of α. Bottom right panel: slow-roll parameter ǫ2 (solid line) and ǫ3 (dotted line), rescaled by
the quantity M2

Pl
/f2, still for the same value of α.

the coupling term ∝ ψ1ϕ
2. But then SUSY is broken because FX ≃ 〈∂W/∂X〉 ≃ λ2v

2 6= 0,
where there is no contribution from ϕ since we have just shown that it vanishes. As a
consequence, the corresponding vacuum energy density is given by V0 ≃ |FX |2 = λ22v

4. This
tree level potential is corrected by two kind of contributions. First, supergravity induces
a soft SUSY breaking mass of order H for every scalar, but since φ is a pseudo Nambu-
Goldstone boson, it only receives a potential due to the explicit breaking term proportional
to λ1. The corresponding contribution is loop suppressed, m2

φ ∼ 3λ21H
2/(16π2), as soon as

λ1 . 1 which will be assumed. Second, the potential receives a direct Yukawa mediated
contribution through a ϕ loop and Ref. [212] has shown that it takes the form

V (φ) ≃ V0

(

1 +
λ22
4π2

ln
λ1ψ1

µ

)

= V0

[

1 +
λ22
4π2

ln
cos (φ/f)

µ/f

]

. (5.137)

Using more friendly notations, the potential can be reexpressed as

V =M4

[

1 + α ln

(

cos
φ

f

)]

, (5.138)
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with the following definitions

M4 = λ22v
4

[

1 +
λ22
4π2

ln

(

λ1f

µ

)]

, α =

λ22
4π2

1 +
λ22
4π2 ln

(

λ1f
µ

) . (5.139)

Therefore, one typically has α≪ 1, and the scale f should a priori be such that f . MPl in
order to avoid the usual problems of natural inflation.

The potential (5.138) as well as its logarithm are displayed in Fig. 54. Since φ is assumed
to be such that φ ≃ 0 initially, the potential must be studied in the range φ/f ∈ [0, π/2].
It is positive definite in the range φ/f ∈

[

0, arccos
(

e−1/α
)]

. We see that it is a decreasing
function of the inflaton vev , which means that inflation proceeds from the left to the right
in the direction specified by the arrow in Fig. 54.

Let us now turn to the slow-roll parameters. If one defines x ≡ φ/f , then the three first
Hubble flow parameters are given by

ǫ1 =
M2

Pl

2f2
α2 tan2 x

(1 + α ln cos x)2
, ǫ2 = 2α

M2
Pl

f2
1 + α+ α ln cos x− α cos2 x

cos2 x (1 + α ln cos x)2
, (5.140)

ǫ3 = α
M2

Pl

f2
(tanx)2

2 + 3α+ α2 − α2 cos 2x+ (4 + 3α)α ln cos x+ 2α2 ln2 cos x

(1 + α ln cos x)2
(

1 + α ln cos x+ α sin2 x
) . (5.141)

They are displayed in Fig. 54. We see on this plot that the slow-roll parameters ǫ1 and ǫ3
vanish when x goes to 0 and diverge when x goes to π/2. On the other hand, the slow-roll
parameter ǫ2 has a non zero limit when x goes to 0, namely

lim
x→0

ǫ2 = 2
M2

Pl

f2
α. (5.142)

This quantity should be small in order for slow-roll to be valid. This means that, at a fixed
scale f , the parameter α needs to be smaller than ∼ f2M2

Pl. From the monotonous behavior
of ǫ1, one also notices that inflation stops by violation of the slow-roll conditions when ǫ1 = 1.
Unfortunately, this equation cannot be solved exactly and the solution needs to be determined
numerically. However, since we are in a regime where f/MPl ≪ 1 and αM2

Pl/f
2 ≪ 1, one

has that xend must be close to π/2. One can derive a better approximation by solving the
equation ǫ1 = 1 using an expansion in the small quantities of the problem. One arrives at

xend ≃ π

2
− α√

2

MPl

f
, (5.143)

that is to say the first correction to π/2 is linear in αMPl/f and, as expected, negative. As
usual, the ASPIC code makes use of the exact solution.

Let us now turn to the slow-roll trajectory. It can be integrated exactly in terms of the
dilogarithm function Li2 (also referred to as Spence’s function, or Joncquière function). This
function was already used in this paper, for instance in section 4.1. The explicit expression
of the trajectory reads

Nend −N =
f2

αM2
Pl

[

(1 + α ln cos xend) ln sinxend +
α

4
Li2
(

cos2 xend
)

]

− f2

αM2
Pl

[

(1 + α ln cos x) ln sinx+
α

4
Li2
(

cos2 x
)

]

, (5.144)
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where Nend is the number of e-folds at the end of inflation. Unfortunately, this trajectory
cannot be inverted due to its complexity. However, if one uses the two conditions f/MPl ≪ 1
and αM2

Pl/f
2 ≪ 1, one can simplify a lot its expression. In particular, at Hubble crossing,

one can write

∆N∗ ≃
f2

2αM2
Pl

[

(

x∗ −
π

2

)2
−
(

xend −
π

2

)2
]

, (5.145)

from which one can obtain an explicit formula for φ∗

x∗ ≃
π

2
−
√

2α∆N∗
MPl

f
. (5.146)

Then, this also allows us to derive useful approximated equations for the first three Hubble
flow parameters, namely

ǫ1∗ ≃
α

4∆N∗
, ǫ2∗ ≃ ǫ3∗ ≃

1

∆N∗
. (5.147)

The next step is of course to establish the expressions of the tensor to scalar ratio, spectral
index and running for PSNI. One arrives at

r ≃ 4α

∆N∗
, nS − 1 ≃ αS ≃ − 1

∆N∗
, (5.148)

These formulas are in agreement with the estimates given in Ref. [212]. Interestingly enough,
we see that these predictions are independent of the scale f and that the spectral index (and
the running) is even independent of α.

The last step consists in using the CMB normalization in order to derive an expression
for the mass scale M . Straightforward manipulations lead to

(

M

MPl

)4

= 720π2α2M
2
Pl

f2
tan2 x∗

(1 + α ln cosx∗)
3

Q2
rms−PS

T 2
. (5.149)

Under the two conditions f/MPl ≪ 1 and αM2
Pl/f

2 ≪ 1 and using the same method as
before, this leads to

(

M

MPl

)4

≃ 360π2α

∆N∗

Q2
rms−PS

T 2
. (5.150)

RequiringM < MPl is easily achieved since, for the fiducial value ∆N∗ ≃ 55, this is equivalent
to α . 2580 whereas we have α≪ 1. Taking the more realistic value α ∼ 10−6 and ∆N∗ ∼ 55,
one typically obtains that M/MPl ∼ 10−3.

The predictions of the PSNI models are displayed in Fig. 117 for f/MPl = 10−3, 10−1, 10
respectively (although this last value is considered just for the purpose of illustration since
super-Planckian values of f are not very physical). The reheating equation of state parameter
w has been taken to 0 but since there is no potential minimum around which the inflaton
field can oscillate at the end of inflation, this parameter is a priori unspecified and can
take different values (in the ASPIC code, this parameter can be freely chosen). One can see
that the rough description provided by Eqs. (5.147) is correct: when αM2

Pl/f
2 ≪ 1, the

deviation from scale invariance does not depend on the model parameters and is of the order
of nS ≃ 1− 1/∆N∗ ≃ 0.975, while r ≃ 4α/∆N∗ is typically very small.
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Figure 55. Top left panel: Non Canonical Kähler Inflation (NCKI) potential for α = 0.1 and β = ±1.
The solid blue line represents the case β = −1 while the solid pink line represents the case β = 1. Top
right panel: logarithm of the potential for the same values of α and β. Bottom left panel: slow-roll
parameter ǫ1, for a potential with the same values of α and β and the same color code. The shaded
area indicates the region where inflation is not possible. Bottom right panel: slow-roll parameters ǫ2
(solid blue and pink lines) and ǫ3 (dotted blue and pink lines), for a potential with the values of α
and β already considered in the other panels.

5.11 Non Canonical Kähler Inflation (NCKI)

This model was introduced and studied in Ref. [408]. It was also considered in Ref. [340] as
a way to model hilltop inflation. Its potential is given by, see e.g. Eq.(45) of Ref. [340]

V =M4

[

1 + α ln

(

φ

MPl

)

+ β

(

φ

MPl

)2
]

, (5.151)

where α is a small positive dimensionless parameter and β a dimensionless parameter of order
O(1) which can be either positive or negative. These models are supposed to arise in the
context of F -term inflation with three fields, S and the pair ψ, ψ̄ whose Kähler potential
and superpotential can be written as K

(

S,ψ, ψ̄
)

= |S|2 + |ψ|2 + |ψ̄|2 and W
(

S,ψ, ψ̄
)

=
λS
(

ψψ̄ − Λ2
)

. The pair can be seen as waterfall fields and the vev Λ is typically taken at
the GUT scale, Λ ≃ 1016GeV. The field S, or rather its canonically normalized version φ =√
2|S|, is seen as the inflaton field. For φ >

√
2Λ, the tree level of the potential is sufficiently

flat and reads V (φ) = λ2Λ4
[

1 + λ2/(8π2) log(φ/Q)
]

, where Q is the renormalization scale.
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Choosing this scale is a priori not obvious but, as argued in Ref. [340], Q should be taken such
that the loop contribution remains a small correction at Hubble radius crossing. However,
the Kähler function and the superpotential generically contains higher order terms and these
terms will correct the above mentioned potential. In particular the non canonical terms in the
Kähler potential will generate a mass term of the order λ2Λ4/M2

Pl [340]. As a consequence,
the potential can be expressed in a form given by Eq. (5.151) with, as already mentioned
above, α ≪ 1, and |β| = O(1). The case β > 0 has been investigated in Refs. [408, 409]
as “hybrid inflation with quasi-canonical supergravity” and the case β < 0 was studied in
Ref. [340]. For β > 0, the potential (5.151) can be viewed as a valley hybrid potential [VHI,
see section 6.2 and Eq. (6.15)] plus radiative corrections described, as usual, by a logarithmic
term. Therefore, a consistency check is that, when α → 0, all the formulas derived below
must reproduce those derived in section 6.2. Finally, let us mention that the potential (5.151)
has also been obtained in Ref. [410] for β < 0 (under the name “SUSY breaking potential”)
and in Ref. [411] in the context of supersymmetric hybrid inflation.

The potential (5.151), as well as its logarithm, are displayed in Fig. 55. We now describe
its shape. For this purpose, let us first define the quantity x by x ≡ φ/MPl. If β > 0, the
potential is definite positive provided x > x−V=0, where

x−V=0 =

[

α

2β
W0

(

2β

α
e−2/α

)]1/2

, (5.152)

and where W0 is the “0”-branch of the Lambert function. In this case, the potential is
an increasing function of the field vev and, therefore, inflation proceeds from the right to
the left in the direction indicated by the arrow in Fig. 55. Let us also notice that, in this
case, the potential has an inflection point located at xV ′′=0 =

√

α/ (2β). If β < 0, we
must have 2β/α exp (1− 2/α) > −1 in order to avoid the situation where the potential is
everywhere negative. This implies that either β > −1 or β < −1 and, in this last case,
α < −2/W−1 [1/ (eβ)] or α > −2/W0 [1/ (eβ)]. If one of these conditions is satisfied (which
is generically the case when α≪ 1 which is the regime we are interested in), the potential is
positive provided x−V=0 < x < x+V=0, where x

−
V=0 is defined in Eq. (5.152) and where

x+V=0 =

[

α

2β
W−1

(

2β

α
e−2/α

)]1/2

, (5.153)

W−1 being the −1 branch of the Lambert function. In this case, the potential is a concave
function of the field vev , with a maximum located at xV ′=0 =

√

−α/ (2β). Typically, inflation
proceeds from the right to the left at small values of the field vev compared to the Planck
mass.

Let us now calculate to the Hubble flow parameters. They are given by the following
expressions

ǫ1 =

(

α+ 2βx2
)2

2x2 (1 + α lnx+ βx2)2
, (5.154)

ǫ2 = 2
α (α+ 1) + (5α− 2) βx2 + 2β2x4 + α

(

α− 2βx2
)

lnx

x2 (1 + α lnx+ βx2)2
, (5.155)
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and

ǫ3 =
1

x2

[

2
(

α+ 2βx2
)2

(1 + α lnx+ βx2)2
+

α− 2βx2

1 + α lnx+ βx2

+
α2 + 8αβx2 − 4β2x4

α (α+ 1) + (5α− 2) βx2 + 2β2x4 + α (α− 2βx2) lnx

]

.

(5.156)

The are displayed in the bottom panels in Fig. 55. If β > 0, the first slow-roll parameter
ǫ1 diverges when x → x−V=0. For x > x−V=0, it first decreases, then reaches a minimum,
then increases and reaches a local maximum. Finally, from this maximum, it decreases again
and vanishes at infinity. Therefore, in that case, inflation stops by violation of the slow-
roll conditions at a vev xend that cannot be calculated exactly and has to be estimated by
numerical calculation. If β < 0, the first slow-roll parameter diverges when x → x−V=0. For
x > x−V=0, ǫ1 decreases, vanishes at the potential local maximum xV ′=0, and then increases
and blows up when x→ x+V=0. At the same time, the second slow-roll parameter ǫ2 decreases
in the inflationary domain x−V=0 < x < xV ′=0. Let us also notice that, since ǫ2(xV ′=0) ∝
2α−α2 +α2 ln [−α/(2β)], one has ǫ2 > 0, thanks to the condition 2β/α exp (1− 2/α) > −1.
As for the case β > 0, inflation ends by violation of the slow-roll conditions at a vev that
needs to be computed numerically. These calculations are implemented in the routines of the
ASPIC code.

Let us now turn to the slow-roll trajectory. This one can be integrated exactly using
the dilogarithm function Li2. The corresponding expression reads

Nend −N =
(

1− α

2
+ α lnx

) ln
(

α+ 2βx2
)

4β
+
x2

4
− α

4β
lnα lnx+

α

8β
Li2

(

−2
β

α
x2
)

−
(

1− α

2
+ α lnxend

) ln
(

α+ 2βx2end
)

4β
− x2end

4
+

α

4β
lnα lnxend −

α

8β
Li2

(

−2
β

α
x2end

)

,

(5.157)
where Nend is the number of e-folds at the end of inflation. The above expression is quite
complicated and a simpler expression can be derived in the limit α ≪ 1. In that case, as
expected, one obtains Nend − N = x2/4 + log(x)/(2β) − x2end/4 − log(xend)/(2β), which is
precisely the slow-roll trajectory for the VHI models with µ = MPl/

√
β and p = 2, see

Eq. (6.23). Obviously, when α 6= 0, the exact trajectory cannot be inverted analytically.
Finally, the parameterM can be determined from the CMB normalization. One obtains

the following expression

(

M

MPl

)4

= 720π2
(

α+ 2βx2∗
)2

x2∗ (1 + α lnx∗ + βx2∗)
3

Q2
rms−PS

T 2
. (5.158)

The exact predictions of the NCKI models are displayed in Figs. 118-119 for β > 0 and
and β < 0, respectively. The reheating equation of state parameter w has been taken to be
0 but, since there is no potential minimum around which the inflaton field can oscillate at
the end of inflation, this parameter is in fact unspecified. Some remarks are in order at this
point. First, when β > 0, we notice that ǫ2 at Hubble crossing is either positive or negative
while, when β < 0, it is always positive. This is in agreement with what we have discussed
before. Second, when β > 0 and α≪ 1, one can check that the predictions of the models are
similar to the VHI ones with p = 2 (compare with Fig. 149). Again, this is consistent with
the previous considerations. Third, when |β| & O(1), the predictions of the models do not
depend much on β . Fourth, as expected, when β → 0, one recovers the predictions of the LI
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models, see section 4.12 and Fig. 88. We conclude that all the consistency checks listed above
are compatible with the considerations presented before. Now, in the regime |β| = O(1) and
α ≪ 1, Figs. 118-119 indicate that the case β > 0 is disfavored by the observations. The
situation is even worst for the case β < 0, the deviation from scale invariance being clearly
too important to satisfy the observational constraints.

5.12 Constant Spectrum Inflation (CSI)

This potential belongs to the class of models discussed in Ref. [412] and is constructed to
produce a constant power spectrum P (k) ∝ k0 for the primordial density fluctuations, i.e.
nS = 1. It reads

V (φ) =
M4

(

1− α
φ

MPl

)2 . (5.159)

There is a symmetry for φ/MPl → 2/α−φ/MPl and inflation can proceed indifferently in the
branch φ/MPl < 1/α or in the branch φ/MPl > 1/α, leading to the same physical predictions.
For this reason, we will be interested in the following to the branch φ/MPl < 1/α. Defining

x ≡ φ

MPl

, (5.160)

the first three Hubble flow functions in the slow-roll approximation are given by

ǫ1 =
2α2

(αx− 1)2
, ǫ2 = ǫ3 = −2ǫ1 . (5.161)

The previous relation ǫ2 = −2ǫ1 means that at first order in slow-roll, the spectral index is
indeed equals to unity, or nS − 1 = 0. Recall that the potential of this model is precisely
constructed for this relation to be true. Let us notice however that at second order in slow-
roll, ǫ2 = ǫ3 = −2ǫ1 yields nS − 1 = 4ǫ21 > 0. One should note that another way to realize
nS − 1 = 0 at first order in slow-roll is to take the large field inflation potential LFI (see
section 4.2) with a negative power index p = −2. In that case one also has ǫ2 = ǫ3 = −2ǫ1
and, at second order, nS−1 = 4ǫ21 is also verified. However, the expressions for ǫ1 are different
between the two models such that the actual value of the spectral index at second order will
differ. The potential and the Hubble flow functions have been represented in Fig. 56.

As can be checked in this figure, ǫ1 is a monotonous function of x in both branches of
the potential, it diverges at x = 1/α and vanishes for x→ ±∞. Inflation can therefore take
place in the region x < x−ǫ1=1 for the branch x < 1/α (or x > x+ǫ1=1 for the branch x > 1/α),

where x±ǫ1=1 are the field values at which ǫ1 = 1:

x±ǫ1=1 =
1±

√
2α

α
. (5.162)

Since the field evolution is repelled from x±ǫ1=1, inflation does not stop by slow-roll violation
and an extra-parameter xend should be considered. As for the other models in such a situation,
xend gives the field value at which an unspecified mechanism stopping inflation is triggered.
For this reason, CSI is a two parameters model. Let us notice that the slow-roll parameters
ǫ2 = ǫ3 are also negative monotonous functions of x in both branches of the potential and
cross the line ǫ2 = ǫ3 = −1 at

x±ǫ2=−1 = x±ǫ3=−1 =
1± 2α

α
. (5.163)
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Figure 56. Constant Spectrum Inflation (CSI) for α = 0.1. Upper panels: the potential and its
logarithm along the branch x < 1/α. Bottom left panel: slow-roll parameter ǫ1 together with the
region in which it is larger than unity and in which inflation cannot occur (shaded). Bottom right
panel: slow-roll parameter ǫ2 = ǫ3 along the same branch x < 1/α.

As a result, there is a small domain x−ǫ2=−1 < x < x−ǫ1=1 during which inflation has just
started but is slow-roll violating (and similarly on the other branch). This is not problematic
as the field evolution is driven away from this domain towards the one in which all the Hubble
flow functions become small (see Fig. 56).

The slow-roll trajectory can be integrated explicitly to

N −Nend =
x2

4
− x

2α
+
x2end
4

− xend
2α

, (5.164)

and also inverted analytically to get

x =
1±

√

1− 2αxend + α2x2end + 4α2 (N −Nend)

α
. (5.165)

The sign ∓ depending on whether one is working in the x < 1/α branch or in the x > 1/α
branch, respectively. A consequence of this formula is the fact that if one requires Nend−Nini

e-folds to be produced, xend should be smaller than some value xmax
end given by

xmax
end =

1

α
−
√

2 + 4 (Nend −Nini) , (5.166)

– 144 –



in the x < 1/α branch. Equivalently, with a minus sign in this expression, this would be xmin
end

for the branch x > 1/α.
Finally, the observable field value x∗ is obtained by solving Eq. (2.46) while the ampli-

tude of the CMB anisotropies fixes the parameter M to

(

M

MPl

)4

= 2880π2α2Q
2
rms−PS

T 2
. (5.167)

Interestingly, it only depends on α, and not on x∗ (i.e. it has no explicit dependence on the
reheating). The reheating consistent slow-roll predictions for the CSI models are represented
in Figs. 120 and 121 for α = 10−3 and α = 1, respectively.

5.13 Orientifold Inflation (OI)

This model has been studied in Ref. [413] in the context of four-dimensional strongly interact-
ing theories non minimally coupled to gravity, with composite inflation driven by orientifold
field theories. When the number of colors N is large, such theories feature super Yang-Mills
properties, and performing an expansion in 1/N , an effective action can be derived in the
Einstein frame. For the canonically normalized field, the inflaton potential reduces to

V (φ) =M4

(

φ

φ0

)4
[

(

ln
φ

φ0

)2

− α

]

, (5.168)

where α = O(1/N) ≪ 1 and φ0 ≃ 1016 GeV. The potential as well as its logarithm are
displayed in Fig. 57.

Defining

x ≡ φ

φ0

, (5.169)

the potential remains positive provided x < x−V=0 or x > x+V=0, where

x±V=0 = e±
√
α . (5.170)

It vanishes at x = 0, then increases to reach a local maximum at x−V ′=0, decreases again to
become negative at x−V=0, reaches a local minimum at x+V ′=0, then increases again to become
positive at x+V=0 and diverges asymptotically. The values of x−V ′=0 and x+V ′=0 are given by

x±V ′=0 = e
− 1

4
±
√

1
16

+α
. (5.171)

A priori three regimes of inflation may exist: x < x−V ′=0 and inflation proceeds from the right
to the left, x−V ′=0 < x < x−V=0 and inflation proceeds from the left to the right, x+V=0 < x and
inflation proceed from the right to the left in the direction specified by the arrow in Fig. 57.
As explained below, only the third domain allows for a slow-roll inflationary regime.

This is why we now turn to the slow-roll parameter values. The first three Hubble flow
functions in the slow-roll approximation are given by

ǫ1 = 2
M2

Pl

φ2
0

[

2 ln2 (x) + ln (x)− 2α

x ln2 (x)− αx

]2

, (5.172)

ǫ2 = 4
M2

Pl

φ2
0

2 ln4 (x) + ln3 (x) + (1− 4α) ln2 (x)− α ln (x) + α+ 2α2

[

x ln2 (x)− αx
]2 , (5.173)
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Figure 57. Orientifold Inflation (OI) for α = 0.1. Upper panels: the potential and its logarithm.
Bottom left panel: slow-roll parameter ǫ1, rescaled by the factor φ2

0
/M2

Pl
. The shaded area indicates

where inflation cannot occur (for φ =MPl). Bottom right panel: rescaled slow-roll parameter ǫ2.

and

ǫ3 = 2
M2

Pl

φ2
0

[

8α4 + 6α3 − α2 (8α+ 15) ln (x) + 2α
(

3− 16α2 − 2α
)

ln2 (x)

+ 8α (3α+ 1) ln3 (x) + 2
(

24α2 − 5α+ 1
)

ln4 (x) + (7− 24α) ln5 (x) + 8 (1− 4α) ln6 (x)

+ 8 ln7 (x) + 8 ln8 (x)
] [

x ln2 (x)− αx
]−2

×
[

2α2 + α− α ln (x) + (1− 4α) ln2 (x) + ln (x)3 + 2 ln (x)4
]−1

.

(5.174)
They have been represented in Fig. 57. One can see that the slow-roll regime can only take
place in the x > x+V=0 region, where ǫ1 continuously increase as inflation proceeds from the
right to the left, and diverges at x+V=0. In the other domains, ǫ2 remains too large to support
slow-rolling. Within the x > x+V=0 domain, inflation naturally ends by slow-roll violation,
but the field value xend at which this occurs has to be determined numerically. However,
since φ0 ≃ 1016 GeV, one can work out an approximated formula for xend in the φ0 ≪ MPl

limit, namely

xend ≃ 2
√
2
MPl

φ0

. (5.175)
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The slow-roll trajectory stems from Eq. (2.11) and one gets

Nend −N = − φ2
0

M2
Pl

{

x2end − x2

8
+

ln2
(

x+V ′=0

)

− α

2
√
1 + 16α

(

x+V ′=0

)2
[

Ei

(

2 ln
xend

x+V ′=0

)

− Ei

(

2 ln
x

x+V ′=0

)]

− ln2
(

x−V ′=0

)

− α

2
√
1 + 16α

(

x−V ′=0

)2
[

Ei

(

2 ln
xend

x−V ′=0

)

− Ei

(

2 ln
x

x−V ′=0

)]

}

,

(5.176)
where Ei is the exponential integral function, and where x±V ′=0 have been defined in Eq. (5.171).
In the φ0 ≪ MPl limit, this trajectory reduces to ∆N∗ ≃ φ0/(4M

2
Pl)(x

2
∗ − x2end), where we

have introduced the observable field value x∗ at which the pivot mode crossed the Hubble
radius during inflation. It can be inverted to give x∗ in terms of ∆N∗ = Nend −N∗ and one
gets

x∗ ≃ 2
MPl

φ0

√

∆N∗ + 2 . (5.177)

Plugging this into Eqs. (5.172), (5.173) and (5.174) gives the approximated expressions

ǫ1∗ ≃ ǫ2∗ ≃ ǫ3∗ ≃
2

∆N∗ + 2
, (5.178)

hence

r ≃ 32

∆N∗ + 2
, nS − 1 ≃ − 6

∆N∗ + 2
, αS ≃ − 12

(∆N∗ + 2)2
. (5.179)

From x∗, the parameter M is fixed by the amplitude of the CMB anisotropies and one
gets

(

M

MPl

)4

=
2880π2

[

2 ln2 (x∗) + ln (x∗)− 2α
]2

x6∗
[

ln2 (x∗)− α
]3

M2
Pl

φ2
0

Q2
rms−PS

T 2
. (5.180)

In the φ0 ≪MPl limit, this gives rise to

(

M

MPl

)4

≃ 180π2

(∆N∗ + 2)3

(

φ0

MPl

)4 1

ln2
(

2
MPl

φ0

√
∆N∗ + 2

)

Q2
rms−PS

T 2
. (5.181)

With φ0 ≃ 1016 GeV, this typically gives M/MPl ≃ 5× 10−4.
The reheating consistent slow-roll predictions for the orientifold inflation models are

displayed in Fig. 122, for φ0/MPl = 10−4,10−2, and 1. Let us stress that natural values are
φ0 ≃ 1016 GeV) and α ∈

[

10−3, 1
]

. The reheating equation of state parameter has been fixed
to wreh = 0 since the potential is quadratic close to its minimum. According to the rough
picture provided by Eq. (5.178), the predictions of these models almost do not depend on its
parameters φ0 and α, which is why all the prediction points are superimposed in Fig. 122.
In particular, one can see that these models generically predict an important amount of
gravitational waves which is disfavored by the observations.

5.14 Constant nS C Inflation (CNCI)

This model has been obtained in Ref. [370] and is the third example of a class of scenarios
already studied in sections 4.20 and 4.21. As explained in those sections, the corresponding

– 147 –



Figure 58. Top left panel: Constant nS C inflaton potential for α = 0.1. Inflation proceeds from
the left to the right as indicated by the arrow. Top right panel: logarithm of the potential for the
same value of α. Bottom left panel: the first slow-roll parameter ǫ1 for α = 0.1. Bottom right panel:
slow-roll parameters ǫ2 and ǫ3, still for α = 0.1.

potential is designed in order to produce a power spectrum with constant spectral index.
The potential studied in this section reads

V (φ) =M4

[

(

3 + α2
)

coth2
(

α√
2

φ

MPl

)

− 3

]

, (5.182)

where α is a positive dimensionless parameter (denoted n0 in Ref. [370]). The potential
being symmetrical in φ→ −φ, only the φ > 0 part is displayed in Fig. 58. It is a decreasing
function of the field vev , and its asymptotic value when φ/MPl goes to infinity is given by
α2M4, hence the potential is always positive. Defining x = φ/MPl, the three first slow-roll
parameters are given by

ǫ1 =

4α2
(

3 + α2
)2

coth2
(

αx√
2

)

[

6 + α2 + α2 cosh
(√

2αx
)]2 , (5.183)

ǫ2 = −2α2
(

3 + α2
) [

12 + α2 + 2α2 cosh
(√

2αx
)

+ α2 cosh
(

2
√
2αx

)]

[

6 + α2 + α2 cosh
(√

2αx
)]2

sinh2
(

αx√
2

) , (5.184)
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and

ǫ3 = −2α2
(

3 + α2
)

[

6
(

24− 2α2 + α4
)

+
(

120α2 + 7α4
)

cosh
(√

2αx
)

+ 2α2
(

α2 − 6
)

cosh
(

2
√
2αx

)

+ α4 cosh
(

3
√
2αx

)]

coth2
(

α√
2
x

)

×
[

6 + α2 + α2 cosh
(√

2αx
)]−2 [

12 + α2 + 2α2 cosh
(√

2αx
)

+ α2 cosh
(

2
√
2αx

)]−1
.

(5.185)
These slow-roll parameters are displayed in Fig. 58 (bottom panels). We see that the first
slow-roll parameters monotonously decreases during inflation. It blows up as the field vev
approaches zero and tends to zero when the field vev goes to infinity. On the contrary, the
second and third slow-roll parameters monotonously increase from −∞ to zero as inflation
proceeds.

Given the above described behavior of ǫ1, it is clear that inflation cannot stop by slow-
roll violation. Therefore, it should be stopped by instability which means and that an extra
parameter xend should be added to he model.

Now let us check that the spectral index nS − 1 = −2ǫ1 − ǫ2 at first order in slow-
roll, is indeed constant. Expanding the slow-roll parameters ǫ1 and ǫ2 in α≪ 1, one obtains
ǫ1 = 2/x2+2α2/3+O

(

α4
)

and ǫ2 = −4/x2+2α2/3+O
(

α4
)

, so that nS−1 = −2α2+O
(

α4
)

.
One concludes that this two parameter model does produce a constant nS power spectrum.
This also implies that a first order approximation in slow-roll is an expansion to second order
in α≪ 1. We have already encountered similar calculations in sections 4.20 and 4.21. Based
on our results for those sections, one should remark that, if xend is such that αx∗ & 1, the
previous expansion does not hold and deviations from constant nS may appear.

Let us now consider the slow-roll trajectory. It can be integrated exactly and is given
by the following formula

N −Nini =
1

α2 (3 + α2)

{

3 ln

[

cosh

(

α√
2
x

)]

+
α2

2
cosh2

(

α√
2
x

)

− 3 ln

[

cosh

(

α√
2
xini

)]

− α2

2
cosh2

(

α√
2
xini

)}

.

(5.186)

Moreover, this expression can be explicitly inverted. As a consequence, the function x(N)
can be written as

x =

√
2

α
arccosh

[

3

α2
W0

(

α2

3
exp

{

2

3
α2
(

3 + α2
)

(N −Nini)

+ 2 ln

[

cosh

(

α√
2
xini

)]

+
α2

3
cosh2

(

α√
2
xini

)})]1/2

,

(5.187)

where W0 is the Lambert function. The fact that we deal with the 0-branch is obvious since
the argument of this function is positive definite.

The predictions of the CNCI models are displayed in Fig. 123, for α = 10−3, 0.1, 0.2.
The thin black solid lines are the lines such that nS − 1 = −2α2. We see that, for very small
values of α, the predictions are indeed such that the spectral index is constant. For α not
too small, however, we also notice deviations from this law and the larger α the stronger
these deviations, which is of course what one expects. This is reminiscent of the phenomenon
observed in sections 4.20 and 4.21 for similar scenarios. We also remark that, for a given
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value of α, the deviations from nS − 1 = −2α2 become larger when xend increase (i.e. when
the line becomes redder in Fig. 123). This, of course, makes sense since, in this case, the
Taylor expansion of the trigonometric functions which appear in the expressions of the slow-
roll parameters is no longer valid (a larger xend means a larger x∗). This has for consequence
that CNCI inflation is only marginally consistent with the data. Indeed, it is precisely in the
region where nS − 1 = −2α2 would be compatible with the observations that the deviations
play an important role and push the predictions outside the allowed contours. In fact, one
can understand better the properties of this scenario if one explicitly calculates x∗. Using
Eq. (5.186), it is easy to show that

cosh2
(

αx∗√
2

)

=
3

α2
W0

(

α2

3
e2A/3

)

, (5.188)

where we have defined the quantity A by

A ≡ −α2
(

3 + α2
)

∆N∗ + 3 ln

[

cosh

(

αxend√
2

)]

+
α2

2
cosh2

(

αxend√
2

)

(5.189)

In the regime where α ≪ 1 and αxend ≪ 1, the previous expression reduces to x2∗ ≃ x2end −
4∆N∗. This last formula is identical to the slow-roll trajectory for LFI provided p = −2, see
Eq. (4.30). At the beginning of this section, we have show that, at leading order ǫ1 ≃ 2/x2

and ǫ2 ≃ −4/x2 and, comparing with Eqs. (4.29), we notice that these are also the slow-roll
parameters for LFI with p = −2. In fact, expanding Eq. (5.182), one sees that V (φ) ∝ φ−2

which confirms the previous considerations. We conclude that, in the regime where α≪ 1 and
αxend ≪ 1, the model is very close to LFI with p = −2. This also allows us to understand
better why the spectral index is constant in this case. For LFI, Eqs. (4.29) tell us that
ǫ1 = p2/(2x2) and ǫ2 = 2p/x2. If one chooses p = −2 then one obtains nS = 1 because
−2ǫ1 and −ǫ2 exactly cancel out in the expression of the spectral index. In the case of
CNCI inflation, ǫ1 and ǫ2 have the previously quoted values at leading order plus corrections
quadratic in α. Because of the cancellation mentioned before, the leading term is absent
and one is left with the quadratic corrections only. This explains and justifies the formula
nS = 1− 2α2.

Finally, we conclude this section by discussing how the mass scale M can be chosen.
The COBE normalization gives

(

M

MPl

)4

=
11520π2α2

(

3 + α2
)2

cosh2
(

α√
2
x∗
)

[

6 + α2 + α2 cosh
(√

2αx∗
)]3

Q2
rms−PS

T 2
. (5.190)

We can obtain an order of estimate ofM using the following very rough approximations. From
Eq. (5.188), one deduces that cosh2(αx∗/

√
2) ≃ 1− 2α2∆N∗ + α2x2end/2 ≃ 1. Inserting this

formula into Eq. (5.190), and taking the leading order in α, one obtains M/MPl ≃ 0.02
√
α.

This implies thatM < MPl if α . 2420, which is largely the case for the predictions displayed
in Fig. 123.

5.15 Supergravity Brane Inflation (SBI)

This model has been originally proposed in Refs. [414, 415] in the context of brane cosmology
within a supergravity bulk spacetime. In the original works, the model is studied in the high
energy regime, i.e. for inflation and reheating occurring at energy densities higher than the
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brane tension and therefore with a modified Friedmann-Lemâıtre equation. According to our
previous discussions, we will be restricted in the following to the low energy limit for which
inflation occurs at an energy scale smaller than the brane tension. The potential reads

V (φ) =M4

{

1 +

[

−α+ β ln

(

φ

MPl

)](

φ

MPl

)4
}

, (5.191)

where α and β are dimensionless one loop coupling constants. On a purely phenomenological
basis, Eq. (5.191) is a typical F-term supergravity potential with loop corrections. For
instance, setting α = 0 gives back the Coleman-Weinberg CWI models (see section 4.11).
Defining

x ≡ φ

MPl

, (5.192)

the potential decreases from x = 0 to reach its minimum at x = xV ′=0, then increases again
and diverges when x goes to infinity. The value of xV ′=0 is given by

xV ′=0 = exp

(

α

β
− 1

4

)

. (5.193)

Since the logarithm terms in Eq. (5.191) are loop corrections, they should not dominate over
the leading order terms. As a result, inflation can take place only in the domain x < xV ′=0.
At its minimum, the potential equals

Vmin = V (xV ′=0) =M4

(

1− β

4
e4α/β−1

)

, (5.194)

which is negative or null for

α ≥ αmin (β) =
β

4

[

1− ln

(

β

4

)]

. (5.195)

Under this condition, inflation can proceed at increasing field values in the domain 0 < x <
xV=0 < xV ′=0, where xV=0 is the value at which the potential vanishes. It is given by

xV=0 =

[

−4/β

W−1

(

−4/βe−4α/β
)

]1/4

, (5.196)

where W−1 is the −1 branch of the Lambert function. Let us notice that if Eq. (5.195)
is not satisfied, the potential would admit a positive global minimum that triggers a pure
de-Sitter era without graceful exit. The first three Hubble flow functions in the slow-roll
approximation are given by

ǫ1 =
x6 (−4α+ β + 4β lnx)2

2 (1− αx4 + βx4 lnx)2
, (5.197)

ǫ2 = 2
(12α− 7β − 12β lnx) x2 +

(

4α2 − αβ + β2 + β2 lnx− 8αβ lnx+ 4β2 ln2 x
)

x6

[1 + x4 (−α+ β lnx)]2
,

(5.198)
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Figure 59. Supergravity Brane Inflation (SBI) for α = 0.7 and β = 0.1. Upper panels: the potential
and its logarithm in the small field branch. Bottom left panel: slow-roll parameter ǫ1. The shaded
area indicates where inflation stops. Bottom right panel: slow-roll parameters ǫ2 (solid line) and ǫ3
(dotted line).

ǫ3 =
8

x2
+ 2

(

−4 + βx4
)2

x2 (1− αx4 + βx4 lnx)2
+

1

x2
−52 + 9βx4

1− αx4 + βx4 lnx
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)

lnx

(12α− 7β − 12β lnx) x2 +
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4α2 − αβ + β2 − 8αβ lnx+ β2 lnx+ 4β2 ln2 x
)

x6
.

(5.199)
Together with the potential, they have been represented in Fig. 59 for the physical branch
0 < x < xV=0.

The slow-roll trajectory can be integrated analytically and one obtains

N −Nend =
e
2α
β
− 1

2

16

[

Ei

(

1

2
− 2

α

β
+ 2 lnx

)

− Ei

(

1

2
− 2

α

β
+ 2 lnxend

)]

− e
1
2
−2α

β

4β

[

Ei

(

−1

2
+ 2

α

β
− 2 ln x

)

− Ei

(

−1

2
+ 2

α

β
− 2 ln xend

)]

− x2 − x2end
8

.

(5.200)
Since ǫ1(x) is an increasing function of x, inflation stops at x = xend where xend is the solution
of ǫ1(xend) = 1. From Eq. (5.197), there is no analytical solution for xend and this equation
has to be solved numerically. Let us stress however that since ǫ1 diverges for x→ xV=0, one
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always has xend < xV=0.
The field value x∗ at which the pivot scale crossed the Hubble radius during inflation is

obtained by solving Eq. (2.46) while the parameter M is fixed by the amplitude of the CMB
anisotropies, i.e.

(

M

MPl

)4

=
720π2 (4α− β − 4β lnx∗)

2

(−1 + αx4∗ − βx4∗ lnx∗)
3

Q2
rms−PS

T 2
. (5.201)

The reheating consistent slow-roll predictions for the SBI models are displayed in Figs. 124
and 125, for β = 5 × 10−5 and β = 10−3, respectively. These plots exhibit the trend with
respect of β: larger values of β produce a completely negligible amount of gravitational waves.

5.16 Spontaneous Symmetry Breaking Inflation (SSBI)

The potential that we study in this section is given by the following expression

V (φ) =M4

[

1 + α

(

φ

MPl

)2

+ β

(

φ

MPl

)4
]

, (5.202)

where α and β are two dimensionless parameters. Formally, this potential is very general
since it is just made of the three first terms of a general Taylor expansion. Moreover, it arises
in various different contexts that we now briefly review. In fact, these different examples
usually differ in the signs for the parameters α and β. A first example is simply Ref. [276]
where this potential was used as a toy model to implement “New Inflation”. Then, it was
also considered in Ref. [416] (with the assumptions α < 0 and β > 0) in the framework
of models with spontaneous symmetry breaking where φ represents one of the components
of a Higgs field. In Ref. [417], it was studied in the context of “Mixmaster inflation”. In
Refs. [418, 419], it was investigated in the context of gauge mediated SUSY breaking inflation.
More recently, it was also used in Refs. [420, 421] to study a model of “Spinodal Inflation”.
After the 90’s, it was considered again several times: in the context of the Randall-Sundrum
model in Ref. [422], in the context of pseudonatural inflation in Ref. [212], in the context of
induced gravity inflation in Ref. [423], in the context of electroweak inflation in Ref. [424], in
the context of Sneutrino hybrid inflation in Ref. [425], in the context of racetrack inflation in
Ref. [426], in the context of minimal left-right symmetric models with spontaneous D-parity
breaking in Ref. [427], in the context of hilltop supernatural inflation in Refs. [428–430], in
the context of a supersymmetric B-L extension of the standard model in Refs. [431, 432] and,
finally, in the context of Kähler-driven tribrid inflation in Ref. [433]. As already mentioned
above, these works differ on the signs of α and β. Refs. [417, 425, 426] require α > 0, β > 0
while Refs. [212, 276, 416, 420, 421, 423, 424, 427] assume α < 0, β > 0. On the other hand,
Refs. [428–430] consider that α > 0 and β < 0 and Refs. [418, 419] that α < 0, β < 0. We
see that the four possible combinations have all been studied. Also, in Refs. [431, 432], one
has α, β . O (1) and inflation only takes place in the increasing branches of the potential
(see below). Finally, in Refs. [422, 433], β > is taken to be positive and the sign of α is left
unspecified.

Based on this quick review of the literature, we conclude that it is necessary to study the
model in full generality and, therefore, in what follows, we study all the possible situations.
As mentioned above, four cases should be distinguished: α > 0, β > 0; α < 0, β < 0;
α > 0, β < 0 and α < 0, β > 0, with two possible domains of inflation in the two latter cases.
Therefore we have six regimes of inflation that we label SSBI1, SSBI2, SSBI3, SSBI4, SSBI5
and SSBI6. The different potentials and inflationary regimes are displayed and defined in
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Figure 60. Spontaneous Symmetry Breaking Inflation (SSBI) potential and the corresponding Hub-
ble flow parameter ǫ1 for the two cases α > 0, β > 0 (SSBI1), and α < 0, β < 0 (SSBI2). The values
of the parameters are chosen to be α, β = ±1. The four other possibilities, namely SSBI3, SSBI4,
SSBI5, SSBI6 are displayed in Fig. 61.

Fig. 60 and Fig. 61. Since the potential is symmetric under φ/MPl → −φ/MPl, it is only
displayed and studied for φ > 0.

Let us now calculate the slow-roll parameters. If one defines x by x ≡ φ/MPl, then the
three first Hubble parameters are given by the following expressions

ǫ1 =
2
(

αx+ 2βx3
)2

(1 + αx2 + βx4)2
, ǫ2 =

4
[

−α+
(

α2 − 6β
)

x2 + αβx4 + 2β2x6
]

(1 + αx2 + βx4)2
, (5.203)

and

ǫ3 =
4x2

(

α+ 2βx2
) [

−3α2 + 6β + α
(

α2 − 12β
)

x2 + 3
(

α2 − 8β
)

βx4 + 2β3x8
]

(1 + αx2 + βx4)2 [−α+ (α2 − 6β) x2 + αβx4 + 2β2x6]
. (5.204)

The first slow-roll parameter ǫ1 is displayed in the right panels of Figs. 60 and 61 while the
second and third slow-roll parameters ǫ2 and ǫ3 are displayed in Fig. 62. Let us describe the
behavior of these slow-roll parameters, for the six models under consideration. For SSBI1,
ǫ1 vanishes at x = 0, reaches a maximum at xSSBI1

ǫ2=0 (where ǫ2 vanishes and ǫ3 diverges) and
then decreases to asymptotically vanish when x goes to infinity. The value of xSSBI1

ǫ2=0 is given
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Figure 61. Spontaneous Symmetry Breaking Inflation (SSBI) potential and the corresponding Hub-
ble flow parameter ǫ1 for the two cases α > 0, β < 0 (corresponding to SSBI3 to SSBI4) and α < 0,
β > 0 (corresponding to SSBI5 and to SSBI6). In each of these cases, the direction in which inflation
proceeds is indicated by the arrow.

by

xSSBI1&3&6
ǫ2=0 =

{

− α

6β
+

1

6β

[

8α3 +

√

64α6 + (5α2 − 36β)3
]1/3

+
36β − 5α2

6β

[

8α3 +

√

64α6 + (5α2 − 36β)3
]−1/3

}1/2

.

(5.205)

Whether the maximum of ǫ1 at this point is larger or smaller than 1 depends on α and β.
In the following, we restrict ourselves to the physical regime where α, β . O (1). For each
value of β, there is a minimum value of α, denoted αmin, above which the maximum is larger
than 1. The line αmin(β) is displayed in Fig. 63 and the shaded area in this plot represents
the region in the parameter space where inflation stops by slow-roll violation. When β ≪ 1,
αmin(β) approaches 2 as can be noticed in the figure. In addition, for β ' 0.25, the maximum
value for ǫ1 becomes larger than 1 for any value of α.

For SSBI2, the three first slow-roll parameters are monotonic increasing functions of
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Figure 62. Second slow-roll parameter ǫ2 (solid line) and third slow-roll parameter ǫ3 (dotted line),
for the six SSBI models studied in this section. The free parameters of the models are chosen to be
α, β = ±1.

the field vev and diverge when the potential vanishes at

xSSBI2&4&5
V=0 =

√

−α+
√

α2 − 4β

2β
. (5.206)

Hence inflation ends by slow-roll violation at xend. Unfortunately, the corresponding vev
cannot be found exactly and one has to rely on numerical calculations. Let us also notice
that, while the first and third slow-roll parameters ǫ1 and ǫ3 vanish at x = 0, ǫ2 is equal to
ǫmin
2 = −4α at this point. Therefore, in order for the slow-roll approximation to be valid,
one needs to work with |α| ≪ 1.

For SSBI3, the first slow-roll parameter ǫ1 vanishes at x = 0 and at x =
√

−α/ (2β).
In between, it reaches a maximum located at

xSSBI3
ǫ2=0 = xSSBI1

ǫ2=0 , (5.207)

a point where ǫ2 vanishes and ǫ3 diverges. Whether the maximum of ǫ1 at this point is larger
or smaller than 1 depends again on α and β. For each value of β, there is a minimum value for
α = αmin above which inflation stops by slow-roll violation. This discussion is in fact similar
to the one presented in the SSBI1 case. The corresponding allowed region is represented in
Fig. 63 (top right panel).
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Figure 63. The solid black line gives the minimum value of |α|, denoted here by αmin, as a function
of β in order for inflation to stop by slow-roll violation for SSBI1 (top left panel), SSBI3 (top right
panel), SSBI5 (bottom left panel) and SSBI6 (bottom right panel). The region above the curve
(shaded region) represents the allowed region (i.e. the one where inflation stops because ǫ1 reaches
one). For SSBI1, when β ' 0.25, this is always the case. For SSBI1 and SSBI3, αmin approaches
the asymptotic value αmin = 2 when |β| ≪ 1. For SSBI5 and SSBI6, inflation stops by slow-roll
violation when α < −|αmin|. Finally, the dotted lines in the bottom panels corresponds α2 = 4β, see
the discussion in the text.

For SSBI4, the three first slow-roll parameters are monotonic increasing functions of the
field vev and diverge when the potential vanishes at xSSBI2&4

V=0 . The first and third slow-roll
parameters ǫ1 and ǫ3 vanish when x =

√

−α/ (2β) while ǫ2 has a non zero value ǫmin
2 =

8αβ/(β2 − α2/4) at this point. From the above discussion, it is clear that, in this version
of the scenario, inflation also stops by violation of the slow-roll condition. As for SSBI2,
however, the corresponding vev can not be determined exactly and a numerical calculation
is needed.

For SSBI5, the behavior of the slow-roll parameters depend on α2/β. If α2/β ≥ 4,
the minimum of the potential at x =

√

−α/ (2β) is negative. The potential vanishes at
xSSBI2&4&5
V=0 and the three first slow-roll parameters continuously increase between x = 0

where they vanish (except from ǫ2 for which ǫ
min
2 = −4α) and xSSBI2&4&5

V=0 where they diverge.
Inflation ends by slow-roll violation at some point xend that needs to be determined numer-
ically. On the other hand, if α2/β ≤ 4, ǫ1 vanishes at x = 0, reaches a maximum at xSSBI5

ǫ2=0

(where ǫ2 vanishes and ǫ3 diverges), then decreases and finally vanishes at x =
√

−α/ (2β).
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The value of xSSBI5
ǫ2=0 is given by

xSSBI5
ǫ2=0 =

{

− α

6β
− 1 + i

√
3

12β

[

8α3 +

√

64α6 + (5α2 − 36β)3
]1/3

+
5α2 − 36β

12β

(

1− i
√
3
)

[

8α3 +

√

64α6 + (5α2 − 36β)3
]−1/3

}1/2

.

(5.208)

Whether the maximum of ǫ1 at this point is larger or smaller than 1 depends on α and β
and is again similar to what has already been discussed before. The region in the parameter
space where inflation ends by slow-roll violation is displayed in Fig. 63 and corresponds to
the points such that α < −|αmin|. In this plot, the dotted line represents the curve α2 = 4β,
above which one is sure that inflation ends by slow-roll violation since the minimum of the
potential is negative in this case. For values of β ≪ 1, one can see that |αmin| ∼ 2

√
β and

the allowed region becomes negligible.
Finally the case SSBI6 remains to be treated. The behavior of the slow roll parameters

depend on α2/β in the same way as before. If α2/β ≥ 4, the minimum of the potential at
x =

√

−α/ (2β) is negative. The potential vanishes at xSSBI6
V=0 and the slow-roll parameters

continuously decrease from this value (where they blow up) and go to zero at infinity. The
value of xSSBI6

V=0 can be expressed as

xSSBI6
V=0 =

√

−α+
√

α2 − 4β

2β
. (5.209)

On the other hand, if α2/β ≤ 4, ǫ1 vanishes at x =
√

−α/ (2β), reaches a maximum at xSSBI6
ǫ2=0

and then decreases. At infinity, it goes to zero. The value of xSSBI6
ǫ2=0 is given by

xSSBI6
ǫ2=0 = xSSBI3

ǫ2=0 = xSSBI1
ǫ2=0 . (5.210)

Whether the maximum of ǫ1 at this point is larger or smaller than 1 depends on α and β.
The corresponding region in the parameter space is displayed in Fig. 63 and corresponds to
the inequality α < −|αmin|. The dotted line represents the law α2 = 4β. Above this line, one
is sure that inflation can stop by slow-roll violation since, in this case, the potential becomes
negative at some point. It is also interesting to notice that, when β ' 1.48, the maximum
value of ǫ1 is larger than 1 for any value of α. On the other hand, if β ≪ 1, the allowed
region shrinks to zero.

Let us now turn to the slow-roll trajectory. This one can be integrated exactly and the
following expression is obtained

Nend −N = − 1

2α
ln
(xend

x

)

− x2end − x12

8
− α2 − 4β

16αβ
ln







1 +
2β

α
x2end

1 +
2β

α
x2






, (5.211)

where Nend is the number of e-folds at the end of inflation. It is important to notice that the
argument of the logarithm is always positive.

Finally, it is interesting to constrain the value of the scale M with the CMB normaliza-
tion. It follows that

(

M

MPl

)4

=
2880

(

αx∗ + 2βx3∗
)2
π2

(1 + αx2∗ + βx4∗)
3

Q2
rms−PS

T 2
. (5.212)
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We are now in a position where we can discuss the predictions of the six versions of this
model. The reheating consistent slow-roll predictions for the SSBI1 models are displayed in
Figs. 126, 127 and 128 for β = 10−3, β = 10−1 and β = 10, respectively. SSBI1 seems to be
disfavored by the observations. The predictions of SSBI2 models are displayed in Fig. 129 for
different values of β and α. We notice that they depend on the parameter α quite strongly.
The spectral index is clearly red and, for values of β of order one, the contribution of gravity
waves becomes very small. For SSBI3, the predictions are presented in Figs. 130, 131 and
132 for β = −10−3, β = −5× 10−3 and β = −10−2 respectively. As we increase β, the points
start spreading in the plane (nS, r). For this class of models, the spectrum is red and the
level of gravity waves quite important. The predictions for the SSBI4 models are displayed in
Figs. 133, 134, and 135 for β = −10−5,−10−4,−10−3 respectively. One can notice that the
typical predicted values for ǫ1 decrease with the absolute value of β. As before the spread of
the points increases with β. The tilt is still red and the contribution of gravity waves is small
for small values of α. The predictions for the SSBI5 models are displayed in Figs. 136, 137
and 138 for β = 10−6, β = 10−5 and β = 10−4, respectively. Once again, for O(1) values of
β, one can see that the model predict a small amount of gravitational waves but a deviation
from scale invariance not really compatible with the observational constraints. Finally, the
reheating consistent slow-roll predictions for the SSBI6 models are displayed in Figs. 139,
140 and 141 for β = 10−6, β = 10−1 and β = 1, respectively. When β ≪ 1 the predictions
of the model do not depend on β. Moreover, for values of β of order one, the predictions
become almost independent of the two parameters of the model.

6 Three parameters Models

6.1 Running-mass Inflation (RMI)

This model has been derived and studied in Refs. [286, 434–442]. Following Ref. [437], let
us briefly discuss its physical origin. At tree level, a potential can always be expanded as
V (φ) ≃ M4 +m2φ2/2 + λ/4φ4 + · · · . Since the potential must be flat to support inflation,
quantum corrections play an important role. Typically, they modify the potential with a term
of the form

(

c1 + c2φ
2 + c4φ

4
)

ln (φ/µ), where µ is the renormalization scale, see Ref. [437].
In a non supersymmetric framework, the quartic term dominates and one is led to models
similar to RCMI, RCQI or CWI, see section 4.4, 4.5 and 4.11. On the other hand, in a
supersymmetric context, at least if supersymmetry is spontaneously broken, the quadratic
and the quartic terms cancel and one is left with a model similar to LI, see sections 4.12.
If, however, supersymmetry is explicitly broken by the presence of soft terms, then the most
important term will be the quadratic one. This gives rise to the RMI models that we study
in this section. The corresponding potential is given by

V (φ) =M4

[

1− λ

(

−1

2
+ ln

φ

µ

)

φ2

µ2

]

, (6.1)

which is a function of φ/µ only. The same potential has also been obtained in Ref. [443] in
the context of quadratic supergravity. This potential is characterized by three free param-
eters, M , µ and λ. However it turns out to be more convenient to use a slightly different
parametrization (essentially to facilitate the comparison with the existing literature). For
this reason, we re-write λ as λ/µ2 ≡ c/(2M2

Pl), thus introducing the parameter c. Then, the
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Figure 64. Top left panel: running mass potential for c = 0.8 (blue line) or c = −0.8 (green line) and
φ

0
= 0.5MPl. Top right panel: logarithm of the potentials for the same values of c and φ

0
. Bottom

left panel: slow-roll parameter ǫ1 for a potential with c = ±0.8 and φ
0
= 0.5MPl. Bottom right panel:

slow-roll parameters ǫ2 (solid line) and ǫ3 (dotted line) for c = ±0.8 and φ
0
= 0.5MPl. The value

c = ±0.8 may not be physical and was chosen only in order to produce a clear plot.

potential takes the form

V (φ) =M4

[

1− c

2

(

−1

2
+ ln

φ

φ0

)

φ2

M2
Pl

]

, (6.2)

where φ0 ≡ µ. In this expression, M , c and φ0 are free parameters. The dimensionless
parameter c can be positive or negative. Its absolute value is typically of the order 10−1

to 10−2, as noticed in Refs. [437, 440, 442], because a larger value of |c| would not allow
slow-roll inflation to take place, and a lower value would break the condition under which
the loop effects can be neglected when deriving the potential Eq. (6.2). This condition allows
a linear expansion of the effective mass of the inflation in logarithms, and thus implies that
|ln (φ/φ0)| ≪ 1, which defines the region in which the potential is valid. Also, this model is
commonly worked out in the vacuum dominated regime (otherwise it is equivalent to a large
field model, LFI, see section 4.2), which means that cφ2

0
/M2

Pl ≪ 1. The location φ = φ0 is
an extremum of V (φ), a maximum if c > 0 and a minimum if c < 0. The potential and its
logarithm are represented in Fig. 64.

Running mass inflation can be realized in four different ways [437], denoted as RMI1,
RMI2, RMI3 and RMI4 in what follows. RMI1 corresponds to the case where c > 0 and
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φ < φ0 , see Fig. 64 (top panels). In this case, φ decreases during inflation. RMI2 also
corresponds to c > 0 but with φ > φ0 and φ increases during inflation. RMI3 refers to the
situation where c < 0 and φ < φ0 all the time. In this case, φ increases during inflation.
Finally, RMI4 has c < 0 and φ > φ0 decreases as inflation proceeds.

Using the potential (6.2), one can calculate the three slow-roll parameters ǫ1, ǫ2 and ǫ3.
One obtains the following expressions

ǫ1 =
c2

2









φ

MPl

ln
φ

φ0

1− c

2

(

−1

2
+ ln

φ

φ0

)

φ2

M2
Pl









2

, (6.3)

ǫ2 = 2c

1 +
c

4

φ2

M2
Pl

+

(

1− c

4

φ2

M2
Pl

)

ln
φ

φ0

+
c

2

φ2

M2
Pl

ln2
φ

φ0
[

1− c

2

(

−1

2
+ ln

φ

φ0

)

φ2

M2
Pl

]2 , (6.4)

and

ǫ3 =

c ln
φ

φ0
[

1− c

2

(

−1

2
+ ln

φ

φ0

)

φ2

M2
Pl

]2

[

1 +
c

4

φ2

M2
Pl

+

(

1− c

4

φ2

M2
Pl

)

ln
φ

φ0

+
c

2

φ2

M2
Pl

ln2
φ

φ0

]−1

×
[

1 +
c

2

φ2

M2
Pl

+
c2

16

φ4

M4
Pl

+ c

(

2
φ2

M2
Pl

+
c

2

φ4

M4
Pl

)

ln
φ

φ0

+ c

(

3
φ2

M2
Pl

− c

2

φ4

M4
Pl

)

ln2
φ

φ0

+
c2

2

φ4

M4
Pl

ln3
φ

φ0

]

.

(6.5)
The slow-roll parameters are represented in the bottom panels in Fig. 64.

Now let us examine how inflation ends in this model. The slow-roll parameter ǫ1 has a
maximum in the φ < φ0 region and a maximum in the φ > φ0 region, see Fig. 64. If these max-
ima were larger than one, inflation could in principle stops by violation of the slow-roll con-
ditions (i.e., clearly, if ǫ1 is always smaller than one, this can never happens). In the vacuum
dominated approximation, however, we see from Eq. (6.3), that ǫ1 ≃ c2/2φ2/M2

Pl ln
2 (φ/φ0).

This means that the vev φend satisfies φend/φ0 ln (φend/φ0) = ±
√
2/cMPl/φ0 . But we have es-

tablished previously that the vacuum dominated condition precisely implies that cMPl/φ0 ≫
1. As a result, we have φend/φ0 ln (φend/φ0) ≫ 1 or φend/φ0 ≫ 1 and, hence, ln (φend/φ0) ≫ 1
as well. But for the model to be valid, we have already mentioned that one must have
|ln (φ/φ0)| ≪ 1. We conclude that the value of φend obtained above lies outside the regime
of validity of the potential. This means that, either the end of inflation nevertheless occurs
by violation of the slow-roll but in a regime where additional unknown corrections arise and
modify the shape of V (φ) (and the calculations presented here cannot describe this phase),
or there is a tachyonic instability which ends inflation in the regime where our calculations
are valid but we must introduce a new parameter, φend, the vev at which the instability
occurs. In this article, we follow the second possibility which implies that RMI is indeed a
three parameters model.
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We now turn to the calculation of the physical predictions of these models. The first
step is to obtain the slow-roll trajectory. One obtains

N −Nini =
1

c

(

ln

∣

∣

∣

∣

ln
φ

φ0

∣

∣

∣

∣

− ln

∣

∣

∣

∣

ln
φini
φ0

∣

∣

∣

∣

)

− 1

4

(

φ2

M2
Pl

− φ2ini
M2

Pl

)

+
1

4

(

φ0

M2
Pl

)2 [

Ei

(

2 ln
φ

φ0

)

− Ei

(

2 ln
φini
φ0

)]

,

(6.6)

where the exponential integral function Ei is defined by Ei(x) ≡ −
∫ +∞
−x dte−t/t [160, 161].

This expression cannot be inverted analytically (unless numerical method are used as done
in the ASPIC library). However, in the limit cφ/MPl ≪ 1 (the vacuum dominated regime),
the above expression can be approximated by

N ≃ 1

c

(

ln

∣

∣

∣

∣

ln
φ

φ0

∣

∣

∣

∣

− ln

∣

∣

∣

∣

ln
φini
φ0

∣

∣

∣

∣

)

, (6.7)

from which it follows that

φ (N) = φ0 exp

(

ecN ln
φini
φ0

)

. (6.8)

We are now in a position where we can discuss the observable consequences of the above
considerations. The exact slow-roll predictions of the four models, RMI1, RMI2, RMI3 and
RMI4 are presented in Figs. 142, 143, 144 and 145 for |c| = 10−2, φ0/MPl < 1/

√

|c|, and 1/e <
φend/φ0 < e, respectively. In order to interpret them, it is interesting to use approximations.
From the trajectory (6.8), it is straightforward to calculate φ∗. Remembering that inflation is
supposed to stop by instability at φend, one obtains φ∗ = φ0 exp

[

e−c∆N∗ ln (φend/φ0)
]

. Then,
using Eqs. (6.3), (6.4) and (6.5) in the vacuum dominated limit, we find that

ǫ1∗ ≃ c2

2

(

φ0

MPl

)2

exp

[

2e−c∆N∗ ln

(

φend
φ0

)]

e−2c∆N∗ ln2
(

φend
φ0

)

, (6.9)

ǫ2∗ ≃ 2c

[

1 + e−c∆N∗ ln

(

φend
φ0

)]

. (6.10)

In fact, in order to compare with the existing literature, it turns out to be convenient to
define the following quantity

s ≡ c ln

(

φ0

φ∗

)

= −c e−c∆N∗ ln

(

φend
φ0

)

. (6.11)

For RMI1 and RMI4, s > 0 while for RMI2 and RMI3 one has s < 0. This quantity can also
be used to estimate φend since φend ≃ φ0 exp[−s exp(−cN∗)/c]. Then, Eqs. (6.9) and (6.10)
can be re-written as

ǫ1∗ ≃
s2

2

(

φ0
MPl

)2

e−2s/c, ǫ2∗ ≃ 2c
(

1− s

c

)

. (6.12)

The last equations means that the trajectory in the plane (ǫ1, ǫ2) can be expressed as ǫ2 ≃
2(c − s) + 4ǫ1M

2
Pl/φ

2
0
. If we neglect ǫ1∗ (with respect to ǫ2∗) then one recovers the formula

already derived in Refs. [437, 440, 442], namely nS−1 ≃ 2(s−c). The same route for the third
slow-roll parameter gives ǫ2ǫ3 ≃ −2cs and neglecting again ǫ1, one gets the scalar running
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αS ≃ 2sc. The above analytical estimates agree well with the exact predictions in Figs. 142,
143, 144 and 145.

Finally, a few words on the mass scale M are in order. From the CMB normalization,
we obtain the following expression

M4

M4
Pl

= 720π2c2
Q2

rms−PS

T 2

φ2∗/M
2
Pl ln

2 (φ∗/MPl)
{

1− c/2 [−1/2 + ln (φ∗/φ0)]φ
2
∗/M

2
Pl

}3 . (6.13)

A simpler formula can be derived if one uses the approximate formulas established above. In
this case, one can write M4/M4

Pl ≃ 720π2s2(Q2
rms−PS/T

2)(φ0/MPl)
2e−2s/c.

6.2 Valley Hybrid Inflation (VHI)

Hybrid inflation is a two-fields model with the potential [133, 193, 286, 444–447]

V (φ,ψ) =
1

2
m2φ2 +

λ′

4

(

ψ2 −∆2
)2

+
λ

2
φ2ψ2, (6.14)

where φ is the inflaton, ψ the waterfall field and λ and λ′ are two coupling constants. As a
two-field models, the hybrid potential supports various inflationary domains. The standard
lore is that inflation can proceed along the valley given by ψ = 0 and, in this case, the
potential reduces to an effective single field potential that can be written as

V (φ) =M4

[

1 +

(

φ

µ

)p]

, (6.15)

with p = 2 and where one has used the following parameter redefinition

M =
λ′1/4∆√

2
, µ =

√

λ′

2

∆2

m
. (6.16)

Inflation along the valley has been shown to be a dynamical attractor of the two-field dy-
namics in Refs. [448, 449]. However, as recently shown in Ref. [450], the hybrid potential can
also support an inflationary phase along a mixed valley-waterfall trajectory, which is gen-
uinely a two-fields dynamics. As we use a single field description here, those effects cannot
be described by the potential of Eq. (6.15). For this reason, we will refer to the single field
approximation as the valley hybrid regime. Let us stress that if the waterfall inflationary
regime occurs, it will erase any observable effects coming the valley hybrid regime. As a
result, Eq. (6.15) is a good description of hybrid inflation only if the model parameters are
such that the waterfall regime remains sub-dominant. According to Ref. [450, 451], this is
the case provided

√
λ′
∆3

m
≪M2

Pl, (6.17)

a condition that will be assumed in the following. The effective potential Eq. (6.15) was also
obtained in Ref. [452] in the context of supergravity brane inflation, and in Ref. [430] in the
context of hilltop supernatural inflation. It depends on three parameters, namely M , µ and
p. In fact, as mentioned before, p = 2 for the two-field model given in Eq. (6.14) but we will
consider the most general situation by letting p > 0 unspecified. Let us again all multifield
effects such as the generation of isocurvature modes or cosmic strings cannot be accounted
within the single field dynamics [121, 453–455].
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The first three Hubble flow functions in the slow-roll approximation can be derived from
Eq. (6.15). Defining

x ≡ φ

µ
, (6.18)

they read

ǫ1 =
p2

2

(

MPl

µ

)2 x2p−2

(1 + xp)2
, ǫ2 = 2p

(

MPl

µ

)2

xp−2x
p − p+ 1

(1 + xp)2
, (6.19)

and

ǫ3 = p

(

MPl

µ

)2

xp−2 2x
2p − (p− 1)(p + 4)xp + (p− 1)(p − 2)

(1 + xp)2 (xp − p+ 1)
. (6.20)

A specific feature of hybrid inflation in comparison to large and small field models is that ǫ2
and ǫ3 can be negative (see Fig. 65). In particular

ǫ2 ∼
x→0

−2p(p− 1)

(

MPl

µ

)2

xp−2, (6.21)

and ǫ3 blows up in the limit xp → p− 1. Together with the potential, the three Hubble flow
functions have been represented in Fig. 65.

The slow-roll trajectory is obtained by integrating Eq. (2.11) with the valley hybrid
potential and reads

N −Nend =
1

2p

µ2

M2
Pl

[

−x2 + x2end +
2

2− p

(

x2−pend − x2−p
)

]

, (6.22)

which is, up to a sign, the same as for the SFI models [see Eq. (5.5)]. The case p = 2 requires
a special attention, but as for SFI, it is recovered as the limit p→ 2 in the previous equation.
One gets

N −Nend =
1

4

µ2

M2
Pl

[

−x2 + x2end − 2 ln

(

x

xend

)]

, (6.23)

which is again very similar to SFI, up to a sign. The trajectory (6.22) cannot be inverted
analytically in the general case to get x(N). It is however possible to perform this inversion
for almost all integer values of p, but those expressions will be omitted for the sake of clarity.
We simply give an approximate solution valid only in the limit x≪ 1 and p > 2

x ≃
[

x2−pend + p(p− 2)
M2

Pl

µ2
(N −Nend)

]1/(2−p)
. (6.24)

If the waterfall regime does not take place, i.e. under the condition (6.17), valley hybrid
inflation ends by a tachyonic instability in the small field regime x < 1, also referred to as the
vacuum dominated regime. From the two-fields potential (6.14), one sees that the transverse
direction becomes tachyonic at the inflaton value

xend =
λ′

λ
∆ . (6.25)

In the single field approach, xend is therefore an extra-parameter and VHI is a three param-
eters model according to our classification. However, as can be seen in Fig. 65, one should
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Figure 65. Valley Hybrid inflation (VHI) for p = 2. Upper panels: the potential and its logarithm
for µ = 0.6MPl. Bottom left panel: slow-roll parameter ǫ1 for µ = 0.6MPl (blue line) and µ = 0.9MPl

(green line). For small values of µ, the inflationary regions are separated into a large field one and the
vacuum dominated one. The latter may not exist due to slow-roll violations if the field evolves first in
the large field domain (see text). The shaded area indicates the regions in which acceleration cannot
occur. Bottom right panel: slow-roll parameters ǫ2 (solid line) and ǫ3 (dotted line) for µ = 0.6MPl.

pay attention to the various domains in which inflation can take place. They are given by
the behavior of ǫ1(x).

If p > 1, the slow-roll parameter ǫ1 vanishes when the field goes to zero and at infinity
while it reaches a maximum for

xǫmax
1

= (p− 1)1/p , (6.26)

equals to

ǫmax
1 =

1

2

(

MPl

µ

)2

(p− 1)
2p−2

p . (6.27)

Defining

µǫ ≡
MPl√
2
(p− 1)1−1/p , (6.28)

for all µ > µǫ, one has ǫ1(x) < 1 and inflation can proceed all over the domain x > 0. On the
contrary, if µ < µǫ, then inflation can, a priori, proceed in two disconnected domains. Either
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0 < x < x−ǫ1=1 or x > x+ǫ1=1 where x±ǫ1=1 are the two roots of ǫ1 = 1, i.e. the solutions of

x2p + 2xp − p2

2

(

MPl

µ

)2

x2p−2 + 1 = 0. (6.29)

This equation cannot be solved explicitly in the general case but, as for the trajectory, there
are analytical expressions for almost all integer values of p. For instance, for p = 2, one gets

x
±(p=2)
ǫ1=1 =

1√
2

MPl

µ

(

1±
√

1− 2
µ2

M2
Pl

)

. (6.30)

The positive sign corresponds to the largest root while the minus one to the smallest (see
Fig. 65). In the limit µ ≪ MPl, one has x+ǫ1=1 ≃ pMPl/(

√
2µ) which is also the expression

of xend for the large field model LFI (see section 4.2). That’s not surprising since in that
situation Eq. (6.15) is indeed dominated by the monomial term. In fact, the two above-
mentioned domains precisely corresponds to a large field one for x > x+ǫ1=1 and a vacuum

dominated one for x < x−ǫ1=1. It is a common mistake to assume that the large field domain
remains unobservable due to the existence of the vacuum dominated one. Indeed, as shown
in Ref. [448], the large field regime becomes observable provided µ ≪ µǫ. In that situation,
after having crossed x+ǫ1=1, the field goes on fast-rolling in the region ǫ1(x) > 1. Then, it

enters the domain x < x−ǫ1=1 with a strong initial velocity such that it traverses the whole
vacuum dominated region, still in fast-roll, to reach xend and without triggering inflation.
All observable predictions in such a situation are similar to the LFI models. Let us notice
that if there exists a mechanism that can gently put the field without a strong initial velocity
inside the x < x−ǫ1=1 domain, then inflation can still occur in the vacuum dominated region,

even though µ < µǫ. But if the field is coming from the region x > x+ǫ1=1, then this regime
does not exist anymore.

For p = 1, ǫ1(x) is a decreasing function of the field and takes a finite value M2
Pl/(2µ

2)
for x → 0. The behavior is similar to the case p > 1 and if µ > MPl/

√
2 inflation can take

place all over x > xend. However, if µ < MPl/
√
2 then the vacuum dominated region does

not exist anymore and xǫ1=1 = x+ǫ1=1 = MPl/(
√
2µ)− 1 One should also notice that if p = 1

the relation ǫ2 = 4ǫ1 applies.
Finally, for p < 1, ǫ1(x) is a decreasing function of the field but it blows up when x→ 0.

In that situation, inflation stops at x = max(x−ǫ1=1, xend) but the field will still fast-roll till

the tachyonic instability develops at xend. As a result, even if for some cases x−ǫ1=1 > xend,
the observable predictions remain mostly the same.

According to the previous discussion, for p > 1, the VHI effective potential is therefore
adequate to describe the vacuum dominated regime only, i.e. for xend < x < x−ǫ1=1 where
xend is the instability point given by Eq. (6.25). In that situation, solving Eq. (2.46) together
with the trajectory (6.22) gives the observable field value x∗ at which the pivot mode crossed
the Hubble radius during inflation. The potential parameter M is fixed from the amplitude
of the CMB anisotropies

M4

M4
Pl

= 720π2p2
M2

Pl

µ2
x2p−2
∗

(1 + xp∗)
3

Q2
rms−PS

T 2
. (6.31)

The reheating consistent slow-roll predictions are displayed in Figs. 146, 147, 148, 149 and
150 for p = 0.5, p = 1, p = 1.5, p = 2 and p = 3, respectively. For p > 1, xend is varied
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between 0 and an upper bound that is such that xin < x−ǫ1=1 if xǫmax
1

> 1, and xend < 10 in
both cases since the potential is valid in its vacuum dominated regime, while for p ≤ 1, it
is varied on a wider range, with no particular constraints. For p = 1, the predictions lie on
the contour ǫ2 = 4ǫ1 as expected whereas for p > 1 one recovers a blue spectral index when
xǫmax

1
> 1, while a red spectral index can be obtained when xǫmax

1
< 1 and x∗ > xǫmax

1
, with

x∗ < 1.

6.3 Dynamical Supersymmetric Inflation (DSI)

This model has been derived and studied in Ref. [456, 457] in the context of supersymmetry
breaking generated by gauge dynamics. Its potential is given by

V (φ) =M4

[

1 +

(

φ

µ

)−p
]

, (6.32)

where p is a free index parameter, and µ is a scale of order µ ≃ 1010 GeV. In Ref. [456], it is
argued that such potentials can appear generically in supersymmetric theories. As explained
below, the inflationary regime takes place at large field values for which the denominator of
Eq. (6.32) is always well-defined. Within the philosophy of these models, it is also argued in
Ref. [456] that non-renormalizable terms of the form

V (φ) =M4

[

1 +

(

φ

µ

)−p
]

+
φq+4

M q
Pl

, (6.33)

may be present, but they are suppressed by powers of MPl, the only explicit scale allowed in
the theory. This extra term provides the potential with an absolute minimum at a vev given
by

φV min =

(

p

q + 4
M4µpM q

Pl

)
1

p+q+4

. (6.34)

This means that these extra terms can be neglected in the region φ≪ φV min . Also, in order for
the potential Eq. (6.32) to produce inflation, lnV must be flat enough, and inflation takes
place in its vacuum dominated part φ ≫ µ. One concludes that the potential Eq. (6.32)
should be studied in the regime

µ≪ φ≪ φV min , (6.35)

which puts interesting priors on the models parameters, as explained below. Before turning
to the slow-roll analysis of the models, let us mention that the potential Eq. (6.32) is in
fact quite general, and that it has been later studied in other contexts. In Ref. [193], the
same potential appears with p = 2 in the context of mutated hybrid inflation. In Refs. [123,
287, 288, 330, 458–461, 461–471], this is a typical potential in the context of brane inflation
where µ is an effective compactification scale µ ≃ 1012 GeV. In Refs. [472, 473], the same
potential arises in the context of tachyon inflation, in Ref. [474] in the context of SQCD
inflation, and in Ref. [399] as the strong coupling limit of the twisted inflation model (see
TWI, section 5.5). Let us also mention that the same kind of inverse power law potential is
made use of in quintessential inflation models [231, 475, 476].

The potential Eq. (6.32), as well as its logarithm, is displayed in Fig. 66. It is a decreasing
function of the field, hence inflation proceeds from the left to the right. Let us calculate the
slow-roll parameters. Defining

x ≡ φ

µ
, (6.36)
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Figure 66. Dynamical Supersymmetric Inflation (DSI) for p = 2. Upper panels: the potential and
its logarithm as a function of φ/µ. Bottom left panel: slow-roll parameter ǫ1 rescaled byM2

Pl
/µ2. The

shaded area indicates the region in which inflation cannot occur for µ = MPl. Bottom right panel:
slow-roll parametersǫ2 (solid line) and ǫ3 (dotted line), rescaled by M2

Pl
/µ2.

the first three Hubble flow functions in the slow-roll approximation read

ǫ1 =
p2

2

(

MPl

µ

)2 x−2p−2

(1 + x−p)2
, ǫ2 = −2p

(

MPl

µ

)2

x−p−2x
−p + p+ 1

(1 + x−p)2
, (6.37)

and

ǫ3 = −p
(

MPl

µ

)2

x−p−2

[

2x−2p + (p+ 1) (p− 4) x−p + (p+ 1) (p+ 2)
]

(1 + x−p)2 (x−p + p+ 1)
. (6.38)

Let us notice already that, from these expressions, one has

− 2ǫ1 − ǫ2 =

(

MPl

µ

)2 px−p−2

(1 + x−p)2
[

px−p + 2p (p+ 1) x−p−2
]

> 0 , (6.39)

which implies a blue spectral index for the scalar power spectrum since, at first order, nS−1 =
−2ǫ1∗ − ǫ2∗. As announced before, these functions become very small at large fields x ≫ 1.
More precisely, there is a minimum value xǫ1=1 below which ǫ1 > 1 and inflation cannot
take place. This value has to be determined numerically, but since generally, µ/MPl ≪ 1, an
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approximated expression can be derived as

xǫ1=1 ≃
(

p√
2

MPl

µ

)1/(p+1)

. (6.40)

Because the potential is decreasing with x, inflation can only takes place in the domain
x > xǫ1=1 ≫ 1 if µ ≪ MPl. It cannot stop by slow-roll violation and another mechanism
such as, e.g. a tachyonic instability, has to be introduced. We will denote by xend the field
value at which this occurs and that is an extra model parameter. Obviously, it must be such
that xǫ1=1 < xend ≪ xV min.

Let us now turn to the slow-roll trajectory. It can be integrated explicitly from Eq. (2.11)
and one obtains

Nend −N =
µ2

2pM2
Pl

(

x2end +
2

p+ 2
xp+2
end − x2 − 2

p+ 2
xp+2

)

. (6.41)

In the µ/MPl ≪ 1 limit, one has x > xǫ1=1 ≫ 1, and the previous trajectory can be approxi-
mated by

Nend −N ≃ µ2

p(p+ 2)M2
Pl

(

xp+2
end − xp+2

)

. (6.42)

This expression can be analytically inverted to get the observable field value x∗ in terms of
∆N∗ = Nend −N∗ as

x∗ ≃
[

xp+2
end − M2

Pl

µ2
p (p+ 2)∆N∗

]
1

p+2

. (6.43)

One can notice that the total amount of e-folds is bounded because xend ≪ xV min and cannot
take infinitely large values. In order to get a number of e-folds, ∆N > ∆Nmin, xend should
be sufficiently large with xend > xmin

end . More precisely, setting xini = xǫ1=1, one has

xmin
end ≃

[

p (p+ 2)
M2

Pl

µ2
∆Nmin +

(

p√
2

MPl

µ

)
p+2
p+1

]

1
p+2

≃
[

p (p+ 2)
M2

Pl

µ2
∆Nmin

]
1

p+2

. (6.44)

In practice one wants ∆Nmin > 50 to solve the problems of the standard Big-Bang scenario.
Whether this value is compatible, or not, with the condition xend ≪ xV min depends on the
value of M4 appearing in Eq. (6.34), which is itself determined by the amplitude of the CMB
anisotropies.

From x∗, the amplitude of the CMB anisotropies fixes M such that

(

M

MPl

)4

= 720π2p2
(

MPl

µ

)2

x−2p−2
∗

(

1 + x−p∗
)−3 Q

2
rms−PS

T 2
. (6.45)

In the limit µ/MPl ≪ 1, one has x∗ ≫ 1 and this expression can be approximated by

M4

M4
Pl

≃ 720π2p2
M2

Pl

µ2
x−2p−2
∗

Q2
rms−PS

T 2
. (6.46)

Therefore, from Eq. (6.34), one has

xV min ≃
[

720π2
p3

q + 4

(

MPl

µ

)6+q

x−2p−2
∗

Q2
rms−PS

T 2

]
1

p+q+4

, (6.47)

– 169 –



Figure 67. Dynamical Supersymmetric Inflation. Maximal value of µ/MPl with respect to p, and
for different values of q, such that the condition xmin

end
< xmax

end
is satisfied. We have fixed ∆Nmax = 50.

The black dotted line show a typical value for µ/MPl ≃ 1010GeV [456].

with x∗ depending on xend through Eq. (6.43). One can see that the previous expression
decreases with x∗. As a result, xV min decreases with xend. The condition xend ≪ xV min

imposes an upper bound on xend < xmax
end with

xmax
end ≃

[

720π2
p3

q + 4

Q2
rms−PS

T 2

(

MPl

µ

)q+6
]1/(3p+q+6)

. (6.48)

The prior condition on xend is therefore of the type xmin
end < xend≪ xmax

end , with xmin
end defined

by Eq. (6.44) and xmax
end defined by Eq. (6.48). Let us notice that xmin

end ∝ (MPl/µ)
2/(p+2) while

xmax
end ∝ (MPl/µ)

(q+6)/(3p+q+6). Therefore, for any q > 0, there exist a sufficiently small value
of µ, say µmax under which the condition xmin

end ≪ xmax
end is fulfilled. It reads

µmax

MPl

≃

(

720π2 p3

q+4

Q2
rms−PS

T 2

)(p+2)/(pq)

[p(p+ 2)∆Nmin]
(3p+q+6)/(pq)

, (6.49)

and has been represented in Fig. 67. One can see that a typical value µ/MPl ≃ 1010 GeV (see
Ref. [456]) is not allowed for all realistic values of p and q. As such, the prior space for p, µ,
and xend is constrained and should be handled carefully.

The reheating consistent slow-roll predictions of the dynamical supersymmetric models
are displayed in Figs. 151, 152 and 153 for p = 2, p = 3 and p = 4, respectively, and with
10−10MPl < µ < µmax (where µmax has been calculated taking q = 8 and ∆Nmin = 60 to cover
a large prior space). The reheating equation of state parameter wreh has been taken to 0 but
since there is no potential minimum around which the inflaton field can oscillate at the end of
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inflation, this parameter is a priori unspecified and can take different values. In any case the
reheating temperature is strongly degenerated with the parameter xmin

end < xend < xendmax
preventing their inference. One can check that the spectral index is blue, as announced
earlier, rendering these models rather disfavored by the observations. The typical amount of
gravitational waves is very small, in agreement with the results of Ref. [456].

6.4 Generalized Mixed Inflation (GMLFI)

This model is a generalization of MLFI (see section 4.3), i.e. the sum of two monomial
functions with arbitrary power indexes. The potential is

V =M4

(

φ

MPl

)p [

1 + α

(

φ

MPl

)q]

, (6.50)

where α, p and q are three dimensionless positive parameters. It can be seen as a general
extension of the large field inflation potential (LFI, see section 4.2), which is recovered when
α→ 0 or α→ ∞. The parameter α therefore tunes the relative weight of the two terms. Since
the potential is an increasing function of the inflaton vev , inflation proceeds at decreasing
field value and occurs in the large field regime φ/MPl ≫ 1. Defining

x ≡ φ

MPl

, (6.51)

the first three Hubble flow functions in the slow-roll approximation reads

ǫ1 =
1

2x2

[

p+ α (p+ q)xq

1 + αxq

]2

, (6.52)

ǫ2 =
2

x2
p+ α2 (p+ q)x2q + α

(

2p+ q − q2
)

xq

[1 + αxq]2
, (6.53)

and

ǫ3 =
1/x2

[1 + αxq]2
[

pq2 + α2q2 (p+ q)x2q + αq2
(

2p+ q − q2
)

xq
]−1

×
{

2q2[p2 + α4(p+ q)2]x4q + α2q2
[

12p2 + 6pq (2− q) + (q − 2) (q − 1) q2
]

x2q

+ α3q3 (p+ q)

[

8
p

q
+ (1− q) (4 + q)

]

x3q + αpq2
[

8p+ q
(

4 + q2 − 3q
)]

xq

}

.

(6.54)

They are decreasing functions of the field, vanishing when x → ∞ and diverging when
x → 0. Together with the potential and its logarithm, the Hubble flow functions have been
represented in Fig. 68.

From Fig. 68, one sees that inflation ends by slow-roll violation for x = xend, the solution
of ǫ1(xend) = 1. From Eq. (6.52), one gets

√
2αxq+1

end +
√
2xend = ±

[

p+ α (p+ q)xqend
]

. (6.55)

One can check that for α = 0 one recovers the LFI-p result xend = p/
√
2 (see section 4.2), and

that for α→ ∞ one gets xend = (p+ q) /
√
2, which correspond again to the LFI-p+q solution.
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Figure 68. Generalized Mixed Inflation (GMLFI) for p = 3, q = 2 and α = 0.1. Upper panels: the
potential and its logarithm with respect the field value. Bottom left panel: slow-roll parameter ǫ1,
the shaded region is where inflation stops. Bottom right panel: slow-roll parameters ǫ2 (solid line)
and ǫ3 (dotted line).

The above equation cannot be solved analytically for arbitrary values of p, q. This is possible
only in some particular cases q = 0, q = 1 or q = 2. For q = 0, this is LFI whereas q = 2
corresponds to MLFI, both solutions being given in section 4.2 and section 4.3, respectively.
For q = 1, one obtains

xend =

√
2

4
(p+ 1)− 1

2α
+

√

4 + 4
√
2α (p− 1) + 2α2 (p+ 1)2

4α
. (6.56)

In general xend has to be determined numerically.
The slow-roll trajectory can be integrated explicitly from Eq. (2.11), which gives

Nend −N =
1

2 (p+ q)
x2
{

1 +
q

p
2F1

[

1,
2

q
, 1 +

2

q
,−αq

(

1

p
+

1

q

)

xq
]}

− 1

2 (p+ q)
x2end

{

1 +
q

p
2F1

[

1,
2

q
, 1 +

2

q
,−αq

(

1

p
+

1

q

)

xqend

]}

.

(6.57)

Here 2F1 stands for the Gauss hypergeometric function. Since it is equal to unity when
its last argument vanishes, one can check that in the limit α → 0, one recovers the slow-
roll trajectory for the LFI-p models while the limit α → ∞ leads to the trajectory of the
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LFI-p + q models. Finally, since 2F1 [1, 1, 2, x] = − ln (1− x) /x, one can also check that
the MLFI case corresponds to p = q = 2. The previous expression can only be inverted
for q = 0 (LFI) and q = 2 (MLFI), and they have been already discussed in section 4.2
and section 4.3, respectively. The case q = 1 could also be simplified using 2F1 [1, 2, 3, x] =
−2/x− 2 log(1− x)/x2. In general, one has to inverse this slow-roll trajectory numerically.

Finally, Eq. (2.46) allows for the determination of the observable field value x∗ once the
reheating is specified. The parameter M can then be determined from the amplitude of the
CMB anisotropies and verifies

M4

M4
Pl

= 720π2
[p+ α (p+ q) xq∗]

2

xp+2
∗ [1 + αxq∗]

3

Q2
rms−PS

T 2
. (6.58)

The reheating consistent slow-roll predictions for the generalized mixed large field mod-
els are displayed in Figs 154, 155, and 156 for p = 2 and q = 1; p = 2 and q = 3; and p = 3
and q = 2; respectively. As for MLFI, the predictions lie between the LFI-p and LFI-p + q
models, but can actually be out of this region for high enough values of α. This means that
if one starts from a pure V ∝ φp+q potential and adds a small ∝ φp term, this extra term has
the effect of increasing the “effective value” of the power index of the potential. Moreover,
since for the large field inflation models, the p-model is favored with respect to the p+ q-one,
small values for the parameter α are favored, together with high reheating temperatures.

6.5 Logarithmic Potential Inflation (LPI)

This class of models has been studied on general grounds in Ref. [477]. The inflaton is
assumed to evolve in a potential of the form

V (φ) =M4

(

φ

φ0

)p(

ln
φ

φ0

)q

. (6.59)

On more fundamental grounds, such a potential appears in various contexts. For instance,
for p = 4 and q = 3, one recovers the model discussed in Ref. [413] in the context of Super
Yang-Mills theories. For p = 4 and q = 1, this model matches with the so-called Glueball
Inflation of Ref. [478]. For both of these models, the inflaton is however non-minimally
coupled to gravity. Defining

x ≡ φ

φ0

, (6.60)

the potential exhibits a local maximum at x = xV max and a vanishing local minimum at
x = xV=0 with

xV max = e−q/p, xV=0 = 1. (6.61)

For x > xV=0, V (x) increases and finally diverge when x goes to infinity. The potential
is always definite positive in the x > 1 branch, whereas it is definite positive in the x < 1
branch only if q is an even integer. The first three Hubble flow functions in the slow-roll
approximation are given by

ǫ1 =
M2

Pl

φ2
0

[q + p ln (x)]2

2x2 ln (x)2
, ǫ2 = 2

M2
Pl

φ2
0

q + q ln (x) + p ln (x)2

x2 ln (x)2
, (6.62)

and

ǫ3 =
M2

Pl

φ2
0

[q + p ln (x)]
2q + 3q ln (x) + 2q ln (x)2 + 2p ln (x)3

x2 ln (x)2
[

q + q ln (x) + p ln (x)2
] . (6.63)
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Figure 69. Logarithmic Potential Inflation (LPI) for p = 4, q = 2. Upper panels: the potential and
its logarithm. Bottom left panel: slow-roll parameter ǫ1. Bottom right panel: slow-roll parameters ǫ2
(solid line) and ǫ3 (dotted line).

Together with the potential, they are displayed in Fig. 69.
As can be checked on this figure, and assuming q is even, the behavior of ǫ1(x) exhibits

three domains in which inflation can occur and can naturally end. Either x > 1 and inflation
proceeds at decreasing field values (LPI1), or xV max < x < 1 and inflation proceeds at
increasing field values (LPI2), or 0 < x < xV max and inflation proceeds at decreasing field
values (LPI3). For these three domains, the slow-roll trajectory can be integrated analytically
and one has

N −Nend =

(

φ0

MPl

)2{

−x
2 − x2end
2p

+
q

p2
e−2q/p

[

Ei

(

2q

p
+ 2 ln x

)

− Ei

(

2q

p
+ 2 ln xend

)]}

.

(6.64)
Let us remark that for x→ +∞ (LPI1), one recovers the large field inflation (LFI) trajectory
of section 4.2 and where p matches the same parameter.

Along the three regimes, inflation ends at the field value xend solution of ǫ1(xend) = 1
in the domain of interest, i.e. verifying

p ln(xend) + q ∓
√
2
φ0

MPl

xend ln(xend) = 0. (6.65)

This is a transcendental equation that cannot be solved analytically for any values of p and
q. It can nevertheless be solved numerically in each of the three above-mentioned domains.

– 174 –



Together with Eq. (6.64) and Eq. (2.46), it uniquely determines the observable field value x∗
at which the pivot mode crossed the Hubble radius during inflation. Therefore, according to
our classification, LPI is a three parameters model with p, q and φ0 .

Finally, the parameter M is fixed by the amplitude of the CMB anisotropies to

M4

M4
Pl

= 720π2
(

MPl

φ0

)2 [q + p ln (x∗)]
2

x2+p∗ ln (x∗)
2+q

Q2
rms−PS

T 2
. (6.66)

The reheating consistent slow-roll predictions for the LPI1 models with p = 4 are represented
in Figs 157, 158, and 159 for q = 2, q = 1 and q = 3, respectively. The predictions for the
LPI2 domain are displayed in Figs 160, 161, and 162 for p = 1, q = 2; p = 2, q = 2; and
p = 3, q = 4; respectively. For the LPI3 domain, they have been plotted in Figs 163, 164,
and 165 for p = 1, q = 2; p = 2, q = 2; and p = 3, q = 4; respectively. One can see that
the current CMB data require LPI inflation to take place with super-Planckian values for φ0

while some peculiar combination of p and q are already disfavored at more than two-sigma.

6.6 Constant nS D Inflation (CNDI)

This model has been studied in Ref. [412]. Its potential is designed in order to produce a
power law power spectrum ∝ kn (where n is a constant). In this sense, the approach followed
here is similar to the one investigated in sections 4.20, 4.21 and 5.14. The potential studied
in this section is given by

V (φ) =
M4

{

1 + β cos

[

α

(

φ− φ0

MPl

)]}2 , (6.67)

where α and β are two dimensionless parameters. Since the potential is an even function of
x ≡ (φ− φ0) /MPl and is periodic with period 2π, it can be studied without loss of generality
in the range x ∈ [0, π/α] only (with α > 0, β > 0). V (φ) and its logarithm are displayed
in Fig. 70 (top panels) for two different representative values of β. If β < 1 (blue curve),
it is an increasing function of the field, hence inflation proceeds from the right to the left.
On the contrary, if β ≥ 1 (pink curve), it diverges at xV→∞ = arccos (−1/β) /α. Then, for
x < xV→∞ it is an increasing function of x and inflation proceeds from the right to the left,
whereas for x > xV→∞ it is an decreasing function of x and inflation proceeds from the left
to the right.

The three first slow-roll parameters are given by the following expressions

ǫ1 =
2α2β2 sin2 (αx)

[1 + β cos (αx)]2
, ǫ2 =

−4α2β [β + cos (αx)]

[1 + β cos (αx)]2
, (6.68)

and

ǫ3 =
−2α2β

[

2β2 − 1 + β cos (αx)
]

sin2 (αx)

[β + cos (αx)] [1 + β cos (αx)]2
. (6.69)

They are displayed in Fig. 70 (bottom panels). Let now study in more detail the behavior
of ǫ1 and ǫ2. This one depends on whether β is larger or smaller than 1. If β < 1, The first
slow-roll parameter ǫ1 vanishes at x = 0 and x = π/α, and reaches a maximum in between
at xǫ2=0. This maximum is larger than one provided α > αmin (β), where

αmin (β) =

√

1− β2

2β2
. (6.70)
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Figure 70. Top left panel: constant nS D inflaton potential for α = 1 and two values of β, namely
β = 0.7 (solid blue line) and β = 1.3 (solid pink line). Top right panel: logarithm of the potential for
the same values of α and β and with the same color code. Bottom left panel: first slow-roll parameter
ǫ1 for a potential with α = 1 and β = 0.7 (solid blue line), β = 1.8 (solid pink line). The shaded
area indicates the breakdown of slow-roll inflation (strictly speaking where acceleration cannot occur).
Bottom right panel: second and third slow-roll parameters ǫ2 and ǫ3 for α = 0.25 and the same values
of β as in the other plots.

In that case, inflation can stop by slow-roll violation, at the position xend given by

xend = x+ǫ1=1 =
1

α
arccos

[

α
√

2β2 (1 + 2α2)− 2− 1

β + 2α2β

]

, (6.71)

and inflation proceeds in the range [xend, π/α] (from the right to the left). On the other hand,
the second slow-roll parameter ǫ2 is a monotonous increasing function of x, which vanishes
at xǫ2=0 = arccos (−β) /α. If β ≥ 1, as can be seen in Fig. 70, the first slow-roll parameter ǫ1
diverges at xV→∞ = arccos(−1/β)/α, so that inflation cannot stop by slow-roll violation in
that case. This means that inflation must end by instability and, therefore, that the model
depends on an additional parameter. The second slow-roll parameter ǫ2 is always negative
and also diverges at xV→∞. Let us notice that, for β < 1 and α > αmin (β), and for β > 1
(for any α), it can also be useful (see discussion below) to give the other solution of ǫ1 = 1.
This one reads

x−ǫ1=1 =
1

α
arccos

[

−α
√

2β2 (1 + 2α2)− 2 + 1

β + 2α2β

]

. (6.72)
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We are now in a position where the slow-roll trajectory can be determined. It turns out
that this one can be integrated exactly and reads

N −Nini =
1

2α2

{

− ln [sin (αx)]− 1

β
ln
[

tan
(

α
x

2

)]

+ ln [sin (αxini)] +
1

β
ln
[

tan
(

α
xini
2

)]

}

.

(6.73)
Because of the logarithmic functions in the trajectory, a sufficient number of e-folds can be
realized only if the initial conditions are fine tuned and xini is chosen to be extremely close
to π/α. Concretely, it can be seen in the following way. One can calculate the function
Nend −Nini by inserting Eq. (6.71) into Eq. (6.73). Then, the total number of e-folds during
inflation becomes function of xini and of the two parameters α and β. For given values of
those parameters, it is easy to plot (Nend −Nini)(xini) which always remains small compared
to one unless xini → π/α where it blows up. In order to have Nend−Nini & 60, it is therefore
necessary to have xini ≃ π/α. Technically, this property can be seen in the following way. Let
us write xini as π/α + δxini where δxini ≪ 1. Then, it is easy to show that ln [sin (αxini)] +

ln [tan (αxini/2)] /β ≃ − ln
[

(α/2)1/β α−1 (δxini)
(1−β)/β

]

. Defining the constant A by A ≡
ln [sin (αxend)] + ln [tan (αxend/2)] /β, one arrives at

δxini ≃
[

α
(α

2

)−1/β
e−A

]β/(1−β)
e−2α2β(Nend−Nini)/(1−β). (6.74)

The coefficient between the squared brackets only depends on α and β which are, a priori,
coefficients of order one. Therefore, this coefficient is also of order one. On the other hand, the
argument of the exponential is 2(Nend −Nini) > 120 times a negative term (since 0 < β < 1)
of order one. This means that δxini is in fact exponentially small. We have thus recovered
the fine-tuning mentioned above. Then, one can question the physical relevance of such a
fine tuning, and, furthermore, it makes the numerical treatment of the model intractable
with a reasonable level of accuracy. But, the typical predictions of the model in that case
(taking x∗ ≃ π/α) are ǫ1 ≃ 0, ǫ2 ≃ 4α2β/ (1− β), and ǫ3 ≃ 0. It follows that the condition
α > αmin (β) implies ǫ2 > 2 (1 + β) /β > 4. Obviously, ǫ2 > 4 is completely ruled out by the
observations and the case β < 1 is therefore excluded.

Let us now study the case β > 1 which remains the only viable possibility. In this
case, as already discussed before, inflation cannot end by slow-roll violation and one needs
to add an extra parameter xend, making the model a three parameter one. In the range
αxend ≪ 1, one has ǫ1 ≪ 1 and ǫ2 ≃ −4α2β/(1 + β) such that the spectral index is given by
nS ≃ 1 + 4α2β/ (β + 1). Therefore, it is indeed a constant.

The predictions of CNDI inflation are displayed in Figs. 166 and 167. We see that, in
the regime αxend ≪ 1, the spectral index is indeed a constant. However, this occurs in a
regime where the predictions are not really consistent with the observations (the spectrum is
too blue). On the other hand, when αxend is no longer small, we observe strong deviations
from the law nS ≃ 1 + 4α2β/ (β + 1) but, for relatively small values of α, the predictions
become compatible with the data. Obviously, these considerations bear some resemblance
with the findings of sections 4.20, 4.21 and 5.14.

The last thing which remains to be done is to estimate the energy scale M . For this
purpose, we calculate the COBE normalization and it follows that

(

M

MPl

)4

= 2880α2β2π2 sin2 (αx∗)
Q2

rms−PS

T 2
. (6.75)
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We are mainly interested in the regime where the predictions are in agreement with the data.
In that case, as established above, αx∗ is no longer small and it becomes difficult to express
the term sin(αx∗) as a function of α, β and xend. In this situation, a numerical approach
becomes the easiest method to estimate the scale M .

7 Conclusions

Let us very briefly recap our main findings and present some directions for future works.
In this article, we have discussed the question of how the inflationary theory can be

constrained given that we now have at our disposal high accuracy cosmological data. We
have argued that this can be done by means of the slow-roll approximation which has the
advantage of being relatively model independent. Although this approximation cannot be
used if one has to deal with more complicated models, it produces interesting but limited
information on inflation. Concretely, it leads to the Hubble flow posterior distributions
P (ǫn|Cmeas

ℓ ). This is interesting since this gives a general constraint on the derivatives of the
inflaton potential. But, at the same time, this does not answer some legitimate fundamental
questions one might have about the plethora of inflationary scenarios studied so far. For
instance, it does not tell us rigorously which constraints exist on the parameters of a given
model. Indeed, suppose that we are interested in LFI, V (φ) ∝ φp. It is obvious that we
would like to know for which values of p this class of models is compatible with the data and
for which values it is not.

In order to complement the slow-roll approximation and to address the above mentioned
issues, we have argued that it is interesting to scan the inflationary landscape model by model
and have provided the public code ASPIC to do so. Of course, this has to be done for all
the inflationary scenarios since it would be arbitrary to consider only a restricted class while
ignoring the others. In fact, this question deserves to be discussed in more detail. One
could indeed imagine that it is not necessary to consider all the models one by one and that
considering a representative for each class is sufficient. Indeed, to simplify the discussion, it
is common to distinguish three broad types of scenarios: large field models (LFI), small field
models (SFI) and Hybrid models (VHI). Such a classification is not very precise and biased
because it pushes to the front line these three models. It could be reasonably argued that
a better classification is the one of Schwarz and Terrero-Escalante introduced in Ref. [479].
For a scalar field, the ratio of the kinetic energy to the total energy density is given by
ǫ1/3 = φ̇2/(2ρ). From the definition of ǫ2, one sees that ǫ1, and thus the kinetic contribution
to the total energy density, increases if ǫ2 > 0 and decreases if ǫ2 < 0. On the other hand,
we also have

d(φ̇2/2)

dt
= H

φ̇2

2
(ǫ2 − 2ǫ1) , (7.1)

and, therefore, the absolute value of the kinetic energy increases if ǫ2 > 2ǫ1 whereas it
decreases if ǫ2 < 2ǫ1. This allows us to identify three different regions: ǫ2 > and 2ǫ1 < ǫ2
(region 1), ǫ2 < 2ǫ1 (region 2), ǫ2 < 0 < 2ǫ1 (region 3).

These three regions are identified in Fig. 71. If we use the first order slow-roll ex-
pressions, the condition ǫ2 > 0 is equivalent to r < 8(1 − nS) while ǫ2 > 2ǫ1 amounts to
r < 4(1 − nS). These two lines are also represented in Fig. 71 (solid black lines). We have
also superimposed the predictions of LFI, SFI and VHI (upper panel). We see that the three
regions defined above roughly correspond to the cases large field, small field and hybrid.
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Figure 71. Upper panel: various ASPIC scenarios in the (nS, r) plane using the Schwarz-Terrero-
Escalante classification [479]. Bottom panel: same plot in logarithmic scale for another sample of
models.

However, the correspondence is not perfect and we notice, for instance, that the predictions
of VHI can penetrate region 2.
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Figure 72. Observable predictions in the (nS, r) plane for various models belonging to region 1 of
the Schwarz-Terrero-Escalante classification (see Fig. 71). Despite the fact that they are in the same
broad class, the accuracy of the CMB data allows us to discriminate among them thereby justifying
a detailed navigation within the inflationary landscape.

Then, having identified three broad classes of scenarios, the question is whether testing
only a representative model for each class would be sufficient. In Fig. 72, we have considered
the predictions of six different models that all belong to region 1. This plot clearly shows
that inside this region, these six models span different domains that are separated enough
to be distinguishable within current and future data. We therefore conclude that, given the
quality of the current data, working only with broad classes of models is no longer justified.
Therefore, if one really wants to scan the inflationary landscape, it is necessary to consider
the approach advocated in this paper.

With ASPIC, we have provided a new tool to treat any model of inflation and this
has led us to derive observational predictions for 64 models. ASPIC is an evolutive project
and therefore the next steps will be to complete and upgrade it with new models. Finally,
the ultimate goal is to identify which ASPIC model is performing the best for explaining
cosmological data. In order to carry out this task, an appropriate method is to use Bayesian
evidence and model comparison. Then, we should be able to identify, in a statistically well-
defined manner, what might be called “the best model of inflation”.
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A Reheating consistent slow-roll predictions

A.1 Higgs Inflation (HI)

Figure 73. Reheating consistent slow-roll predictions for the Higgs model in the plane (nS, r) (top
panel) and the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are the one and two-sigma
WMAP confidence intervals (marginalized over second order slow-roll). The annotations trace the

energy scale at which the large field reheating ends and correspond to log(g
1/4
∗ Treh/GeV).
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A.2 Radiatively Corrected Higgs Inflation (RCHI)

Figure 74. Reheating consistent slow-roll predictions for the radiatively corrected Higgs model in
the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours
are the one and two-sigma WMAP confidence intervals (marginalized over second order slow-roll).
The annotations trace the energy scale at which the large field reheating ends and correspond to

log(g
1/4
∗ Treh/GeV).
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A.3 Large Field Inflation (LFI)

Figure 75. Reheating consistent slow-roll predictions for the large field models in the plane (nS, r)
(top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are the one and two-
sigma WMAP confidence intervals (marginalized over second order slow-roll). The black solid lines
represent the locus of different LFI-p models [for which (1 + 2/p) r = 8 (1− nS), ie ǫ1 = (p/4)ǫ2].
The annotations trace the energy scale at which the large field reheating ends and correspond to

log(g
1/4
∗ Treh/GeV). Clearly, these values are limited from below to stay inside the two-sigma contours

and models with p > 3 are excluded at two sigma confidence level.
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A.4 Mixed Large Field Inflation (MLFI)

Figure 76. Reheating consistent slow-roll predictions for the mixed large field models in the plane
(nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are the one
and two-sigma WMAP confidence intervals (marginalized over second order slow-roll). The reheating
equation of state parameter wreh has been taken to 0 since the potential is quadratic close to its
minimum. The black solid lines represent the locus of the quadratic model (namely LFI with p = 2)
and of the quartic model (namely LFI with p = 4) [for which (1 + 2/p) r = 8 (1− nS), i.e. ǫ1 =
(p/4)ǫ2]. The annotations trace the energy scale at which the mixed large field reheating ends and

correspond to log(g
1/4
∗ Treh/GeV). Clearly, these values are limited from below to stay inside the

two-sigma contours and models with α > 10−3 are excluded at two-sigma confidence level.
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A.5 Radiatively Corrected Massive Inflation (RCMI)

Figure 77. Reheating consistent slow-roll predictions for the radiatively corrected massive models in
the plane (nS, r). The two pink solid contours are the one and two-sigma WMAP confidence intervals
(marginalized over second order slow-roll). The black solid line represent the locus of the quadratic
model [i.e. LFI with p = 2, for which r = 4 (1− nS), i.e. ǫ1 = ǫ2/2]. The annotations trace the energy

scale at which the radiatively corrected massive reheating ends and correspond to log(g
1/4
∗ Treh/GeV).

Clearly, these values are limited from below to stay inside the two-sigma contours and models with
α > 10−3.5 are disfavored at two sigma confidence level.
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A.6 Radiatively Corrected Quartic Inflation (RCQI)

Figure 78. Reheating consistent slow-roll predictions for the radiatively corrected quartic models
in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel), with wreh = 0. The two
pink solid contours are the one and two-sigma WMAP confidence intervals (marginalized over second
order slow-roll). The black solid line represent the locus of the quartic model [i.e. LFI with p = 4,
for which r = (16/3) (1− nS), i.e. ǫ1 = ǫ2]. The annotations trace the energy scale at which the

radiatively corrected quartic reheating ends and correspond to log(g
1/4
∗ Treh/GeV). Clearly, these

values are limited from below, and regardless of them, these models seem to be disfavored at two
sigma confidence level.
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Figure 79. Reheating consistent slow-roll predictions for the radiatively corrected quartic models in
the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel), with wreh = 1

3
. This value of wreh

may be more physically justified if the reheating phase takes place at the bottom of the potential,
which is quartic in a good approximation, and for which one has wreh = 1/3. The two pink solid
contours are the one and two-sigma WMAP confidence intervals (marginalized over second order
slow-roll). The black solid line represent the locus of the quartic model [i.e. LFI with p = 4, for which
r = (16/3) (1− nS), i.e. ǫ1 = ǫ2]. The annotations trace the energy scale at which the radiatively

corrected quartic reheating ends and correspond to log(g
1/4
∗ Treh/GeV). Clearly, these values are

limited from below, and regardless of them, these models are disfavored at two sigma confidence level.
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A.7 Natural Inflation (NI)

Figure 80. Reheating consistent slow-roll predictions for the natural inflation models in the plane
(nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are the one
and two-sigma WMAP confidence intervals (marginalized over second order slow-roll). The reheating
equation of state parameter wreh has been taken to 0 since the potential is quadratic close to its
minimum. The black solid line represent the locus of the quadratic model points [i.e. LFI with p = 2,
for which r = 4 (1− nS), i.e. ǫ1 = ǫ2/2]. The annotations trace the energy scale at which the natural

reheating ends and correspond to log(g
1/4
∗ Treh/GeV). Clearly, high values of f/MPl seem to be favored

by the data, as well as high reheating temperatures.
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A.8 Exponential SUSY Inflation (ESI)

Figure 81. Reheating consistent slow-roll predictions for the exponential susy models in the plane
(nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel), with wreh = 0. The two pink solid contours
are the one and two-sigma WMAP confidence intervals (marginalized over second order slow-roll).
The black solid line represent the locus obtained from the linear large field model [with p = 1, for
which r = (8/3) (1− nS), i.e. ǫ1 = ǫ2/4]. The annotations trace the energy scale at which the

exponential susy reheating ends and correspond to log(g
1/4
∗ Treh/GeV). Clearly, all these models seem

to be consistent with observations.
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Figure 82. Reheating consistent slow-roll predictions for the exponential susy models in the plane
(nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel), with wreh = −1/3. This value of wreh may
be more physically justified (although rather extreme) if a parametric reheating feels the bottom of
the potential, which is linear in a good approximation. The two pink solid contours are the one and
two-sigma WMAP confidence intervals (marginalized over second order slow-roll). The black solid
line represent the locus of the linear large field model [with p = 1, for which r = (8/3) (1− nS), i.e.
ǫ1 = ǫ2/4]. The annotations trace the energy scale at which the exponential susy reheating ends and

correspond to log(g
1/4
∗ Treh/GeV). Clearly in that case, these values are limited from below.
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A.9 Power Law Inflation (PLI)

Figure 83. Reheating consistent slow-roll predictions for the power law models in the plane (nS, r)
(top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are the one and two-
sigma WMAP confidence intervals (marginalized over second order slow-roll). The black solid line
represents the locus of the points such that r = −8 (nS − 1), i.e. ǫ2 = 0. The annotations of the
energy scale at which reheating ends are not displayed since the predictions of these models do not
depend on this parameter. Clearly, models with α > 0.2 are excluded at two sigma confidence level.
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A.10 Kähler Moduli Inflation I (KMII)

Figure 84. Reheating consistent slow-roll predictions for the Kähler Moduli I models in the plane
(nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are the one
and two-sigma WMAP confidence intervals (marginalized over second order slow-roll). The reheating
equation of state parameter wreh = 0 since the potential is quadratic close to its minimum. The

annotations trace the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV).
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A.11 Horizon Flow Inflation at first order (HF1I)

Figure 85. Reheating consistent (exact) predictions for the horizon flow inflation at first order
models in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two pink solid
contours trace the two-sigma WMAP confidence intervals (marginalized over second order slow-roll).
The black solid line represent the locus of the quadratic large field model [with p = 2, for which
r = 4 (1− nS), i.e. ǫ1 = ǫ2/2]. The annotations trace the energy scale at which reheating ends and

correspond to log(g
1/4
∗ Treh/GeV). Clearly, a high energy scale reheating is preferred for these models

to remain inside the two-sigma contours. Notice that, up to the amplitude of the CMB anisotropies,
the predictions do not depend much on A1 as they are all superimposed.
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A.12 Colemann-Weinberg Inflation (CWI)

Figure 86. Reheating consistent slow-roll predictions for the Colemann-Weinberg models in the plane
(nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel), in the physical domain Q/MPl ∈ [10−5, 10−3].
The two pink solid contours are the one and two-sigma WMAP confidence intervals (marginalized
over second order slow-roll). The annotations trace the energy scale at which reheating ends and

correspond to log(g
1/4
∗ Treh/GeV). The typical amount of gravitational waves is extremely small.
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Figure 87. Reheating consistent slow-roll predictions for the Colemann-Weinberg models in the plane
(nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel), in the domain Q/MPl ∈ [1, 100] . The two
pink solid contours are the one and two-sigma WMAP confidence intervals (marginalized over second
order slow-roll). The annotations trace the energy scale at which reheating ends and correspond

to log(g
1/4
∗ Treh/GeV). When Q/MPl ≫ 1, the model is similar to a quadratic potential close to its

minimum, and the predictions match the LFI ǫ1 = ǫ2/2 relation (see section 4.2) represented by the
black lines.
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A.13 Loop Inflation (LI)

Figure 88. Reheating consistent slow-roll predictions for the loop inflation models for α > 0, in
the plane (nS, r) (top panel), and the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are
the one and two-sigma WMAP confidence intervals (marginalized over second order slow-roll). The

annotations trace the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV).
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Figure 89. Reheating consistent slow-roll predictions for the loop inflation models for α < 0, in the
plane (nS, r) (top panel), and the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are the
one and two-sigma WMAP confidence intervals (marginalized over second order slow-roll). Since the
slow-roll predictions almost do not depend on the energy scale at which reheating ends, the usual

annotations which trace log(g
1/4
∗ Treh/GeV) are not displayed.
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A.14 Double Well Inflation (DWI)

Figure 90. Reheating consistent slow-roll predictions for the double well models in the plane (nS, r)
(top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are the one and two-
sigma WMAP confidence intervals (marginalized over second order slow-roll). The annotations trace

the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). The shape of the zone

covered by the models predictions is similar to the one for Small Field Inflation (SFI, see Fig. 99),
except in the domain φ

0
≫ MPl, which is the one favored by the observations. The black solid line

represent the locus of the points such that r = 4 (1− nS), i.e. ǫ2 = 2ǫ1, on which this model lies for
φ

0
/MPl ≫ 1.
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A.15 Mutated Hilltop Inflation (MHI)

Figure 91. Reheating consistent slow-roll predictions for the mutated hilltop models in the plane
(nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are the one and
two-sigma WMAP confidence intervals (marginalized over second order slow-roll). The annotations

trace the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). For small values

of µ/MPl, this model predicts a very small amount of gravitational waves
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A.16 Radion Gauge Inflation (RGI)

Figure 92. Reheating consistent slow-roll predictions for the radion gauge models in the plane (nS, r)
(top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are the one and two-
sigma WMAP confidence intervals (marginalized over second order slow-roll). The annotations trace

the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). At large values of

α, the predictions are the same as the large field model with p = 2 (see Fig. 75) for which ǫ2 = 2ǫ1
(black solid line).
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A.17 MSSM Inflation (MSSMI)

Figure 93. Reheating consistent slow-roll predictions for the MSSMI models in the plane (nS, r)
(top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are the one and two-
sigma WMAP confidence intervals (marginalized over second order slow-roll). The annotations trace

the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). The black solid line

represent the locus of the points such that r = 4 (1− nS), i.e. ǫ2 = 2ǫ1, on which this model lies for
for φ

0
/MPl ≫ 1. However, the physical relevant value is closer to φ

0
/MPl ≃ 10−4.
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A.18 Renormalizable Inflection Point Inflation (RIPI)

Figure 94. Reheating consistent slow-roll predictions for the renormalizable inflection point models
in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are
the one and two-sigma WMAP confidence intervals (marginalized over second order slow-roll). The

annotations trace the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV).
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A.19 Arctan Inflation (AI)

Figure 95. Reheating consistent slow-roll predictions for the arctan models in the plane (nS, r) (top
panel) and the plane (ǫ1, ǫ2) (bottom panel), when the reheating equation of state is wreh = 0. The two
pink solid contours are the one and two-sigma WMAP confidence intervals (marginalized over second
order slow-roll). The annotations trace the energy scale at which reheating ends and correspond to

log(g
1/4
∗ Treh/GeV).
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A.20 Constant nS A Inflation (CNAI)

Figure 96. Reheating consistent slow-roll predictions for the constant nS A models in the plane
(nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are the one and
two-sigma WMAP confidence intervals (marginalized over second order slow-roll). The annotations

trace the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV).
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A.21 Constant nS B Inflation (CNBI)

Figure 97. Reheating consistent slow-roll predictions for the constant nS B models in the plane
(nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are the one and
two-sigma WMAP confidence intervals (marginalized over second order slow-roll). The annotations

trace the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV).
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A.22 Small Field Inflation (SFI)

Figure 98. Reheating consistent slow-roll predictions for the small field models with p = 1 in the
plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are
the one and two-sigma WMAP confidence intervals (marginalized over second order slow-roll). The

annotations trace the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). The

black solid line represent the locus of the points such that r = (8/3) (1− nS), i.e. ǫ2 = 4ǫ1, on which
this model must lie.
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Figure 99. Reheating consistent slow-roll predictions for the small field models with p = 2 in the
plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are
the one and two-sigma WMAP confidence intervals (marginalized over second order slow-roll). The

annotations trace the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV).

Clearly, if µ/MPl is not too high these values are limited from below to stay inside the two-sigma
contours, and µ/MPl < 10 seems to be disfavored by the data. The black solid line represent the locus
of the points such that r = (8/3) (1− nS), i.e. ǫ2 = 4ǫ1, on which this model lies for µ/MPl ≫ 1.
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Figure 100. Reheating consistent slow-roll predictions for the small field models with p = 4 in
the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are
the one and two-sigma WMAP confidence intervals (marginalized over second order slow-roll). The

annotations trace the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV).

Clearly, if µ/MPl is not too high these values are limited from below to stay inside the two-sigma
contours. The black solid line represent the locus of the points such that r = (8/3) (1− nS), i.e.
ǫ2 = 4ǫ1, on which this model lies for µ/MPl ≫ 1.
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A.23 Intermediate Inflation (II)

Figure 101. Reheating consistent slow-roll predictions for the intermediate inflation models in the
plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are
the one and two-sigma WMAP confidence intervals (marginalized over second order slow-roll). Four
different values of β are displayed (namely β = 1, 4.1, 17, 70), and for each of them the black solid lines
correspond to the points such that ǫ1 = −(β/4)ǫ2, on which the predictions should lie for xend ≫ 1,
which is very well verified. The annotations of the energy scale at which reheating ends are not
displayed since this parameter is degenerated with xend.
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A.24 Kähler Moduli Inflation II (KMIII)

Figure 102. Reheating consistent slow-roll predictions for the Kähler moduli III models in the plane
(nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel), for 109 < β < 1015, αmin(β) < α < β/100.
The two pink solid contours are the one and two-sigma WMAP confidence intervals (marginalized
over second order slow-roll). The predictions almost do not depend on α, which is why when β is
fixed, points corresponding to different values of α can not be distinguished. The annotations trace

the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV).
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A.25 Logamediate Inflation (LMI)

Figure 103. Reheating consistent slow-roll predictions for the Logamediate Inflation 1 models with
β = 10−3, in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). Inflation proceeds at
decreasing field values, from the right to the left and with x < xV

max . The two pink solid contours are
the one and two-sigma WMAP confidence intervals (marginalized over second order slow-roll). The

annotations trace the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). For

β ≪ 1, the exponential term in the potential Eq. (5.58) is almost constant so that the model is close
to large field inflation (LFI, see section 4.2). In that limit, one has ǫ1 = αǫ2/4 = (1− γ) ǫ2, which
corresponds to the black solid lines.
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Figure 104. Reheating consistent slow-roll predictions for the Logamediate Inflation 1 models with
β = 1 in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). Inflation proceeds as in
Fig. 103, at decreasing field values and with x < xV

max . The two pink solid contours are the one and
two-sigma WMAP confidence intervals (marginalized over second order slow-roll). The annotations

trace the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV).
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Figure 105. Reheating consistent slow-roll predictions for the Logamediate Inflation 1 models (x <
xV

max) with β = 50, in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two
pink solid contours are the one and two-sigma WMAP confidence intervals (marginalized over second
order slow-roll). The annotations trace the energy scale at which reheating ends and correspond

to log(g
1/4
∗ Treh/GeV). For such high values of β, only small values of γ are in agreement with

observations.
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Figure 106. Reheating consistent slow-roll predictions for the Logamediate Inflation 2 models with
β = 0.1, in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). Inflation proceeds
at increasing field values, from the left to the right, and with x > xV

max . The color of the data
points encodes the value of γ, while different data blocks correspond to different values of xend.
Inside a given bock, the annotations trace the energy scale at which reheating ends and correspond

to log(g
1/4
∗ Treh/GeV). The two pink solid contours are the one and two-sigma WMAP confidence

intervals (marginalized over second order slow-roll).
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Figure 107. Reheating consistent slow-roll predictions for the Logamediate Inflation 2 models (x >
xV

max) with β = 1, in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The color
of the data points encodes the value of γ, while different data blocks correspond to different values
of xend. Inside a given bock, the annotations trace the energy scale at which reheating ends and

correspond to log(g
1/4
∗ Treh/GeV). The two pink solid contours are the one and two-sigma WMAP

confidence intervals (marginalized over second order slow-roll). For fixed γ, the turning point in the
predictions line occurs when xend lies in the fine-tuned region of LMI2, i.e. xV

max < x < xǫmax

1
. One

sees that the predictions become infinitely close to pure de-Sitter.
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Figure 108. Reheating consistent slow-roll predictions for the Logamediate Inflation 2 models (x >
xV

max) with β = 10, in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The color
of the data points encodes the value of γ, while different data blocks correspond to different values
of xend. Inside a given bock, the annotations trace the energy scale at which reheating ends and

correspond to log(g
1/4
∗ Treh/GeV). The two pink solid contours are the one and two-sigma WMAP

confidence intervals (marginalized over second order slow-roll). For fixed γ, the turning point in the
predictions line occurs when xV

max < x < xǫmax

1
.
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A.26 Twisted Inflation (TWI)

Figure 109. Reheating consistent slow-roll predictions for the twisted models in the plane (nS, r)
(top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are the one and
two-sigma WMAP confidence intervals (marginalized over second order slow-roll). The color of the
data points encodes the value of φ

0
, while different data blocks correspond to different values of xend.

Inside a given bock, the annotations trace the energy scale at which reheating ends and correspond

to log(g
1/4
∗ Treh/GeV).
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A.27 GMSSM Inflation (GMSSMI)

Figure 110. Reheating consistent slow-roll predictions for the GMSSMI models in the plane (nS, r)
(top panel) and the plane (ǫ1, ǫ2) (bottom panel), for 1 < α < 1 + φ4

0
/M4

Pl
π2/900/(Nend − Nini)

2.
The two pink solid contours are the one and two-sigma WMAP confidence intervals (marginalized
over second order slow-roll). The annotations trace the energy scale at which reheating ends and

correspond to log(g
1/4
∗ Treh/GeV). When α → 1, one recovers the standard MSSM predictions, see

Fig. 93.
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Figure 111. Reheating consistent slow-roll predictions for the GMSSMI models in the plane (nS, r)
(top panel) and the plane (ǫ1, ǫ2) (bottom panel), for 1 − φ4

0
/M4

Pl
π2/900/(Nend − Nini)

2 < α < 1.
The two pink solid contours are the one and two-sigma WMAP confidence intervals (marginalized
over second order slow-roll). The annotations trace the energy scale at which reheating ends and

correspond to ln(g
1/4
∗ Treh/GeV). When α → 1, one recovers the standard MSSM predictions, see

Fig. 93.
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A.28 Brane SUSY breaking Inflation (BSUSYBI)

Figure 112. Reheating consistent slow-roll predictions for the BSUSYBI models in the plane (nS, r)
(top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are the one and two-
sigma WMAP confidence intervals (marginalized over second order slow-roll). The parameter xend
varies between 2xmax

end
< xend < xmax

end
(xmax

end
< 0), under which the predictions of the model coincide

with the line ǫ2 = 0 (black solid), i.e. PLI (see section 4.8). The annotations trace the energy scale at

which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). The parameter γ should be . 10−1 for

the predictions to remain inside the two sigma confidence intervals. For γ . 3× 10−2, xend is limited
from below.
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A.29 Tip Inflation (TI)

Figure 113. Reheating consistent slow-roll predictions for the tip inflation models with α < 1/2, and
for µ/MPl = 10−6, 10−4, 10−2 in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel).
The two pink solid contours are the one and two-sigma WMAP confidence intervals (marginalized
over second order slow-roll). The annotations trace the energy scale at which reheating ends and

correspond to log(g
1/4
∗ Treh/GeV).
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Figure 114. Reheating consistent slow-roll predictions for the tip inflation models with α > 1/2, and
for µ/MPl = 10−6, 10−4, 10−2 in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel).
The two pink solid contours are the one and two-sigma WMAP confidence intervals (marginalized
over second order slow-roll). The annotations trace the energy scale at which reheating ends and

correspond to log(g
1/4
∗ Treh/GeV).
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Figure 115. Reheating consistent slow-roll predictions for the tip inflation models with α = 1/2 in
the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are
the one and two-sigma WMAP confidence intervals (marginalized over second order slow-roll). The

annotations trace the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV).
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A.30 β Exponential Inflation (BEI)

Figure 116. Reheating consistent slow-roll predictions for the β exponential inflation models in the
plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are the
one and two-sigma WMAP confidence intervals (marginalized over second order slow-roll). The black
solid lines represent the locus of the points such that ǫ2 = 4βǫ1. The annotations trace the energy

scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV).
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A.31 Pseudo Natural Inflation (PSNI)

Figure 117. Reheating consistent slow-roll predictions for the pseudo natural inflation models with
µ/MPl = 10, 10−1, 10−3, in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two
pink solid contours are the one and two-sigma WMAP confidence intervals (marginalized over second
order slow-roll). The annotations trace the energy scale at which reheating ends and correspond to

log(g
1/4
∗ Treh/GeV).
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A.32 Non Canonical Kähler Inflation (NCKI)

Figure 118. Reheating consistent slow-roll predictions for the non canonical Kähler inflation models
with β > 0 in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two pink
solid contours are the one and two-sigma WMAP confidence intervals (marginalized over second
order slow-roll). The annotations trace the energy scale at which reheating ends and correspond to

log(g
1/4
∗ Treh/GeV). When β & 1, the predictions are almost identical to those displayed here.
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Figure 119. Reheating consistent slow-roll predictions for the non canonical Kähler inflation models
with β < 0, in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two pink
solid contours are the one and two-sigma WMAP confidence intervals (marginalized over second
order slow-roll). The annotations trace the energy scale at which reheating ends and correspond to

log(g
1/4
∗ Treh/GeV). When β . −1, the predictions remain almost unchanged.
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A.33 Constant Spectrum Inflation (CSI)

Figure 120. Reheating consistent slow-roll predictions for the Constant Spectrum models in the
plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel), for α = 10−3. The two pink solid
contours are the one and two-sigma WMAP confidence intervals (marginalized over second order
slow-roll). The black solid lines correspond to nS = 1, and the annotations trace the energy scale at

which reheating ends and correspond to log(g
1/4
∗ Treh/GeV).
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Figure 121. Reheating consistent slow-roll predictions for the Constant Spectrum models in the
plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel), for α = 1. The two pink solid contours
are the one and two-sigma WMAP confidence intervals (marginalized over second order slow-roll).
The black solid lines correspond to nS = 1, and the annotations trace the energy scale at which

reheating ends and correspond to log(g
1/4
∗ Treh/GeV).
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A.34 Orientifold Inflation (OI)

Figure 122. Reheating consistent slow-roll predictions for the orientifold inflation models for
φ

0
/MPl = 10−4, 10−2, 1 and α ∈

[

10−3, 10−1
]

, in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2)
(bottom panel). The two pink solid contours are the one and two-sigma WMAP confidence intervals
(marginalized over second order slow-roll). The annotations trace the energy scale at which reheat-

ing ends and correspond to log(g
1/4
∗ Treh/GeV). Since the predictions of these models almost do not

depend on its parameters, they are all superimposed and one cannot distinguish the different values
of φ

0
are α.
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A.35 Constant nS C Inflation (CNCI)

Figure 123. Reheating consistent slow-roll predictions for the constant nS C inflation models for
α = 10−3, 0.1, 0.2 in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The black
solid lines are the nS − 1 = −2α2 contours, for the displayed values of α. The two pink solid contours
are the one and two-sigma WMAP confidence intervals (marginalized over second order slow-roll).
The energy scale at which reheating ends is degenerated with the parameter xend, which is why it is
not labeled.
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A.36 Supergravity Brane Inflation (SBI)

Figure 124. Reheating consistent slow-roll predictions for the supergravity brane inflation models
for β = 5 × 10−5 in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two
pink solid contours are the one and two-sigma WMAP confidence intervals (marginalized over second
order slow-roll). The annotations trace the energy scale at which reheating ends and correspond to

log(g
1/4
∗ Treh/GeV).
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Figure 125. Reheating consistent slow-roll predictions for the supergravity brane inflation models
for β = 10−3 in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two pink
solid contours are the one and two-sigma WMAP confidence intervals (marginalized over second
order slow-roll). The annotations trace the energy scale at which reheating ends and correspond to

log(g
1/4
∗ Treh/GeV).
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A.37 Spontaneous Symmetry Breaking Inflation 1 (SSBII)

Figure 126. Reheating consistent slow-roll predictions for the spontaneous symmetry breaking 1
inflation (α > 0, β > 0) models with β = 10−3, in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2)
(bottom panel). The two pink solid contours are the one and two-sigma WMAP confidence intervals
(marginalized over second order slow-roll). The annotations trace the energy scale at which reheating

ends and correspond to log(g
1/4
∗ Treh/GeV). The parameter α is varied between αmin (β) < α <

106αmin (β).
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Figure 127. Reheating consistent slow-roll predictions for the spontaneous symmetry breaking 1
inflation (α > 0, β > 0) models with β = 10−1, in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2)
(bottom panel). The two pink solid contours are the one and two-sigma WMAP confidence intervals
(marginalized over second order slow-roll). The annotations trace the energy scale at which reheating

ends and correspond to log(g
1/4
∗ Treh/GeV). The parameter α is varied between αmin (β) < α <

106αmin (β).
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Figure 128. Reheating consistent slow-roll predictions for the spontaneous symmetry breaking 1
inflation (α > 0, β > 0) models with β = 10, in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2)
(bottom panel). The two pink solid contours are the one and two-sigma WMAP confidence intervals
(marginalized over second order slow-roll). The annotations trace the energy scale at which reheating

ends and correspond to log(g
1/4
∗ Treh/GeV). The parameter α is varied between αmin (β) < α <

106αmin (β).
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A.38 Spontaneous Symmetry Breaking Inflation 2 (SSBI2)

Figure 129. Reheating consistent slow-roll predictions for the spontaneous symmetry breaking 2
inflation (α < 0, β < 0) models, in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel).
The two pink solid contours are the one and two-sigma WMAP confidence intervals (marginalized
over second order slow-roll). The annotations trace the energy scale at which reheating ends and

correspond to log(g
1/4
∗ Treh/GeV).
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A.39 Spontaneous Symmetry Breaking Inflation 3 (SSBI3)

Figure 130. Reheating consistent slow-roll predictions for the spontaneous symmetry breaking 3
inflation [α > 0, β < 0, x2 < −α/ (2β)] models for β = −10−3, in the plane (nS, r) (top panel) and
the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are the one and two-sigma WMAP
confidence intervals (marginalized over second order slow-roll). The annotations trace the energy scale

at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). The parameter α is varied between

αmin (β) ≃ 2 < α < 103αmin (β).
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Figure 131. Reheating consistent slow-roll predictions for the spontaneous symmetry breaking 3
inflation [α > 0, β < 0, x2 < −α/ (2β)] models for β = −5× 10−3, in the plane (nS, r) (top panel) and
the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are the one and two-sigma WMAP
confidence intervals (marginalized over second order slow-roll). The annotations trace the energy scale

at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). The parameter α is varied between

αmin (β) ≃ 2 < α < 103αmin (β).
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Figure 132. Reheating consistent slow-roll predictions for the spontaneous symmetry breaking 3
inflation [α > 0, β < 0, x2 < −α/ (2β)] models for β = −10−2, in the plane (nS, r) (top panel) and
the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are the one and two-sigma WMAP
confidence intervals (marginalized over second order slow-roll). The annotations trace the energy scale

at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). The parameter α is varied between

αmin (β) ≃ 2 < α < 103αmin (β).
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A.40 Spontaneous Symmetry Breaking Inflation 4 (SSBI4)

Figure 133. Reheating consistent slow-roll predictions for the spontaneous symmetry breaking 4
inflation [α > 0, β < 0, x2 > −α/ (2β)] models for β = −10−5, in the plane (nS, r) (top panel) and
the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are the one and two-sigma WMAP
confidence intervals (marginalized over second order slow-roll). The annotations trace the energy scale

at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV).
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Figure 134. Reheating consistent slow-roll predictions for the spontaneous symmetry breaking 4
inflation [α > 0, β < 0, x2 > −α/ (2β)] models for β = −10−4, in the plane (nS, r) (top panel) and
the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are the one and two-sigma WMAP
confidence intervals (marginalized over second order slow-roll). The annotations trace the energy scale

at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV).
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Figure 135. Reheating consistent slow-roll predictions for the spontaneous symmetry breaking 4
inflation [α > 0, β < 0, x2 > −α/ (2β)] models for β = −10−3, in the plane (nS, r) (top panel) and
the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are the one and two-sigma WMAP
confidence intervals (marginalized over second order slow-roll). The annotations trace the energy scale

at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV).
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A.41 Spontaneous Symmetry Breaking Inflation 5 (SSBI5)

Figure 136. Reheating consistent slow-roll predictions for the spontaneous symmetry breaking 5
inflation [α < 0, β > 0, x2 < −α/ (2β)] models for β = 10−6, in the plane (nS, r) (top panel) and
the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are the one and two-sigma WMAP
confidence intervals (marginalized over second order slow-roll). The annotations trace the energy scale

at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). The parameter α is varied between

|αmin(β)| < |α| < 10|αmin (β) |.
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Figure 137. Reheating consistent slow-roll predictions for the spontaneous symmetry breaking 5
inflation [α < 0, β > 0, x2 < −α/ (2β)] models for β = 10−5, in the plane (nS, r) (top panel) and
the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are the one and two-sigma WMAP
confidence intervals (marginalized over second order slow-roll). The annotations trace the energy scale

at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV).The parameter α is varied between

|αmin(β)| < |α| < 10|αmin (β) |.
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Figure 138. Reheating consistent slow-roll predictions for the spontaneous symmetry breaking 5
inflation [α < 0, β > 0, x2 < −α/ (2β)] models for β = 10−4, in the plane (nS, r) (top panel) and
the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are the one and two-sigma WMAP
confidence intervals (marginalized over second order slow-roll). The annotations trace the energy scale

at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV).The parameter α is varied between

|αmin(β)| < |α| < 10|αmin (β) |.
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A.42 Spontaneous Symmetry Breaking Inflation 6 (SSBI6)

Figure 139. Reheating consistent slow-roll predictions for the spontaneous symmetry breaking 6
inflation [α < 0, β > 0, x2 > −α/ (2β)] models for β = 10−5, in the plane (nS, r) (top panel) and
the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are the one and two-sigma WMAP
confidence intervals (marginalized over second order slow-roll). The annotations trace the energy scale

at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). The parameter α is varied between

|αmin(β)| < |α| < 104|αmin (β) |.
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Figure 140. Reheating consistent slow-roll predictions for the spontaneous symmetry breaking 6
inflation [α < 0, β > 0, x2 > −α/ (2β)] models for β = 10−1, in the plane (nS, r) (top panel) and
the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are the one and two-sigma WMAP
confidence intervals (marginalized over second order slow-roll). The annotations trace the energy scale

at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). The parameter α is varied between

|αmin(β)| < |α| < 104|αmin (β) |.
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Figure 141. Reheating consistent slow-roll predictions for the spontaneous symmetry breaking 6
inflation [α < 0, β > 0, x2 > −α/ (2β)] models for β = 1, in the plane (nS, r) (top panel) and
the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are the one and two-sigma WMAP
confidence intervals (marginalized over second order slow-roll). The annotations trace the energy scale

at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). The parameter α is varied between

|αmin(β)| < |α| < 104|αmin (β) |.
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A.43 Running Mass Inflation 1 (RMI1)

Figure 142. Reheating consistent slow-roll predictions for the running mass inflation 1 models
(c > 0, φ < φ

0
) with c = 0.01, φ

0
/MPl < 1/

√
c, 1/e < φend/φ0

< 1, in the plane (nS, r) (top panel)
and the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are the one and two-sigma WMAP
confidence intervals (marginalized over second order slow-roll). The energy scale at which reheating
ends and the field vev when inflation stops φend are degenerated, which is the reason why they are
not displayed.
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A.44 Running Mass Inflation 2 (RMI2)

Figure 143. Reheating consistent slow-roll predictions for the running mass inflation 2 models (c > 0,
φ > φ

0
) with c = 0.01, φ

0
/MPl < 1/

√
c, 1 < φend/φ0

< e, in the plane (nS, r) (top panel) and the plane
(ǫ1, ǫ2) (bottom panel). The two pink solid contours are the one and two-sigma WMAP confidence
intervals (marginalized over second order slow-roll). The energy scale at which reheating ends and
the field vev when inflation stops φend are degenerated and not represented.
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A.45 Running Mass Inflation 3 (RMI3)

Figure 144. Reheating consistent slow-roll predictions for the running mass inflation 3 models (c < 0,
φ < φ

0
) with c = −0.01, φ

0
/MPl < 1/

√−c, 1/e < φend/φ0
< 1, in the plane (nS, r) (top panel) and

the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are the one and two-sigma WMAP
confidence intervals (marginalized over second order slow-roll). The energy scale at which reheating
ends and the field vev when inflation stops φend are degenerated and have not been represented.
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A.46 Running Mass Inflation 4 (RMI4)

Figure 145. Reheating consistent slow-roll predictions for the running mass inflation 4 models (c < 0,
φ > φ

0
) with c = −0.01, φ

0
/MPl < 1/

√−c, 1 < φend/φ0
< e, in the plane (nS, r) (top panel) and

the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are the one and two-sigma WMAP
confidence intervals (marginalized over second order slow-roll). The energy scale at which reheating
ends and the field vev φend are degenerated and not displayed.
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A.47 Valley Hybrid Inflation (VHI)

Figure 146. Reheating consistent slow-roll predictions for the valley hybrid inflation models with
p = 0.5, in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two pink solid
contours are the one and two-sigmaWMAP confidence intervals (marginalized over second order slow-
roll). The color of the data points encodes the value of µ, while different data blocks correspond to
different values of xend. Inside a given bock, the annotations trace the energy scale at which reheating

ends and correspond to log(g
1/4
∗ Treh/GeV).
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Figure 147. Reheating consistent slow-roll predictions for the valley hybrid inflation models with
p = 1, in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two pink solid
contours are the one and two-sigma WMAP confidence intervals (marginalized over second order
slow-roll). The color of the data points encodes the value of µ, while different data blocks correspond
to different values of xend. Inside a given bock, the annotations trace the energy scale at which

reheating ends and correspond to log(g
1/4
∗ Treh/GeV). The black solid line represent the locus of the

points such that ǫ2 = 4ǫ1.
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Figure 148. Reheating consistent slow-roll predictions for the valley hybrid inflation models with
p = 1.5, in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two pink solid
contours are the one and two-sigmaWMAP confidence intervals (marginalized over second order slow-
roll). The color of the data points encodes the value of µ, while different data blocks correspond to
different values of xend. Inside a given bock, the annotations trace the energy scale at which reheating

ends and correspond to log(g
1/4
∗ Treh/GeV).
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Figure 149. Reheating consistent slow-roll predictions for the valley hybrid inflation models with
p = 2, in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two pink solid
contours are the one and two-sigma WMAP confidence intervals (marginalized over second order
slow-roll). The color of the data points encodes the value of µ, while different data blocks correspond
to different values of xend. Inside a given bock, the annotations trace the energy scale at which

reheating ends and correspond to log(g
1/4
∗ Treh/GeV).
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Figure 150. Reheating consistent slow-roll predictions for the valley hybrid inflation models with
p = 3, in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two pink solid
contours are the one and two-sigma WMAP confidence intervals (marginalized over second order
slow-roll). The color of the data points encodes the value of µ, while different data blocks correspond
to different values of xend. Inside a given bock, the annotations trace the energy scale at which

reheating ends and correspond to log(g
1/4
∗ Treh/GeV).
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A.48 Dynamical Supersymmetric Inflation (DSI)

Figure 151. Reheating consistent slow-roll predictions for the dynamical supersymmetric inflation
models with p = 2, 10−10 < µ/MPl < µmax/MPl, and x

min

end
< xend < xmax

end
in the plane (nS, r) (top

panel) and the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are the one and two-sigma
WMAP confidence intervals (marginalized over second order slow-roll). The parameter xend increases
along the direction specified by the arrows, and is degenerate with the energy scale at which reheating
ends.
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Figure 152. Reheating consistent slow-roll predictions for the dynamical supersymmetric inflation
models with p = 3, 10−10 < µ/MPl < µmax/MPl, and x

min

end
< xend < xmax

end
, in the plane (nS, r) (top

panel) and the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are the one and two-sigma
WMAP confidence intervals (marginalized over second order slow-roll). The parameter xend increases
along the direction specified by the arrows, and is degenerated with the energy scale at which reheating
ends.
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Figure 153. Reheating consistent slow-roll predictions for the dynamical supersymmetric inflation
models with p = 4, 10−10 < µ/MPl < µmax/MPl, and the prior xmin

end
< xend < xmax

end
in the plane

(nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two pink solid contours are the one and
two-sigma WMAP confidence intervals (marginalized over second order slow-roll). The parameter
xend increases along the direction specified by the arrows and is degenerated with the energy scale at
which reheating ends.
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A.49 Generalized Mixed Inflation (GMLFI)

Figure 154. Reheating consistent slow-roll predictions for the generalized mixed inflation models
with p = 2 and q = 1, in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two
pink solid contours are the one and two-sigma WMAP confidence intervals (marginalized over second
order slow-roll). The annotations trace the energy scale at which reheating ends and correspond to

log(g
1/4
∗ Treh/GeV). The black solid lines represent the locus of the LFI-p and LFI-p+ q models (for

which ǫ2 = (4/p)ǫ1 and ǫ2 = 4ǫ1/(p+ q) respectively).
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Figure 155. Reheating consistent slow-roll predictions for the generalized mixed inflation models
with p = 2 and q = 3, in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two
pink solid contours are the one and two-sigma WMAP confidence intervals (marginalized over second
order slow-roll). The annotations trace the energy scale at which reheating ends and correspond to

log(g
1/4
∗ Treh/GeV). The black solid lines represent the locus of the LFI-p and LFI-p+ q models (for

which ǫ2 = (4/p)ǫ1 and ǫ2 = 4ǫ1/(p+ q) respectively).
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Figure 156. Reheating consistent slow-roll predictions for the generalized mixed inflation models
with p = 3 and q = 2, in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two
pink solid contours are the one and two-sigma WMAP confidence intervals (marginalized over second
order slow-roll). The annotations trace the energy scale at which reheating ends and correspond to

log(g
1/4
∗ Treh/GeV). The black solid lines represent the locus of the LFI-p and LFI-p+ q models (for

which ǫ2 = (4/p)ǫ1 and ǫ2 = 4ǫ1/(p+ q) respectively).
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A.50 Logarithmic Potential Inflation 1 (LPI1)

Figure 157. Reheating consistent slow-roll predictions for the logarithmic potential inflation 1 models
for p = 4 and q = 2 in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two
pink solid contours are the one and two-sigma WMAP confidence intervals (marginalized over second
order slow-roll). The annotations trace the energy scale at which reheating ends and correspond to

log(g
1/4
∗ Treh/GeV).
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Figure 158. Reheating consistent slow-roll predictions for the logarithmic potential inflation 1 models
for p = 4 and q = 1 in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two
pink solid contours are the one and two-sigma WMAP confidence intervals (marginalized over second
order slow-roll). The annotations trace the energy scale at which reheating ends and correspond to

log(g
1/4
∗ Treh/GeV).
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Figure 159. Reheating consistent slow-roll predictions for the logarithmic potential inflation 1 models
for p = 4 and q = 3 in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two
pink solid contours are the one and two-sigma WMAP confidence intervals (marginalized over second
order slow-roll). The annotations trace the energy scale at which reheating ends and correspond to

log(g
1/4
∗ Treh/GeV).
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A.51 Logarithmic Potential Inflation 2 (LPI2)

Figure 160. Reheating consistent slow-roll predictions for the logarithmic potential inflation 2 models
for p = 4 and q = 2 in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two
pink solid contours are the one and two-sigma WMAP confidence intervals (marginalized over second
order slow-roll). The annotations trace the energy scale at which reheating ends and correspond to

log(g
1/4
∗ Treh/GeV).
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Figure 161. Reheating consistent slow-roll predictions for the logarithmic potential inflation 2 models
for p = 4 and q = 1 in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two
pink solid contours are the one and two-sigma WMAP confidence intervals (marginalized over second
order slow-roll). The annotations trace the energy scale at which reheating ends and correspond to

log(g
1/4
∗ Treh/GeV).
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Figure 162. Reheating consistent slow-roll predictions for the logarithmic potential inflation 2 models
for p = 4 and q = 3 in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two
pink solid contours are the one and two-sigma WMAP confidence intervals (marginalized over second
order slow-roll). The annotations trace the energy scale at which reheating ends and correspond to

log(g
1/4
∗ Treh/GeV).

– 270 –



A.52 Logarithmic Potential Inflation 3 (LPI3)

Figure 163. Reheating consistent slow-roll predictions for the logarithmic potential inflation 3 models
for p = 4 and q = 2 in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two
pink solid contours are the one and two-sigma WMAP confidence intervals (marginalized over second
order slow-roll). The annotations trace the energy scale at which reheating ends and correspond to

log(g
1/4
∗ Treh/GeV).
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Figure 164. Reheating consistent slow-roll predictions for the logarithmic potential inflation 3 models
for p = 4 and q = 1 in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two
pink solid contours are the one and two-sigma WMAP confidence intervals (marginalized over second
order slow-roll). The annotations trace the energy scale at which reheating ends and correspond to

log(g
1/4
∗ Treh/GeV).
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Figure 165. Reheating consistent slow-roll predictions for the logarithmic potential inflation 3 models
for p = 4 and q = 3 in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two
pink solid contours are the one and two-sigma WMAP confidence intervals (marginalized over second
order slow-roll). The annotations trace the energy scale at which reheating ends and correspond to

log(g
1/4
∗ Treh/GeV).
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A.53 Constant nS D Inflation (CNDI)

Figure 166. Reheating consistent slow-roll predictions for the constant nS D inflation models for
β = 0.1 in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two pink solid
contours are the one and two-sigma WMAP confidence intervals (marginalized over second order
slow-roll). The energy scale at which reheating ends is not annotated since it is degenerated with the
parameter xend. The black solid lines stand for the points such that nS = 1 + 4α2β/ (β + 1).
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Figure 167. Reheating consistent slow-roll predictions for the constant nS D inflation models for
β = 5 in the plane (nS, r) (top panel) and the plane (ǫ1, ǫ2) (bottom panel). The two pink solid
contours are the one and two-sigma WMAP confidence intervals (marginalized over second order
slow-roll). The energy scale at which reheating ends is not annotated since it is degenerated with the
parameter xend. The black solid lines stand for the points such that nS = 1 + 4α2β/ (β + 1).
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