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Is it time to go beyond ΛCDM universe?
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Concordance ΛCDM universe is the simplest model that is consistent with a large

variety of cosmological observations till date. But few recent observations indicate

inconsistencies in ΛCDM model. In this paper, we consider the combination of

recent SnIa+Bao+Cmb+Growth+H(z)+H0 measurements to revisit the constraints

on the dark energy evolution using the widely studied CPL parametrisation for the

dark energy equation of state. Although the reconstructed behaviour for the dark

energy equation of state confirms the inconsistency of ΛCDM at 95% confidence

level, the reconstructed Om diagnostic which is a null test for ΛCDM, still allows

the concordance ΛCDM behaviour with a lower range of Ωm0 than that obtained by

Planck-2015. This confirms that ΛCDM is still the best choice for the dark energy

model. We also measure the parameter S = σ8
√

Ωm0/0.3 = 0.728 ± 0.023 which is

consistent with its recent measurement by KiDS survey. The confidence contour in

the Ωm0−σ8 parameter plane is also fully consistent with KiDS survey measurement.

For nearly two decades, the most pressing problem in cosmology is to explain the late

time acceleration of the universe. Almost all the present and future cosmology missions

are dedicated to address this issue. After the Planck-2015 data [1] for anisotropy in the

cosmic microwave background radiation (CMBR) together with other cosmological data

from Supernova type-Ia (SNIa) [2], Baryon Acoustic Oscillations (BAO) observation [3] in

the large scale structures in the universe as well as the HST measurement of the Hubble

parameter [4], the concordance ΛCDM universe is shown to be consistent with this combined

datasets. Being the simplest model in explaining the late time acceleration, this makes

∗Electronic address: antoidicherian@gmail.com
†Electronic address: ruchika@ctp-jamia.res.in
‡Electronic address: aasen@jmi.ac.in

http://arxiv.org/abs/1705.07336v1
mailto:antoidicherian@gmail.com
mailto:ruchika@ctp-jamia.res.in
mailto:aasen@jmi.ac.in


2

ΛCDM universe the clear winner among various dark energy models, although the theoretical

issues such as the fine tuning and cosmic coincidence problems are still far from being solved

and will keep the theoreticians busy in near future ( see [5] for nice review on dark energy).

Despite the success of ΛCDM universe to explain a large variety of cosmological obser-

vations, there are recent evidences to contradict this success [6]. Recently the latest model

independent measurement of H0 (hereafter Riess16) [7], has more than 3σ deviation from

the Planck-2015 measurement of the same for a ΛCDM universe. More recently, the KiDS

survey [8]has found a discrepancy in growth measurement at the level of 2.5σ compared to

the measurement by Planck-2015 for ΛCDM model. Just recently, Valentini et al [9] have

shown that the ΛCDM model is inconsistent at 95% confidence level with the Planck-2015

+ Riess16 dataset. This clearly motivates people to revisit the constraint on dark energy

behaviour.

Going beyond the ΛCDM universe where the dark energy density is constant throughout

the evolution of the universe, there are several approaches to model the dark energy evolu-

tion. One can assume simply a constant negative equation of state for the dark energy ( like

those arise from a network of strings or domain walls [10]). The other choice is to consider

a minimally coupled canonical scalar field slowly rolling over a sufficiently flat potential to

mimic a negative equation of state. This is similar to the inflaton field in the early universe

with the difference that in this case the scalar field evolves at a much lower energy scales.

In literature these are called quintessence field [11]. Subsequently Caldwell and Linder [12]

showed that such quintessence fields can be further divided into categories called freezing

and thawing quintessence. The freezing model has an initial fast roll phase where they mimic

the background radiation or matter behaviour; later on, the equation of state decreases and

asymptotically approaches w = −1 to initiate the late time acceleration. For the thawing

models, the field is initially frozen at the flat part of the potential due to large Hubble

friction and behaves like w = −1 cosmological constant; subsequently the Hubble friction

decreases and the field starts rolling and the equation of state starts increasing with time.

Generalization of these models to non-canonical [13], non-minimal [14] as well as phantom

(w < −1) [15] cases have also been studied extensively.

On the other hand, given the large number models in the literature, it is rather difficult

to confront all individual models to the observational data. The more economical way is to

construct parametrization of the dark energy equation of state w as a function of redshift or
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scale factor containing a minimal set of parameters that describes a wide set of dark energy

models and then confront such parametrization to the observational data. One such widely

used parametrization is the Chevallier-Polarski-Linder (CPL) parametrization [16] which

was been widely used by all the recent cosmological observations including Planck-2015 to

put constrain on the cosmological parameters.

In this paper, we use this CPL parametrization to constrain the dark energy behaviour

using the current observations from CMBR, SNIa, BAO, the growth of the matter fluctua-

tions and the measurement of the Hubble parameter at different redshifts including Riess16

data.

To start with, we first describe the CPL parametrization for the dark energy equation of

state which has the following form:

w(a) = w0 + wa(1− a) = w0 + wa

z

1 + z
, (1)

where w0 and wa are the two parameters of the model describing the equation of state at

present (a = 1) and the variation of the equation of state at present respectively. From the

infinite past (a = 0) till the present (a = 1), the equation of state varies between w0 + wa

and w0. Using this form for the equation of state into the energy conservation equation for

the dark energy, one can easily get the variation of the dark energy density as

ρde ∝ a−3(1+w0+wa)e−3wa(1−a). (2)

Interestingly this simple form of the equation of state fits a wide range of scalar field dark

energy behaviours including the supergravity motivated SUGRA model for dark energy [17].

It is easy to check that for w0 > −1 and wa > 0, the dark energy remains non-phantom

(w(a) > −1) throughout the cosmological evolution. Otherwise it behaves like phantom

(w(a) < −1) at some point in time in the cosmological evolution. As discussed earlier, one

of the most studied example of dark energy is quintessence model with a time dependent

scalar field. Depending on the initial conditions and the nature of the potential for the

scalar field, quintessence field can either have freezing behaviour or thawing behaviour. In

an interesting paper, Caldwell and Linder [12] have obtained two restricted regions in the

w0 − wa parameter space, where the quintessence field behaves either as freezing model or

as thawing model.
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With this, the 0−0 component of the Einstein equation for a spatially flat FRW universe

that contains matter and dark energy is given by

H2(a) = H2
0

(

Ωm0a
−3 + Ωr0a

−4 + (1− Ωm0 − Ωr0)a
−3(1+w0+wa)e−3wa(1−a)

)

. (3)

Here Ωm0 and Ωr0 are the present day density parameter for matter (that includes baryons

and cold dark matter) and radiation respectively and H0 (100h Km/sec/Mpc) is the present

day Hubble parameter. This expression for the Hubble parameter H(a) with five parameters

h, w0, wa,Ωm0 and Ωr0 is sufficient to calculate all the observable quantities related to the

background cosmology.

To distinguish different dark energy models among themselves and also with the ΛCDM

model, there is a very useful diagnostic, called Om diagnostic proposed by Sahni et al. [18].

It is defined as

Om(z) =
(H(z)

H0

)2 − 1

(1 + z)3 − 1
. (4)

It is not difficult to see that for ΛCDM model, Om(z) is constant throughout the evolution

of the universe. It provides powerful null test for ΛCDM model whereby a evolving Om(z)

confirms a non-ΛCDM model.

To study the growth of matter fluctuations on sub-horizon scales where dark energy

behaves as a smooth component, we take the linearised equation for growth of matter density

contrast under Newtonian approximation as:

δ̈m + 2H ˙δm − 4πGδm = 0, (5)

where δm is the matter density contrast and “overdot” represents the derivative with respect

to the cosmological time t. H is the Hubble parameter given by equation (3). We also define

linear growth rate as:

f =
d log δm
d log a

. (6)

The quantity f(z)σ8(z), where σ8(z) is the rms fluctuation of linear density field δm within

a box size of 8h−1 Mpc, is a model independent estimator of the observed growth history in

the universe. On sub-horizon scales where dark energy behaves like a smooth component,

one can write [19]
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f(z)σ8(z) = σ8
δ
′

m

δm(z = 0)
, (7)

where “prime” denotes differentiation with respect of log(a) and σ8 = σ8(z = 0).

With this, we use the latest observational data to constrain the parameters in our model

and subsequently constrain the behaviour of the dark energy. We use the following obser-

vational data for our analysis:

• We use the measurements of the luminosity distance of SNIa from the “Joint Light

Curve Analysis (JLA)” taken from SDSS and SNLS catalogue [21].

• We use the combined BAO/CMB constraints on the angular scales of the BAO oscil-

lations in the matter power spectra as compiled by Giostri et al [22].

• We use the measurement of f(z)σ8(z) by various galaxy surveys as compiled by Basika-

los et al [23].

• We use the acoustic scale and CMB shift parameters as measured by Planck-2015

observations [24].

• We use the measurement of Hubble parameter as a function of redshift as compiled

by Farooq et al [25].

• We also use the latest measurement of H0 by Reiss et al [7] (Riess16).

With these set of cosmological data, we use publicly available Markov Chain Monte Carlo

(MCMC) package “emcee” [26] to put constrain on the parameters in our model. To obtain

the covariance matrices from the MCMC sample chains, we use the publicly available python

package “GetDist” [27].

In table 1, we quote the 1-D marginalised 68% confidence interval for our model pa-

rameters. As one can see, the constrain on σ8 is significantly lower than the Planck-2015

measured value of σ8 for ΛCDM model. This is due to the inclusion of growth data which

are already in tension with Planck-2015 measurement. This measurement is in tension with

the σ8 measurement by CFHTLenS tomographic weak lensing survey at 1.8σ which is not

significant. We also measure the parameter S = σ8

√

Ω/0.3 which is 0.728 ± 0.023. This

is consistent with that measured by Kilo Degree Survey (KiDS). Our measured h is also
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Ωm0 w0 wa h Ωr0 σ8

0.283 ± 0.009 −0.91± 0.11 −0.70+0.5
−0.42 0.702 ± 0.0074 (4.68 ± 0.20) × 10−5 0.749 ± 0.023

TABLE I: The 1D marginalised 68% confidence intervals for the model parameters.

consistent with independently measured value for h by HoLiCOW project [28] using three

strong lenses system.

In figure 1, we show the confidence contours in the w0 − wa parameter space. In the

same contour we also show the regions obtained by Caldwell and Linder, where the scalar

field quintessence models behaves either as freezing or as thawing model. As one can see,

without the data for the Hubble parameter, the cosmological constant (w0 = −1 & wa = 0)

is perfectly consistent. But once we add the H(z) and H0 data, the cosmological constant

model sits at the edge of the 95% confidence region. Moreover the freezing models are now

ruled out at 95% confidence level whereas the thawing models are just marginally allowed

at 95% level. Given that the minimally coupled, canonical scalar quintessence field can have

either thawing or freezing behaviour, the figure 1 shows that these kind of scalar field models

are practically ruled out at 95% confidence level except a very tiny region for thawing models

that is allowed at 95% confidence interval.

In figure 2, we show the confidence contour in the Ωm0 − σ8 plane for the

SNIa+BAO+CMB+Growth+H(z)+H0 data. In this plot we also show the same confidence

contour as obtained by KiDS tomographic weak lensing survey. For this, we use cosmic

shear measurements from the Kilo-Degree Survey (Kuijken et al. 2015 [29], Hildebrandt et

al. 2017 [8], Fenech Conti et al. 2016 [30])( KiDS). The KiDS data are processed by THELI

(Erben et al. 2013 [31]) and Astro-WISE (Begeman et al. 2013 [32], de Jong et al. 2015

[33]). Shears are measured using lensfit (Miller et al. 2013 [34]), and photometric redshifts

are obtained from PSF-matched photometry and calibrated using external overlapping spec-

troscopic surveys (see Hildebrandt et al. 2016 [35]). As one can see, our measurement is

fully in agreement with the KiDS result.

We should mention that the two parameters w0 and wa are related to the dark energy

equation of state at present (z = 0). Hence the confidence contour shown in figure 1, strictly

represents dark energy property at present. To constrain the evolution of the dark energy

equation of state w(z), we need to reconstruct w(z) using the error propagation technique.
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FIG. 1: 68% and 95% confidence contours in the w0−wa parameter plane using two different set of

observational data. The region inside the dashed line, the quintessence field behaves like thawing

model whereas the region inside the solid lines, the quintessence field behaves as freezing model

(see [12]).

In figure 3, we show the constrained w(z) at 68% and 95% confidence level. As one can

see, the w = −1, cosmological constant behaviour is not always within the 95% confidence

region. Within the redshift range 0.5 ≤ z ≤ 1.25, the 2σ confidence region does not allow

the cosmological constant behaviour. This confirms the inconsistency of the cosmological

constant model at 95% confidence level. Moreover, the figure also confirms that models

which are always non-phantom (w > −1) are ruled out at 95% confidence level. This

practically ruled out all canonical, minimally coupled scalar field models. Models which are

always phantom (w < −1) or model where a phantom to non-phantom crossing happens are

still consistent. This opens up the possibility for more exotic dark energy models.

We also plot the reconstructed deceleration parameter q(z) in figure 4. At 95% confidence

level, the universe starts accelerating approximately between z = 0.6 and z = 0.8. The

reconstructed H(z) is also shown in figure 4.

To check further whether the ΛCDM model is indeed inconsistent at 95% confidence level,

we further study the reconstructed behaviour of the Om(z) parameter that we describe

in equation (4). As we mention above, for ΛCDM model the Om parameter is constant
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FIG. 2: 68% and 95% confidence contours in the Ωm0−σ8 parameter plane. The KiDS survey plot

is based on data products from observations made with ESO Telescopes at the La Silla Paranal

Observatory under programme IDs 177.A-3016, 177.A-3017 and 177.A-3018 ( see text for detail

references).

throughout the evolution of the universe. In figure 5, we show the reconstructed behaviour of

Om parameter as a function of redshift. It is not difficult see that this reconstructed evolution

of Om parameter as a function of redshift does allow a constant behaviour at 95%confidence

level making the ΛCDM model consistence at 95% confidence level. We should mention that

unlike the equation of state of the dark energy, Om does not depend explicitly on the current

value of the Ωm0. The information on H(z) is sufficient to reconstruct the Om. Although a

determination of H from a single observable can suffer systematic uncertainties, but in our

investigation, we use the determination of H from SNIa, BAO, CMB acoustic scale, growth

of matter fluctuations, as well independent measurement of H from local experiments, to

reconstruct the Om(z). Hence this is a robust estimate for the Om(z) parameter which

clearly shows the consistency of the ΛCDM model with presently available observational

data. One can also find out that for ΛCDM to be consistent, the 95% bound on Ωm0 for

ΛCDM model is [0.251, 0.292] which is marginally lower than the Planck-2015 measurement

of Ωm0 for ΛCDM model.

To conclude, we have revisited the constraint on the evolution of the dark energy with
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FIG. 3: 68% and 95% confidence region for the reconstructed w(z) with

SNIa+BAO+CMB+Growth+H(z)+H0 data. The dashed line represent the best fit behaviour.

The horizontal solid line represent the w = −1 cosmological constant behaviour.
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FIG. 4: 68% and 95% confidence region for the reconstructed deceleration parameter q(z) and

H(z) for the same data set as in figure 2. The dashed line represent the best fit behaviour.

a wide variety of presently available observational data. We use the CPL parametrisation

to model the dark energy evolution and use the combination of SNIa, BAO, CMB shift and

acoustic scale measurements, growth measurement as well as the measurement of H((z) in-

cluding the recent measurement of H0. Recently with a combination of Planck2015+Riess16
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FIG. 5: 68% and 95% confidence region for the reconstructed Om(z). The dashed line represent

the best fit behaviour.

dataset,Valentino et al [9] have shown that the ΛCDM model is inconsistent at 95% con-

fidence interval using the same parametrisation. We confirm this result using the recon-

structed the equation of state of the dark energy using a different combination of datasets.

Moreover the confidence contour in the w0 − wa parameters space also confirms the in-

consistency of the freezing models at 95% confidence level whereas the thawing model is

marginally allowed at 95% confidence level. But with our reconstructed Om(z) diagnostic,

we show that ΛCDM is indeed consistent with the current set of observational data with

a slightly lower range of Ωm0 from that obtained by Planck-2015.We have also shown that

measured value of the parameter S = σ8

√

Ω/0.3 as well as the confidence contour in the

Ωm0 − σ8 plane is fully in agreement with the recent measurement by KiDS Survey.

In most of the investigations related to the constraints on dark energy equation of state,

it is a standard practice to use the dark energy equation of state to obtain the constrain. But

one has to be careful in this regard, because knowing the evolution of H(z) from different

data set, reconstruction of w(z) for dark energy needs the information about Ωm0. The

Om diagnostic is useful in this sense as the information about Ωm0 is not necessary for its

reconstruction. Hence this diagnostic is a more powerful null test for ΛCDM. Using this Om

diagnostic, we show that the ΛCDM model is still very much consistent with the presently
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available data. We need to wait for some more time to see whether the dark energy is indeed

Λ or something else. Till that time, Λ is still the best choice for the dark energy.
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