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Summary. — This article contains a concise review of the theory of inflation. We
discuss its main theoretical aspects as well as its observational predictions. We also
explain how the most recent astrophysical observations constrain the inflationary
scenario.

1. – Introduction

The theory of inflation was invented at the end of the 70’s and beginning of the 80’s

in order to improve the hot Big Bang model [1, 2, 3, 4, 5, 6]. It consists in a phase

of accelerated expansion taking place in the early Universe, at very high energy scales,

possibly as high as 1015GeV. Not only inflation solves the puzzles of the standard model

but it also provides a convincing mechanism for structure formation [7, 8, 9, 10, 11, 12]

(for reviews, see e.g. Refs. [13, 14]) which, interestingly enough, is based on General

Relativity (GR) and Quantum Mechanics (QM), two theories notoriously difficult to

combine.

On the observational front, the progresses have also been enormous, culminating
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recently with the publication of the high accuracy measurement of the Cosmic Mi-

crowave Background (CMB) anisotropies by the European Space Agency (ESA) satellite

Planck [15, 16, 17, 18]. For the first time, this satellite has been able to show that the

spectral index of the scalar power spectrum is close to one (exact scale invariance) but

not exactly one, the deviation from one being detected at a statistically significant level,

namely at more than 5σ. This is a crucial landmark because this was a prediction of

inflation (and not a post-diction). This is the reason why inflation is now viewed as the

front-runner candidate for describing the physical conditions that prevailed in the early

Universe [19].

The aim of these lectures is to give a brief introduction to the theory of inflation.

It is organized as follows. In the next section, Section 2, we discuss the motivations

for inflation. In Section 2
.
1, we first present the standard model of Cosmology, the hot

Big Bang phase, as it was prior to the invention of inflation. Then, in Section 2
.
2, we

discuss the puzzles of the hot Big Bang phase and why a phase of accelerated expansion

can solve them. In Section 2
.
3, we discuss how inflation can be realized in practice and

how it comes to an end (the theory of reheating). In Section 3, we discuss the theory

of inflationary cosmological perturbations of quantum-mechanical origin. We first show

that the quantum state of the perturbations at the end of inflation is peculiar (a two-mode

squeezed state) and then we calculate the power spectrum in the slow-roll approximation.

In Section 4, we briefly describe more complicated ways to realize inflation, in particular

multiple field inflation. In Section 5, we discuss the observational status of inflation. We

argue that the simplest class of scenarios is the preferred one and present observational

constraints on the shape of the potential and on the reheating phase. Finally, in Section 6,

we recap the main points and briefly discuss the future of inflation.

2. – Why Inflation?

2
.
1. The pre-inflationary standard model . – Among the four fundamental interactions

that have been identified in Nature, gravity is the important one when it comes to

Cosmology. Indeed, the Universe being neutral, this is the only force left with an infinite

range and, therefore, the only one which can shape the Universe on astrophysical scales.

The gravitational interaction being described by GR, any attempt to construct a model of

the cosmos must be based on this theory. In addition, the standard model of cosmology,

the so-called hot Big Bang model, is based on a second fundamental assumption, namely

the cosmological principle which states that, on large scales, the Universe in homogeneous

and isotropic. This means that the general relativistic metric describing our Universe

can be taken to be the Friedman-Lemaitre-Robertson-Walker (FLRW) one, namely

(1) ds2 = −dt2 + a2(t)

(
dr2

1−Kr2
+ r2dθ2 + r2 sin2 θdϕ2

)
,

where a(t) is the scale factor and K is a constant related to the curvature radius of

space rcurv = a(t)/
√
|K|. Assuming that matter is described by perfect fluids, the
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corresponding Einstein equations read

ȧ2

a2
+
K
a2

=
1

3M2
Pl

N∑
i=1

ρi +
Λ

B

3
,(2)

−
(

2
ä

a
+
ȧ2

a2
+
K
a2

)
=

1

M2
Pl

N∑
i=1

pi − Λ
B
,(3)

where MPl is the Planck mass and ΛB is the bared cosmological constant. The quantities

ρi and pi are respectively the energy density and pressure of the fluid “i”. In the hot Big

Bang model, one has five species, photons, neutrinos (which form radiation) and cold

dark matter (cdm) and baryons (which form pressure-less matter) plus dark energy (given

by the cosmological constant). Photons and neutrinos have a constant equation of state

equals to 1/3, which means that pγ = ργ/3 and pν = ρν/3. As already mentioned cdm

and baryons have vanishing pressure. Finally dark energy (de) has a vacuum equation

of state, meaning that pde = −ρde. The standard model is also such that the spatial

curvature vanishes, K = 0. The free parameters are H0 ≡ ȧ/a|now (a dot denotes a

derivative with respect to cosmic time), Λ
B

, ργ , ρν , ρcdm, ρb and τ the optical depth

that describes how the universe re-ionizes. We also have two extra parameters describing

the perturbations, AS and nS that will be introduced later on. This means a total of

nine parameters. However, introducing the critical energy density ρcri = 3H2M2
Pl and

defining Ωi ≡ ρi/ρcri, the fact that K = 0 means that the Friedman equation (2) can

be rewritten as a constraint, Ωγ + Ων + Ωcdm + Ωb + Ωde ≡ Ωtot = 1. So, in fact, we

have eight free parameters (often, ργ and ρν are not viewed as free parameters because

they are precisely determined by the CMB measurement and the number of neutrinos

family; in that case we have a six parameter model). These free parameters have now

been measured with good precision (at the percentage level) [15, 17]. For the expansion

rate, one has H0 = 100h km × s−1 ×Mpc−1 with h ' 0.67, and for the matter content

in the present day Universe, Ωγh
2 ' 2.47 × 10−5, Ωνh

2 ' 1.68 × 10−5 (assuming three

families of neutrinos), Ωcdmh
2 ' 0.1198, Ωbh

2 ' 0.02255 and Ωdeh
2 ' 0.306.

Knowing the matter content, by integrating the Einstein equations, we can infer the

history of the Universe. The early Universe was dominated by radiation, with a scale

factor given by a(t) ∝ t1/2 from the initial singularity until a redshift zeq ' 3400. Then,

pressure-less matter took over with a scale factor a(t) ∝ t2/3 until a redshift of order

one. Then, dark energy started to dominate and we still live in this epoch. The history

of the Universe is thus made of three successive eras.

This simple model, except for the presence of dark energy, was already known before

the 80’s (although, at that time, the parameters were not measured with today accuracy)

and has a great explanatory power. As mentioned before, it is known as the hot Big

Bang model or the ΛCDM model in its most modern incarnation and is considered as

the most convincing model for cosmology. Why, then, the simple version presented above

is nevertheless considered as not fully satisfactory thus motivating the introduction of

inflation? We now turn to this question.
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2
.
2. The puzzles of the standard model . – With a few parameters, the pre-inflationary

standard model of Cosmology was (is) able to explain a very large number of observational

facts. Therefore it may seem strange to view it as not totally satisfactory. In fact, the

difficulties of the hot Big Bang model are all related to the initial conditions. For instance,

it is difficult to understand why spatial curvature is so small today. Indeed, the expansion

during the hot Big Bang phase is decelerated and this means that Ωtot − 1 is growing.

Therefore, since Ωtot − 1 is, today, very close to zero, this implies that it was in fact

incredibly small in the early Universe (say, at BBN). Of course, it is always possible to

postulate that the initial conditions were just such that it was the case. However, there

is another explanation which consists in assuming that there was an accelerated phase

of expansion, ä > 0, prior to the hot Big Bang epoch. This new phase of accelerated

expansion is called “inflation”. Then, the initial conditions at the beginning of the hot Big

Bang epoch are now viewed as the “final conditions” at the end of inflation. Moreover,

during a phase of accelerated expansion Ωtot − 1 is decreasing. Therefore, if Ωtot − 1

sufficiently decreases during inflation, it can entirely compensate the subsequent growth

during the hot Big Bang phase and we understand why it is still small today. One can

show that the compensation occurs if we have more than 60 e-folds of inflation. In some

sense, inflation is a physical mechanism which puts the hot Big Bang phase on the “right

tracks” by automatically single outing the right initial conditions.

Quite remarkably, one can show that all the puzzles of the standard model can be

solved by the same mechanism [3]. For instance, this is the case of the so-called horizon

problem. According to the hot Big Bang model, the angular scale of the horizon on the

last scattering surface (where the CMB radiation was emitted) is ' 1◦. This means that

we should expect the temperature to be strongly inhomogeneous on this scale all over the

sky. As is well-known, this is not the case since the CMB is, on the contrary, extremely

homogeneous and isotropic. However, if one has 60 e-folds of inflation before the hot

Big Bang phase, then the horizon at the last scattering surface covers the entire celestial

sphere today and the problem is gone. We stress again that the number of e-folds needed

to solve the problem turns out to be the same as for the flatness problem, namely 60.

Of course, postulating a phase of accelerating is not sufficient. One must also identify

a physical mechanism that could be responsible for it. In the next section, we discuss

this question.

2
.
3. Basics of inflation. – We have seen before that, if there is a phase of accelerated

expansion in the early Universe, then the puzzles of the hot Big Bang model can be

explained. As long as the gravitational field is described by GR and the cosmological

principle valid, the acceleration of the scale factor can be expressed as

(4)
ä

a
= − 1

6M2
Pl

N∑
i=1

(ρi + 3pi) +
1

3
Λ

B
.
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Assuming that the cosmological constant does not play a role in the early Universe (given

its present day value), the condition for having ä > 0 reads

(5) ρ
T

+ 3p
T
< 0 ,

where ρ
T

=
∑N
i=1 ρi and p

T
=
∑N
i=1 pi denote the total energy density and pressure.

Given that the energy density must be positive, we are left with the condition that the

pressure must be negative.

In usual situations, the pressure of a fluid is positive. This is for instance the case

of radiation. However, inflation is supposed to take place in the very early Universe, at

extremely high redshifts, and at those energies, hydrodynamics is clearly not the appro-

priate framework to describe matter. We should rather use field theory. The simplest

type of field, compatible with the cosmological principle and the FLRW symmetries is

a scalar field. We therefore assume that the matter content of the early Universe was

dominated by a homogeneous scalar field φ(t) called, for obvious reasons, the “inflaton”.

The corresponding action is given by

(6) L = −1

2
gµν∂µφ∂νφ− V (φ) + Lint(φ,Aµ,Ψ),

where V (φ) is the inflaton potential and Lint describes the interaction of the inflaton field

with the other fields present such as gauge bosons Aµ or fermions Ψ. Then, by varying

this action with respect to the metric tensor, one can calculate the energy momentum

tensor and, therefore, the energy density and the pressure of the system. Ignoring for

the moment the interaction term, this leads to

(7) ρ =
φ̇2

2
+ V (φ), p =

φ̇2

2
− V (φ).

We see that energy density is positive definite as it should [of course, V (φ) > 0] but this

is not the case of pressure. If the potential energy dominates over the kinetic energy,

then p < 0. This will be the case if the kinetic energy is small or, in other words, if the

inflaton moves slowly along its potential. And this will happen if the potential is nearly

flat. We conclude that, if the inflaton dominates the energy budget at early times and

if its potential is almost flat, then a phase of inflation can occur. This is the basics idea

that underlies the theory of inflation.

At the technical level, the evolution of the system is controlled by the Friedmann and

Klein-Gordon equations, namely

(8) H2 =
1

3M2
Pl

[
φ̇2

2
+ V (φ)

]
, φ̈+ 3Hφ̇+ Vφ = 0,

where a subscript φ means a derivative with respect to the inflaton field. Unfortunately,

this system of equations cannot be solved analytically unless the potential has a very
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specific form [for instance, V (φ) ∝ e−αφ, a model called power law inflation]. Therefore,

we have to use either numerical calculations or a perturbative method. In general, a

perturbative method is based on an expansion of the relevant physical quantities in terms

of a small parameter (or several) naturally present in the problem (for instance a coupling

constant in field theory). Here, one can use the fact that the potential is nearly flat. If it

is exactly flat, then the scalar field acts as a cosmological constant and the corresponding

solution is de Sitter. One can then expand the solution of the system (8) around de Sitter.

Since the de Sitter solution corresponds to a constant Hubble parameter, one can define

small parameters by considering the derivatives of H and, then, expand the solution in

these parameters. They are called horizon flow parameters or slow-roll parameters and

are defined by [20, 21]

(9) εn+1 ≡
d ln |εn|

dN
, n ≥ 0,

where ε0 ≡ Hini/H stands at the top of the hierarchy and N ≡ ln(a/aini) is the number

of e-folds. The first Hubble flow parameter can be expressed as

(10) ε1 = − Ḣ

H2
= 1− ä

aH2
=

3φ̇2

2

1

φ̇2/2 + V (φ)
.

As mentioned above, it is related to the first derivative of the Hubble parameter. The

second Hubble flow parameter, ε2, would be related to Ḧ and so on. We also see on the

second expression of ε1 that ε1 < 1 when ä > 0, that is to say when inflation occurs. Of

course, ε1 � 1 when the inflationary expansion is close to that of de Sitter. Finally, the

third expression of ε1 makes clear that it is a very small quantity when the kinetic energy

is small compared to the total energy and, therefore, compared to the potential energy.

In fact, there is yet another way to express the Hubble flow parameters. If one assumes

that εn � 1 [the following expressions are therefore approximate contrary to Eqs. (10)

which are exact], then the first three Hubble flow parameters can be written as as [22]

ε1 '
M2

Pl

2

(
Vφ
V

)2

,(11)

ε2 ' 2M2
Pl

[(
Vφ
V

)2

− Vφφ
V

]
,(12)

ε2ε3 ' 2M4
Pl

[
VφφφVφ
V 2

− 3
Vφφ
V

(
Vφ
V

)2

+ 2

(
Vφ
V

)4
]
.(13)

It is then clear that, when the inflaton potential is nearly flat, one has εn � 1. The

Hubble flow parameters are in fact nothing but a measure of the flatness of the inflaton

potential.

Having identified the small parameters of the problem, one can now use them and

design a method of approximation based on an expansion in terms of the εn’s. This is
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called the slow-roll approximation. The first step consists in re-writing the Friedman and

Klein-Gordon equations (8) in terms of the εn’s. This leads to

H2 =
V

M2
Pl(3− ε1)

,(14) (
1 +

ε2
6− 2ε1

)
dφ

dN
= −M2

Pl

d lnV

dφ
.(15)

At this stage, these expressions are exact. Then, we expand them at leading order in the

Hubble flow parameters. This gives

(16) H2 ' V

3M2
Pl

,
dφ

dN
' −M2

Pl

d lnV

dφ
.

Unsurprisingly, we now see that the expansion rate of the Universe is solely controlled

by the potential energy. One great advantage of the above equations is that they can be

integrated exactly. The solution reads

(17) N −Nini = − 1

M2
Pl

∫ φ

φini

V (χ)

Vχ(χ)
dχ ,

φini being the initial value of the inflaton. If the above integral can be performed, then

one obtains N = N(φ) and by inverting it, one arrives at the trajectory, φ = φ(N). If

one assumes a potential V (φ), this solution can be compared with the exact solution

obtained by a numerical integration. In practice, as long as εn � 1, Eq. (17) turns out

to be an excellent approximation.

We now turn to another crucial question of the inflationary scenario, namely how

it comes to an end [23, 24, 25, 26]. At this stage, let us recall that inflation is not an

alternative to the ΛCDM model but just an additional ingredient. A phase of inflation

is supposed to take place in the early Universe for the reasons explained in Sec. 2
.
2 but,

then, it must be smoothly connected to the standard ΛCDM phase. On a more practical

side, it is known that the expansion of the Universe was radiation dominated during

the Big Bang Nucleosynthesis (BBN) (otherwise the production of light elements, which

is known to be in good agreement with the data, would be drastically modified) and,

therefore, inflation must have stopped by that time.

There exists different mechanisms to stop inflation but the simplest one is just that,

at some point, the potential is no longer flat enough to support inflation. Usually this

happens in the vicinity of the minimum of the potential. Technically, this means that

the slow-roll approximation is no longer valid. In fact, from Eq. (10), one sees that the

expansion is no longer accelerated when ε1 = 1 which, therefore, defines the time at

which inflation comes to an end. Then, the field starts oscillating at the bottom of its

potential. If m2 = d2V/dφ2 is the mass around the local minimum, the field behaves
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as [23]

(18) φ(t) = φend

(aend

a

)3/2

sin (mt) ,

namely the field oscillates with a frequency given by its mass. Of course, in this regime,

the kinetic energy is no longer sub-dominant compared to the potential energy. In fact,

there is now equipartition between them which means that 〈p〉t = 0. This implies that

the averaged energy density behaves as dust as also revealed by the fact that the overall

amplitude of the inflaton is proportional to a−3/2.

The above behavior is valid if one neglects the interaction of the inflaton with the

other fields or, in other words, for times much smaller than the inflaton life time Γ−1,

where Γ is the total inflaton decay rate. If this is taken into account, then Eq. (18)

becomes

(19) φ(t) = φende
−Γt

(aend

a

)3/2

sin (mt) ,

which shows that the total energy density stored in the inflaton field quickly goes to zero.

This energy is transferred to the inflaton decay products. Then, these decay products

thermalize and the radiation dominated epoch starts at a temperature which is known as

the reheating temperature Trh. This is the first time that a temperature can be defined

in the history of the Universe. Equivalently, this also determines the reheating energy

density, ρreh, that is to say the energy density at which one starts the ΛCDM model. It

is given by

ρreh = g∗
π2

30
T 4

reh,(20)

where g∗ encodes the number of relativistic degrees of freedom.

It is also interesting to study the evolution of the equation of state during the reheat-

ing. We know it must transit between −1 and 1/3. In fact, observationally speaking, the

mean equation of state is easier to probe. It is defined by [27, 28, 29, 30]

(21) wreh ≡
1

∆N

∫ Nreh

Nend

wreh(n)dn,

where ∆N ≡ Nreh−Nend is the total number of e-folds during reheating and wreh ≡ pT
/ρ

T

is the instantaneous equation of state. The quantity wreh controls the evolution of the

total energy density since one has

(22) ρreh = ρend e
−3(1+wreh)∆N ,

where ρend is the energy density at the end of inflation, namely when ε1 = 1. If one is

given a model of inflation, then this quantity can be easily calculated.
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It is also relevant to introduce the reheating parameter which is a quantity depending

on ρreh and wreh. Explicitly, it reads [27, 28, 29, 30]

(23) Rrad ≡
(
ρreh

ρend

)(1−3wreh)/(12+12wreh)

.

The reason why this parameter is important can be found in Refs. [27, 28, 29, 19, 30].

It turns out that, when one tries to constrain reheating with the CMB, we end up con-

straining this parameter. As simple check allows us to understand why. Observationally

speaking there should not be any difference between a model where reheating proceeds

instantaneously and a model where reheating proceeds with an equation of state 1/3. If

Rrad is the only combination of parameters we can access to, it should therefore have

the same value for those two situations. And, indeed, it is easy to check that Rrad = 1

if ρreh = ρend (instantaneous reheating) or wreh = 1/3 (radiative reheating).

Let us now illustrate the previous considerations on a simple example. Supposed the

inflaton potential is given by V (φ) = m2φ2/2. Then, it is easy to perform the integral

in Eq. (17) and the corresponding trajectory reads

(24) φ(N) =
√
φ2

ini − 4M2
Pl(N −Nini)

As explained before, inflation stops when ε1 = 1 which, in this case, means φend =
√

2MPl.

From this result, one can also compute the total number of e-folds. One finds

(25) NT ≡ Nend −Nini =
1

4

φ2
ini

M2
Pl

− 1

2
.

This relation means that, in order to have more than 60 e-folds, one should start

from φini & 15MPl. Finally, the reheating will be completed when H ' Γ, namely

g∗π
2T 4

reh/30 'M2
PlΓ

2 or

(26) Treh '
(

30

g∗π2

)1/4

M
1/2
Pl Γ1/2.

We see that the reheating temperature scales as the square root of the decay rate.

3. – Inflationary Cosmological Perturbations

We now turn to the theory of cosmological perturbations of quantum mechanical

origin. This part of the inflationary scenario makes use of GR and QM and as such

is particularly interesting. Moreover, it allows us to build a bridge between theoretical

considerations and actual astrophysical measurements. Therefore, it plays a crucial role

in our attempts to observationally probe inflation.

So far, we have considered that the Universe was homogeneous and isotropic. Clearly,

in the real world, this is not the case. Going beyond the cosmological principle is a priori



10 J. Martin

technically challenging since this means solving Einstein equations in an inhomogeneous

and anisotropic situation. Fortunately, we know that the amplitude of these inhomo-

geneities were small in the early Universe as revealed by the fact that δT/T ' 10−5 on

the last scattering surface located at a redshift of zlss ' 1100. Since the amplification of

the fluctuations proceeds by gravitational collapse, the amplitude of the inhomogeneities

were even smaller during inflation. As a consequence, one can study their behavior

perturbatively. Moreover, restricting ourselves to linear perturbations (leading order) is

sufficient. Based on the previous considerations, we can then write [31]

(27) gµν(η,x) = gFLRW
µν (t) + δgµν (η,x) + · · ·

with the assumption that |δgµν(η,x)| �
∣∣gFLRW
µν (t)

∣∣. The tensor δgµν can be decom-

posed in three types of fluctuations, scalar, vector and tensor or gravitational waves.

The study of scalar perturbations can be reduced to the study of a single quantity, the

curvature perturbation ζ(η,x) and the primordial gravitational waves can be described

by a transverse and traceless two rank tensor hij(η,x), hii = ∂ih
i
j = 0. Vector per-

turbations do not play a role during inflation. As was already mentioned, the evolution

of the Universe is controlled by the Einstein equations, Gµν = Tµν . Since we expand

the metric tensor in terms of the perturbations, one must do the same for the Einstein

tensor, Gµν = GFLRW
µν + δGµν and for the stress energy tensor, Tµν = TFLRW

µν + δTµν .

Then, the equations describing the behavior of the perturbations are

(28) δGµν = δTµν .

Of course, these equations are now partial differential equations since the perturbations

are supposed to describe the early inhomogeneous and anisotropic Universe. But since

these equations are linear, they can be solved by going to Fourier space.

Then, the idea is to quantize the system. The motivation is that this will provide a

source for the cosmological perturbations (in other words, this will fix the initial con-

ditions). This source will be the unavoidable quantum fluctuations of the inflaton and

gravitational fields at the beginning of inflation. On the technical front, this means that

δgµν will be promoted to a quantum operator, δgµν → δĝµν . As consequence, curvature

perturbations and gravitational waves also become quantum operators, ζ̂ and ĥij .

One fundamental assumption of inflation is that, initially, the quantum perturbations

are placed in the vacuum state. Then, this state will evolve as the Universe expands.

At the end of inflation, the system will be placed into a strongly two-mode squeezed

state. This state is a very peculiar state and is defined as follows (here, we follow the

presentation of Ref. [32]). Let us consider a one-dimensional quantum oscillator. As is

well-known, its vacuum state is a Gaussian state whose wavefunction is given by

(29) Ψ0(x) =
1

π1/4
e−x

2/2,
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where x is the position of the oscillator. This state, written in the momentum basis,

reads

(30) Ψ̃0(p) =
1

π1/4
e−p

2/2,

where p is the conjugate momentum of x. An interesting feature of the vacuum state is

that the dispersion in position and momentum are equal, namely

(31) 〈∆x̂2〉 = 〈∆p̂2〉 =
1

2

and saturates the Heisenberg inequality 〈∆x̂2〉〈∆p̂2〉 = 1
4 . A one-mode squeezed state is

a also a Gaussian state but, in position basis and momentum basis, its wave function is

given by

(32) ΨR(p) =

√
R

π1/4
e−R

2x2/2, Ψ̃R(p) =
1

π1/4
√
R
e−p

2/(2R2).

We see that the wavefunction now depends on an additional parameter, R. As a conse-

quence, the dispersion in position and momentum are no longer equal,

(33) 〈∆x̂2〉 =
1

2R2
, 〈∆p̂2〉 =

R2

2

although they still saturates the Heisenberg inequality. If R > 1, then the dispersion

in position is smaller than that of the vacuum. We say that the state is squeezed in

position, hence its name. Of course, since one has to satisfy the Heisenberg inequality,

the price to pay is that the dispersion on momentum is larger. If R < 1, we have the

opposite situation and the state is squeezed in momentum.

Then, let us consider two oscillators. The vacuum state of this system in position

basis (namely the position of the first oscillator also referred to as the position of Alice

and the position of the second oscillator also referred as to the position of Bob) can be

written as

(34) Ψ0(x1, x2) =
1√
π
e−x

2
1/2−x

2
2/2 =

1√
π
e−(x1−x2)2/4e−(x1+x2)2/4.

We see that the position of Alice and Bob are uncorrelated. From this expression, we

are now in a position to introduce the two-mode squeezed state which is given by

(35) ΨR(x1, x2) =
1√
π
e−R

2(x1−x2)2/4e−(x1+x2)2/(4R2),

where the squeezing factor R appears again and is related to the squeezing parameter r

by R = ln r. We see that the position of Alice and Bob are now correlated. It is also
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interesting to notice that the two-mode squeezed state does not imply squeezing for Alice

or Bob. Indeed, it is easy to check that

(36) 〈∆x̂2
1〉 = 〈∆x̂2

2〉 =
1 +R4

4R2
.

These dispersions are always larger than those one would obtain from the vacuum state.

This is related to the fact that, if one traces out, say, Alice’s degree of freedom, the

obtained state of Bob is not a one-mode squeezed state but a thermal state.

The quantum-mechanical properties of inflation discussed above are clearly fascinat-

ing. Based on this aspect of the theory, one can wonder whether it would be possible to

exhibit quantum effects in the sky. This was first discussed in Refs. [33, 34] and, more

recently, in Refs. [35, 36, 37, 38, 39, 40, 41].

Let us now turn to a quantitative characterization of the cosmological fluctuations

originating from inflation. As usual this will be done by computing the various correlation

functions of scalar and tensor perturbations (in the following, we mainly focus on the

scalar sector). The simplest correlation function is evidently the two-point correlation

function which is given by

(37) 〈ζ2(η,x)〉 =

∫ +∞

0

dk

k
Pζ(k),

where brackets mean quantum averages in the two mode squeezed state described above

and where Pζ(k) = k3|ζk|2/(2π2) is, by definition, the power spectrum of scalar per-

turbations. This scalar power spectrum is a very important quantity because it can be

probed observationally by measuring the CMB anisotropies or by measuring the distri-

butions of galaxies across our Universe. Using the slow-roll approximation introduced

above, it can also be calculated for an arbitrary potential V (φ) and the result reads

(38) Pζ(k) = Pζ0(k
P
)

[
a(S)

0 + a(S)

1 ln

(
k

k
P

)
+
a(S)

2

2
ln2

(
k

k
P

)
+ · · ·

]
,

where k
P

is a pivot scale and the global amplitude can be expressed as

(39) Pζ0 =
H2
∗

8π2ε1∗M2
Pl

.

In the above formula, a star means that the corresponding quantity has been calculated

at the time at which the pivot scale crossed out the Hubble radius during inflation.

We notice that the amplitude of the correlation function depends on the square of the

Hubble rate during inflation (measured in Planck units) and is inversely proportional to

the first slow-roll parameter. All these quantities are scale independent and so is the

global amplitude. This result is viewed as one of the most important success of inflation.

Indeed, before the invention of inflation, it was already known that a scale invariant

power spectrum (or Harrisson-Zeldovitch power spectrum) is a good fit to the data. But
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its origin was mysterious and there was no convincing physical mechanism to produce it.

Inflation, on the contrary, naturally implies this property. In fact, generically, exact scale

invariance is not a prediction of inflation because, as can be seen in Eq. (38), the overall

amplitude receives small, scale dependent, logarithmic corrections. The amplitudes of

those corrections is determined by the Hubble flow parameters, namely [20, 42, 43, 44,

45, 46, 21, 47, 48],

a(S)

0 = 1− 2 (C + 1) ε1∗ − Cε2∗ +

(
2C2 + 2C +

π2

2
− 5

)
ε21∗

+

(
C2 − C +

7π2

12
− 7

)
ε1∗ε2∗ +

(
1

2
C2 +

π2

8
− 1

)
ε22∗

+

(
−1

2
C2 +

π2

24

)
ε2∗ε3∗ + · · · ,(40)

a(S)

1 = −2ε1∗ − ε2∗ + 2(2C + 1)ε21∗ + (2C − 1)ε1∗ε2∗ + Cε22∗ − Cε2∗ε3∗ + · · · ,(41)

a(S)

2 = 4ε21∗ + 2ε1∗ε2∗ + ε22∗ − ε2∗ε3∗ + · · · ,(42)

a(S)

3 = O(ε3n∗) ,(43)

where C ≡ γE + ln 2 − 2 ≈ −0.7296, γE being the Euler constant. Therefore, the exact

prediction of inflation (really a prediction since it was made before it was checked) is that

the power spectrum should be almost scale invariant but not exactly scale invariant. This

prediction has been recently confirmed for the first time by the Planck data. Technically,

one defines the spectral index, which is the logarithmic derivative of lnPζ(k), namely

(44) nS = 1− 2ε1∗ − ε2∗,

where nS = 1 corresponds to exact scale invariance. As will be discussed in more details

in the following, Planck has measured nS ' 0.96 and nS = 1 is now excluded at more than

5σ. We also see that the spectral index depends on the two first Hubble flow parameters.

As a consequence, a measurement of nS is also a measurements of ε1∗ and ε2∗, that is

to say of the first and second derivative of the inflaton potential. This explains how

astrophysical measurements can constrain the theory of inflation.

The treatment of tensor modes (primordial gravitational waves) proceeds in the very

same way. One can compute the two-point correlation and the power spectrum using the

slow-roll approximation. One then arrives at the following expression

(45) Ph(k) = Ph0(kP)

[
a(T)

0 + a(T)

1 ln

(
k

kP

)
+
a(T)

2

2
ln2

(
k

kP

)
+ · · ·

]
,

where the amplitude Ph0(kP) is given by

(46) Ph0
=

2H2
∗

π2M2
Pl

.
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As it was the case for scalar perturbations, the overall amplitude is also given by the

square of the expansion rate during inflation measured in Planck units. Of course the

big difference is that the first slow-roll parameter ε1∗ is now absent. This means that a

measurement of the tensor modes would immediately provide the energy scale of inflation.

Notice that Ph0(k
P
) is also scale independent and, at leading order, the tensor power

spectrum is therefore scale invariant. However, as it was also the case for scalar modes,

this scale invariant amplitude receives small, scale dependent, logarithmic corrections the

amplitude of which can be expressed as [21]

a(T)

0 = 1− 2 (C + 1) ε1∗ +

(
2C2 + 2C +

π2

2
− 5

)
ε21∗

+

(
−C2 − 2C +

π2

12
− 2

)
ε1∗ε2∗ + · · · ,(47)

a(T)

1 = −2ε1∗ + 2(2C + 1)ε21∗ − 2(C + 1)ε1∗ε2∗ + · · · ,(48)

a(T)

2 = 4ε21∗ − 2ε1∗ε2∗ + · · · ,(49)

a(T)

3 = O(ε3n∗) .(50)

From the coefficient a(T)

1 , one can read the tensor spectral index (at first order in slow-

roll). One obtains

(51) nT = −2ε1.

Exact scale invariance corresponds to nT = 0 (for historical reasons, the convention

differs from that of scalars). Another difference is that nT depends on ε1∗ only while nS

depends on ε1∗ and ε2∗. Given that ε1∗ is always positive, this implies that nT is always

negative (or red).

Finally, one can also calculate the tensor amplitude to scalar amplitude r. Using the

previous expressions, one obtains

(52) r ≡ PhPζ
= 16ε1∗.

Since, by definition, ε1∗ � 1, this means that gravitational waves are sub-dominant

(which explains why they have not yet been detected [49, 50]). Notice that there is

a priori no lower bound on r. Therefore, if r turns out to be very small, primordial

gravitational waves will probably never been detected but this would be in no way in

contradiction with the predictions of inflation. At the time of writing, it is believed that

the next generations of telescope and satellites will be able to reach the level r ∼ 10−3

maybe a bit smaller. Let us hope that Nature has produced a r larger than this limit!

To conclude this section, let us mention Non-Gaussianities (NG). So far, we have

restricted our considerations to two-point correlation functions. Of course, higher corre-

lation functions are also of great interest. Usually, the three-point correlation function

(bispectrum) and the four-point correlation function (trispectrum) are considered. For
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the models described previously, NG are very small (of the order of the slow-roll parame-

ters) [51, 52, 53, 54]. The reason is easy to understand. We have started from a Gaussian

state and the evolution of the perturbations is linear. As a consequence, the appearance

of any NG is necessarily related to non linearities, which are very small.

4. – Extensions

So far, we have described the simplest way to realize inflation. However, since the

invention of inflation in the 80’s, more complicated scenarios have been imagined. In this

section, we say a few words about them.

The most generic extension is probably to consider models where, instead of having

one scalar field, one has several ones playing an active role during inflation [55]. This

appears to be a natural approach given that inflation can occur at energy scales as high

as 1015GeV. At those scales, it is believed that particle physics is no longer described by

the standard model but by its extensions (SUSY, SUGRA, string theory, etc . . . ). And,

usually, in these alternative frameworks, there are plethora of scalar fields.

Clearly, multiple field inflation scenarios are more complicated and it is more difficult

to make generic predictions. However, one can list three main modifications. Firstly,

there is the possibility of having non adiabatic perturbations, which is impossible for

single field models. The reason is that, if several scalar fields are present during infla-

tion, then the corresponding decay products can have different origin resulting in the

possible presence of non adiabatic perturbations. Secondly, non adiabatic perturbations

can source the evolution of curvature perturbations. As a result, if they are present

during inflation and reheating, ζ(η,x) on large scales is no longer a conserved quantity.

This has drastic consequences, especially for reheating, which then becomes potentially

dependent on the details of physical processes going on on scales smaller than the Hubble

radius. Thirdly, it is possible to produce non negligible NG. As already mentioned, these

modifications are not mandatory and must be analyzed on a model by model basis.

Yet other extensions are also possible such that having a non canonical kinetic term

for the scalar field. They are called K-inflation models [56, 57] (for the observational

status of this class of models, see Refs. [47, 58, 48]). It is also possible to have models

with features [59, 60]. This means a model of inflation where, in some limited region,

the potential is not flat. This usually causes a transitory violation of the slow-roll ap-

proximation which can result in oscillations in the power spectrum and non negligible

NG [61, 62, 63]. More complicated models are possible, for instance by combining the

various ingredients discussed above [64], but we will not discuss them here. We now turn

to another question, namely how the observations can discriminate among these various

possibilities.

5. – Inflation and CMB Observations

The Planck satellite has recently measured the CMB temperature, see Fig. 1, and

polarization, see Figs. 2 and 3, anisotropies with unprecedented accuracy. These new
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Fig. 1. – Multipole moments versus angular scale from Planck 2015 data. The multi-
pole moments are obtained from the CMB map by Fourier transforming it according to:
〈δT/T (e1)δT/T (e2)〉 = (4π)−1 ∑

`(2`+1)C`P`(cos θ) where θ is the angle between two directions
e1 and e2 and P` is a Legendre polynomial. The multipole moments C` are interpreted as the
power of the signal at a given angle θ. Notice that D` is related to C` by D` = `(`+ 1)C`/(2π).
The red curve corresponds to the best fit and is consistent with the predictions of single field,
slow-roll, inflation. Figure taken from Ref. [17].

data allow us to constrain inflation and to learn which was version of inflation realized

in the early Universe.

In brief, Planck has shown that the Universe is spatially flat, that the perturbations

are adiabatic and Gaussian [18]. These results are all consistent with single field (with

minimal kinetic term), slow-roll, inflation which, therefore, appears to be the preferred

class of models. This does not mean that the more complicated versions discussed in

Section 4 are ruled out but just that, at the moment, they are not needed in order to

explain the data.

With regards to inflation, probably the most important discovery made by the Planck
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Fig. 2. – Multipole moments corresponding to the correlation between temperature and E-mode
polarization anisotropies. The red solid line is obtained from temperature measurements only,
see Fig. 1. The lower panel shows the residual with respect to this best fit. Figure taken from
Ref. [17].

satellite is the measurement of the scalar spectral index [18]

(53) nS = 0.969± 0.005.

For the first time, the value nS = 1 is excluded at more than 5σ. As was already discussed

above, the fact that the power spectrum must be scale invariant (the so called Harrisson-

Zeldovitch power spectrum) was known long ago (before the invention of inflation). But

the non trivial prediction of inflation was that nS should be close to one but not exactly

one. And this is exactly what has been observed for the first time by the Planck satellite.

Another important of piece of information is that, unfortunately, so far, no gravita-

tional waves has been detected. This means the following upper bound on the tensor to

scalar ratio r [49]

(54) r . 0.08.

From the measurements of those quantities, one can also infer constraints on the
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Hubble flow parameters, see Fig. 4 and Refs. [65, 66, 19]. We see that P∗ ≡ Pζ0a(S)

0 and ε2∗
are constrained while there only exists an upper bound on ε1∗. Of course, P∗ is determined

because one knows the amplitude of CMB fluctuations (namely δT/T ' 10−5). On the

other hand, the upper bound on ε1∗ originates from Eq. (52) and the fact that we only

have an upper bound on r. Given that H2
∗/M

2
Pl ' 8π2ε1∗P∗, this means that we only

have an upper bound on the energy scale of inflation, namely

(55) H∗ . 1.2× 1014GeV,

or ρ
1/4
∗ . 2.2×1016GeV. Finally, the third slow-roll parameter, ε3∗ is not well constrained

which means that we do not have yet a detection of a running.

We have seen before that the slow-roll parameters carry information about the shape

of the inflaton potential. Since we have obtained constraints on these parameters, we

must be able to say something about the shape of the inflaton potential itself [65, 66, 19].

In order to answer this question, one can calculate the Bayesian evidence of the various

models of inflation. The Bayesian evidence is the integral of the likelihood function

over the prior space. It characterizes the performance of a model and its ability to fit

the data [67]. The larger the evidence, the better the model. In Refs. [65, 66, 19],



The Theory of Inflation 19

3.04 3.08 3.12 3.16

ln[1010P ∗]

−4.8

−4.2

−3.6

−3.0

−2.4

lo
g
(ǫ

1
)

3.04 3.08 3.12 3.16

ln[1010P ∗]

0.015

0.030

0.045

0.060

ǫ 2

0.015 0.030 0.045 0.060
ǫ2

−4.8

−4.2

−3.6

−3.0

−2.4

lo
g(
ǫ 1

)

0.015 0.030 0.045 0.060
ǫ2

−0.16

−0.08

0.00

0.08

0.16

ǫ 3

Fig. 4. – Posterior distributions of the parameters ε1∗, ε2∗, ε3∗ and P∗ ≡ a(S)
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the Bayesian evidence of nearly two hundred models were computed. The result of this

computation is displayed in Figs. 5 where the number of unconstrained parameters is also

indicated. A detailed analysis of those results has been published in Refs. [65, 66, 19],

but the bottom line is that plateau inflationary models are the “best” models according

to the Planck data. A plateau potential is a potential which flattens out at infinity. The

prototype of this class of models is the so-called Starobinsky model given by

(56) V (φ) = M4
(

1− e−
√

2/3φ/MPl

)2

.
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Fig. 5. – Bayesian evidence versus number of unconstrained parameters for different models
of inflation. Each circle represents a given inflationary scenario (the size of the circle has no
meaning). The upper right panel is a zoom on the “best” region (the square delimited by the
dashed black line) of the upper left panel. In the same way, the bottom left plot is a zoom on
the “best” region of the upper right. Finally, the bottom right is a zoom on the “best” region
of the bottom left figure.

This conclusion is non trivial since models that were historically considered as leading

candidates, such as V (φ) = m2φ2/2, are now strongly disfavored compared to plateau

models.

Let us also notice another interesting point. The prediction of plateau models for r

is, roughly speaking, r ' 10−3. As indicated before, this value is in principle reachable

by the next generation of instruments. This means that there is maybe a good chance

to detect primordial gravitational in a non too distance future (say, a decade).
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Finally, let us discuss what the Planck data imply for reheating. As was discussed

before, constraints on reheating are expressed through constraints on the reheating pa-

rameter Rrad defined in Eq. (23). In Refs. [27, 28, 29, 30], the posterior distributions was

derived for the nearly two hundred models already considered before for the calculation of

the Bayesian evidence. The situation is summarized in Fig. 6. It represents the Kullback-

Leibler divergence between the prior distribution and the posterior versus the Bayesian

evidence for different models of inflation (represented by circles). The Kullback-Leibler

divergence is defined by

(57) D
KL

=

∫
P (lnRreh|D) ln

[
P (lnRreh|D)

π (lnRreh)

]
d lnRreh,

where Rreh is given by lnRreh = lnRrad + ln(ρend/M
4
Pl)/4 and is therefore, for a given

model of inflation, in a one-to-one correspondence with Rrad. The quantity π represents

the prior on Rreh and P the posterior. The Kullback-Leibler divergence measures the
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“distance” between the prior and the posterior and, as a consequence, also represents

the amount of information provided by the data D (of course, here, the Planck data)

about lnRreh. The constraints are model dependent and one has a posterior distribution

per model of inflation, an amount of information which, given the number of scenarios

analyzed, is difficult to deal with. The value of D
KL

is one way to summarize the

information about reheating for a given model to one number. In this sense, Fig. 6

completely describes what, for each known model of inflation, the Planck data implies

with regards to the ability to fit the data and to reheating. Let us also notice that one

can calculate the mean value of DKL . One finds 〈DKL〉 = 0.82 ± 0.13, which expresses

the fact that reheating is globally constrained by the Planck data.

6. – Conclusions

In this short review, we have discussed the theory of inflation. Over the years, the

inflationary scenario has become a crucial ingredient in our understanding of Cosmology.

It is important to stress that inflation is not an alternative to the standard model of

Cosmology, it is rather a new part of it.

Invented in the 80’s, inflation has recently witnessed new developments with the publi-

cation of the high accuracy Planck data. Clearly, these data have boosted our confidence

in inflation. In particular, the measurement of the spectral index to be close but not

equal to one is an important confirmation of an inflationary prediction. Admittedly, it

is probably not the final proof that inflation actually occurred in the early Universe but

it nevertheless represents a very strong argument in its favor. From the Planck data, we

have also learned that inflation is probably realized in its simplest version (single field,

slow-roll, with minimal kinetic term) and that the best scenario is a plateau model for

which the potential flattens out at very large values of the field.

What is then the next step? Clearly, the detection of primordial gravitational waves

will play a crucial role. It is an unambiguous prediction of inflation that has not yet been

confirmed. Future missions will be able to reach r ∼ 10−3. Unfortunately, inflation, as

a paradigm, does not predict the value of r even if r is predicted if a precise scenario is

given. However, the best model of inflation, the Starobinsky model, predicts a value of

r which, in principle, could be detected in the future.

Let us also add that the detection of NG will also certainly play an important role in

the future. Given that we deal with the simplest class of models, the expected signal is

very small and its detection will be challenging (if possible). But, obviously, this would

be of crucial importance.

Of course, inflation is not a perfect scenario and some of its aspects remain unclear.

But, as an effective model of the early Universe, it scores pretty well. Let us see whether

its performances remain so efficient in the future.
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