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Starobinsky has suggested an inflationary cosmological scenario in which the inflation is driven
by quantum corrections to the vacuum Einstein’s equations. Here a detailed review of the Starobin-
sky scenario is given and an observational constraint on the parameters of the model is derived. The
quantum mechanics of the model is studied first using the instanton method, and then by solving the
corresponding Wheeler-DeWitt equation. A cosmological wave function is obtained describing a
universe tunneling from “nothing” to the Starobinsky inflationary phase. The curvature fluctua-
tions in the tunneling universe are calculated. This quantum analysis determines the initial condi-

tions for the classical evolution of the model.

I. INTRODUCTION

The idea that a closed universe can be created spontane-
ously as a quantum fluctuation was first suggested by
Tryon! in 1973 (see also Ref. 2). He noted that a closed
universe has zero charge, energy, and momentum, and can
have all other conserved charges equal to zero. Hence, no
conservation law prevents such a universe from being
spontaneously created. Tryon suggested no mathematical
description for the nucleation process, and so the initial
size and the content of the universe were left undeter-
mined. :

Intuitively, one expects a universe created as a quantum
fluctuation to be very small. This was a serious difficulty
in 1973, since it was not clear how to make a large
universe we live in out of a tiny closed universe. The
problem has disappeared with the advent of inflationary
scenarios>~> in which the universe passes through a de
Sitter phase of exponential expansion. As a result of in-
flation, all scales in the universe are increased by a huge
factor Z —exp(H7), where H is the constant expansion
rate and 7 is the duration of the inflationary phase.

In most inflationary scenarios the inflation is driven by
the false-vacuum energy density p,. In this case the ex-
pansion rate is

H =(87Gp,/3)'/? . (1.1
Starobinsky’® has suggested an alternative model in which
the de Sitter phase is obtained as a self-consistent solution
of the vacuum Einstein’s equations modified by the one-
loop corrections due to quantized matter fields.® In this
scenario the expansion rate depends on the number of ele-
mentary fields in the model, but is typically ~m,, where
m,, is the Planck mass.’

In both versions of inflation, the de Sitter phase is un-
stable and has a finite lifetime. Therefore, one is con-
fronted with the question of what happened before infla-
tion and how the universe got into the de Sitter phase. A
false-vacuum-dominated phase can be reached in the hot-
big-bang model as a result of a first-order phase transition
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with strong supercooling.> No such mechanism was sug-
gested for the Starobinsky model, and it appears that the
model is consistent only if the universe is spontaneously
created.® ,

The first attempt to describe the quantum creation of
universes in the framework of quantum gravity was made
in Ref. 9 and was further developed in Refs. 10—13. The
picture emerging from this work'* is that the universe
tunnels quantum mechanically from “nothing” to a de
Sitter space with a scale factor

a(t)=H ~!cosh(Ht) . (1.2)

Here, “nothing” means “no classical space-time.” At the
moment of nucleation (z=0) the universe has size
a(0)=H ! and zero “velocity,” a@(0)=0. This is the be-
ginning of time, and from that point on the universe
evolves along the lines of the inflationary scenario. The
initial hot phase is absent in this model. The semiclassical
tunneling probability to a false vacuum of energy density
py is given by!!:10

P < exp(—3/8G?,) . (1.3)

Quantum tunneling to the Starobinsky phase has been
briefly discussed in Ref. 13.

It should be understood, of course, that the interpreta-
tion of probabilities like (1.3) is far from being clear. It
appears that the best we can do is to compare the proba-
bilities of tunneling to different states and assume that we
live in a “typical” universe which starts in a state with the
highest tunneling probability. Equation (1.3) suggests that
of all the false vacua the tunneling is most probable to the
one with the highest energy density, p,. As p, is in-
creased, the tunneling action (S =3/8G“p, ) decreases and
becomes ~1 near the Planck energy density, p, ~G ~2.
This seems to suggest that for p, > G ~2 the barrier for the
nucleation of the universe disappears and the semiclassical
approximation breaks down. We note, however, that for
energy densities and curvatures near the Planck scale,
quantum corrections to Einstein’s action become impor-
tant. These corrections include quadratic and higher-
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order terms in curvature and can stop and reverse the de-
crease of the tunneling action at high curvatures. Thus,
one is led to consider quantum cosmological models in
which the universe nucleates with curvature and matter
energy density near the Planck scale, and quantum gravi-
tational corrections play an important role. The simplest
model of this sort is the Starobinsky model which in-
volves no classical matter fields.

The main purpose of this paper is to study the quantum
cosmology of the Starobinsky model. The effective action
for this model is nonlinear in curvature and the corre-
sponding field equations involve fourth-order derivatives.
Quantization of higher-derivative theories of gravity has
been discussed in Refs. 16 and 17. In this paper we shall
employ a simple minisuperspace model in which the infin-
ite number of gravitational degrees of freedom is restrict-
ed to two pairs of conjugate variables (related to the scale
factor and to the scalar curvature). Having in mind fu-
ture applications, we shall develop the formalism for a
general class of models with a higher-derivative action of
the form

S= [ L(R(—g)%d* , (1.4)

where L (R) is an arbitrary function of the scalar curva-
ture.

In the next section, I begin by reviewing the Starobin-
sky inflationary scenario. This analysis is more detailed
and complete than that in Ref. 5. In particular, I give a
detailed description of the decay of the Starobinsky phase
and derive the spectrum of gravitational waves generated
during inflation. Requiring that the background tempera-
ture fluctuations induced by the gravitational waves are
not too large, I obtain an observational constraint on the
parameters of the model. After this work was completed,
I learned that Starobinsky obtained similar results in Ref.
18. Still, I think this review will be helpful, since
Starobinsky’s analysis in Refs. 5 and 18 is rather terse.

Sections III—V are devoted to the description of the
quantum tunneling of the universe from “nothing” to the
Starobinsky phase. In Sec. III the semiclassical tunneling
probability is calculated using the instanton method and
an order-of-magnitude estimate is obtained for the curva-
ture fluctuations in the newly born universe. The
knowledge of curvature fluctuations is important, since
the Starobinsky phase is unstable, and its decay time de-
pends on the initial magnitude of the curvature fluctua-
tions.

A more detailed description of the tunneling universe is
obtained by solving the Wheeler-DeWitt equation!® which
plays the role of the Schrédinger equation in quantum
gravity. The Wheeler-DeWitt equation for higher-
derivative models of the form (1.4) is derived in Sec. IV.
Its solution for the Starobinsky model is found in Sec. V.
The wave function describing a tunneling universe is ap-
preciably different from zero only in a narrow range of
curvatures around the instanton curvature R =R,. The
mean-square fluctuation of the curvature calculated from
this wave function is in agreement with the order-of-
magnitude estimate of Sec. III.

After the nucleation, the universe is described by the
classical field equations with a very high accuracy. The

role of quantum cosmology is, therefore, to determine the
probability distribution of the initial conditions for the
following classical evolution.

II. STAROBINSKY SCENARIO

A. de Sitter solution

The Starobinsky scenario is based on a self-consistent
solution of the semiclassical Einstein’s equations,

R;Av_%g,u.vR:"'B"TG<Tyv) ’ (2.1)

where (T,,) is the expectation value of the energy-
momentum tensor. The metric is assumed to be of the
Robertson-Walker form

ds*=dt*—aXt)do?, (2.2)

where do,? is the metric on a three-sphere, three-plane,
and three-hyperboloid for closed (k= +1), flat («x=0),
and open (k= — 1) Robertson-Walker metrices, respective-
ly. In a curved space-time, even in the absence of classical
matter or radiation, quantum fluctuations of matter fields
give nontrivial contributions to (7, ). (This effect is
similar to vacuum polarization effects in quantum electro-
dynamics.) These quantum corrections take a particularly
simple form in the case of free, massless, conformally in-
variant fields:?°

(Ty,)=kVH,,+k; H,, . (2.3)

Here, k; and k3 are numerical coefficients and. I have
used the standard notations
H,,=2R,,.,—28,,R,;’°+2RR,,— 58, R?,
(2.4a)
®H,,=R,°R,,—*RR,,—~g,,R°R,. +~g, R?
py— D vo 3 nv zg;w or+ T 8uv .
\
(2.4b)

The tensor ‘VH ,ﬁ is identically conserved, ‘VH pv=0. It
can be obtained by varying a local action,

2 8 4 2

o 5 [ d*xv—g R?. 2.5)
To cancel infinities in (7, ), one has to introduce infinite
counterterms in the gravitational Lagrangian. One of
these counterterms has the form CR?V' —g, where Cis a
logarithmically divergent constant. Since an arbitrary fin-
ite part can be added to C, the coefficient k; in Eq. (2.3)
can take any value and has, in principle, to be determined
by experiment. The tensor *'H uv> On the other hand, is
conserved only in conformally flat space-times (in particu-
lar, in Robertson-Walker space-times) and cannot be ob-
tained by varying a local action. Its coefficient kj is
uniquely determined:

1
144072
where Ny, Ni,, and N, are the numbers of quantum
fields with spins O, %, and 1, respectively. It will be con-
venient to introduce the notations

(n =
H,, =

k; (No+3Ny,,+31N,), (2.6)
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Hy=(87k;G)~'?, M =(487k,G)~'/%. 2.7

Then Eq. (2.3) takes the form
87G( Ty )=Ho *¥H,,++M2VH,, . (2.8)

We shall assume that Hy >0, M > 0.

Although the trace of the energy-momentum tensor
vanishes for classical conformally invariant fields, the ex-
pectation value (2.8) has a nonzero anomalous trace:

87G{(TY)=H, X +R*—R,,R")—M~?R.". (2.9)

This is the so-called trace anomaly;**?! the conformal in-

variance is broken by the regularization of infinities in
(T,).

A model with free, massless, conformally invariant
fields may appear rather artificial. We note, however,
that the masses of the fields can be neglected in the high-
curvature limit, R >>m?2. In asymptotically free gauge
theories, interactions become negligible in the same lim-
it.22 Besides, in a typical grand unified model, the main
contribution to k; comes from the vector fields (because
of the large factor multiplying N;). Massless vector
fields (as well as spinor fields) are described by conformal-
ly invariant equations, and their contribution to (T, ) is
of the form (2.8). Thus Eq. (2.8) may give a reasonable
approximation for (T,,) in a grand unified model for
R >pu?, where p is the unification energy scale. Correc-
tions to Einstein’s equations due to gravitons can be

1

dd d*  ,ad’

a az a

In the de Sitter solutions (2.11) the scale factor grows ex-
ponentially, and for Hyt >1 the k-dependent terms in
(2.12) become negligible. It is, therefore, sufficient to
study the flat-space model with x«=0, which is much
simpler to analyze.
Introducing a new variable H (¢)=a /a, we can rewrite
Eq. (2.12) with k=0 as
- o H? . v ra
H“H*—H, )=—M2 (2HH+6H*H —H “) . (2.13)
The de Sitter solution (2.11b) corresponds to H =H,. To
show that this solution is unstable, consider a small devia-
tion from H =H: ‘
H =Hy(1+9) . (2.14)

Substituting this in Eq. (2.13) and linearizing in 8 we ob-
tain
8+3H6—M?*6=0. (2.15)

The two linearly independent solutions of (2.15) are given
by §=exp(at) with

9H,?
4
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neglected compared to those due to matter fields if the
number of matter fields is sufficiently large.

It is easily verified that Eq. (2.1) with (7,,) from Eq.
(2.8) has a de Sitter solution.®> In a de Sitter space

(2.10)

Substituting (2.10) in (2.1) and (2.8) and disregarding the
trivial solution R =0, we obtain R =12H,2 The corre-
sponding de Sitter solutions are

R,,=%gwR , R=const.

a(t)=Hy 'cosh(Hyt) , k=+1 (2.11a)
a(t)=agexp(Hyt), k=0 (2.11b)
a(t)=H, 'sinh(Hyt) , k=—1 (2.11¢)

for closed, flat, and open models, respectively. These
solutions describe an inflationary phase driven entirely by
the quantum corrections to Einstein’s equations.

The magnitude of Hy depends on the numbers of fields
in Eq. (2.6), but is not, typically, much different from the
Planck mass, mp. For example, in the minimal SU(5)
model, N0=34, N1/2 =45, Nl =24, 87Tk3 = 1.8, and
H, 0= 0.7m P

B. Instability of the de Sitter phase

The evolution equation for the scale factor obtained
from Eqgs. (2.1) and (2.8) is>?*

4

(5]

; 2
a K
—UT (2.12)

a
a

)

The existence of a growing mode with a > 0 indicates the
instability of the de Sitter solution (2.11). Note that flat
space-time, H =0, is a stable solution of (2.13). Lineariz-
ing in H, we get 2H = — M*H, which does not have grow-
ing solutions for M2 > 0.

Of course, the linear approximation (2.15) breaks down
when 8 becomes ~ 1. To study the nonlinear evolution of
the model, we shall find approximate solutions of Eq.
(2.13) in various regimes. Suppose that initially H is near
Hy and H is small, H <<H,% If H > H,, then H grows
without bound. Such solutions are obviously unrelated to
our universe, and we shall concentrate on the case
H <H0.

We shall first solve Eq. (2.13) assuming H () to be
slowly varying:

H<«<H?, H<«HH . (2.16)
Then Eq. (2.13) takes the form
H?>—_H,>=6(Hy>*/M*H . 2.17)

The solution of this equation is

Hy—H

HooH— +80exp(M?t /3H )
0
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or

H =H,tanh

— 2.18
Y 6H, (2.18)

M?% ‘

where y=+1n(2/8,) and 8, is the magnitude of
| H—Hy | /H, at the initial moment, ¢ =0. The range of
probable values of §, will be determined by quantum
analysis in the following sections. [See Eq. (5.20).] From
Eq. (2.18) we see that H(tz) changes on a time scale
~6H,/M?. Long inflation is obtained if M?<<6H,>
Below we shall assume that this is the case. In fact, we
will see in Sec. II D that a much stronger constraint has to
be imposed to avoid a conflict with observations.

To estimate the limits of validity of our approximate
solution (2.18), we substitute it in Eq. (2.13) and find
when the neglected terms become comparable to those we
kept. This happens at

t~t,=6yHy/M?*,

when H ~M. Hence, in the course of inflation, the ex-
pansion rate gradually changes from ~H, to ~M <<H,.

The scale factor a(¢) is found from Eq. (2.18) by a sim-
ple integration:

2 2
a(t)=H,y~[coshy /cosh(y —M?t /6H,)]" 70 ™ .

For t,—t>6H,/M?> this gives a(t)=H,exp(Hyt), and
for t, —t <<6H,/M*

/M

2 2
a(t)=Hy Ycoshy)® 0 ™ exp[ — =M, —11?] . (2.19)

The expansion rate during this period is

H(t)=+MXt,—1). (2.20)

To investigate the further evolution of the model, we
note that for H << H, the term proportional to H* in Eq.
(2.13) can be neglected:

2HH +6H*H —H>4+M?H*=0. 2.21)
The “friction” term, 6H2H, is also small for H <<M.
Neglecting this term and introducing a new variable
z =H /H, we bring Eq. (2.21) to the form

224224+ M?=0. (2.22)
The solution is z = — M tan(Mt /2) and
H =B cos’(Mt/2) , (2.23)

where B =const.

The effect of the friction term in Eq. (2.21) is to gradu-
ally damp the oscillations of H described by Eq. (2.23).
An approximate solution of Eq. (2.21) is

Mt
2

— 4 os? | SME L oYy . (224)
Mt

3t

Although (Mr)~'sinMt << 1, this term has to be kept,
since its contribution to the derivatives of H is not negli-
gible. Two arbitrary integration constants are not shown
explicitly in Eq. (2.24). They correspond to the choice of
the origin of ¢ and to the change of Mt to (Mt +a) in the
trigonometric functions. The scale factor is given by’ .

a(t)=constXt>*[1+(2/3Mt)sinMt +0(t~2)] .  (2.25)

The expansion rate averaged over the oscillation period
is

H=2/3t. (2.26)

It corresponds to the expansion law of a matter-
dominated universe, a(¢) o« t2/3. This behavior can be un-
derstood in the following way. The oscillations of the ex-
pansion rate in Eq. (2.23) can be thought of as coherent
oscillations of a massive field describing scalar particles of
mass M (Starobinsky calls them scalarons). The gravita-
tional effect of such “particles” with zero momentum
(VH =0) is similar to that of pressureless gas and leads to
the expansion law a «¢2/3, It is interesting that the parti-
cles and the expansion of the universe are both described
by the same variable, a ().

~ C. Thermalization

Rapid oscillations of the expansion rate result in parti-
cle production. This process can be thought of as a decay
of scalarons into other particles. It is well known? that
the particle-production rate vanishes for massless, confor-
mally coupled fields in a Robertson-Walker universe.
Therefore, we have to take into account deviations from
conformal invariance. For simplicity, we shall consider a
real scalar field ¢ of mass m and conformal parameter &,

¢,*+(m*+ER)$p=0, (2.27)

assuming that m <<M and |£—+ | <<1. (Note that for
m >M/2 the particle production is exponentially
suppressed.)

To estimate the rate of particle production, at some
time ¢y, we note that for My, >>1 the period of oscilla-
tions (2rM ~!) is much shorter than the average Hubble
time (3¢y/2). For a time interval Az such that
to>>At >>M ™!, we can neglect the effect of power-law
expansion and consider only the oscillatory contribution
to a(z). With proper normalization,

a(t)=~1+4(2/3Mt,)sinMt . (2.28)

The oscillatory term in (2.28) is small and can be treated
as a perturbation. A perturbative technique for calculat-
ing the particle production has been developed in Ref. 25.

Let us first consider the case of a massless, nonconfor-
mally coupled field: m =0, £&54+. Zel’dovich and Staro-
binsky?® have shown that in this case the rate of particle
production per unit volume per unit time is

.1 o 1yp2

"_1617(5 L)R?, (2.29)
where

R ~6d=—(4M /t,) sinMt (2.30)

is the (linearized) scalar curvature. Averaging over the
period of oscillation and using the fact that the particles
are produced in pairs with energy M /2 per particle, we
can write

(2.31)
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where p is the energy density of the particles. (I have veri-
fied that a direct calculation of p=(T,°) gives the same
answer.)

The rate at which the energy of scalarons is dissipated
is

F=p/p= %GM3(§-— +)72, (2.32)

where p—~(61TGt0 )~! is the mass density of scalarons. At
t ~T ! the oscillations of the scale factor (scalarons) are
damped, the created particles thermalize, and the universe
becomes radiation dominated at the temperature

Tth~(l"mp)l/2~ lg_% IM3/2mP—l/2 , (233)

where mp=G~'/? is the Planck mass. (For Ty <10'¢
GeV the thermalization time is much shorter than the
Hubble time, z.)

It is shown in Appendix A that the particle-production
rate for a field of mass m <<M can be obtained from that
for a massless field by replacing '

(E—$M2(E— 2 M>—1tm? . (2.34)
Hence, in the general case,

r=Gm*/eM , (2.35)

To~ |72 (Mmp)~1/2, (2.36)
where

m2=m2—3(&£—+)M?. (2.37)-

Although Egs. (2.35) and (2.36) were obtained assuming
that m <<M, they should give a correct order of magni-
tude for m <M. Of course, different particles will have
different values of #i 2. To estimate I' and Ty, one
should use the largest value of /i 2 satisfying m <M /2.

D. Generation of gravitational waves

A stringent constraint on the Starobinsky model can be
derived from the observational limit on the amplitude of
very-long-wavelength gravitational waves.?® Starobinsky
has shown?’ that quantum fluctuations of the gravitation-
al field during the inflationary era can give rise to long-
wavelength gravitational waves of appreciable amplitude
at present. He found that the initial amplitude of the
waves is h ~H) /mp, where H), is the expansion rate at
the time when the comoving wavelength of the wave
crossed the horizon during the inflationary period. The
amplitude remains constant until much later, the wave
reenters the horizon. The gravitational waves disturb the
isotropy of the microwave background through the
Sachs-Wolfe effect.’® They produce a 8T /T of order
their amplitude h. Since observations indicate a large-
scale anisotropy of less than 10~*, one can derive an
upper bound on the expansion rate at the time when the
relevant scales crossed the horizon:*®

Hy, <5X107*mp . (2.38)

The results of Refs. 26 and 27 do not directly apply to
the Starobinsky model, since the equation describing the
propagation of gravitational waves gets modified by the

quadratic terms (2.3) in the Einstein equations. In the
presence of weak gravitational waves, the metric can be
written as

ds?>=a*(m)[dn*—(8;+h;j)dx'dx'] , (2.39)

where 7 is the conformal time which is related to t by
= [dt/a(p) (2.40)

The gravitational wave perturbation h;; can be decom-
posed into modes of the form h;;=e;hi(n)exp(ik-x)
where the tensor e;; corresponds to one of the two in-
dependent polarizations. The functions h(n) satisfy the

equation?®
R  2RJ-R
hl’ 1+—_____ e
k 2 3H,?
. R 2R8 R’
hp |29 |1+ -
+ 3M? 3H,? | 3M?
R R —6R}
+k2hk |1+§—A;2—+“‘—3H—02— =0, (2.41)

where primes stand for derivatives with respect to 7. For
M? << Hy?, we can neglect terms proportional to H, 2,
and Eq. (2.41) takes the form

e+ 2"7+% Ry +kh, =0 (2.42)
where
b=1+R/3M?. (2.43)

The term b’/b is due to the one-loop corrections (2.8) and
was not taken into account in Ref. 27.

The analysis of the spectrum of gravitational waves in
our model can be reduced to that in Refs. 26 and 27 if we
note that Eq. (2.42) can be thought of as a regular wave
equation for gravitons, but in a modified metric with a
scale factor @=aV’b. For wavelengths much shorter
than the horizon, — k7 >>1, the graviton mode functions
have the form

he(n)=(2G /k)"mab'/?)~exp(—ikmn) . (2.44)

The choice of pure positive-frequency modes corresponds
to the absence of gravitons in the initial state. When the
wavelength becomes much greater than the horizon,
—kmn <1, hi(n) approaches a constant. The magnitude
of this constant can be determined by solving Eq. (2.42) in
the transition region, — kn~1.

Since H and b are slowly varying functions of time, we
can replace them in the transition region by their values at
the time of horizon crossing, Hj and b, =1+4H,2/M?>.
In other words, we approximate our nearly de Sitter space
by an exact de Sitter space. The corresponding scale fac-
tor is a(n)=—(H,n)~!, and the solution of Eq. (2.42)
which matches to Eq. (2.44) is

172 th

2G

—ikn
kb, e . (2.45)

1]———

hg(n)=— k77

T
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We see that at late times, —kn<<l, hi(n)
=i(H, /m)(2G /k3b,)!/%. This is different from the re-
sults of Ref. 27 by a factor b, ~'/>=M /2H,. [In the re-
gime of interest to us, H, >>M, and we can neglect 1 in
Eq. (2.43) for b.]

Note that the resulting spectrum of gravitational waves
is exactly flat,

| Ay | =(GM?/27*) 2k =372 (2.46)

and is independent of H,. A constraint on the parameter
M of the model can be obtained by replacing H,—M /2
in Eq. (2.38):

M <1073 mp ~10'® GeV . (2.47)

I have learned that Starobinsky has derived an even
stronger constraint, M < 10!* GeV, by requiring that the
density fluctuations resulting from inflation are sufficient-
ly small.!®

Thus, to give a successful inflationary scenario, the
Starobinsky model has to include two vastly different
scales, Hy~10" GeV and M < 10" GeV. In terms of the
coefficients k; and k; in Eq. (2.3) we must have
ki> 10%k;. As we learned in Sec. I1 A, kj is fixed by the
model, while k, is arbitrary, and so it is consistent to as-
sume that k; >>k;3;. This assumption does not strike one
as very natural, but, to be fair, one has to add that all
known inflationary models require an unnatural adjust-
ment of parameters of one sort or another.

With M <10'* GeV, the thermalization temperature is
Tw < 10'? GeV, which is well below the grand unification
scale. The grand unification symmetry breaking occurs
during inflation, and the superheavy magnetic monopoles
are inflated away.

III. TUNNELING PROBABILITY

We now turn to the quantum cosmology of the Staro-
binsky model. A universe created by quantum tunneling

'should be closed, since otherwise the tunneling action is

infinite, and from now on we specialize to the closed
Robertson-Walker model with k= +1.

The semiclassical tunneling probability can be calculat-
ed using the instanton method.>!* Omitting the pre-
exponential factor, the probability is given by?®

Pxexp(—|So|), (3.1)

where S is the instanton action. The instanton is a solu-
tion of Euclidean field equations which can be obtained
from the de Sitter solution (2.11a) by changing t—it:

a(t)=Hy~cos(Hyt) . (3.2)

This is the well-known de Sitter instanton®® describing a
four-sphere of radius Hy ™.

I shall now demonstrate how one can calculate the tun-
neling action for a model described by the action of the
general form (1.4),

s=[L®dae. 3.3)

Here, dQ=(—g)'/?d*x is the four-volume element and
L (R) is an arbitrary function of the scalar curvature. For

a de Sitter ins:canton, the scalar curvature is constant,

R =Ro=12Hy*, (3.4)
and we can write ‘

S(R)=L (R)Qg=3847°R "2L(R),
where

Qg =3847°R 2 (3.5)

is the volume of a four-dimensional sphere of scalar cur-
vature R.

The curvature of the de Sitter instanton R, can be
found by solving the field equations as we did in Sec. IIL.
Alternatively, it can be found by minimizing the action
(3.5):

RoL'(Rg)—2L(Ro)=0. (3.6)

Once R, is found, we can calculate S(R,) and use it to
find the tunneling probability from Eq. (3.1).

The semiclassical approximation is justified if the tun-
neling action is large, | .Sy | >>1. The curvature fluctua-
tions in the newly born universe can be estimated from

|8S | ~1. (3.7)
Expanding S (R) around R =R we have
S(R)=So+5S"(Ro)(8R)?,

and Eq. (3.7) gives

2 2

BRI|" 2
Ro*|S"(Ro)|

R, (3.8)

As an example, consider a simple model described by
the Einstein action with a cosmological term representing
the false vacuum energy:

L(R)=R /167G —p, . (3.9)

Extremizing the action (3.5) we find R,=32wGp,,
S(Ry)=3/8G?p,, and!"1°

P < exp(—3/8G%,) .

We now turn to the Stafobinsky model. The one-loop
effective action corresponding to Egs. (2.1) and (2.8) is not
known in a closed form for a general Robertson-Walker
metric. As I mentioned in Sec. II A, such an action
should be nonlocal. However, an approximate local action
can be found for the case of the Starobinsky model with
M << H,. This action is given by Eq. (3.3) with (see Ap-
pendix B)

1 R? R?!_ R
R)= R ~—In— |, 3.10
L(R) 167G +6M2+R0 nRo . ( )
where Ry= 12H(;2. From Eq. (3.5),
247 [ 1 1 1. R
R)="0 (= —In—]. 3.11
SR="6" R Teomz TR, "Ry G.10)

* This action has an extremum at R =R, as it should.
. The tunneling probability is given by
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GM?

P <exp R (3.12)

where I have used the fact that Hy?>>M2.
The curvature fluctuations can be estimated from Eq.
(3.8):

(S8R /Ry ~GHy? /T . (3.13)

A better estimate for 8R /R, will be found in Sec. V by
solving the Wheeler-DeWitt equation for the wave func-
tion of the universe.

Let us now consider how the tunneling probability
(3.12) is affected by adding a false vacuum energy term to
the action:

247 | 1 1 1 . R 16nGp,
==T |-~ - In——— 3.14
S G R+6M2+Ro nRO R2 (3.14)
This action has two extrema (for sufficiently small p, ):
327Gp, |'?
Ry=6H,? |1+ [1— P (3.15)
* 3H,

R, and R_ correspond to a local minimum and a local
maximum of S, respectively, and

S(R,)<S(R_). (3.16)

If p, <<G ™2, then the curvatures of the two instantons
are R, ~12H,? and R_ ~32wGp,. The first instanton
describes a tunneling to the Starobinsky phase (slightly
modified by the presence of p,), while the second corre-
sponds to a tunneling to a false-vacuum-dominated phase
in which the quantum-gravitational corrections are small.
It follows from Eq. (3.16) that the tunneling to the Staro-
binsky phase has a higher probability.

At p,,=3H02/327rG =p., the two instantons coincide,
and for p, >p. the action (3.14) has no stationary points.
The critical density p, is comparable to the Planck energy
density p, ~G ~2.

If there are several false vacuum states to choose from,
which of them gives the highest tunneling probability?
From Eq. (3.14) we have

d 38412
—S(R,)=— 0,
¥p, * R,2 ©

(3.17)
-+

which means that greater vacuum energies give a smaller
tunneling action. Hence, the universe prefers to tunnel to
the Starobinsky phase with a false vacuum of the highest
energy density satisfying p, <p,.

This analysis suggests the following interesting possibil-
ity. Suppose we have a grand unified theory with a Higgs
field ® and effective potential V(®). Suppose that V(®)
is unbounded from above (which is usually the case).
Then V(®)=p, at some value of ¢, P=>P,. If O, were a
stationary point of V, ¥V’'(®.)=0, then the instanton with
R =6Hy%, &=, would give the greatest tunneling prob-
ability. If V'(®,)s£0, then &=, is not a solution of the
field equations. However, ®=®, can still be an approxi-
mate instanton solution if the slope of the potential V' (®)
is sufficiently small near ®.. It is possible that such ap-
proximate instantons give the highest tunneling probabili-

ty. To obtain a definitive answer, one has to study the
solutions of the Wheeler-DeWitt equation for models in-
cluding both quantum-gravitational corrections and scalar
fields. This problem will not be addressed in the present
paper. In the following sections we shall concentrate on
the “pure” Starobinsky model without classical matter
fields.

IV. CANONICAL QUANTIZATION

A more complete description for the nucleation of the
universe can be obtained by solving the ‘“Schrodinger
equation” for the wave function of the universe. In quan-
tum gravity, the wave function W(g;;) is defined on a
space of all possible three-geometries (superspace). In
higher-derivative theories of gravity the number of in-
dependent variables is doubled. The standard choice of
additional variables is Kj;, the extrinsic curvature of the
three-geometry.!® The role of the Schrédinger equation is
played by the Wheeler-DeWitt equation'®

HV=0, 4.1)

where 7 is the Hamiltonian.

In this paper we will not attempt to analyze inhomo-
geneous fluctuations of the metric and will restrict the
three-geometry to be homogeneous, isotropic, and closed.
This corresponds to reducing the infinite number of gravi-
tational degrees of freedom in the superspace to just two
variables. Such a reduced superspace is called minisuper-
space. Minisuperspace quantization of higher derivative
theories with a term proportional to R? in the gravitation-
al Lagrangian has been discussed in Ref. 17. Here we
shall consider a general class of models with action of the
form (3.3): ‘

S= [LR)(—g)"d*% =24 [ L(R)a’dr. (4.2)

The scalar curvature for a closed Robertson-Walker
metric is
R =6a~X1+d*+ad) . (4.3)

Substituting (4.3) in (4.2), the action can be written as
S= [ ZLla,d,d)adt . (4.4)

Before we discuss the general case, let us first consider
a simple example of minisuperspace quantization—that of
Einstein’s gravity with a cosmological term, Eq. (3.8).
Substituting Eq. (4.3) in the action and integrating by
parts to remove the second derivative of a, we obtain

37T -2 2.2
=Ef(l—a —H,%a%adt, 4.5)

where H,=(87Gp,/3)!”2. The momentum conjugate to
the scale factor a is

_ 0% 3w

= =—=—ad - (4.6
P dd 2% 4.6
and the Hamiltonian is
. G 37 :
H=Pa—F=———P,>~—a(1—-H,a?
2 a 3va P, 4Ga(l H,%a”) . 4.7)
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The Wheeler-DeWitt equation is obtained by replacing
P, > —id/da:

2
3T\ a%(1—H,%a?)

P _— P — __
a a 2G

Y(a)=0. (4.8

Here, the parameter p represents the ambiguity in the or-
dering of factors a and d/0a. Fortunately, a variation of
p affects only the pre-exponential factor of the semiclassi-
cal wave function. The actual value of p will be unimpor-
tant for our calculations and can be adjusted for conveni-
ence. -

Setting p =0, Eq. (4.8) takes the form of a one-
dimensional Schrodinger equation for a “particle”
described by a coordinate a(t), having zero energy and
moving in a potential

2

37 | G21—H,2a?) . 4.9)

vla)= 2G

“Nothing” (a =0) is separated from the classically al-
lowed range (a > H,™!) by a potential barrier. The WKB
tunneling probability is

(4.10)

P 2 o U i”d
o<exp [— fo [U(a)]/“da
This, of course, gives the same answer as the instanton ap-
proach, Eq. (3.9). '

In the general case, second derivatives of a cannot be
removed from Eq. (4.2) using integration by parts. The
standard approach to canonical quantization in this case
is to introduce, in addition to a, another variable (we shall
choose it to be the scalar curvature, R) and to express the
action in the form

Ss= [ #(a,d,R,R)dt .

This corresponds to rewriting a fourth-order differential
equation as a system of two second-order equations.

With the action written as in Eq. (4.2) we can treat Eq.
(4.3) as a constraint. Equivalently, we can rewrite the ac-
tion using a Lagrange multiplier:

S=2a* [ {L(R)a*—B[R —6a~*(1+d +ad)]}dt .
(4.11)
B is determined by varying .S with respect to R:
B=a’L'(R) . (4.12)

Substituting (4.12) back into Eq. (4.11) and integrating by
parts to eliminate @, we obtain

S =272 [ [L(R)~RL'(R)+6L"(R)a~%(1—d ?)

—6L"(R)a~'dR Ja’dt . (4.13)

This form of the action is already suitable for canonical
quantization. However, it will be convenient to “diago-
nalize” the derivative part of the Lagrangian by introduc-
ing new variables instead of a and R. We define

g=Hya(L'/Ly)V?,
x=+1In(L'/L}) ,

(4.14a)
(4.14b)
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where L'=L'(R), Lo=L'(Ry), H, is related to R, by
Ro=12H,? and R, is the curvature of the self-consistent
de Sitter solution which can be found from Eq. (3.6).
Note that, for R =R, ¢ =H,a and x =0. The transfor-
mation (4.14) becomes singular at points where L'=0.
However, we will be interested in a range of x near x =0
(R =R,) where the change of variables (4.14) is justified.
From (4.13) and (4.14) we find

S= [ Lqgx%d,
4.15)
L =27*Hy [L —RL'++Ro(L"*/L{y)q ™2

+6Ll(x' Z_q' 2/q2)](Ll/L6)—3/2q3 ,

where R has to be expressed in terms of x from Eq.
(4.14b). The canonical momenta and the Hamiltonian are
found from

P,=3.%/3¢=—BL'" %4, (4.16a)
P,=3.% /3x=BL'~ %% , (4.16b)
H =GP, +xP— L, (4.16¢)

where B =247°H,3Ly*’?>. Replacing P,— —id/3,,

P,— —id/0x in the Hamiltonian, we obtain the
Wheeler-DeWitt equation:
R I »
— —— —5 —Vl(g,x) |¥(g,x)=0, (4.17)
3 42 ox? q q
1 2Lg
Vigx)=—4¢*|1 (L—RL")g*| . 4.18
q Azq + RoL” )g (4.18)

Here, A~ '=2887?L,, /R0=576ﬂ2L0/R02, where I have
used Eq. (3.6). Now, making use of Eq. (3.5) we can write

A=2/38,, (4.19)

where S is the instanton action. The WKB approxima-
tion which will be used in the next section is based on an
expansion in powers of A. It is justified if A is small or,
equivalently, if the instanton action is large, Sy >>1.

For simplicity I have set the factor-ordering parameters
equal to zero in Eq. (4.17). Nonzero values of these pa-
rameters introduce only unimportant modifications in the
pre-exponential factor of the semiclassical wave function.

The formalism developed thus far applies to models
with arbitrary L (R). Now we specialize to the Starobin-
sky model with L given by Eq. (3.10). Using the condi-
tion M2 << Hy?, Egs. (4.14b) and (4.18) take the form

x =+1In(R/R,), (4.20)
Vig,x)=A"2q[1—q*+u*x)q?], (4.21)
where
M? 2
,uz(x)zﬁux +e 1), (4.22)
A=GM?/6rm . (4.23)

In Eq. (4.22) we neglected terms ~ (M /H,)*.
For x =0, the potential for g is similar to that in Eq.
(4.9). The classically forbidden range is from ¢ =0 to



g=1. At nonzero values of x, the potential barrier ends
(V' =0) at g~ 1+ +p2(x). Since x =0 is the minimum of
u?(x), it corresponds to the smallest width of the barrier,
and one can expect the wave function to be peaked near
x =0.

Equations (4.21) and (4.22) apply for values of x such
that p%(x) < 1:

C —In(Hy/M) <x <<Hy*/M? . (4.24)

Beyond this range, the approximations made in deriving
these equations are no longer justified (one has to include
higher-order terms in M?2/H?).

V. THE WAVE FUNCTION OF THE UNIVERSE

In this section we shall solve Egs. (4.17) and (4.21) and
find the wave function describing a universe tunneling to
the Starobinsky phase.

To solve the Wheeler-DeWitt equation (4.17), we have
to specify the boundary condition at ¢ =0. We shall re-
quire that |W¥(g=0)| < . It is clear from Eq. (4.17)
that this condition can be satisfied only if 3*¥/dx? van-
ishes at ¢ =0: dW¥/0x(0,x)=const. Since W¥(0,x) can be
bounded for all values of x only if this constant is zero,
we require

¥ 0,x)=0. (5.1)
ox
This boundary condition does not fix W(g,x) uniquely.
Below we shall impose an additional requirement which
will single out the tunneling solution of Eq. (4.17).

For g <<1 we can neglect the terms proportional to ¢*

in V(g,x):

¥ 1?1,

dg? —;{ Ax? _‘Fq ¥=0.

(5.2)

Two linearly independent solutions of (5.2) satisfying the
boundary condition (5.1) are ¢'/2I,,(g®/2\) and
q'’K,4(¢*/21), where I,(z) and K,(z) are modified
Bessel functions. A tunneling solution should exponen-
tially decrease in the classically forbidden range. Hence,
we choose

V=q'"%K,,(g*/21), g<<1. (5.3)
The asymptotic form of (5.3) for g >>A1"2 is
V=(mr/q) 2 exp(—q?/2L), A ?<cq<<l. (5.4)

In most of the region 0< g <1 we can use the WKB
approximation. The condition of its applicability is
| V(g:x)| >1o0r

(5.5

The WKB approximation is based on expansion in powers
of A. Writing the Wheeler-DeWitt equation as

g>>A, 1—g>>A?%.

(V2= »¥=0, (5.6)
we make the WKB ansatz
W=re~S )
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and assume that S is of order A~!. Then, comparing

terms with equal powers of A, we obtain
vs-vs=v,
2VA-VS +4V3S=0.

Here, V2=aqz—q 2,2
VS-VS =(3S/3¢)*—q 43S /3x)?,

etc., and I have used the fact that ¥ < A2,

The potential (4.21) has two small parameters, A and
M?/Hy?. Keeping the term proportional to M2/H,? in
(5.8) is justified only if M?/Hy*>>A or

GHy*/6m<<1, (5.10)

where I have used Eq. (4.23). With the aid of Egs. (2.6)
and (2.7) we find

GH?/6m=(481%k3) "' <N, 71,

where N, is the number of gauge fields in the model. The
smallest grand unification group, SU(5), has N; =24, and
thus the condition (5.10) is satisfied for all grand unified
models. ,

From the facts that (i) W(q,x) is independent of x for
small g and (ii) the x-dependent terms in V(g,x) are mul-
tiplied by the small parameter M2/H,? it follows that
oW /dx is also proportional to M 2/H?. Neglecting terms
~(M/Hy)* we can drop the term proportional to
(88 /3x)? in Eq. (5.8):

(5.8
(5.9

%5-:1/—[7=k"1q[1—q2+p2(x)q2]1/2. (5.11)
(I have chosen the positive sign of the square root which
corresponds to the tunneling solution.) Integrating Eq.
(5.11) we obtain
1

=§x[l+u2(x)]{1——[1—q2+u2(x)q2]3/2} , (5.12)
where the arbitrary additive function of x has been chosen
so that S—g?/2A for ¢—0 with accuracy up to terms
~(M/H,)*, and so Egs. (5.4) and (5.12) agree in the re-
gion where both approximations apply.

We shall find the amplitude of the wave function to the
lowest order in M?/H,*. Neglecting terms ~M?2/H,? in
Eq. (5.9), we can rewrite it as

%(AWT/T,):O, (5.13)
where

Volg)=A"2g%(1—¢?) . (5.14)
The solution of (5.13) is

A =72y~ 14 (5.15)

where the constant factor is determined from Eq. (5.4).

The WKB approximation breaks down near the turning
point, ¢ =g, ~ 1+ +u%x). The wave function in the clas-
sically allowed range g > g,, can be found by analytically
continuing around the turning point in the complex g
plane:3!
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V=712 Vy(q)| ~exp —;—}3—[1+u2(x)]{1+i[q2—1—,u2(x)q2]3/2} —14£ . (5.16)
i
We can now discuss the curvature fluctuations in the d(x)= f d3k [akuk(x)—&—a,zuk*(x)] , (A3)
newly born universe. From Eq. (5.16), the probability of
nucleation with a certain value of x is proportional to where
| W | 2 o exp[ —2u%(x) /3A] . (5.17) u(x)=2m)~32a ") ™* X (1) (A4)
For x << 1, expanding u*(x) in powers of x, we obtain and the functions X, (¢) satisfy the equation®
| W |2 (—4mx2/GH,?) . (5.18) Xe+kX +[m2+(E—L)R1a®X, =0 . (A5)

Now it follows from Eq. (4.20) that x =8R /2R, where

S8R =R —R| is the curvature fluctuation. Hence, we can

write
((8R/R()?*)=4(x?*)=GHy*/2~m , (5.19)

in a qualitative agreement with Eq. (3.7). A typical fluc-
tuation in the expansion rate is

GH?
8

172

=oH _ 12K (5.20)

As we saw in Sec. II, the magnitude of 8, determines the
duration of the inflationary phase in the Starobinsky
model,

te ~(3Ho/M?)1In(2/8,) .

With H, corresponding to the minimal SU(5) model
(Hy~0.7mp), Egs. (5.20) and (5.21) give 8,~0.14,
ty ~8Ho/M?>4x10"°H,~!, where I have used Eq.
(2.41). This value of ¢, is more than sufficient to solve
the horizon and flatness problems.

(5.21)
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APPENDIX A: MASSIVE PARTICLE
PRODUCTION

In this appendix it will be shown that Egs. (2.31)—(2.33)
can be generalized to the case of nonzero mass by the re-
placement (2.34). It will be convenient to use the confor-
mal time 7 instead of the comoving time ¢,

n= [ dt/a()~t +(2/3M) cosMt . (A1)
Then the metric takes the form
ds’=a’(g)dn?—dx > —dx,?—dx;?) . (A2)

In the linear approximation, the difference between 7 and
t is negligible, and we shall use ¢ in the rest of this appen-
dix.

The field ¢ can be expanded in terms of creation and
annihilation operators as

Linearizing this equation and using Egs. (2.28) and (2.30)
we obtain

X +0p X, — (4/3Mto)ii 2sin(Mt)X ) =0 , (A6)

where oy =(k*+m?)!/2 and 7 2 is given by Eq. (2.37).

The main contribution to the particle production comes
from the modes with k ~M /2>>m. We can, therefore,
replace wi? by k? in Eq. (A6). Then the mass m and the
factor (£ — <) appear in Eq. (A6) only in the combination
(2.37), and it is clear that all results for a massive field can
be obtained from those for a massless field by the replace-
ment (2.34).

We note also that, as pointed out by Starobinsky,® the
production of gravitons by the oscillating metric (2.28) is
suppressed. This is easily seen from Eq. (2.42) if we note
that 2d /a +R /3M?=0 for a (t) given by Eq. (2.28).

APPENDIX B: ACTION FOR STAROBINSKY MODEL

Although the one-loop gravitational action is not
known for a general Robertson-Walker background, it has
been calculated in some special cases. For a de Sitter
space it is>?

s=— [ B ar24r2mR |(—g)2d% . B
167 G u?

The coefficient a can be changed by varying the renor-
malization scale u, while the coefficient S is related to the
trace anomaly. Here it will be shown that (B1) is an ap-
proximate action in a more general case when the curva-
ture is not assumed to be constant, but it is assumed that

a>>f. (B2)

We will see that a and 3 are related to Hy and M, of Eq.
(2.8) with a/B~H?/M?, and thus condition (B2) is satis-
fied for the Starobinsky model. If (B2) is satisfied, the
value of u in Eq. (B1) becomes unimportant, and we shall
choose for definiteness u?=Ry=12H,>.

The field equations obtained by varying the general ac-
tion (3.3) are’®

aL
OR

Ryy— 2L +(V, Vg,V V° g—z 0. (B3

Substituting (B1) in (B3) we obtain Eq. (2.1) with
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87(T,,)=a'VH,,+BRR,, , (B6)

8m(T,,)=2 a+Bln-X (R (Ruy— 58uvR) Y ad w
Ro where I have used Eq. (2.4a) for (”H v- From Egs. (2.4b)

+BRR ,, +(V,V,—g,,V,V)

2aR +2BR ln% +BR ] . (B4)
0

Equation (B2) allows us to neglect 3 compared to a.
However, we have to keep the term BRR,,, since this is
the only term surviving in a de Sitter space. For a de

Sitter space,
R“vz %—g#vR N V#R =0 N (BS)

and all terms proportional to a vanish. Hence, we can
rewrite Eq. (B4) as

and (B5) we find that in a de Sitter space

“H,,= 48, R*=15RR v (B7)

Since the term proportional to B in Eq. (B6) is important
only when the metric is close to that of a de Sitter space,
we can use Eq. (B7) and write

8m(Tyy)=a'VH,,+12B%H,,, . (B8)
Comparing (B8) with Eq. (2.8), we find
1 1 1
= ’ = = - (Bg)
6GM? d 12GH,>  GR,

Some properties of cosmological models derived from
the action of the form (B1) have been discussed in Ref. 33.
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