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We study the generation of primordial perturbations in a (single-field) slow-roll

inflationary universe. In momentum space, these (Gaussian) perturbations are char-

acterized by a zero mean and a non-zero variance ∆2(k, t). However, in position

space the variance diverges in the ultraviolet. The requirement of a finite variance in

position space forces one to regularize ∆2(k, t). This can (and should) be achieved

by proper renormalization in an expanding universe in a unique way. This affects

the predicted scalar and tensorial power spectra (evaluated when the modes ac-

quire classical properties) for wavelengths that today are at observable scales. As

a consequence, the imprint of slow-roll inflation on the CMB anisotropies is sig-

nificantly altered. We find a non-trivial change in the consistency condition that

relates the tensor-to-scalar ratio r to the spectral indices. For instance, an exact

scale-invariant tensorial power spectrum, nt = 0, is now compatible with a non-zero

ratio r ≈ 0.12±0.06, which is forbidden by the standard prediction (r = −8nt). The

influence of relic gravitational waves on the CMB may soon come within the range

of planned measurements, offering a non-trivial test of the new predictions.

PACS numbers: 98.80.Cq, 04.62.+v, 98.70.Vc

I. INTRODUCTION AND SUMMARY

Inflation [1] provides a natural solution to the horizon and flatness problems of the hot
big-bang cosmology. A sufficiently long period of rapid expansion can explain the large
scale homogeneity, isotropy, and flatness of our visible universe. Inflation also provides
a quantitative explanation [2] to account for the origin of small inhomogeneities in the
early universe. These inhomogeneities are responsible for the structure formation in the
universe and for the anisotropies present in the cosmic microwave background (CMB), which
were first detected by the COBE satellite and further analyzed by the WMAP satellite
[3]. The potential-energy density of the inflaton field is assumed to cause the inflationary
accelerated expansion, and the amplification of its quantum fluctuations and those of the
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metric are inevitable consequences in an expanding universe [4]. These fluctuations acquire
classical properties in the inflationary period and provide the initial conditions for classical
cosmological perturbations after the big-bang. The detection of the effects of primordial
tensorial metric fluctuations (gravitational waves) in future high-precision measurements of
the CMB anisotropies will serve as a highly non-trivial test of the inflationary paradigm
and to constrain specific models. Therefore, it is particularly important to scrutinize the
predictions of inflation for the tensorial and scalar power spectra. In this respect, it was
pointed out in [5] (see also [6]) that quantum field renormalization significantly modifies the
amplitude of quantum fluctuations, and hence the corresponding power spectra, in de Sitter
inflation. The analysis was further improved in [7] (see also the essay [8]) to understand how
the basic testable predictions of (single-field) slow-roll inflation could be affected by quantum
field renormalization. In this work we further study this issue, improve the technical analysis,
and provide a more complete and robust discussion of how the observable consequences of
inflation are altered when quantum field renormalization is taken into account.

Let us briefly summarize the logic of our approach. Let us assume that ϕ(~x, t) represents
a perturbation obeying a free field wave-equation on the inflationary background ds2 =
−dt2 + a2(t)d~x2, where a(t) is a quasi-exponential expansion factor (a(t) ∼ eHt ). At the
quantum level, this field is expanded as

ϕ(~x, t) =
1

(2π)3/2

∫

d3k[ϕk(t)a~ke
i~k~x + ϕ∗

k(t)a
†
~k
e−i~k~x] , (1.1)

where the creation and annihilation operators satisfy the canonical commutation relation

[a~k, a
†
~k′
] = δ3(~k−~k′). The mode functions ϕk(t) are required to satisfy the adiabatic condition

(see, for instance, [9]). The power spectrum for this perturbation, ∆2
ϕ(k, t), is usually defined

in terms of the Fourier transform of the variance of the field [10, 11]

〈ϕ̂~k(t)ϕ̂
†
~k′

(t)〉 = δ3(~k − ~k′)
2π2

k3
∆2

ϕ(k, t) , (1.2)

where ϕ̂~k(t) ≡ ϕk(t)a~k. These modes describe a perturbation field characterized, in momen-
tum space, by a zero mean 〈ϕ̂~k(t)〉 = 0 and the variance (1.2). The advantage of working
in momentum space resides in the fact that different modes fluctuate independently of each
other, as explicitly displayed by the presence of the delta function in (1.2). This way, the
quantum field is regarded as an infinite collection of oscillators, each with a different value

of ~k. In position space the perturbation is also characterized by a zero mean 〈ϕ(~x, t)〉 = 0
and a variance (or dispersion)

〈ϕ2(~x, t)〉 =
1

(2π)3

∫

d3kd3k′〈ϕ̂~k(t)ϕ̂
†
~k′

(t)〉ei(~k−~k′)~x , (1.3)

which, due to spatial homogeneity, turns out to be independent of ~x. This variance is
formally related to the power spectrum by

〈ϕ2(~x, t)〉 =

∫ ∞

0

dk

k
∆2

ϕ(k, t) . (1.4)

As is well-known in quantum field theory, the above expectation value quadratic in the field
ϕ is divergent. It suffers from quadratic and logarithmic ultraviolet divergences

〈ϕ2(~x, t)〉 ∼ 1

4π2

∫ ∞

0

dk(
k

a2
+

ȧ2

a2k
+ ...) . (1.5)
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The first term corresponds to the usual contribution from vacuum fluctuations in Minkowski
space. This contribution can be eliminated by renormalization as claimed, for instance, in
[12]. However, the second term is also characteristic of vacuum fluctuations in a curved
background. Because the different k-modes fluctuate independently of each other, one could
be tempted to get rid of this logarithmic ultraviolet divergence by simply eliminating the
modes with k > aH and leaving the rest unaffected (see, for instance, [13]). If one eliminates
this divergence using a window function in this way, as is usual for random fields, then one
obtains ∆2

ϕ(k) ≈ H2/4π2, where ∆2
ϕ(k) is defined by the quantity ∆2

ϕ(k, t) evaluated a few
Hubble times after the “horizon crossing time” tk, since this is the time scale at which the
modes behave as classical perturbations.1 However, one should take into account that the
field fluctuations are quantum in nature and, therefore, one should consider the subtle points
of quantum field theory (QFT) regarding the ultraviolet divergences.

Even though free quantum field theory is usually regarded as an infinite set of independent
harmonic oscillators (one for each k-mode), there are fundamental holistic aspects of QFT
that can not be properly understood in terms of independent modes. Renormalization is
the hallmark of the holistic aspect of QFT. This is clear in the fact that, although the
renormalization schemes in QFT in curved spacetimes are based on the ultraviolet behavior
of the theory, the infrared sector is also affected by renormalization, leading potentially to
observable consequences. This can be explicitly displayed by considering, for instance, the
Casimir effect. The energy density between the two conducting plates obtained by proper
renormalization provides the well-known and experimentally tested expression. However,
a naive subtraction obtained by introducing a high-frequency cut-off in the integrals in
momentum space (i.e., treating the k-modes as being independent) produces a quite different
result (see the discussion of [14]).

Taking this into account, we see that the logarithmic divergence in (1.5) should be dealt
with by renormalization and one can not rule out, a priori, the possibility that the treatment
of the divergences at very high values of k may produce some impact at lower momenta.
Therefore, we propose that in the standard definitions of the spectrum ∆2

ϕ(k, t), as given

in (1.2) and (1.4), one should replace the unrenormalized 〈ϕ2(~x, t)〉 by the renormalized
variance, 〈ϕ2(~x, t)〉ren. Writing ∆̃2

ϕ(k, t) for the spectrum defined in this way, the definition
in (1.4) (and similarly in (1.2)) is replaced by the corresponding renormalized expression

〈ϕ2(~x, t)〉ren =

∫ ∞

0

dk

k
∆̃2

ϕ(k, t) . (1.6)

This way, the physical variance 〈ϕ2(~x, t)〉ren remains a well-defined quantity, in the same
way as one could obtain a finite expression for the expectation values of the quantum stress-
energy tensor. To complete the physical consistency of this approach, it would be desirable
to define a unique expression for the necessary subtractions required to produce a consistent
〈ϕ2(~x, t)〉ren. Since the power spectrum is defined in momentum space, the natural scheme
is renormalization in momentum space, so we define

〈ϕ2(~x, t)〉ren =
4π

(2π)3

∫ ∞

0

k2dk(|ϕk(t)|2 − Ck(t)) , (1.7)

1 The time tk is defined by a(tk)/k = H(tk), where a(t) is the expansion factor and H = ȧ/a is the Hubble

rate.
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where Ck(t) represents the expected counterterms. As we will see, adiabatic renormalization
[9, 15, 16], which works by subtracting a set of counterterms “mode-by-mode”, provides a
natural expression for the counterterms encoded in Ck(t). Moreover, the DeWitt-Schwinger
renormalization, originally defined in position space (see, for instance, [9, 16]), can be nicely
translated to momentum space [17], thus providing another answer for Ck(t). When these
two schemes are applied to the field perturbations arising from inflation, the resulting ex-
pressions for Ck(t) coincide, thus defining a unique expression for the spectrum ∆̃2

ϕ(k, t).
The holistic nature of QFT is then explicitly realized through (1.6). Although the coun-

terterms are fully determined by the ultraviolet behavior of the modes, the long wavelength
sector, and hence the new ∆̃2

ϕ(k, t), is significantly affected by the subtractions. In the
slow-roll scenario, when H slowly decreases with time, the effects of renormalization have a
non-trivial impact on ∆̃2

ϕ(k, t) when this quantity is evaluated a few Hubble times after the
time of horizon crossing tk. For instance, for the tensorial modes we obtain

∆̃2(k) ∼
(

H

2π

)2

ǫ , (1.8)

where ǫ is the usual slow-roll parameter. A similar expression is obtained for the scalar
perturbations (involving now the slow-roll ǫ and η parameters), with the corresponding
changes in the tensor-to-scalar ratio, the spectral indices and the consistency relation. The
new predictions remain in agreement with observation for the simplest forms of inflation
(φ2 and φ4 potentials). It is worth pointing out that the new consistency condition for
single-field inflation is predicted to be

r = 4(1 − ns − nt) +
4n′

t

n2
t − 2n′

t

(

1 − ns −
√

2n′
t + (1 − ns)2 − n2

t

)

, (1.9)

instead of the standard prediction r = −8nt. The tensor-to-scalar ratio is now related
with the spectral indices nt, (1 − ns), and also n′

t ≡ dnt/d ln k. This modification has far
reaching consequences. For instance, since the observations from the 5-year WMAP [3](with
BAO+SN) strongly suggest that (1 − ns) ≈ 0.030±0.015 (with r < 0.22), expression (1.9)
allows for an exact scale invariant tensorial power spectrum, nt = 0, while being compatible
with a non-zero ratio r ≈ 0.12 ± 0.06. We will comment on this further later on.

The paper is organized as follows. In section II we briefly review the standard ways
to derive the expressions for the tensor and scalar power spectra of single-field slow-roll
inflation. In section III we work out the new definition of the power spectra and give the
technical details involving the required renormalization in momentum space. In section
IV we provide, as a consequence of the new power spectra, the corresponding expression
for the tensor-to-scalar ratio r, the tensorial and scalar spectral indices, and the slow-roll
parameters. This leads, in particular, to a change in the consistency condition that relates
the tensor-to-scalar amplitude ratio to the spectral indices. In section V we summarize our
results and conclusions. We use natural units ~ = 1 = c.

II. SPECTRUM OF FLUCTUATIONS FROM INFLATION

We will now proceed to briefly review the standard predictions for the power spectra in
single-field slow-roll inflation. In obtaining these predictions, quantum field renormalization
in the curved spacetime of the expanding universe is not taken into account.
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A. Tensorial spectrum

Let us focus on the production of relic gravitational waves by considering fluctuating
tensorial modes hij(~x, t) in an expanding, spatially flat universe

ds2 = −dt2 + a2(t)(δij + hij)dxidxj . (2.1)

The wave equation obeyed by these modes comes from the linearized Einstein equations and
is given by

− a2ḧij − 3aȧḣij + ∇2hij = 0 . (2.2)

Expanding the fluctuating fields hij in plane wave modes hk(t)eije
i~k~x, where eij is a constant

polarization tensor obeying the conditions eij = eji, eii = 0 and kieij = 0, we obtain the
equation

ḧk + 3Hḣk +
k2

a2
hk = 0 , (2.3)

with k ≡ |~k|. The conditions for the polarization tensor imply that the perturbation field
hij can be decomposed into two polarization states described by a couple of massless scalar
fields h+,×(~x, t), both obeying the wave equation (2.3) [18] (see also, for instance, [19];
from now on, we omit the subindex + or ×). On scales larger than the Hubble radius,

the damping term 3Hḣk dominates. However, on scales smaller than the Hubble radius
it is the spatial gradient term that dominates over the damping term, thus leading to the
conventional flat-space oscillatory behavior of modes. To constrain the form of the modes
defining the quantization, it is natural to impose the adiabatic asymptotic condition [4, 9]
for large k

hk(t)√
16πG

∼ (2(2π)3w(t)a3(t))−1/2e−i
R

t w(t′)dt′ , (2.4)

with w(t) = k/a(t), where the factor
√

16πG (G is the Newton constant) has to be introduced
to get a canonically normalized variable. This condition does not uniquely fix the form of
the modes. For instance, in an exact de Sitter background (a(t) = eHt, with H a stric
constant) one can invoke de Sitter invariance to uniquely determine the modes [20], and one
obtains

hk(t) =

√

16πG

2(2π)3k3
(H − ike−Ht)ei(kH−1e−Ht) . (2.5)

These modes oscillate until the physical wave length reaches the Hubble length H−1. The
amplitude of the modes at this time, usually called the “horizon exit” time tk, defined by
k/a(tk) = H , is then |hk|2 = 2GH2

π2k3 . A few Hubble times after horizon exit, the modes
get frozen as classical perturbations [10, 13, 19] (see also [21]) with constant amplitude

|hk|2 = GH2

π2k3 . The freezing amplitude is usually codified through the unrenormalized quantity
∆2

h(k) = 4πk3|hk|2. Taking into account the two polarizations, one easily gets the standard

scale free tensorial power spectrum Pt(k) ≡ 4∆2
h(k) = 8

M2
P

(

H
2π

)2
, where MP = 1/

√
8πG

is the reduced Planck mass in natural units. The appearance of such frozen fluctuations
converts the modes into classical perturbations with wavelengths that are still stretched by
the rapid expansion to reach astronomical scales. This is essentially what happens in the
inflationary era.
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1. Slow-roll inflation

To take into account that inflation lasts for a finite period of time, one usually considers
the so-called slow roll scenario [10, 13, 19]. The homogeneous part of the inflaton field φ0(t)

rolls slowly down its potential V (φ) towards a minimum. Both φ0 and H ≈
√

8πG
3

V (φ0) are

changing very gradually and this change is parameterized by the slow-roll parameters ǫ, η,
where ǫ = −Ḣ/H2, and η − ǫ = φ̈0/(Hφ̇0). In the slow-roll approximation, defined when
the parameters are small ǫ, |η| ≪ 1, one can relate them to the derivatives of the inflaton
potential ǫ = (M2

P /2)(V ′/V )2, η = M2
P (V ′′/V ). To generate an approximate form for the

modes, it is convenient to introduce the conformal time variable τ ≡
∫

dt/a(t). In terms of
τ the wave equation turns out to be of the form

d2hk

dτ 2
+ 2Ha

dhk

dτ
+ k2hk = 0 , (2.6)

and taking into account that in the slow-roll approximation

(1 − ǫ)τ = − 1

aH
, (2.7)

we get
d2hk

dτ 2
− 2(1 + ǫ)

τ

dhk

dτ
+ k2hk = 0 . (2.8)

Within this approximation, and treating now the parameter ǫ as a constant, one can exactly
solve the above equation as follows

hk(t) = (−16πGτπ/4(2π)3a2)1/2[E(k)H(1)
ν (−kτ) + F (k)H(2)

ν (−kτ)] , (2.9)

where the index of the Bessel function is ν = 3/2+ ǫ, and the complex coefficients E(k) and
F (k) obey the normalization requirement

|E(k)|2 − |F (k)|2 = 1 . (2.10)

The adiabaticity condition (2.4) implies that

lim
k→∞

E(k) = 1 lim
k→∞

F (k) = 0 . (2.11)

The simplest way to choose E(k) and F (k) would be to require that, for ǫ → 0, we recover
the exact de Sitter form of the modes. This would mean that E(k) = 1 and F (k) = 0 for
every value of k.

2. Infrared divergences

The choice E(k) = 1 and F (k) = 0 is, however, an idealized situation which assumes that
inflation started at an infinite time in the past. A consequence of this assumption is that
the two-point function

〈0|h(x)h(x′)|0〉 =

∫

d3kei~k(~x−~x′)hk(τ)h∗
k(τ

′) (2.12)
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is ill-defined due to an infrared divergence. This is so because in the limit k → 0 the
integrand in (2.12) behaves as

dk

k

1

k2ǫ
, (2.13)

and ǫ > 0. For general E(k) and F (k) we have, instead,

dk

k

|E(k) − F (k)|2
k2ǫ

. (2.14)

The infrared divergence is avoided if |E(k)−F (k)|2 → 0, as k → 0. This happens naturally if
one assumes that inflation started smoothly at some early, but finite, time (see, for instance,
[22]). Assuming that the initial vacuum is well-defined, and since the dynamical evolution
cannot generate infrared divergences [23, 24], one should get E(k) → F (k), when k → 0
(as explicitly obtained in [22]), and a finite contribution to the two-point function in the
infrared end.

The scale of this infrared behavior of the functions E(k) and F (k) is given by the Hubble
radius at the beginning of inflation. Only those wavelengths that were already outside the
inflationary Hubble radius

k/a(t) ≪ H(t) (2.15)

when inflation began can see this infrared behavior. However, only the wavelengths that
crossed the Hubble radius

k/a(tk) = H(tk) (2.16)

at 50 − 60 e-folds before the end of the inflationary epoch have cosmological observable
consequences today. For these wavelengths the functions E(k) and F (k) behave as in the
Bunch-Davies vacuum (E(k) ∼ 1, F (k) ∼ 0). Despite having no direct observable conse-
quences, the behavior of E(k) and F (k) for very large wavelengths is important for the
consistency of the theoretical framework because it avoids an infrared divergence in the
two-point function.

3. Nearly scale-invariant spectrum

The Hubble exit time tk can be rewritten, in terms of the conformal time, as

− kτ(tk) = (1 + ǫ) . (2.17)

Therefore, at the Hubble exit time tk the amplitude of the modes hk given in (2.9) takes

the value |hk|2 = 2GH2(tk)
π2k3 , and then ∆2

h(k) = 8GH2(tk)
π

. This provides a nearly scale-invariant
spectrum of fluctuations. The k dependence of H2(tk)

d lnH(tk)

d ln k
= −ǫ (2.18)

leads to

∆2
h(k) = ∆2

h(k0)

(

k

k0

)−2ǫ

, (2.19)

where k0 is a pivot scale. One defines the tensorial spectral index nt as the exponent in the
above expression. So

nt = −2ǫ(tk) . (2.20)
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In the latter formula we have explicitly considered that the constant parameter ǫ in the
previous calculation is given by its value around the Hubble exit for the k mode.

The same conclusion can be achieved by evaluating the power spectrum a few e-foldings
after crossing the Hubble radius. One can then consider the approximation −kτ ≪ 1, which
implies

|H(1)
ν (−kτ)|2 ∼ 2

π
(−kτ)−2ν . (2.21)

Furthermore, from the slow-roll equation (2.7) we obtain

a = a(τ0)

(

τ

τ0

)
1

ǫ−1

, (2.22)

where τ0 is an arbitrary reference time. Therefore, we can write

|hk(t)|2 ∼
16πG

4(2π)3

(−πτ)

a2

2

π
(−kτ)−2ν ∼ G

π2ka2(τ0)
(−kτ0)

−2−2ǫ , (2.23)

which explicitly shows the dependence on k−2ǫ of ∆2
h(k) ∝ k3|hk(t)|2. Now, taking for

convenience the reference time τ0 in (2.22) as τ0 = τ(tk) and using that a(tk) = k/H(tk) and
τ(tk) = − 1

(1−ǫ)k
, one can find immediately that

|hk(t)|2 ∼
G

π2k3
H2(tk)

(

1

1 − ǫ

)−2−2ǫ

≈ G

π2k3
H2(tk) , (2.24)

Taking into account the two polarizations one finally gets the same unrenormalized power
spectrum Pt(k) ≡ 4∆2

h(k) = 16πk3|hk|2 (up to a factor 1/2)

Pt(k) =
8

M2
P

(

H(tk)

2π

)2

. (2.25)

B. Scalar spectrum

We now proceed to reproduce the standard results for the unrenormalized power spectrum
of scalar perturbations. We first consider, for simplicity, the inflaton field in an unperturbed
background and compute the ∆2

ϕ evaluated at tk. In order to evaluate ∆2
ϕ at later times (a

few e-folds after tk), we must improve the calculation by taking into account the fluctuation
of the background metric using the spatially-flat slicing. We also show how to reproduce
this result using a more rigorous approach in terms of gauge invariant quantities.

Consider the inflaton field φ(t, ~x) made out of a homogeneous part φ0(t) and a small fluc-
tuating part δφ(~x, t). The fluctuation δφ(~x, t) satisfies, in the approximation of considering
an unperturbed background spacetime, the wave equation

δ̈φ + 3H ˙δφ − a−2∇2δφ + V ′′(φ0)δφ = 0 . (2.26)

Due to the slow-rolling of φ0(t) from the hill potential, the term V ′′ is very small, which allows
one to estimate the amplitude of quantum fluctuations ∆2

φ in a way similar to ∆2
h. Inflaton

fluctuations translate into curvature perturbations, which constitute the “seeds” for struc-

ture formation and are characterized by their scalar power spectrum PR(k) =
(

H/φ̇0

)2

∆2
φ.
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Evaluating ∆2
φ and

(

H/φ̇0

)2

at the time of horizon exit tk [10, 19] one gets ∆2
φ = H2(tk)/2π2

and H2(tk)/φ̇0
2
(tk) = 1

2M2
P

ǫ(tk)
. Therefore, PR(k) ∼ 1

M2
P

ǫ(tk)

(

H(tk)
2π

)2

.

One can improve this approximation by taking into account the effect of the metric per-
turbation in (2.26). To properly define the wave equation for δφ(~x, t) we have to specify a
slicing. Choosing for convenience the spatially-flat slicing, the equation for the field pertur-
bation δφ(~x, t) is (see, for instance, [13])

δ̈φ + 3H ˙δφ − a−2∇2δφ + V ′′(φ0)δφ +
1

a3

d

dt

(

2a3Ḣ

H

)

δφ = 0 . (2.27)

In the slow-roll approximation, the corresponding Fourier components of δφ obey

¨δφk + 3H ˙δφk + a−2k2δφk + H2(3η − 6ǫ)δφk = 0 . (2.28)

To deal with this equation, one usually considers that the ǫ and η parameters are constant,
while H = ȧ/a remains a time-dependent function. So we have

¨δφk + 3
ȧ

a
˙δφk + a−2k2δφk +

ȧ2

a2
(3η − 6ǫ)δφk = 0 . (2.29)

With this assumption one can exactly solve the equation in terms of the conformal time
τ . The form of the modes δφk is the same as for the tensorial ones, up to the coefficient√

16πG,
δφk(t) = (−τπ/4(2π)3a2)1/2H(1)

µ (−kτ) , (2.30)

where the index of the Bessel function is now µ = 3/2+3ǫ−η. Evaluating this perturbation
a few Hubble times after the horizon crossing time, one obtains the standard result

PR(k) =
(

H/φ̇0

)2

4πk3|δφk|2 =
1

2M2
P ǫ(tk)

(

H(tk)

2π

)2

, (2.31)

where the constant parameter ǫ is given at the Hubble radius time scale tk. Due to the
k-dependence of H(tk) and ǫ(tk), one also gets a nearly scale-free spectrum

PR(k) = PR(k0)

(

k

k0

)ns−1

(2.32)

where the so-called scalar spectral index ns is found to be

ns = 1 − 6ǫ + 2η . (2.33)

To complete our presentation, we will explain how the above result can be recovered
without specifying any particular slicing and threading of spacetime. These scalar perturba-
tions are commonly studied through the gauge-invariant quantity R (the comoving curvature
perturbation)

R = Ψ +
H

φ̇0

δφ , (2.34)
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where Ψ is the curvature perturbation (R(3) = 4∇2Ψ/a2) of the spatial metric gij = a2[(1−
2Ψ)δij + 2∂ijE]. In momentum space, R obeys the equation [25, 26]

d2Rk

dτ 2
+

2

z

dz

dτ

dRk

dτ
+ k2Rk = 0 , (2.35)

where z ≡ aφ̇0/H . In the slow roll approximation z−1dz/dτ = aH(1 + 2ǫ − η) and hence

z(τ) = z(τ0)

(

τ

τ0

)−1−3ǫ+η

, (2.36)

where τ0 is again a reference instant of time. Furthermore, the above wave equation simplifies
to

d2Rk

dτ 2
− 2(1 + 3ǫ − η)

τ

dRk

dτ
+ k2Rk = 0 . (2.37)

The solution obeying the adiabatic condition (and the de Sitter symmetry for H constant)
is

Rk(t) = (−πτ/4(2π)3z2)1/2H(1)
µ (−τk) , (2.38)

where µ = 3/2+3ǫ−η. Evaluating Rk(t) at t = tk one obtains the power spectrum estimated
above in terms of the fluctuations of the inflaton field. We can also evaluate the amplitude
|Rk|2 a few Hubble times after tk. Using τ(tk) as reference time in (2.36), it is easy to get
(PR(k) = ∆2

R(k) = 4πk3|Rk|2)

PR(k) =
1

2M2
P ǫ(tk)

(

H(tk)

2π

)2

. (2.39)

C. Tensor-to-scalar amplitude ratio and spectral indices

We have seen that the concrete value of the amplitude of the power spectra depends on
the time at which they are evaluated. In the literature, one find different times that can be
parameterized by λ, according to the condition k/a(t) = λH . The power spectra are then
modified by the factor (1+ λ2) (see for instance [27]), which goes to unit exponentially fast.
This ambiguity, however, is irrelevant in the evaluation of physical observables such as the
tensor-to-scalar ratio r and the spectral indices. In fact, irrespective of the evaluation time
(tk or a few e-foldings after it), the ratio

r =
Pt(k)

PR(k)
(2.40)

gives a constant quantity
r = 16ǫ(tk) . (2.41)

The other two physical observables are neither affected by the ambiguity in the evaluation
time of the power spectra. The spectral indices are unambiguously given by

nt = −2ǫ(tk) , (2.42)

and
1 − ns = 6ǫ(tk) − 2η(tk) . (2.43)
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From the above formulas one infers a necessary relation between measurable quantities

r = −8nt , (2.44)

which, as claimed many times in the literature, should be verified by any single-field slow-
roll inflationary model irrespective of the form of the potential. For this reason, the future
experimental checking of this condition is usually regarded as an important test of the
simplest forms of inflation.

This concludes our review of the standard derivation of the unrenormalized predictions
of single-field slow-roll inflation.

III. THE ROLE OF ULTRAVIOLET DIVERGENCES: RENORMALIZATION

OF THE SPECTRUM OF FLUCTUATIONS

In this section we reexamine the derivation of the power spectra taking into account the
effects of renormalization.

A. Ultraviolet divergences and momentum-space renormalization

It is easy to see that ∆2
h(k, t) gives the formal contribution, per d ln k, to the variance of

the gravitational wave fields h+,×

〈h2〉 =

∫ ∞

0

k2dk

∫

dΩ|hk|2 =

∫ ∞

0

dk

k
∆2

h(k, t) , (3.1)

since, as already defined, ∆2
h(k, t) ≡ 4πk3|hk|2. Although, as noted previously, the small k

behavior of the functions E(k) and F (k) cures the potential infrared divergence in the above
integral, the large k behavior of the modes makes the integral divergent

〈h2〉 =

∫ ∞

0

dk

k

16πGk3

4π2a3

[

a

k
[1 +

(2 + 3ǫ)

2k2τ 2
] + ...

]

, (3.2)

It is a common view to bypass this point by regarding h(~x, t) as a classical random field.
One then introduces a window function W (kR) in the integral to smooth out the field on a
certain scale R and to remove the Fourier modes with k−1 < R. However, as explained in the
introduction, it is our view to regard the variance as a basic physical object and treat h and
R (or δφ in the flat-slicing gauge) as a proper quantum field. Renormalization is then the
natural solution to eliminate the ultraviolet divergences and keep the variance in position
space finite and well-defined. Since the physically relevant quantity (power spectrum) is
expressed in momentum space, the natural renormalization scheme to apply is the so-called
adiabatic subtraction [5], as it renormalizes the theory in momentum space. Adiabatic
renormalization [9, 15, 16] removes the divergences present in the formal expression (3.1) by
subtracting counterterms mode by mode in the integral (3.1)

〈h2〉ren =

∫ ∞

0

dk

k

[

4πk3|h~k|2 −
16πGk3

4π2a3
(w−1

k + (W−1
k )(2))

]

, (3.3)

with wk = k/a(t). The subtraction of the first term (16πGk3/4π2a3wk) cancels the typical
flat space vacuum fluctuations, which are responsible for the quadratic divergence in the
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integral (3.2). The additional term, proportional to (W−1
k )(2) and which involves ȧ2 and ä,

is necessary to properly perform the renormalization in an expanding universe. It cancels
the logarithmic divergence in (3.2).

However, one can legitimately ask if the momentum-space counterterms are uniquely
fixed. In other words, can a different renormalization scheme, as the DeWitt-Schwinger
subtraction prescription in momentum space [17], lead to a different expression for the
counterterms? Before going further in our analysis, let us briefly summarize the main steps
of momentum-space renormalization (for an extensive exposition see [9]).

B. Momentum-space renormalization

1. Adiabatic renormalization

Let us consider a generic free scalar field ϕ in our spatially flat cosmological metric
obeying the field equation

ϕ̈ + 3Hϕ̇ − a−2∇2ϕ + (m2 + ξR)ϕ = 0 , (3.4)

where R is the four-dimensional scalar curvature

R = 6

[

(

ȧ

a

)2

+
ä

a

]

, (3.5)

and ξ is the curvature coupling. We include this term to be general and for illustrative
purposes. The Fourier components of ϕ obey the equation

ϕ̈k + 3
ȧ

a
ϕ̇k + a−2k2ϕk +

[

6

(

ȧ2

a2
+

ä

a

)

ξ + m2

]

ϕk = 0 . (3.6)

Note that the role of the dimensionless parameter ξ here is similar to the role of the ǫ and
η parameters in the wave equation (2.29) for the perturbation.

Let us assume that the form of the normalized modes is (2V a3(t))−1/2ei~k~xϕ̄k(t), where
V ≡ L3 is the volume of a box of coordinate length L. The continuous limit is obtained by

replacing V by (2π)3 and
∑

~k by
∫

d3~k. The function ϕ̄k(t) obeys the equation

d2

dt2
ϕ̄k + Ω2

kϕ̄k = 0 , (3.7)

where
Ω2

k = w2
k + σ , (3.8)

with wk =
√

k2/a2 + m2 and

σ =

(

6ξ − 3

4

)(

ȧ

a

)2

+

(

6ξ − 3

2

)

ä

a
. (3.9)

The function ϕ̄k(t) is assumed to obey also the adiabatic condition ϕ̄k(t) ∼ w
−1/2
k e−i

R

wk(t′)dt′

in the large k regime. This condition does not uniquely determine the form of ϕ̄k(t) (different
solutions lead to different sets of modes and, therefore, to different vacuum states) but it
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uniquely determines an asymptotic expansion for all possible solutions. This expansion is
characterized by

ϕ̄k(t) ∼ W
−1/2
k e−i

R

Wk(t′)dt′ , (3.10)

with a recursive expansion

Wk = wk + w
(2)
k + w

(4)
k + ... (3.11)

where

w
(2)
k ≡

(

1

2
w

−1/2
k

d2

dt2
w

−1/2
k +

1

2
w−1

k σ

)

. (3.12)

Similar expressions for w
(4)
k and all the other higher-order terms can be found. Each

order in the (adiabatic) expansion is characterized by the number of time derivatives

of a(t) appearing in a term. While wk is of zero order, w
(2)
k is of second order, as one

can trivially verify by simple counting. Note that σ is of second adiabatic order. One
should have in mind that the adiabatic expansion is an asymptotic series and does not
converge in general. This is why the form of the modes is not uniquely defined by the adi-
abatic condition, thus allowing to have different solutions and hence different vacuum states.

The evaluation of the variance of the field ϕ as a sum in modes leads to a divergent
expression. In the continuous limit it is given by

〈ϕ2〉 = (4π2a3)−1

∫ ∞

0

dkk2|ϕ̄k|2 . (3.13)

As is evident from the asymptotic expansion (3.10), one necessarily encounters ultraviolet
divergences in the above quantity. Generically one encounters quadratic and logarithmic
divergences. In the adiabatic renormalization, the physically relevant finite expression is
obtained from the formal one by subtracting mode by mode each term in the adiabatic
expansion of the integrand that contains at least one ultraviolet divergent part for arbitrary
values of the parameters (m and ξ) of the theory [9]. Applying this to the particular case
of the variance of the field ϕ one gets

〈ϕ2〉ren = (4π2a3)−1

∫ ∞

0

dkk2
(

|ϕ̄k|2 − w−1
k − (W−1

k )(2)
)

, (3.14)

where w−1
k and (W−1

k )(2) are the zeroth and second order terms, respectively, in the adiabatic
expansion of W−1

k . Generically the second adiabatic counterterm (W−1)(2) is given by

(W−1
k )(2) = − 1

w2
k

[

1

2
w

−1/2
k

d2

dt2
w

−1/2
k +

1

2
w−1

k σ

]

. (3.15)

Note that, in the flat space limit ϕ̄k goes to the usual Minkowski form of the modes, (W−1
k )(2)

goes to zero, and 〈ϕ2〉ren gives a vanishing result, in agreement with normal ordering. In
a dynamical universe, (W−1

k )(2) is generically nonzero and the renormalization produces a
non-trivial, well-defined result for the physical variance.

For its physical relevance in our reevaluation of the inflationary power spectra, it is
specially interesting to analyze the massless limit of the above result. When m → 0, the
subtraction counterterms take the form

(4π2a3)−1k2
(

w−1
k + (W−1

k )(2)
)

= (4π2a3)−1k2

(

a

k
+ (1 − 6ξ)

a3

2k3

[

(

ȧ

a

)2

+
ä

a

])

. (3.16)
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2. Comparison with the momentum-space representation of the DeWitt-Schwinger subtraction

terms

Using a local momentum representation in a normal neighborhood admitting Riemann
normal coordinates, one can express in momentum space the DeWitt-Schwinger proper time
representation of the Green functions [17] (see also [9, 16]). Up to second adiabatic order,
we have

G
(2)
DS(P, Q) = −i

|g(P )|1/4

(2π)4

∫

d4keiky[
1

(k2 + m2)
+

(1
6
− ξ)R

(k2 + m2)2
] , (3.17)

where g(P ) is the determinant of the metric at the point P in the so-called Riemann normal

coordinates yµ, ky ≡ −k0y
0 + ~k~y, and the contour of integration in the k0 plane is assumed

to be the usual contour defining the particular two-point function. The point Q has been
taken as the reference point for constructing the Riemann coordinates. These coordinates
are constructed by considering the unique geodesic that joins the reference point with an
arbitrary point P in a normal neighborhood of Q. The Riemann coordinates yµ of P are
given by

yµ = λξµ , (3.18)

where λ is the value at P of an affine parameter of the geodesic joining Q, at λ = 0, to P .
The vector ξµ is the tangent to the geodesic at the point Q

ξν =
dxµ

dλ

∣

∣

∣

Q
. (3.19)

Although in these coordinates the form of the geodesic equations is trivial, the form of the
metric at Q is not necessarily Minkowskian. When we impose, additionally, that ds2|Q =
−(dy0)2 + (dy1)2 + (dy2)2 + (dy3)2, we have then the so-called Riemann normal coordinates.
In our spatially flat universe ds2 = −dt2 + a2(t)d~x2 and for our problem, we take the initial
and final points (Q ≡ (t0, ~x

′), P ≡ (t0, ~x)) at the constant time hypersurface t = t0. We then
have y0 = 0 and

~y = a(t0)(~x − ~x′) . (3.20)

Moreover g(P ) = g(Q) = 1.

The explicit form of G
(2)
DS(P, Q) in our cosmological scenario reduces, after performing

the k0 integration, to

G
(2)
DS(~x, t0; ~x

′, t0) = I1 − (
1

6
− ξ)RI2 , (3.21)

where R is the scalar curvature and

I1 =
1

2(2π)3

∫

d3~k
ei~k(~y−~y′)

wka
, (3.22)

I2 =
1

2(2π)3

∫

d3~k
ei~k(~y−~y′)

2w3
ka

, (3.23)

with w2
ka = k2 + m2. Finally, performing the change of variables ~k → ~k/a(t0) we get

G
(2)
DS(~x, t0; ~x

′, t0) =
1

2(2π)3a3

∫

d3~k

[

1

wk

+
(1

6
− ξ)R

2w3
k

]

ei~k(~x−~x′) . (3.24)
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In the DeWitt-Schwinger point-splitting framework, the renormalization of the variance

〈ϕ2(~x, t0)〉 proceeds by subtracting G
(2)
DS(~x, t0; ~x

′, t0) to the two-point function and taking
the coincidence-point limit ~x′ → ~x

〈ϕ2(~x, t0)〉ren = lim
~x′→~x

[〈ϕ(~x, t0)ϕ(~x′, t0)〉 − G
(2)
DS(~x, t0; ~x

′, t0)] . (3.25)

In the massless limit, m → 0, the integrand of the momentum-space representation of

G
(2)
DS(~x, t0; ~x

′, t0) is

G
(2)
DS(~x, t0; ~x

′, t0) =
1

2(2π)3a3

∫

d3~k

(

a

k
+ (1 − 6ξ)

a3

2k3

[

(

ȧ

a

)2

+
ä

a

])

ei~k(~x−~x′)

=
1

4π2a3

∫ ∞

0

dkk2

(

a

k
+ (1 − 6ξ)

a3

2k3

[

(

ȧ

a

)2

+
ä

a

])

sin k|~x − ~x′|
k|~x − ~x′| .(3.26)

Taking ~x → ~x′, the integrand of the above expression coincides exactly with the momentum-
space counterterms obtained previously via the adiabatic renormalization. Therefore, the
question ending section IIIA is answered. The adiabatic subtraction coincides with the
DeWitt-Schwinger subtraction prescription in momentum space in the massless limit, irre-
spective of the value of the dimensionless parameter ξ.

C. Tensorial spectrum

Let us apply the above scheme to the tensorial fluctuations of the metric. To determine
the counterterm (W−1

k )(2) one should rewrite the wave equation (2.3) in the form (3.7). This
can be easily obtained by performing the change h̄k = a3/2hk. One obtains wk = k/a (i.e.,
m = 0) and a second order adiabatic term σ of the form (3.9) with ξ = 0

σ = −3

4

(

ȧ

a

)2

− 3

2

ä

a
. (3.27)

A straightforward calculation gives

(W−1
k )(2) =

ȧ2

2a2w3
k

+
ä

2aw3
k

. (3.28)

To perform the explicit computation it is useful to take into account the slow-roll relations

da

dτ
=

(1 + 2ǫ)

(Hτ 2)
(3.29)

d2a

dτ 2
= −(2 + 5ǫ)

(Hτ 3)
(3.30)

These derivatives are related with the usual dotted derivatives as follows:

ȧ = a−1 da

dτ
(3.31)

ä = −a−3

(

da

dτ

)2

+ a−2 d2a

dτ 2
(3.32)
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The final expression for zeroth and second order adiabatic counterterms is then2

w−1
k + (W−1

k )(2) =
a

k

[

1 +
(2 + 3ǫ)

2k2τ 2

]

. (3.33)

The subtraction of these counterterms produces the expression (assuming that E(k) = 1
and F (k) = 0 for every k)3

〈h2〉ren =

∫ ∞

0

dk

k

16πGk3(−τπ)

4π22a2

(

|H(1)
ν (−kτ)|2 − 2

π(−kτ)

[

1 +
(2 + 3ǫ)

2k2τ 2

])

. (3.34)

Therefore, the renormalized expression for ∆2
h(k, t) is

∆̃2
h(k, t) =

16πGk3(−τπ)

4π22a2

(

|H(1)
ν (−kτ)|2 − 2

π(−kτ)

[

1 +
(2 + 3ǫ)

2k2τ 2

])

. (3.35)

Note that the asymptotic behavior for large k of the Hankel function is

|H(1)
ν (−kτ)|2 ∼ 2

π(−kτ)

[

1 +
(4ν2 − 1)

8(−kτ)2

]

+ ... . (3.36)

The first two terms for ν = 3/2+ ǫ are exactly the adiabatic counterterms subtracted above.
It is useful to remark that, in adiabatic renormalization (or, equivalently, in the DeWitt-

Schwinger subtraction algorithm), the number of terms that should be subtracted is deter-
mined by the degree of divergence of the expectation value under consideration. In our case,
this degree of divergence is of second-order. Therefore, one must stop necessarily at second
order if the purpose is to make finite the expectation value 〈h2〉. The relevant subtractions
are carried out mode-by-mode and result in a sum-over-modes that has no ultra-violet di-
vergence. In addition, as we have already stressed, it is important to point out that it is
necessary to subtract the relevant adiabatic counterterms for all modes, including those with
large wavelength, even if the expansion of the universe is not slow. Note that the reason for
the name“adiabatic” regularization is a result of the fact that the adiabatic (or arbitrarily
slow) limit is used to identify the necessary subtractions. Therefore, it is not correct to
argue that the adiabatic renormalization terms are invalid when the expansion is rapid, i.e.,
in the non-adiabatic regime.

D. Scalar spectrum

We will work out the (renormalized) spectrum of scalar perturbations using the gauge-
invariant formalism. To convert equation (2.37) into one of the form (3.7) we have to

2 In a similar way, the DeWitt-Schwinger subtraction terms in momentum-space lead to the same result.

Note in passing that neither of the proposed (adiabatic) counterterms defined in [28] for the tensorial and

scalar power spectra seem to agree with those obtained here by adiabatic regularization.
3 Note that the second adiabatic counterterm introduces an infrared divergence in the continuum limit. For

k → 0 the integrand in 〈h2〉ren is proportional to dk/k. This logarithmic divergence disappears in the

finite box formulation and has no impact on the observable power spectrum, in contrast to the ultraviolet

divergences. Furthermore, the calculation of the renormalized stress-energy tensor 〈Tµν〉, and hence the

evolution of the universe, is insensitive to the infrared cutoff L when L → ∞.
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perform the change R̄k = a1/2zRk. We then obtain that wk = k/a, and that the second
order adiabatic function σ is given by

σ = −3

4

(

ȧ

a

)2

− 3

2

ä

a
+ (3η − 6ǫ)

(

ȧ

a

)2

. (3.37)

Note that this σ is different from that of (3.9). The reason for this can be easily seen by
looking at the wave equation in the flat-slicing gauge (2.29). That equation does not have a
constant massive term, and the second adiabatic order term is H2(3η−6ǫ), which is just the
last term in (3.37). This implies that the scalar perturbation (the inflaton in the flat-slicing
gauge or R in the gauge-invariant approach) should be regarded as a massless field.4 The
corresponding second order counterterm is thus of the form

(W−1
k )(2) =

ȧ2

2a2w3
k

+
ä

2aw3
k

− 1

2w3
k

(3η − 6ǫ)(
ȧ

a
)2 . (3.38)

Therefore, the final expression for the counterterms is

w−1
k + (W−1

k )(2) =
a

k

[

1 +
(2 + 3(3ǫ − η))

2(−kτ)2

]

. (3.39)

Proceeding in a parallel way as for the tensorial case, we get a renormalized value for
〈R2〉

〈R2〉ren =

∫ ∞

0

dk

k

[

4πk3|Rk|2 −
k3

4π2z2a
(w−1

k + (W−1
k )(2))

]

. (3.40)

Therefore,

〈R2〉ren =

∫ ∞

0

dk

k
4πk3 −πτ

4(2π)3z2

(

|H(1)
µ (−τk)|2 − 2

π(−kτ)

[

1 +
(2 + 3(3ǫ − η))

2(−kτ)2

])

, (3.41)

where the index µ is given by µ = 3/2 + 3ǫ− η. The renormalized expression for ∆2
R(k, t) is

∆̃2
R(k, t) =

4πk3(−πτ)

4(2π)3z2

(

|H(1)
µ (−τk)|2 − 2

π(−kτ)

[

1 +
(2 + 3(3ǫ − η))

2(−kτ)2

])

. (3.42)

Note finally that, as expected, the same result is obtained working in the flat-slicing gauge.
One then obtains

∆̃2
φ(k, t) =

k3(−τπ)

4π22a2

(

|H(1)
µ (−τk)|2 − 2

π(−kτ)

[

1 +
(2 + 3(3ǫ − η))

2(−kτ)2

])

, (3.43)

where µ = 3/2 + 3ǫ − η. Taking into account that ∆̃2
R(k, t) = (a2/z2)∆̃2

φ(k, t) one recovers

the expression (3.42) for ∆̃2
R(k, t).

4 This was first taken into account in the calculation of the renormalized power spectra in [7, 29] in terms of

the gauge-invariant quantity R. This quantity was also quantized in [30], but there the V ′′ term in (2.27)

was treated as zeroth adiabatic order, unlike the present treatment, in the evaluation of the counterterms.
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IV. TESTABLE CONSEQUENCES

In this section we work out new expressions for the observable magnitudes that follow
from the renormalized power spectra of the previous section.

A. Tensor-to-scalar ratio

Let us now consider the tensor-to-scalar ratio

r ≡ 4
∆̃2

h(k, t)

∆̃2
R(k, t)

= 4
16πGk3(−τπ)

4π22a2

4(2π)3z2

4πk3(−πτ)

(

|H(1)
ν (−τk)|2 − 2

π(−kτ)

[

1 + (2+3ǫ)
2(−kτ)2

])

(

|H(1)
µ (−τk)|2 − 2

π(−kτ)

[

1 + (2+3(3ǫ−η))
2(−kτ)2

])

(4.1)
Since at the Hubble exit time tk we have z2(tk) = 2M2

P ǫ(tk)a
2(tk), it follows that

4
16πGk3(−τπ)

4π22a2

4(2π)3z2

4πk3(−πτ)

∣

∣

∣

t=tk
= 16ǫ(tk) . (4.2)

We also find that
(

|H(1)
ν (−τk)|2 − 2

π(−kτ)

[

1 +
(2 + 3ǫ)

2(−kτ)2

])
∣

∣

∣

∣

t=tk

=
2

π
αǫ(tk) , (4.3)

where α is a numerical constant of order unity, α ≈ 0.904. A similar estimation is obtained
for the factor coming from the scalar spectrum (up to the substitution ν → µ, i.e., ǫ → 3ǫ−η)

(

|H(1)
µ (−τk)|2 − 2

π(−kτ)

[

1 +
(2 + 3(3ǫ − η))

2(−kτ)2

])
∣

∣

∣

∣

t=tk

=
2

π
α(3ǫ(tk) − η(tk)) . (4.4)

Therefore, the tensor-to-scalar ratio r, evaluated at the Hubble exit time, is

r = 16ǫ(tk)
ǫ(tk)

3ǫ(tk) − η(tk)
. (4.5)

An important comment is now in order. To obtain this result we have evaluated the
power spectra at the Hubble exit time. Nevertheless, as we will show in the next paragraph,
this estimate does not depend critically on the precise time at which the counterterms are
evaluated. During slow-roll inflation the counterterms decay as |τ |2ǫ (tensorial), |τ |2(3ǫ−η)

(scalar), in the late-time limit as |τ | → 0. This means that they decay very slowly and
are in fact constant in exact de Sitter inflation. After reheating, the counterterms decay
more rapidly, as is obvious from (3.16). One would then recover the standard prediction
r = 16ǫ(tk). However, since the modes acquire classical properties soon after exiting the
Hubble sphere, the relevant time to evaluate these magnitudes falls in the interval between
tk and a few e-foldings after it.

Let us analyze in detail the time dependence of ∆̃2
h(k, t), ∆̃2

R(k, t), and r in terms of the
number n of e-folds after crossing the Hubble radius. Since −kτ(tk) = 1 + ǫ, we can write
−kτ as

− kτ = (1 + ǫ)
τ

τ(tk)
= (1 + ǫ)(

a(tk)

a
)

1
(1+ǫ) = (1 + ǫ)e−

n

(1+ǫ) . (4.6)
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The expression for ∆̃2
h(k, t) when −kτ ≪ 1 leads to

∆̃2
h(k, t) ≈ 16πGk3(−τπ)

4π22a2

2

π
(−kτ)−2ν [1 − (−kτ)2ν (2 + 3ǫ)

2(−kτ)3
]]

≈ 2

M2
P

(

H(tk)

2π

)2

[1 − (−kτ)2ν (2 + 3ǫ)

2(−kτ)3
] , (4.7)

and using (4.6), we find

∆̃2
h(k, n) ≈ 2

M2
P

(

H(tk)

2π

)2

[1 − (2 + 3ǫ)

2
e−2ǫn] . (4.8)

Assuming that we are just a few e-folds after the Hubble exit but before the end of inflation,
i.e., n > 1 but nǫ ≪ 1, so that e−2ǫn ≈ 1 − 2ǫn, we obtain5

∆̃2
h(k, n) ≈ 2

M2
P

(

H(tk)

2π

)2

ǫ(tk)(2n − 3/2) . (4.9)

A similar estimation can be obtained for the scalar power spectrum

∆̃2
R(k, n) ≈ 1

2M2
P ǫ(tk)

(

H(tk)

2π

)2

(3ǫ(tk) − η(tk))(2n − 3/2) . (4.10)

Note that the parameter n enters in the power spectra parameterizing the (unknown) time
at which the modes exhibit classical behavior. However, since both tensorial and scalar
spectra have the same dependence on n, the tensor-to-scalar ratio is not sensitive to the
unknown parameter n, in the same way as it is insensitive to the scale of inflation H(tk),
and it is essentially given by (4.5). The same conclusion can be drawn if one estimates the
time derivative of r. One then obtains that

dr

dn
≈ O(ǫ2) . (4.11)

This means that the renormalized value for r is changing very slowly, in agreement with
the previous evaluation. In other words, the value of r evaluated at the Hubble radius
crossing time remains nearly constant during this period of inflation. Obviously it is not
strictly constant, as in the computation without renormalization, but its change is slow.6

We regard this result as a signal of the robustness of renormalization in determining the
spectra of inflationary perturbations.

5 We note that if one evaluates the power spectra at the end of the slow-roll era (where nǫ ∼ 1) the

contribution of the counterterms is still significant. However, we find it more natural to evaluate the

spectra soon after Hubble exit, when the modes have already acquired classical properties.
6 To be precise, d(ln r)/dn = 2ǫ − η. Note that for the exponential potential model V (φ) ∝

exp[−(φ/MP )
√

2/p] we have η = 2ǫ. Then the new predictions coincide, by accident, with the stan-

dard ones. So in this case ṙ = 0.
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B. Spectral indices

The above calculations have another important consequence: the spectral indices remain
unchanged when they are evaluated at tk or a few Hubble times after it. By definition, we
have

nt ≡
d lnPt

d ln k
= 2

d lnH(tk)

d ln k
+

d ln ǫ(tk)

d ln k
, (4.12)

which, according to (4.9), turns out to be independent of n. The result is

nt = 2(ǫ − η) , (4.13)

where ǫ and η are evaluated at tk. For the scalar index we have

ns − 1 ≡ d ln PR

d ln k
= 2

d lnH(tk)

d ln k
− d ln ǫ(tk)

d ln k
+

d ln(3ǫ(tk) − η(tk))

d ln k
. (4.14)

Explicit evaluation gives

ns − 1 = −6ǫ + 2η +
(12ǫ2 − 8ǫη + ξ)

3ǫ − η
(4.15)

where ξ is another slow roll parameter [10]: ξ ≡ M4
P (V ′V ′′′/V 2). This parameter can be

reexpressed in terms of ǫ, η and the running of the tensorial index n′
t ≡ dnt/d ln k as follows

n′
t = 8ǫ(ǫ − η) + 2ξ . (4.16)

C. Consistency condition

The formulas (4.5, 4.13-4.16) provide an algebraic relation between the tensor-to-scalar
ratio and the spectral indices, r = r(nt, ns, n

′
t), that takes the following form

r = 4(1 − ns − nt) +
4n′

t

n2
t − 2n′

t

(

1 − ns −
√

2n′
t + (1 − ns)2 − n2

t

)

. (4.17)

Positivity of the argument of the square root in this expression imposes the following con-
straint

(1 − ns)
2 − n2

t + 2n′
t ≥ 0 . (4.18)

The consistency relation (4.17), contrasts with that obtained without invoking renormal-
ization, namely, r = −8nt. Since r must be positive, according to the standard prediction
one would expect nt to be negative. This restriction, however, does not follow either from
(4.17) nor from (4.18). Even more, from (4.18) it is easy to see that our prediction allows
for nt ≥ 0, in sharp contrast with the standard prediction, which necessarily requires
nt = −2ǫ < 0. We also remark that, according to the standard derivation, the running of nt

is fully determined by the values of ns and nt, since then one finds n′
t = −nt(1−ns +nt). On

the contrary, the manipulations that led to (4.17) indicate that n′
t is now an independent

quantity that needs to be measured in order to check the new consistency relation (4.17).
This aspect could make more challenging the experimental verification of the consistency
condition of (single-field) slow roll inflation.
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We stress again that the new consistency relation allows for a null tensorial tilt nt = 0
while being compatible with a non-zero ratio r ≈ 4(1 − ns). Since the observations from
the 5-year WMAP [3](with BAO+SN) strongly suggest that (1 − ns) ≈ 0.030±0.015 (with
r < 0.22)7 it follows that, for the case of an exact scale invariant tensorial power spectrum,
nt = 0, our consistency relation leads to r ≈ 0.12 ± 0.06. These possibilities may soon
come within the measurement range of forthcoming CMB polarization experiments such as
the PLANCK satellite, the QUIJOTE CMB experiment, SPIDER, Polar BEAR, EBEX,
BICEP, SPUD, and the future CMBPol mission [31].

D. Comparison between the standard and the new predictions

We can compare the differences between the standard and the new predictions in terms

of the representative set of chaotic potential models V (φ) = λM
(4−p)
P φp. The standard

prediction is

r =
4p

N
, 1 − ns =

(p + 2)

2N
, nt = − p

2N
, n′

t =
p

2N2
, (4.19)

where N ≡ ln aend/a(tk) is the number of e-folds of inflation between the horizon crossing
time tk of cosmological wavelengths and the end of inflation. If we invoke renormalization
we get, instead,

r =
4p2

(p + 2)N
, 1 − ns =

p

2N
, nt =

(2 − p)

2N
, n′

t =
(2 − p)

2N2
. (4.20)

Note that now the quadratic potential is characterized by having an exact scale-invariant
behavior for the tensorial spectrum.

E. Comparison with WMAP data

Although a definite test of the new predictions, like the above proposed consistency
condition, requires more accurate data on tensor fluctuations (so far we have only upper
limits on r) we can compare the new predictions with the standard ones on the basis of
the five year WMAP data. We can contrast the predictions (4.20) for r and ns, for the
representative values p = 2 and p = 4, with the WMAP 5-year data (see Fig. 5 of Ref. [3]).
We find that both models are compatible with the experimental data for the reasonable
range of N between 50 and 60. This is in sharp contrast with the prediction of the standard
approach, where the monomial potential with p = 4 is excluded convincingly.

V. CONCLUSIONS AND FINAL COMMENTS

Inflationary cosmology predicts that, due to quantum effects, small density perturba-
tions are generated in the very early universe with a nearly “scale-free” spectrum. The
detection and analysis of anisotropies in the cosmic microwave background has confirmed

7 Marginalized over all other parameters of a flat ΛCDM model.
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this prediction. Moreover, inflation also predicts the creation of primordial gravitational
waves, which still remain undetectable. Forthcoming high-precision measurements of the
cosmic microwave background [31] may measure effects of relic gravitational waves, and this
will be crucial to test the inflationary paradigm and strongly constrain inflationary models.
Therefore, it is of crucial importance to scrutinize, from all points of view, the quantitative
predictions of inflation.

In this work we have pointed out that, if quantum field renormalization is taken
into account, the predictions of (single-field) slow-roll inflation for both the scalar and
tensorial power spectra change significantly. In our physical context, renormalization is
naturally implemented in a mode-by-mode subtraction scheme and uniquely defines the
momentum-space counterterms. These counterterms are evaluated in the period when the
perturbations acquire classical properties and this leads to testable predictions that differ
significantly from the standard ones. Because of the question of the underlying quantum
nature of the gravitational field, there are several ways one could think about the process
by which the dispersion spectrum of the inflaton field influences the spectrum of the scalar
perturbations of the metric. One way is to think of the gravitational field as making a
measurement of each mode of the inflaton fluctuation field within a few Hubble times of
its exit from the Hubble sphere. If this measurement of the inflaton dispersion spectrum
is similar to standard measurements in quantum mechanics, then it should measure the
renormalized value of the inflaton spectrum at the time when the measurement is carried
out, which we take to be the time when the perturbations acquire significant classical
properties. The time t at which this occurs affects both the scalar and tensorial power
spectra, but for a large range of values of t, the effect of renormalization remains significant
for wavelengths that today are at observable scales. We have shown that if the power
spectra are evaluated n e-folds after the Hubble radius exit time, where n ≪ 1/ǫ, then the
observable parameters r and ns, nt, n

′
t are insensitive to the value of n. If the power spectra

were evaluated at a time t well after the end of inflation, one would recover the standard
predictions. With the present understanding of the nonlinear aspects of quantum gravity,
it is difficult to reach a definitive answer regarding the value of n, so the fact that we find
observable differences offers a deep way to experimentally probe this question.
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