
Primordial non-Gaussianities after

Planck 2015: an introductory review
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Abstract. Deviations from Gaussian statistics of the cosmological density fluctuations, so-called

primordial non-Gaussianities (NG), are one of the most informative fingerprints of the origin

of structures in the universe. Indeed, they can probe physics at energy scales inaccessible to

laboratory experiments, and are sensitive to the interactions of the field(s) that generated the

primordial fluctuations, contrary to the Gaussian linear theory. As a result, they can discriminate

between inflationary models that are otherwise almost indistinguishable. In this short review,

we explain how to compute the non-Gaussian properties in any inflationary scenario. We review

the theoretical predictions of several important classes of models. We then describe the ways NG

can be probed observationally, and we highlight the recent constraints from the Planck mission,

as well as their implications. We finally identify well motivated theoretical targets for future

experiments and discuss observational prospects.

Les déviations à la gaussianité des fluctuations cosmologiques de densité, ou non-gaussianités

primordiales, nous fournissent des indices précieux quant à l’origine des grandes structures de

l’univers. Elles permettent en effet de sonder la physique à des échelles d’énergie inaccessibles

en laboratoire, et sont sensibles aux interactions du (ou des) champ(s) à l’origine des fluctua-

tions primordiales, contrairement à la théorie linéaire gaussienne. Elles nous permettent ainsi de

différencier des modèles autrement presque indistinguables. Dans cette courte revue, nous ex-

pliquons comment calculer les propriétés non-gaussiennes des fluctuations générées pendant tout

scénario d’inflation. Nous passons en revue les différentes prédictions théoriques de plusieurs

grandes classes de modèles. Nous décrivons ensuite la façon dont les non-gaussianités peuvent

être contraintes observationnellement et nous soulignons les contraintes récentes apportées par

la mission Planck, ainsi que leurs implications. Nous discutons enfin les perspectives observa-

tionnelles en identifiant des objectifs réalistes et motivés théoriquement.

Published in the French “Comptes Rendus de l’Académie des Sciences” on Inflation.
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1 Introduction

Thanks to unprecedented observational efforts in the last two decades, we now have at hand high

quality data of the two main cosmological probes, namely the Cosmic Microwave Background

(CMB) anisotropies and the Large Scale Structures (LSS). The picture of the primordial universe

that emerges from these data is surprisingly simple: all current observations are consistent with

the Λ-Cold Dark Matter model, with initial conditions provided by the simplest inflationary

models. The only ingredient of the latter is a single canonical scalar field minimally coupled

to gravity and evolving on top of a very flat potential (we call them single-field slow-roll in the

following). These scenarios provide a very good fit to the data (see the contribution by Martin,

Ringeval and Vennin to this volume) while alternatives to the inflationary paradigm are less

compelling (see the contribution by Peter and Lilley). However, despite being phenomenologi-

cally successful, these models can not ultimately be considered as satisfactory, for at least two

reasons: they are decoupled from the rest of physics, and they lack a ultraviolet completion.

In particular, as soon as one wants to embed the inflationary paradigm into quantum field

theory, it becomes surprisingly challenging to realise slow-roll models in an honest-to-God way

[1] (see also the contribution by Silverstein to this volume). One is then led to consider more

complicated inflationary models, involving for instance several degrees of freedom, non-canonical

actions or features in the potential. While these models can easily be made degenerate with

the simplest ones at the leading-order approximation, their complexities often reveal themselves

at next-to-leading-order in the form of so-called primordial non-Gaussianities: deviations from
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Gaussian statistics of the primordial density fluctuations. Cosmological data now put stringent

bounds on them, constraining inflationary models in a way that would be otherwise impossible.

Here we explain how to compute the non-Gaussian properties of inflationary models and we

review the associated theoretical predictions in several important classes of models. We mention

the ways non-Gaussianities can be probed observationaly, as well as the current and expected

future constraints. This field of research has been very active in the past decade and we can not

pay entire justice to it in this short introductory review. For complementary details, we refer the

interested reader to the reviews [2–12], and to the references to the original literature therein.

We use units in which c = ~ = MPl = 1.

2 Inflation and the origin of the large scale structure of the universe

From quantum fluctuations to primordial perturbations.— Before discussing primordial

non-Gaussianites (NG), it is appropriate to remind the reader of some basic facts about the

inflationary origin of the large scale structure of the universe, referring her/him to the other

contributions in this volume for a more detailed treatment. On cosmological scales, the geometry

of the universe can be described at first approximation by a homogeneous and isotropic metric

of the (flat) Friedmann-Lemâıtre-Robertson-Walker (FLRW) form:

ds
2

= −dt2 + a(t)2δijdx
idxj (2.1)

where t is the cosmic time, a denotes the scale factor of the universe, and xi are spatial comoving

coordinates. The large scale structure of the universe is then described by small fluctuations

above this background, which we label by their fixed 3d Fourier wavevectors k in comoving

space. The conceptual problems of the hot Big-Bang model all derive from the increase of the

comoving Hubble radius (aH)−1, where H = ȧ/a denotes the Hubble scale. Inflation solves them

by providing an earlier phase in which (aH)−1 decreases sufficiently that the observable universe

was initially inside the Hubble radius (see Fig. 1 and the contribution by Ellis and Uzan to this

volume about the causal structure of inflation). This way, scales of cosmological interest have

their physical wavelength λ = a
k=|k| less than H−1 at the beginning of inflation, exit the Hubble

radius during inflation before re-entering it during the Big-Bang era. In this process, unavoid-

able sub-Hubble quantum fluctuations δ̂φIk of the field(s) driving inflation become classical after

Hubble exit [13], manifesting themselves in the Big-Bang eras as stochastic fluctuations of the

number density nX of the various components of the universe: radiation, neutrinos, cold dark

matter, baryons ... Remarkably, all curent data indicate that there is no spatial fluctuation of

the composition of the primordial plasma on cosmological scales, i.e. δ
(
nX
nY

)
= 0 for all X,Y .

This fact, referred to as the adiabaticity of the primordial fluctuations, implies that the latter

can be described by one only quantity: the so-called curvature perturbation on uniform density

hypersurfaces ζ deep in the radiation era. It also points to a common origin of these fluctua-

tions, like in the simplest models of inflation driven by a single scalar field. In these scenarios, ζ

becomes constant soon after Hubble exit during inflation, which enables one to make predictions

at a much later time (and lower energy) in the radiation era without having to deal with the
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Figure 1. The inflationary expansion turns sub-Hubble quantum fluctuations into classical super-Hubble

perturbations, whose effects we observe in the CMB and the LSS.

complicated dynamics of the intermediate phase of reheating after inflation. As we will see, the

super-Hubble conservation of the curvature perturbation is lost in general when more than one

degree of freedom is active during inflation, like in multifield inflationary models. One should

then keep track of cosmological fluctuations on super-Hubble scales until an adiabatic limit is

reached, which requires more attention.

Background dynamics of inflation.— An expanding universe with shrinking comoving Hub-

ble radius is accelerating: ä > 0. In such a phase, the dimensionless parameter ε = −Ḣ/H2

is less than 1. For simplicity, and in agreement with cosmological data, one assumes in the

following that the inflationary expansion is quasi-exponential, i.e. that the Hubble parameter

varies sufficiently slowly that ε � 1 and η = ε̇/(Hε) � 1. More generally, we assume except

otherwise stated that all quantities during inflation evolve much less rapidly than the scale factor:

Ẋ/X � ȧ/a = H. At leading-order in this slow-varying approximation, H ' cst and a(t) ∝ eHt.
In terms of the conformal time τ defined by dt = adτ , this gives a(τ) ' −1/(Hτ), where τ

grows from −∞ to 0 during inflation. Additionally, in terms of the so-called number of e-folds N

defined such that dN = H dt, or equivalently a ∝ eN , the resolution of the conceptual problems

of the Big-Bang model requires that N & 60. At the level of classical field theory at least, it

is straightforward to achieve a phase with the aforementioned properties by using a scalar field

rolling down a sufficiently flat potential. However, there are many other proposals to achieve

such a phase and in the following, we show how studying perturbations on top of this background

helps to differentiate amongst competing models.
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3 Primordial power spectrum and higher-order correlators

Cosmological observations enable one to constrain the large-scale statistical properties of the

curvature perturbation. Its two-point correlation function in Fourier space defines the primordial

power spectrum Pζ(k) such that

〈ζk1 ζk2〉 ≡ (2π)3δ(k1 + k2)Pζ(k) (3.1)

where k = |k1| = |k2|. On cosmological scales 0.008 Mpc−1 . k . 0.1 Mpc−1, it can be accurately

described by a power law
k3

2π2
Pζ(k) = As(k?)

(
k

k?

)ns−1

(3.2)

with the pivot scale k? = 0.05 Mpc−1 and the constraint [14]

ns = 0.968± 0.006 (68%CL). (3.3)

This convincing detection of a percent-level deviation from perfect scale invariance of the primor-

dial power spectrum (ns = 1) is one of the most important recent achievement in observational

cosmology. It agrees with the predictions of the simplest model of inflation and, together with

constraints on the amplitude of primordial gravitational waves, it enables one to pin down the

range of inflationary scenarios responsible for the generation of these fluctuations (see the con-

tribution by Martin, Ringeval and Vennin to this volume).

In addition to this, one can extract complementary information on the interactions of

the field(s) driving inflation, through the use of higher-order connected correlation functions of

the curvature perturbation — which would vanish for perfect Gaussian statistics — like the

bispectrum

〈ζk1 ζk2 ζk3〉 = (2π)3δ(
∑
i

ki)Bζ(ki) (3.4)

and the trispectrum

〈ζk1 ζk2 ζk3ζk4〉c ≡ (2π)3δ(
∑
i

ki)Tζ(ki) . (3.5)

The factors δ(
∑

i ki) above result from statistical homogeneity and imply that the wavevectors

ki respectively sustain a triangle and a tetrahedron in Fourier space. Additionally, statistical

isotropy entails that the orientations of these polyhedra are irrelevant, so that only their shapes

and overall scales matter. This still leaves 3 independent variables to describe the bispectrum

(and 6 for the trispectrum), which highlights the richness of information contained in these cor-

relation functions compared to the power spectrum (3.1), that depends on only one variable.

Now concentrating on the bispectrum, it is customary to define its profile S by

Bζ(k1, k2, k3) ≡ (2π)4S(k1, k2, k3)

(k1k2k3)2
A2
s (3.6)
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where As denotes the amplitude of the curvature power spectrum (see Eq. (3.2)). The overall

magnitude of the dimensionless function S, which is denoted as the non-linearity parameter

fNL, provides an estimate of the importance of the bispectrum. The simplest models of inflation

generate a tiny amount of non-Gaussianities [15–17], with fNL = O(ε, η)� 1, under the following

hypotheses: a single field drives inflation and generates the primordial fluctuations; it has a

standard kinetic term and a smooth potential; its perturbations are in a vacuum state. However,

as we will see, violating any one of these restrictive conditions can result in observably large NG,

|fNL| � 1, while recent constraints give the interesting bound fNL . O(10).

Besides this qualitative estimate, the detailed geometrical dependence of S on the con-

figuration of the wavevectors enables one to differentiate amongst the different classes of in-

flationary models beyond single-field slow-roll [18]. For example, scenarios with multiple light

degrees of freedom generate a bispectrum than can be large in squeezed configurations, i.e. for

k3 � k1 ' k2, in contrast with single-field models, which predict a vanishingly small bispectrum

in this limit. Additionally, models with important derivative interactions, for instance with non-

canonical kinetic terms, are characterized by a bispectrum that is maximum for wavevectors of

similar magnitude, i.e. around equilateral configurations k1 ' k2 ' k3. Scenarios with features

also come hand with hand with their signatures in the form of specific oscillatory bispectra. This

way, cosmologists have identified in the past decade a useful dictionary between several broad

classes of inflationary mechanisms for the generation of primordial fluctuations and the associated

type of non-Gaussianities. In this respect, it is useful to decompose the geometrical dependence

of S in two parts: its shape and its scale-dependence. In the simplest ‘smooth’ models of infla-

tion, without features, modulations of the potential or excited states for instance, S(k1, k2, k3)

depends mainly on the ratios between the norms of the wavectors, e.g. k2/k1 and k3/k1, and

mildly on their overall scales. In the following, we order the ki’s such that k3 ≤ k2 ≤ k1, so that

this shape information can be represented by plotting the two-dimensional function S(1, x2, x3),

where 0 ≤ x2, x3 ≤ 1 and 1 ≤ x2 + x3 (to satisfy the triangle inequality). In more complicated,

non-scale invariant, models, this has to be complemented by the study of the dependence of S

on the overall scale K = k1 + k2 + k3 while keeping the ratios k2/k1 and k3/k1 fixed.

4 Methods to calculate primordial non-Gaussianities

In this section, we explain how to calculate higher-order correlation functions in any inflationary

scenario. For definiteness, we consider models involving scalar fields and a cosmological metric

that takes the flat FLRW form at the background level. However, the methods we present are

generic and are easily applicable to models with other matter contents, such as vector fields, and

other background symmetries.

Cosmological perturbation theory.— We start by decomposing the metric and the fields φI

(I = 1, ...,M) into their background and fluctuating parts:

gµν(t, xi) = ḡµν(t) + δgµν(t, xi) (4.1)

φI(t, xi) = φI(t) + δφI(t, xi) (4.2)
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where the background parts only depend on cosmic time. We then expand the (gravitational

and matter) action about the background solutions of the equations of motion, which we write

schematically as:

S = S̄ + S(2)(δgµν , δφ
I) + S(3)(δgµν , δφ

I) + S(4)(δgµν , δφ
I) + . . .︸ ︷︷ ︸

Sinteractions

(4.3)

The second-order part governs the behaviour of linearised fluctuations, while the higher-order

parts encode their interactions. A crucial subtlety in these calculations comes from the ambiguity

in identifying spacetime points between the idealised background and the true perturbed uni-

verse, and the gauge freedom it entails [19, 20]. As a consequence, one must pay special attention

to the proper identification of the true dynamical degrees of freedom and the construction of the

corresponding gauge-invariant variables. For instance, a model with canonical Einstein-Hilbert

action and N scalar fields contains 4 + N (Lagrangian) degrees of freedom: two tensor modes,

so-called gravitational waves, two tensor modes, and N scalar modes. These different sectors are

decoupled at the linearised level and evolve very differently. Tensor modes are only sensitive to

the background spacetime geometry, i.e. to the evolution of the scale factor. Without further

sources, vector modes decay due to the expansion of the universe. On the contrary, details of

the evolution of the scalar perturbations depend on the model at hand. They provide the main

sources of the curvature perturbation ζ, which imprinted the CMB anisotropies and seeded the

formation of LSS. We concentrate on them in the following, and discard the other types of fluc-

tuations for simplicity of presentation.

Quantisation.— Once the second-order action is known, one can proceed to its canonical quan-

tisation by promoting the propagating degrees of freedom to quantum operators. The procedure

is well known and is straightforward in the single-field case [21] but it should be taken care of

carefully in multifield scenarios (see e.g. Ref. [22]). The normalisation of fluctuations, which

is arbitrary in a classical context, is fixed upon imposing the canonical commutation relations.

Eventually, a choice of vacuum |0〉 should also be made: deep inside the Hubble radius (k � aH),

fluctuations are not sensitive to the expansion of the universe and, following the equivalence

principle, it is legitimate to favor the approximate Minkowski vacuum, also called Bunch-Davies

vacuum [23] (see below for a discussion of the impact of an excited initial state). This completes

the quantisation procedure, leaving only the task of accordingly solving the linear equations of

motion deduced from the second-order action, either analytically or numerically. Finally iden-

tifying the vacuum expectation value of observables in the quantum theory with the statistical

ensemble average of the corresponding variables in the classical theory, one can then extract

predictions, for the curvature power spectrum (3.1) in particular.

In-in formalism.— After having quantified the linear Gaussian theory, and identified the

interacting action in Eq. (4.3), one can determine higher-order correlation functions using the

so-called in-in (also called Schwinger-Keldysh) formalism [24–26]. Starting from first principles in

quantum field theory, it shows that the expectation value of an observable O(t) can be computed
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perturbatively as

〈in|O(t)|in〉 = 〈0|

[
T̄ exp

(
i

∫ t

−∞(1−iε)
HI(t

′)dt′

)]
OI(t)

[
T exp

(
−i
∫ t

−∞(1+iε)
HI(t

′′)dt′′

)]
|0〉

where |in〉 is the vacuum of the interacting theory at some moment ti in the far past, T denotes

the time-ordered product, the I’s indicate the use of the interaction picture and HI is the

interacting Hamiltonian. At first-order in the latter, as relevant for the calculation of the tree-

level bispectrum, one finds

〈O(t)〉(1) = 2 Re

[
−i
∫ t

−∞
dt′〈0|OI(t)HI(t

′)|0〉
]
, (4.4)

whereas this reads

〈O(t)〉(2) =

∫ t

−∞
dt′
∫ t

−∞
dt′′〈0|HI(t

′)OI(t)HI(t
′′)|0〉

− 2 Re

[∫ t

−∞
dt′
∫ t′

−∞
dt′′〈0|OI(t)HI(t

′)HI(t
′′)|0〉

]

at second order, which is necessary for computing the trispectrum for instance (see Ref. [27] for

general expressions at higher orders). These terms are then simply evaluated by applying Wick’s

theorem (let us recall that all fields here are in the interaction scheme and hence are free fields).

Eventually, note that, as usual in quantum field theory [28, 29], as one wishes to compute these

expectation values in the vacuum of the interacting theory, and not in the vacuum of the free

(linear) theory, one should slightly deform the integration contours in the complex plane (the

standard iε prescription), which turns off the interactions in the far past and renders the time

integrals well-behaved then.

δN formalism.— The in-in formalism is very general and can be a priori applied to any

inflationary model. However, in multifield models, it is often difficult to obtain accurate analytical

expressions for the linear mode-functions beyond a few e-folds after the time of Hubble crossing.

For this reason, it is useful to have at hand another formalism called δN [30–34]. The latter

relies on the separate-universe picture [35]. It states that each super-Hubble patch — as relevant

for dealing with fluctuations on super Hubble-scales k � aH — evolves like a separate FLRW

universe which is locally homogeneous and evolves independently from its neighbours. However,

patching these regions together enables one to track the evolution of the curvature perturbation

on large scales, just by using background quantities. More specifically, one can express the

curvature perturbation ζ(t, xi) as the difference between the number of e-folds of expansion N

between an initial flat arbitrary hypersurface and the uniform energy density hypersurface at

time t, and its corresponding background value:

ζ(t, xi) = N(t, t?;x
i)− N̄(t, t?) . (4.5)
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This formula is completely generic and non-perturbative. Let us now specify it to attractor

solutions of multifield inflationary models1. Their dynamics is entirely dictated by specifying

the initial values of the scalar fields, i.e. the spatial dependence in N(t, t?;x
i) can be encoded

as N(t, φA(t?, x
i)). One can then Taylor-expand Eq. (4.5) as a function of the field fluctuations

on the initial flat hypersurface. By writing φA? = φ̄A? +QA? , one obtains

ζ = NAQ
A +

1

2
NABQ

AQB +
1

6
NABCQ

AQBQC + . . . (4.6)

where

NA ≡
∂N

∂φA?

∣∣∣∣
φ̄A?

, NAB ≡
∂2N

∂φA? ∂φ
B
?

∣∣∣∣
φ̄A?

. . . (4.7)

From Eq. (4.6) it is straightforward to deduce the statistical properties of the curvature pertur-

bation in terms of the ones of the scalar fields. Defining their spectra, bispectra and trispectra2:

〈QAkQBk′〉′ ≡ CAB(k) (4.8)

〈QAk1
QBk2

QCk3
〉′ ≡ BABC(ki) (4.9)

〈QAk1
QBk2

QCk3
QDk4
〉′c ≡ TABCD(ki) (4.10)

one obtains the expressions of the tree-level primordial spectrum, bispectrum and trispectrum

as [37, 38]

Pζ(k) = NANBC
AB(k) (4.11)

Bζ(k1, k2, k3) = NANBNCB
ABC(k1, k2, k3) +NANBCND

[
CAC(k1)CBD(k2) + 2 perms.

]
(4.12)

and

Tζ(ki) = NANBNCNDT
ABCD(ki) +NABNCNDNE

[
CAC(k1)BBDE(k12, k3, k4)

]
+NABNCDNENF

[
CBD(k13)CAE(k3)CCF (k4)

]
+NABCNDNENF

[
CAD(k2)CBE(k3)CCF (k4)

]
+permutations (4.13)

where kij = |ki+kj | and ‘permutations’ indicate that one should add the respectively 11, 11 and

3 inequivalent permutations of the ki to the last three lines, so that the trispectrum is totally

symmetric.

Interpretation.— For definiteness, let us now specify the time of the initial flat hypersurface to

be a few efolds after the period of Hubble crossing for the relevant cosmological scales. The in-in

formalism then enables one to accurately predict the correlation functions of the field pertur-

bations (4.8)-(4.10). The expressions above, although formal, yet deliver a useful information.

For instance, one can see that the bispectrum (4.12) is a sum of two contributions: the first

line, stemming from the linear term NAQ
A in Eq. (4.6), results from the linear transfer to the

1A generalised δN formalism has been developed to deal with more complicated background dynamics [36].
2A prime on correlation functions indicate that one omits the ever-present factor (2π)3δ(

∑
i ki).
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curvature bispectrum of the intrinsic bispectra of the field fluctuations BABC around Hubble

crossing. The second line, proportional to the second-order coefficient NAB in the expansion

(4.6), is present even for perfectly Gaussian field fluctuations, and comes from the non-linear

relation between the latter and the curvature perturbation ζ. A similar discussion holds for the

trispectrum (4.13): the first line simply results from the linear transfer of the field trispectra to

the curvature perturbation. The last two lines, on the opposite, solely come from the respectively

quadratic and cubic terms in the expansion (4.6). The second contribution, of a type that is not

present for the bispectrum, is more complicated, as it mixes the intrinsic bispectra of the field

fluctuations and the nonlinear (quadratic) term in the relation (4.6).

Barring it, one can therefore classify the contributions to the bispectrum and trispectrum

in two main types. The first ones originate from purely quantum effects around (and possibly

before) the time of Hubble crossing. Their precise geometrical forms depend on the model at

hand, and their determinations require the use of the in-in formalism. They can be important

in either single or multi-field scenarios, in models with large derivative interactions in particular

[39–42]. The second type comes from the classical non-linear relation between the curvature

perturbation and the field fluctuations around the time of Hubble crossing. Their shapes are

entirely fixed by the two-point correlation functions of the field fluctuations CAB, and therefore

take universal forms in the simplest models, as we will see. Their importance relies on large

non-linear terms in the expansion (4.6), and therefore a large sensitivity of the number of e-folds

of expansion to the initial field values. No such sensitivity is present in (attractor) single-field

models, so that this type of contribution is characteristic of multi-field models with non-trivial

dynamics on super-Hubble scales (see below for details).

5 General single-field models

In this section, we discuss the non-Gaussian properties of the curvature perturbation generated in

single field models of inflation. For simplicity, we restrict ourselves to the representative class of

models known as ‘k -inflation’ [43, 44]. They generalise the inflaton Lagrangian from its canonical

form L = X − V (φ), where X ≡ −1
2g
µν∂µφ∂νφ is the field’s kinetic term, to a general function

L = P (X,φ). Such models can support a phase of inflation of a very different type from slow-

roll scenarios. For example, the prototypical model of string-inspired Dirac-Born-Infeld (DBI)

inflation [39, 45], with P = −1/f(φ)
(√

1− 2f(φ)X − 1
)
−V (φ) and a positive f(φ), can achieve

inflation on top of very steep potentials, not through Hubble friction like in standard models,

but because the noncanonical kinetic term bounds the speed of the inflaton, irrespective of the

potential: 2X̄ = ˙̄φ2 ≤ 1/f(φ).

Although it may not seem intuitive at first sight, it is useful in single-field models to choose

a coordinate system in which the field φ has no fluctuation δφ. It is always possible to choose

such a coordinate system, called the uniform inflaton gauge, and to additionally impose that the

spatial part of the metric takes the form (still discarding tensor perturbations)

gij = a2(t)e2ζ(t,xi)δij . (5.1)
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The variable ζ defined in this way coincides in this gauge with the gauge-invariant curvature

perturbation we are interested in. It is therefore quite convenient to directly deal with it in

calculations, without having to make explicit its relation with δφ at non-linear orders. By

solving the constraint equations to express the non-dynamical parts of the metric in terms of the

propagating degree of freedom ζ (this is most easily done by using the ADM formalism [46]), one

can derive the second-order action

S(2) =

∫
dtd3x a3 ε

c2
s

(
ζ̇2 − c2

s

(∂iζ)2

a2

)
(5.2)

where

c2
s =

P,X
P,X + 2XP,XX

(5.3)

is called the (squared) sound speed of perturbations. It equals one in canonical models, in

which P = X − V (φ), but it can be much less than one in general, like in the example of DBI

models where cs =

√
1− f(φ̄) ˙̄φ2. At leading-order in the slow-varying approximation, one can

analytically solve the equation of motion deduced from Eq. (5.2):

ζk(τ) =
iH∗√

4ε∗cs∗k3
(1 + ikcs∗τ) e−ikcs∗τ (5.4)

where ∗ denotes evaluation at the time of the sound horizon crossing kcs = aH. As explained

above, one has chosen Bunch-Davies initial conditions and the normalisation comes from the

quantization procedure. It is then straightforward to deduce the primordial power spectrum

k3

2π2
Pζ(k) =

k3

2π2
lim
−kτ→0

|ζk(τ)|2 =

(
H2

8π2εcs

)
∗
, (5.5)

with a mild scale dependence given by the slight dependence of H, ε and cs on the time of eval-

uation ∗.

Equilateral and orthogonal non-Gaussianities.— Now moving on the bispectrum, one first

calculates the leading-order cubic action [40, 47]:

S
(3)
L.O. =

∫
dtd3x a3ε

(
1

c2
s

− 1

)[
ζ

(∂ζ)2

a2
− 3

c2
s

ζζ̇2

]
+

∫
dtd3x a3 ε

Hc2
s

(
1

c2
s

− 1− 2λ

Σ

)
ζ̇3 , (5.6)

where one concentrated on the main sources of non-Gaussianities,

Σ = XP,X + 2X2P,XX =
H2ε

c2
s

(5.7)

λ = X2P,XX +
2

3
X3P,XXX (5.8)

and all parameters are taken to be constant in this approximation. Using Eq. (4.4), one can then

deduce the shape of the bispectrum as S = Sλ + Sc, with

Sλ =

(
1

c2
s

− 1− 2λ

Σ

)
3k1k2k3

2K3
(5.9)
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and

Sc =

(
1

c2
s

− 1

)
1

k1k2k3

− 1

K

∑
i>j

k2
i k

2
j +

1

2K2

∑
i 6=j

k2
i k

3
j +

1

8

∑
i

k3
i

 (5.10)

and whereK = k1+k2+k3. One therefore finds fNL = O
(

1
c2s
− 1, λΣ

)
, i.e. large non-Gaussianities

(a) Shapes of Sλ in Eq. (5.9) (left) and Sc in Eq. (5.10) (right).

(b) Shapes of Seq in Eq. (5.11) (left) and of the absolute value of Sorth in Eq. (5.12) (right).

Figure 2. Different shapes SX (1, x2, x3) as a function of (x2, x3). We set them to zero outside the region

1− x2 ≤ x3 ≤ x2 and normalize them to one for equilateral triangles x2 = x3 = 1.

fNL � 1 are generated when the deviations to the non-canonical structure P = X − V (φ) are

significant. The two shapes Sλ and Sc are represented on the top panel of Fig. 2, where one can

see that they are similar, both peaking in the equilateral limit. In a first approximation, one can

represent both of them by a unique simpler template called equilateral [48] (and whose form is

motivated by data analysis, see section 8):

Seq =
9

10
f eq

NL

[
−
(

k2
1

k2k3
+ 2 perm.

)
+

(
k1

k2
+ 5 perm.

)
− 2

]
. (5.11)

– 11 –



Although this is not obvious from the cubic action (5.6), one can use the linear equation of motion

deduced from the second-order action to express S
(3)
L.O. in terms of the interactions ζ̇3 and ζ̇(∂iζ)2

only [49] (this becomes more transparent in a gauge where the scalar field itself is perturbed,

and one can neglect the mixing with gravity for large NG). These derivative interactions are

suppressed when any individual mode is far outside the Hubble radius, either by gradient terms,

or because of the super-Hubble conservation of ζ. This should not come as a surprise then that

the bispectrum is maximal for modes that cross the sound horizon at approximately the same

time, i.e. for equilateral triangles.

By looking at Fig. 2, one can see that there are small differences between the shapes Sλ and

Sc, especially around flattened triangles k2+k3 ' k1. One can therefore highlight their differences

by considering an appropriate linear combination of them that subtracts their similarities. This

way, one can cover more efficiently than with Seq alone the two-dimensional space of shapes

spanned by Sλ and Sc. A simple template for such a shape, called orthogonal, is given by [50]:

Sorth =
27

10
forth

NL

[
−
(

k2
1

k2k3
+ 2 perm.

)
+

(
k1

k2
+ 5 perm.

)
− 8

3

]
. (5.12)

The two shapes Seq and Sorth are represented on the bottom panel of Fig. 2 (we actually plot

the absolute value of Sorth so that its difference with the equilateral ansatz for flattened trian-

gles is more visible). Although we concentrated on k -inflationary scenarios of the type P (X,φ),

it should be clear from the above discussion that these shapes are signatures of derivative in-

teractions in general. They indeed emerge in more general higher-derivative scenarios, such as

ghost-inflation [51], Galileon-like models [52–54], or Horndeski and generalised theories [55–57].

Consistency relations.— We have focused above on the characteristic equilateral-type shapes

that single-field inflation with derivative interactions can generate. It is also interesting to con-

sider what type of non-Gaussian signal single-field inflation cannot generate. In this respect, one

can show that, under very general conditions, a phase of inflation driven by a single scalar field

generates a bispectrum such that [58]

lim
k3→0

Bζ(k1, k2, k3) = (1− ns(k1))Pζ(k1)Pζ(k3) (5.13)

where

ns(k)− 1 =
d ln

[
k3Pζ(k)

]
d ln k

(5.14)

is the scalar spectral index. In other words, the squeezed limit of the bispectrum is suppressed by

1−ns and vanishes for a perfectly scale-invariant power-spectrum. Given the observed smallness

of the deviation from scale-invariance (see Eq. (3.3)), this implies that a detection of a large

bispectrum signal in the squeezed limit (f sq
NL & 1) would rule out all models of inflation based

on a single scalar field, irrespective of any details like the form of the potential or the kinetic

term! Given the importance of this relation, let us give a sketch of its proof. It relies on the

fact that a super-Hubble conserved curvature perturbation locally acts as a background field,

only rescaling the spatial coordinates within a given Hubble patch (see Eq. (5.1)). By writing
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〈ζk1ζk2ζk3〉 = 〈〈ζk1ζk2〉ζk3 ζk3〉, where 〈ζk1ζk2〉ζk3 is the expectation value of ζk1ζk2 given that

ζk3 has a particular value, one can see that the squeezed limit bispectrum (k3 → 0) measures

the effect of a long-wavelength fluctuation on the short wavelength power spectrum. From the

argument above, this effect is proportional to the change of the power-spectrum under a rescaling

of the spatial coordinates, or equivalently, to its deviation from perfect scale-invariance.

As should be clear from this sketch, its crucial argument is the constancy of ζ on super-

Hubble scales. In this respect, it should be said that, strictly speaking, single-field inflation only

implies the existence of a super-Hubble constant mode for ζ, its other mode usually decaying

exponentially. However, by choosing ad hoc potentials and initial conditions, it is possible to

render this decaying mode significant on super-Hubble scales, thus violating the consistency

relation (see e.g. [59, 60]). This mild limitation does not however limit the importance of the

relation (5.13), which has been derived using various symmetry arguments, as well as generalised

to higher-order correlation functions and slightly different situations (see e.g. Refs. [61–68]).

6 Multi-field models

In this section, we consider models characterised by the presence of several light scalar degrees

of freedom during inflation. A prototypical exemple is the one of a collection of canonical

scalar fields φI minimally coupled to gravity and interacting through a generic potential V (φI).

Contrary to the single field case, one can not remove here all the fluctuations of the scalar fields

by a suitable choice of coordinates. Instead, it is convenient in that case to use the so-called

spatially flat gauge, in which the spatial part of the metric gij takes its background form and the

field fluctuations QI are made explicit. The second-order action then takes the form [30, 69–71]

S(2) =

∫
dtd3x a3

∑
I

(
(Q̇I)2 − (∂iQ

I)2

a2

)
−
(
V,IJ −

1

a3

[
a3

H
φ̇I φ̇J

].)
︸ ︷︷ ︸

MIJ

QJQJ

 . (6.1)

When the effective mass matrix MIJ is negligible compared to H2 around Hubble crossing, i.e.

in the case of effectively light degrees of freedom, it follows from Eq. (6.1) that the fluctuations

QI acquire independent almost scale-invariant power spectra soon after Hubble crossing:

CAB(k) =
H2
∗

2k3
δAB . (6.2)

At this stage, N -field inflation resembles N copies of single-field inflation. The crucial difference

lies in the super-Hubble regime. One can indeed show that, for any relativistic theory of gravity

and any matter content, the local energy conservation implies that, for linear perturbations about

an FLRW metric [35]:

ζ̇ = −Hδpnad

ρ+ p
+O

(
k

aH

)2

(6.3)
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Figure 3. In multifield inflation, fluctuations are conveniently decomposed into an instantaneous adia-

batic mode, along the background trajectory, and instantaneous entropic/isocurvature modes, orthogonal

to it [72].

where ρ and p are the matter energy density and pressure respectively, and δpnad is the non-

adiabatic pressure perturbation, defined as

δpnad = δp− ṗ

ρ̇
δρ . (6.4)

In (attractor) single-field models, all variables x share the same time shift, δt = δx
ẋ , along a

single phase-space trajectory. As a consequence, the so-called entropy perturbation between any

two quantities, Γxy ≡ δx
ẋ −

δy
ẏ , vanishes, and so does the non-adiabatic pressure perturbation on

large scales in particular. On the contrary, in a multifield model, there is a family of inflationary

trajectories, and perturbations in directions orthogonal to the classical path in field space lead to

cosmological evolutions that are not simply translations of it, sourcing the non-adiabatic pressure

perturbation, and hence the curvature perturbation ζ on super-Hubble scales [73].

A simple example is provided by two-field inflation. One can show in this context that

δpnad is proportional on super-Hubble scales to Γφ1φ2 = Q1

φ̇1
− Q2

φ̇2
. This quantity is proportional

to the projection of the perturbations in the direction orthogonal to the background trajectory:

Qs = − sin(θ)Q1 +cos(θ)Q2, where one has introduced the angle θ such that tan(θ) = φ̇2/φ̇1 (see

Fig. 3). This type of perturbation is called entropic, or isocurvature. On the contrary, one can

show that the curvature perturbation is given on large scales by ζ = − H√
(φ̇1)2+(φ̇2)2

Qσ, where

Qσ = cos(θ)Q1+sin(θ)Q2, called the adiabatic perturbation, is the projection of the perturbations

along the direction of the background trajectory. In details, the equation (6.3) reads, in this
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context [72]:

ζ̇ = −2
Hθ̇√

(φ̇1)2 + (φ̇2)2

Qs +O
(
k

aH

)2

. (6.5)

In other words, the isocurvature perturbation sources the adiabatic curvature perturbation on

super-Hubble scales as soon as the trajectory bends in field space, i.e. θ̇ 6= 0. This genuine mul-

tifield effect can drastically modify the properties of the cosmological perturbations and should

be accounted for in any model with multiple degrees of freedom.

Local non-Gaussianities.— Our discussion here was at the linear level up to now but can be

extended to non-linear orders (see e.g. Refs. [74–76]): NG of the curvature perturbation can be

generated by the non-linearities of the transfer mechanism from the super-Hubble isocurvature

perturbations, or can be linearly inherited from intrinsic non-Gaussianities in the isocurvature

sector, which is less constrained than the adiabatic one by the slow-roll requirements. We used

the bending of the trajectory in multifield inflation as a representative concrete example of this

transfer mechanism [77–83], but it can arise at the end of inflation [84–87], or even after, like

in the curvaton scenario [88–92]. However, whatever the specific model that is considered, the

shape of the associated non-Gaussianities takes a universal form. Indeed, these processes arise on

super-Hubble scales, where gradients can be neglected by definition, so that the physics become

local in real space, and hence non-local in Fourier space, i.e. the bispectrum correlates large

and small scale Fourier modes. This becomes transparent in the language of the δN formalism

presented in section 4, where these scenarios correspond to large super-Hubble classical non-

linearities, i.e. to the second contribution to the bispectrum in Eq. (4.12). With the result (6.2)

for the spectra of light scalar fields, this translates into the so-called local shape [93–95] (see

Fig. 4)

Sloc =
3

10
f loc

NL

(
k2

1

k2k3
+ 2 perm.

)
(6.6)

where

f loc
NL ≡

5

6

NANBN
AB

(NCNC)2 . (6.7)

Large non-Gaussianities can hence be generated in the squeezed limit k3 � k2 ' k1, where the

shape (6.6) peaks, in sharp contrast with single-field models, in which the consistency relation

(5.13) severely bounds the amplitude of the non-Gaussian signal in this limit.

A similar discussion holds at higher orders in perturbation theory. In particular, the last

two contributions in Eq. (4.13) generate in these models a trispectrum of the form

T loc
ζ (ki) = τNL [Pζ(k13)Pζ(k3)Pζ(k4) + perm.] +

54

25
gNL [Pζ(k2)Pζ(k3)Pζ(k4) + perm.] (6.8)

with

τNL =
NABN

ACNBNC

(NDND)3
(6.9)
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Figure 4. Shape of Sloc in Eq. (6.6), with the same specifications as in Fig. 2.

and

gNL =
25

54

NABCN
ANBNC

(NDND)3
. (6.10)

Similarly to the case of the local bispectrum, the τNL and gNL shapes peak in particular ‘soft’ lim-

its of the tetrahedron, with respectively a diagonal (internal wavevector) and one side of the gen-

eral wavevectors being much smaller than the others. The parameter gNL corresponds to a contact

interaction and is related to intrinsic cubic non-linearities (the third term in Eq. (4.6)), while

τNL corresponds to a scalar-exchange interaction and is related to second-order non-linearities,

like f loc
NL. The two are actually related by the inequality [96]

τNL ≥
(

6

5
f loc

NL

)2

, (6.11)

which is a particular case of a more general consistency relation [64]. The bound (6.11) is satu-

rated in scenarios where a single field beyond the inflaton generates the curvature perturbation,

and larger values indicate a more complicated dynamics.

7 Beyond the simplest non-Gaussian shapes

The non-Gaussian shapes we have described until now — local, equilateral, orthogonal — are

well motivated and cover interesting broad classes of inflationary models. However, they only

constitute the tip of the non-Gaussian iceberg. In this section, we briefly mention some other

non-Gaussian signatures.

Excited initial states.— In models with excited (i.e. non Bunch-Davies) initial states, the

usual mode function (5.4) in e−ikτ acquires a small negative energy component ∼ eikτ . This re-

sults in (so far unobserved) oscillations in the primordial power spectrum [97–99], which severely
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constrains the magnitude of the effect. As for the bispectrum (4.4), its computation involves an

integration of the product of three mode functions with wavenumbers k1, k2 and k3. Hence the

main correction to the Bunch-Davies result is to replace one of the ki’s with −ki in this calcula-

tion, turning the usual factors of 1/K coming from the integration of e−iKτ into 1/(k2 +k3−k1)

and its permutations. As a result, although detailed predictions are model-dependent (see e.g.

[40, 100, 101]), the most important feature of this type of modification is to enhance the bis-

pectrum for flattened triangles, with k2 + k3 ' k1. A simple ansatz that captures this main

characteristic is given by [101]

Sflat =
9

10
fflat

NL

[(
k2

1

k2k3
+ 2 perm.

)
−
(
k1

k2
+ 5 perm.

)
+ 3

]
, (7.1)

which is simply a linear combination of the equilateral and orthogonal templates.

Scale-dependent resonance and feature models.— Periodic features in the inflationary

potential naturally emerge when trying to UV-complete large field inflationary models, in par-

ticular in a string theory context [102, 103]. These features can resonate with the sub-Hubble

oscillations of the inflationary perturbations, generating an oscillatory bispectrum whose shape

takes the form [104, 105]

Sres =
9

10
f res

NL sin [C ln (k1 + k2 + k3) + φ ] (7.2)

in the simplest model, where C depends on the periodicity of the features.

Temporary violations of the slow-varying evolution can occur if there are sharp features in

the inflationary potential or sharp turns in field space in multifield inflation for example [106–

109]. This can generate oscillatory correlation functions of a type different from the one in

resonance models, the simplest bispectrum signal being of the form

Sfeat =
9

10
f feat

NL sin [ω (k1 + k2 + k3) + φ ] , (7.3)

where ω again depends on the specific disruption of the attractor regime. Contrary to the simple

almost scale-invariant shapes discussed in the previous sections, the two templates (7.2) and

(7.3) provide examples of well motivated shapes whose scale-dependence is non-trivial.

Quasi-single-field inflation.— Technically natural models in supersymmetry often have extra

fields beyond the inflaton with masses m of order the Hubble scale during inflation [27, 110–

112]. In this sense, they interpolate between truly multifield inflation, where all fields are almost

massless (m/H � 1), and single field inflation, which can be thought of as the limit m/H →∞.

In these models, the conversion of non-linearities from the iscocurvature sector to the curvature

one results in a bispectrum shape

SQSI =
3

9
2
−3ν

10
fQSI

NL

(k2
1 + k2

2 + k2
3)(k1k2k3)

1
2
−ν

(k1 + k2 + k3)
7
2
−3ν

(7.4)
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that behaves in the squeezed limit as SQSI ∝
(
k3
k1

) 1
2
−ν

, where ν =
√

9
4 −

m2

H2 . This scaling be-

havior is intermediate between that of the local shape (k1/k3) and that of the equilateral shape

(k3/k1), exemplifying how soft limits can act as a particle detector.

The trispectrum beyond the local shapes.— Beyond the local trispectrum (6.8) that arises

in multifield inflation, the intrinsic quantum trispectrum (the first line in Eq. (4.13)) can be large

in models with derivative interactions for instance [113–118], with shapes that are counterparts

of the equilateral and orthogonal bispectra [119]. Additionally, classical and quantum effects

combine in multifield models with derivative interactions (see the second line in Eq. (4.13)).

Some of these models can hence generate a superposition of the local and equilateral bispectra,

with a particular shape of the trispectrum whose amplitude is given by the product f eq
NLf

loc
NL [120].

Inflation with gauge fields.— A coupling of the inflaton to the kinetic term of a gauge field

Aµ, of the type L ⊃ −I2(φ)FµνF
µν , can generate a bispectrum enhanced in the squeezed limit,

with a specific signature in the form of a non-trivial dependence on the angle between the small

and large wavevectors [121–123].

Large field models with an approximate shift symmetry also naturally contain a coupling between

a pseudoscalar axion inflaton and a gauge field L ⊃ −(α/4f)φFµνF̃
µν , where α is a dimensionless

parameter and f is the axion decay constant. In these scenarios, gauge field quanta are produced

by the background evolution of the inflaton, and in turn feed the curvature perturbation through

an inverse decay process of the gauge field, resulting in a bispectrum shape strongly correlated

with the equilateral template [124–128].

Isocurvature non-Gaussianities.— Multi-field inflationary models can generate residual pri-

mordial isocurvature perturbations after inflation. Although their impacts on primordial power

spectra are tightly constrained [14], they can contribute significantly at the level of the bispec-

trum, producing in general both a pure isocurvature bispectrum and mixed bispectra because of

their correlation with the adiabatic perturbation [129, 130].

8 Observational probes and constraints

Non-Gaussianities can be constrained by studying the signatures they leave in the anisotropies

of the CMB and in the large scale mass distribution in the Universe. Amongst the two, the CMB

provides our cleanest window into the physics of the primordial universe, because its anisotropies

are to a very good approximation linearly related to the primordial fluctuations. On the contrary,

structure formation is an intrinsically non-linear process, and thus offers a more convoluted probe

of the initial conditions. The CMB data, and in particular recent ones from the Planck mission,

provide us with the best constraints so far [131, 132], and we briefly explain in the following how

they have been derived (see the contribution by Bouchet to this volume for more details). We

then turn more qualitatively to LSS, from where drastic improvements should originate in the
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future [133].

Primordial non-Gaussianities in the CMB and Planck constraints.— The CMB maps

of temperature and polarisation anisotropies are analysed by means of a decomposition into

spherical harmonics:

∆T

T
(n̂) =

∑
`m

aT`mY`m(n̂) (8.1)

E(n̂) =
∑
`m

aE`mY`m(n̂) (8.2)

where the link between the CMB multipoles aX`m (X = T,E) and the primordial curvature

perturbation ζ is well known at linear order (see the contribution by Durrer to this volume). Using

statistical rotational invariance, the CMB angular bispectrum, i.e. the three-point correlator of

the a`m’s, can be written as

〈aX1
`1m1

aX2
`2m2

aX3
`3m3
〉 = G`1`2`3m1m2m3

bX1X2X3
`1`2`3

(8.3)

where G`1`2`3m1m2m3
is a known geometrical factor related to Wigner 3j-symbols, and bX1X2X3

`1`2`3
is re-

ferred to as the reduced bispectrum. It is the counterpart in ` space of the primordial shape S in

Eq. (3.6), to which it is linearly related. Importantly, the signal one is looking for is way to small

for a mode-by-mode measurement of the (reduced) bispectrum. Instead, one compares theoret-

ically motivated bispectrum templates to the observed one, and fit for their overall amplitudes

(f eq
NL, f

loc
NL ...). The corresponding optimal estimator is well known [48], but its implementation

is very challenging. The computational cost of its direct evaluation is totally prohibitive for

high-resolution data like the ones of Planck, and several approaches have been developed to

circumvent this problem. A central idea is to use templates that are separable, i.e. written as

linear combinations of products of functions of respectively k1, k2, k3, which renders the problem

tractable [134]. The local shape (6.6) is of this type, while the equilateral and orthogonal ones

(Eqs. (5.11)-(5.12)) are separable approximations of original non-separable shapes, and were de-

vised with this data-analysis perspective in mind. Building on this idea, modal estimators are

based on decomposing the bispectrum (both the theoretical ones and the observed one) into

a sum of uncorrelated separable templates forming a complete basis in bispectrum space, and

measuring the amplitude of each [135, 136]. This way, one can reconstruct once and for all the

total bispectrum (see Fig. 5) and compare it to any theoretical shape, separable or not. At

last, by exploiting the fact that angular bispectra of interest are generally smooth functions in

harmonic space, binned estimators, which do not rely on separability, have also been developed

and provide a complementary approach [137].

Based on these methods, the Planck collaboration performed a comprehensive analysis of

their data, multiplying tests and cross-validations, quoting as their result for the three main
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Figure 5. Planck modal reconstruction of the CMB temperature reduced bispectrum, plotted using

several density contours [132].

shapes:  f loc
NL = 2.5 ± 5.7

f eq
NL = −16 ± 70

forth
NL = −34 ± 33

 (68 % CL, T ) (8.4)

from temperature data alone, and f loc
NL = 0.8 ± 5.0

f eq
NL = −4 ± 43

forth
NL = −26 ± 21

 (68 % CL, T + E) (8.5)

from combined temperature and polarisation data. Despite having passed several consistency

and robustness tests, it should be said that the polarisation data are known to suffer from some

systematics and the (T + E) constraints should hence be considered as preliminary.

Besides these estimates, the Planck collaboration constrained an impressively wide range

of NG bispectra, including all the ones mentioned in this review and more. While they found

no evidence for primordial non-Gaussianities, the ‘hints’ of NG reported in the Planck 2013

analysis of oscillatory patterns are confirmed and reinforced with a more rigorous statistical

analysis. To be precise, there appears to be no evidence for any individual feature or resonance

model at a particular frequency, but multiple feature or resonance models might explain the

apparently high non-Gaussian signal observed in the bispectrum reconstruction (see Fig. 5). The

evidence of several of these models increased to more than 3σ with the additional polarisation
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information, taking into account the ‘look-elsewhere’ effect, i.e. the fact that when scanning

across the parameter space of models, Gaussian noise can lead by chance to a large apparent

signal. No strong claim can be made at this stage though, as any information gathered from the

polarisation data can only be considered as preliminary.

At the level of the trispectrum, besides the constraint τNL < 2800 (95 % CL) from the Planck

2013 analysis [131], the Planck 2014 analysis further gives gNL = (−9.0 ± 7.7) × 104, as well as

estimates of two intrinsically quantum trispectra.

Although the study of the angular bispectrum and trispectrum provides optimal constraints,

let us point out that very good and consistent constraints on f loc
NL and gNL were also obtained by

using completely different tools, known as Minkowski Functionals, and which are based on the

study of morphological features of random fields [138].

Eventually, one word about non-primordial NG (see the contribution by Bernardeau to this

volume for further details): the high-quality data of Planck are such that, despite the small

amplitude of primordial fluctuations, nonlinear effects from General Relativity itself, which are

present even for perfectly Gaussian initial conditions, have to be taken into account. Most no-

tably, the correlation between the gravitational lensing of the CMB anisotropies and the so-called

integrated Sachs-Wolfe effect gives rise to a secondary CMB bispectrum that bias the naive esti-

mate of f loc
NL by about 5. This contribution, of the same order as the statistical error in (8.4)-(8.5),

has been subtracted from the results.

Primordial non-Gaussianities in LSS.— An obvious way to probe primordial non-Gaussianities

in LSS is via the study of higher-order correlators of the density field of galaxies, like the halo bis-

pectrum. However, extracting the primordial information from such measurements is hampered

by the significant non-linearities caused by the gravitational clustering itself. Hence, despite

recent progress, we do not currently understand the galaxy density contrast to the accuracy

required by the galaxy surveys, and there is no constraint to date on primordial NG from the

halo bispectrum.

There have been impressive progress in another direction though, called the scale-dependent

bias. LSS surveys do not directly observe the mass distribution in the universe, but rather

luminous biased tracers of it like the distribution of galaxies. In the presence of local type NG,

it has been discovered recently that the bias between the density contrast of tracers and the one

of matter acquires a non-trivial scale-dependence behaving like 1/k2 at large scales, making it

a very sensitive probe [139]. Intuitively, NG in the squeezed limit implies that long-wavelength

fluctuations in the gravitational potential (equivalently the curvature perturbation) locally rescale

the amplitude of small scale matter fluctuations, thus affecting the threshold needed to form

(halos of) galaxies, and thus the bias, the 1/k2 effect coming from the Poisson equation relating

the Laplacian of the gravitational potential to the matter over-density. This effect manifests itself

at the level of the halo power spectrum, which greatly simplifies the analysis compared to higher-

order correlators. Using photometric quasars data from SDSS, the most stringent constraints to

date give [140] −49 < f loc
NL < 31 and −2.7×105 < gNL < 1.9×105 when constrained individually,

and −105 < f loc
NL < 72 and −4.0×105 < gNL < 4.9×105 in a joint analysis (all at 95 % CL). These
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constraints are weaker than recent ones from the CMB, but provide a useful complementary and

consistent picture.

9 Implications for early Universe physics and perspectives

The simplest single-field slow-roll models of inflation recently passed very stringent tests due

to the lack of measurable deviations from Gaussianity of the primordial fluctuations. The con-

straints that have been obtained strongly limit the different alternative mechanisms that have

been proposed to explain the seeds of cosmological perturbations (see Ref. [132] for detailed

constraints on numerous specific scenarios).

The bounds on equilateral and orthogonal NG translate into a limit on the speed of sound

of general single-field models of inflation (see section 5):

cs ≥ 0.020 95 % CL (T−only) (9.1)

and cs ≥ 0.024 (95 % CL) with the addition of the preliminary polarisation data. In the language

of the effective field theory of inflation [141, 142], where inflation is studied as the theory of

fluctuations of spontaneously broken time translations around a quasi de-Sitter background, the

NG parameters can be related to the energy scale of the inflaton self-interactions as ζf eq,orth
NL ∼

H2/Λ2 (see [143–145] for details). Using these arguments, one can show that the cosmological

dynamics is unaffected by higher-derivative terms for f eq,orth
NL . 1, corresponding to cs ' 1.

While current constraints still allow inflation to have wildly different dynamics than slow-roll,

reaching the sensitivity ∆f eq,orth
NL ' 1 hence represents a well defined theoretical target for future

experiments.

From the single-field consistency relation (5.13), to local type non-Gaussianities in multifield

inflation, through quasi-single-field inflation, we have seen that the behaviour of higher-order

correlation functions in squeezed limits is a sensitive probe of the number of degrees of freedom

active during inflation. In this respect, the stringent bound (8.4)-(8.5) obtained on f loc
NL severely

constrains the dynamics of models in which light degrees of freedom beyond the inflaton play a

role on super-Hubble scales. Compared to the bound on f eq,orth
NL , it is however harder to interpret

it without specific mechanisms in mind, as the link between multifield scenarios and observables

is very much model-dependent. In the large class of spectator models though, in which inflation

is driven by a field while another one generates the primordial fluctuations, |f loc
NL| & O(1) is a

rather generic prediction [146], like in the curvaton scenario or in modulated reheating. While

achieving the sensitivity to test the single-fied consistency relation is currently out of reach,

reaching ∆f loc
NL ' 1 therefore provides a challenging but conceivable target of particular interest.

Due to the limitations set by Silk damping and foregrounds, it is unlikely that the CMB

will offer significant improvements in the characterization of the statistical properties of the pri-

mordial fluctuations. The impressive constrains on primordial non-Gaussianities from the Planck

collaboration have indeed essentially achieved optimality, as shown by comparison with Fisher

matrix forecasts. The way forward here seems to be LSS, including 21cm line radio surveys [147],

which probes complementary smaller scales and enables one to extract genuine 3D information,
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in contrast with the two-dimensional CMB sphere. Realistic optimised galaxy surveys have the

potential to reach ∆f loc
NL ' 1 by using the scale-dependent galaxy bias [148]. As for other types

of NG, one will have to resort to higher-order correlators like the halo bispectrum. Although one

is hampered by theoretical uncertainties and observational systematics, the theoretical target

∆f eq,orth
NL ' 1 is within reach of currently planned surveys [133]. “When you have exhausted all

possibilities, remember this: you haven’t.” supposedly said Thomas Edison.
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