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Towards conformal cosmology
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Approximate de Sitter symmetry of inflating Universe is responsible for the approximate flatness of the

power spectrum of scalar perturbations. However, this is not the only option. Another symmetry which can

explain nearly scale-invariant power spectrum is conformal invariance. We give a short review of models based

on conformal symmetry which lead to the scale-invariant spectrum of the scalar perturbations. We discuss

also potentially observable features of these models.

Observational data show that primordial scalar per-

turbations in the Universe must have been generated at

some early cosmological stage, preceding the hot epoch.

They are nearly Gaussian and have nearly flat power

spectrum [1]. The first property suggests that these

perturbations originate from amplified vacuum fluctua-

tions of weakly coupled quantum field(s). Indeed, the

defining property of Gaussian random field ζ(x) is that

it obeys the Isserlis–Wick theorem, which holds also for

any free quantum field in its vacuum state, while lin-

ear evolution in classical background does not induce

non-Gaussianity.

The second property is also very suggestive. The

power spectrum P(k) defined as

〈ζ(k)ζ(k′〉 = 1

4πk3
P(k)δ(k+ k′)

gives the fluctuation in logarithmic interval of momenta,

〈(ζ(x))2〉 =
∞
∫

0

dk

k
P(k), P ∝ kns−1,

where ns is a spectral index. The flat or scale invariant

spectrum corresponds to ns = 1. In early 70’s Harrison,

Zeldovich and Peebles and Yu [2] conjectured that the

spectrum is flat, to avoid large deviation from homo-

geneity and isotropy of the observed Universe on large

scales and black hole formation on small scales. Current

observational data [1] show that the power spectrum is

indded nearly flat and give ns − 1 ≈ −0.032.

The flatness of the power spectrum may be due

to some symmetry. The best known candidate is

the symmetry SO(4, 1) of the de Sitter metric ds2 =
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dt2 − e2Htdx2, which includes spatial dilatations sup-

plemented by time translations: x → λx, t → t −
(H)−1 log λ. This is the approximate symmetry of in-

flating Universe [3], and, indeed, the inflationary mech-

anism of the generation of scalar perturbations [4] pro-

duces almost flat power spectrum. Despite this success

of the inflationary paradigm, search for alternatives to

inflation in general and to de Sitter symmetry in par-

ticular is of obvious interest. Alternatives to inflation

include ekpyrotic model [5] with negative exponential

potential and bounce [6], ”starting” [7] Universe, etc,

while there are several mechanisms capable of producing

flat or almost flat scalar spectrum [8, 9, 10, 11]. In some

cases, there is no obvious symmetry that guarantees the

flatness, i.e., the scalar spectrum is flat accidentally.

In quest for an alternative symmetry behind the

nearly flat scalar spectrum one naturally turns to con-

formal symmetry SO(4, 2) [12, 13, 14, 15] (see Ref. [16]

for related discussion). Conformal group includes di-

latations, xµ → λxµ, which in the end may be responsi-

ble for the scale-invariant scalar spectrum. An assump-

tion of conformal invariance at the time the primordial

perturbations are generated is in line with the viewpoint

that the underlying theory of Nature may have confor-

mal phase, and that the Universe may have started off

from, or passed through an unstable conformal state

and then evolved to much less symmetric state we see

today.

In this paper we give a short review of models

based on conformal symmetry, which lead to the scale-

invariant spectrum of the scalar perturbations. It is

worth noting that one does not necessarily have to con-

sider these models as alternatives to inflation, since

some of them can work in inflating Universe as well.
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1. TWO SAMPLE WAYS OF GETTING FLAT

SCALAR SPECTRUM

1..1 Conformal and global symmetry instead of

de Sitter symmetry

To begin with, let us consider a scenario proposed in

Ref. [12]. In this scenario conformal symmetry is sup-

plemented by a global symmetry. The simplest model

of this sort has global symmetry U(1) and involves com-

plex scalar field φ, which is conformally coupled to grav-

ity. The action of the model is S = SG+M + Sφ, where

SG+M is the action of gravity and dominating matter,

while the non-trivial dynamics of the scalar field, which

is assumed to be spectator, is governed by

Sφ =

∫

d4x
√−g

[

gµν∂µφ
∗∂νφ+

R

6
φ∗φ− (−h2|φ|4)

]

.

Thus, quartic potential allowed by conformal invariance

is assumed to be negative. Therefore, φ = 0 is an unsta-

ble state with unbroken conformal symmetry. One as-

sumes that the background space-time is homogeneous,

isotropic and spatially flat, ds2 = a2(η)(dη2 − dx2).

Then in terms of the field χ(η,x) = a(η)φ(η,x) the

dynamics is the same as in flat space-time,

ηµν∂µ∂νχ− 2h2|χ|2χ = 0. (1)

Spatially homogeneous background approaches the late-

time attractor

χc(η) =
1

h(η∗ − η)
, (2)

where η∗ is an arbitrary real parameter, and we con-

sider real solution, without loss of generality. The back-

ground solution (2) breaks conformal group SO(4, 2) →
SO(4, 1). The meaning of the parameter η∗ is that the

field χc would run away to infinity as η → η∗, if the

scalar potential remained negative quartic at arbitrar-

ily large fields. It is worth noting that the particular

behaviour χc ∝ (η∗−η)−1 is dictated by conformal sym-

metry.

Phase perturbations. To see how the scale invari-

ant spectrum emerges in the model, let us consider

perturbations of the phase θ = Argφ, or, for the real

background (2), perturbations of the imaginary part

χ2 ≡ Imχ/
√
2. At the linearized level, perturbations

of the phase and modulus decouple and the linearized

equation is

(δχ2)
′′ − ∂i∂i δχ2 −

2

(η∗ − η)2
δχ2 = 0 . (3)

An important assumption of the entire scenario is that

the rolling stage begins early enough, so that there is

time at which the following inequality holds:

k(η∗ − η) ≫ 1, (4)

where k = |k| is conformal momentum. Since the mo-

menta k of cosmological significance are as small as the

present Hubble parameter, this inequality means that

the duration of the rolling stage in conformal time is

longer than the conformal time elapsed from, say, the

beginning of the hot Big Bang expansion to the present

epoch. This is only possible if the hot Big Bang stage

was preceded by some other epoch, at which the stan-

dard horizon problem is solved; the mechanism we dis-

cuss here is meant to operate at that epoch. We note

in passing that the latter property is inherent in most,

if not all, mechanisms of the generation of cosmological

perturbations.

Equation (3) is exactly the same as equation for min-

imally coupled massless scalar field in the de Sitter back-

ground. Nevertheless, let us briefly discuss its solutions.

At early times, when the inequality (4) is satisfied, the

third term in (3) is negligible and δχ2 is free massless

quantum field,

δχ2(x, η) =

∫

d3k

(2π)3/2
√
2k

(

δχ
(−)
2 (k,x, η)Âk + h.c.

)

,

whose modes are

δχ
(−)
2 (k,x, η) = eikx−ikη . (5)

Here Âk and Â†
k

are annihilation and creation op-

erators obeying the standard commutational relation,

[Âk, Â
†
k′ ] = δ(k − k′). It is natural to assume that the

field δχ2 is initially in its vacuum state.

The rolling background χc(η) produces an effective

“horizon” for the perturbations δχ2. The oscillations

(5) terminate when the mode exits the “horizon”, i.e.,

at k(η∗−η) ∼ 1. The solution to eq. (3) with the initial

condition (5) is

δχ
(−)
2 (k,x, η) = eikx−ikη∗ · F (k, η∗ − η) , (6)

where

F (k, ξ) = −
√

π

2
kξ H

(1)
3/2(kξ) (7)

and H
(1)
3/2 is the Hankel function. In the late-time super-

”horizon” regime, when k(η∗ − η) ≪ 1 and the third

term in (3) dominates, one has

F (k, η∗ − η) =
i

k(η∗ − η)
. (8)
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Hence, the super-”horizon” perturbations of the phase

δθ ≡ δχ2/χc are time-independent,

δθ(x) =
δχ2(x, η)

χc(η)
= ih

∫

d3k

4π3/2k3/2
eikx−ikη∗ Âk+h.c.

(9)

This expression describes Gaussian random field whose

power spectrum is flat:

Pδθ =
h2

(2π)2
. (10)

We emphasize that this result is an automatic con-

sequence of the global U(1) and conformal symmetries.

To see this, let us consider long wavelength regime. In

this regime the second term in (3) is negligible and (3)

becomes the equation for spatially homogeneous pertur-

bation. Recall that χc is the spatially homogeneous so-

lution to the full field equation (1), hence, due to U(1)

symmetry, eiαχc is also a solution, where α is a real

constant. For small α the latter solution is χc + iαχc,

and the imaginary part is a small perturbation, which

is precisely δχ2. So, if the perturbation δχ2 oscillates

with unit amplitude, it behaves at late times as (cf. (5)

and (8)) δχ2 = C/[k(η∗ − η)], where the factor k−1 is

evident on dimensional grounds and C is independent

of time and k.

Deviation from exact conformal invariance naturally

gives rise to the tilt in the power spectrum, which de-

pends both on the way conformal invariance is broken

and on the evolution of the scale factor [17].

1..2 Galilean Genesis

The Galileon model has been introduced in Ref. [18].

In Minkowski space-time, the Lagrangian of the simplest

conformally-invariant version [13] of the model is

Lπ = f2e2π∂µπ∂
µπ +

f3

Λ3
∂µπ∂

µπ�π +
f3

2Λ3
(∂µπ∂

µπ)2 ,

(11)

where� = ∂µ∂
µ. This Lagrangian is conformally invari-

ant, with π transforming under dilatations as eπ(x) →
λeπ(λx).

In the Galilean Genesis scenario the Universe be-

gins from Minkowski space-time. The field equation in

Minkowski space-time admits a homogeneous attractor

solution

eπc =
1

HG(t∗ − t)
, (12)

where H2
G = 2Λ3/(3f). The form of the solution is

again dictated by conformal invariance.

Initial energy density is zero, while effective pressure

is negative. Then the energy density slowly builds up

and the Hubble parameter grows in time,

H(t) =
1

3

f2

M2
Pl

1

H2
G(t∗ − t)3

,

until (t∗− t) ∼ H−1
G ·f/MPl. The growth of the Hubble

parameter is due to violation of all energy conditions.

Nevertheless, the theory is fully self-consistent: there

are no ghosts, tachyons, and other pathologies (there

is, however, superluminality issue which has not been

quite settled [19]). At some time Galileon is assumed

to transmit its energy to conventional matter, and hot

epoch begins.

Galileon perturbations per se are not suitable for

generating scalar perturbations (see discussion in Sec. 2.).

For the purpose of generating the scalar perturbations

another field θ of conformal weight 0 is introduced. By

conformal invariance, its quadratic Lagrangian has the

form

Lθ = e2π(∂µθ)
2 ⇒ Lθ(πc) =

const

(t∗ − t)2
· (∂µθ)2.

That is, the dynamics of perturbations δθ in the back-

ground πc is exactly the same as in the conformal rolling

model discussed above.

The similarity between Galilean Genesis and confor-

mal rolling model is not accidental. In Ref. [20] general

arguments are given, which show that the scale invariant

power spectrum is inherent in an entire class of models.

The general setting is conformally invariant theory of a

scalar field ρ of conformal weight ∆ 6= 0 in effectively

Minkowski space-time. Up to rescaling this field corre-

sponds to |φ| in the conformal rolling model and to eπ

in the Galilean Genesis scenario; in both models ∆ = 1.

The form of homogeneous classical solution

ρc(t) =
1

(t∗ − t)∆
(13)

is dictated by conformal invariance (t is conformal time

in the case of the conformal rolling scenario). As men-

tioned above, the perturbations of the field ρ do not have

flat power spectrum, so another spectator scalar field θ

of conformal weight 0 is introduced. Then by confor-

mal invariance, the kinetic term in the Lagrangian of

θ is Lθ ∝ ρ2/∆(∂µθ)
2. Assuming that possible poten-

tial terms are negligible the Lagrangian in the rolling

background (13) takes the form

Lθ =
const

(t∗ − t)2
(∂µθ)

2,

which is exactly the same as the Lagrangian of a scalar

field minimally coupled to gravity in de Sitter space with
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conformal time t and scale factor a(t) ∝ 1/(t∗ − t). As

a result, θ develops perturbations with the flat power

spectrum.

1..3 Further aspects

Obviously, generating the field perturbations δθ is

not the whole story. There are several other ingredients

of the conformal scenario. Some of them have not yet

been worked out in detail.

Beginning of rolling. The rolling stage (13) has to

start in one or another way. One possibility is sponta-

neous decay of the unstable conformally invariant vac-

uum ρ = 0, which proceeds through bubble nucleation.

Such a decay has been discussed in Ref. [21] within the

holographic approach (holographic picture of the confor-

mal scenario has been suggested earlier in Refs. [22, 23]).

Even though the rolling field is not spatially homoge-

neous in the false vacuum decay process, the field per-

turbations have the properties we discuss in Secs. 1..1,

2..

End of rolling. The rolling stage (13) should termi-

nate at some late time. This implies that conformal

invariance is broken at large field values. As an exam-

ple, in the conformal rolling scenario of Sec. 1..1 one as-

sumes that the scalar potential has a minimum or nearly

flat valley at large |φ| and that |φ| eventually settles

there. Furthermore, in the Galilean Genesis scenario

there must be a stage of defrosting, i.e., transmission of

energy from the rolling field ρ to heat [24], after which

the usual hot Big Bang epoch begins.

Reprocessing perturbations δθ into adiabatic

perturbations. The field perturbations δθ are to be

converted into adiabatic perturbations. This can hap-

pen at the hot Big Bang epoch. One possibility is to

make use of the curvaton mechanism [25]. As an exam-

ple, in the scenario of Sec. 1..1 the phase θ may actually

be a pseudo-Nambu–Goldstone field. Generically, con-

formal rolling ends up at a slope of its potential, see

Fig. 1. The perturbations δθ are reprocessed into adi-

abatic perturbations at later time at the hot Big Bang

epoch when the field θ oscillates and decays into con-

ventional particles, cf. Ref. [26].

Another possibility is the modulated decay mecha-

nism suggested in the inflationary context in Refs. [27,

28, 29].

In both cases the conversion of the field perturba-

tions δθ into adiabatic perturbations induces some de-

gree of non-Gaussianity. This is not a specific prop-

Re�Im�

V (�)

Fig. 1. The scalar potential in the pseudo-Nambu–

Goldstone scenario.

erty of the conformal scenario, however, as it holds in

all models employing the curvaton or modulated decay

mechanism, including versions of inflation.

2. PERTURBATIONS OF MODULUS

Let us now come back to the conformal rolling stage.

From now on we use the nomenclature of the negative

quartic model of Sec. 1..1 for definiteness. We are inter-

ested in the radial perturbations [12, 30, 31], i.e., per-

turbations of the modulus of the field χ, or, with our

convention of real background χc, perturbations of the

real part χ1 ≡ Re χ/
√
2. At the linearized level, they

obey the following equation,

(δχ1)
′′ − ∂i∂i δχ1 − 6h2χ2

cδχ1 = 0 .

Its solution that tends to properly normalized mode of

free quantum field at early times, k(η∗ − η) → ∞, is

δχ1 = −eikx−ikη∗ · i

4π

√

η∗ − η

2
H

(1)
5/2 [k(η∗ − η)]·B̂k+h.c. ,

where B̂k, B̂†
k
is another set of annihilation and cre-

ation operators. At late times, when k(η∗ − η) ≪ 1

(super-”horizon” regime), one has

δχ1 = −eikx−ikη∗ · 3

4π3/2

1

k5/2(η∗ − η)2
· B̂k + h.c. .

Hence, the super-”horizon” perturbations of the modu-

lus have red power spectrum

P|φ|(k) ∝ k−2. (14)

The dependence δχ1 ∝ (η∗ − η)−2 is interpreted in

terms of the local shift of the “end time” parameter η∗.
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Indeed, with the background field given by (2), the sum

χc+ δχ1, i.e., the radial field including perturbations, is

the linearized form of

χc[η∗(x)− η] =
1

h[η∗(x) − η]
, (15)

where η∗(x) = η∗ + δη∗(x) and

δη∗(x) = − 3h

4π3/2

∫

d3k

k5/2

(

eikx−ikη∗ · B̂k + h.c.
)

.

(16)

So, the infrared radial modes modify the effective back-

ground by transforming the “end time” parameter η∗
into time-independent random field that slowly varies in

space, with red power spectrum clearly seen from (16).

This observation is valid beyond the linear approxima-

tion: once the spatial scale of variation of χ1(x, η) ex-

ceeds the “horizon” size, spatial gradients in eq. (1) are

negligible, and the late-time solutions to the full non-

linear field equation have locally one and the same form

(2), modulo slow variation of η∗ in space.

A few remarks are in order. First, the infrared modes

contribute both to the field δη∗(x) itself and to its spa-

tial derivatives. The contribution of the modes which

are superhorizon today, i.e., have momenta k . H0, to

the fluctuation of ∂iη∗ is given by

〈∂iη∗(x)∂jη∗(x)〉k.H0
= δij ·

3h2

4π

∫

k.H0

dk

k

= δij ·
3h2

4π
log

H0

Λ
, (17)

where Λ is the infrared cutoff which parametrizes our

ignorance of the dynamics at the beginning of the con-

formal rolling stage.

Second, modulo field redefinition and notations, the

properties of Galileon perturbations are exactly the

same as the properties of radial perturbations δχ1 in

conformal rolling scenario [32]. Furthermore, these

properties are unambiguously determined by conformal

invariance [32, 20]. The same properties – flat and red

spectra of zero conformal weight and rolling fields, re-

spectively – are inherent in the false vacuum decay setup

mentioned in Sec. 1..3. Thus, we are dealing with the

whole class of models.

Finally, so far we have considered spectator fields.

That is, we have ignored the backreaction of the scalar

fields on gravity. In particular, we have considered a

scalar field conformally coupled to gravity (in the con-

formal rolling scenario of Sec. 1..1) and assumed negligi-

ble energy density (in both Galilean Genesis and con-

formal rolling cases). However, it is of interest to con-

sider also dynamical versions with scalar fields mini-

Fig. 2. Due to the perturbations of the radial field, the

evolution of phase perturbations proceeds in inhomoge-

neous background that slowly varies in space.

mally coupled to gravity and dominating the cosmolog-

ical evolution. In that case there is a potential danger

that the strong-coupling regime arises at too low energy

scales [14]. This option has been studied in Ref. [33].

It has been shown that mixing of the scalar field(s)

with the metric in dynamical pseudo-conformal models

does not introduce new strong-coupling UV scales. Fur-

thermore, the spectator approximation gives correct re-

sults in dynamical models provided that the background

space-time is sufficiently flat . This applies, in particu-

lar, to potentially observable effects discussed in Sec. 3..

These effects are inherent in the entire class of both

spectator and dynamical (pseudo-)conformal models.

3. EFFECT OF INFRARED RADIAL MODES

ON PERTURBATIONS OF PHASE

Let us discuss how the interaction with the infrared

radial modes affects the properties of the phase pertur-

bations δθ [30, 31, 34]. To this end, we consider pertur-

bations of the imaginary part δχ2, whose wavelengths

are much smaller than the scale of the spatial variation

of the modulus. Because of the separation of scales,

perturbations δχ2 can still be treated in the linear ap-

proximation, but now in the background (15), see Fig. 2.

Since our concern is the infrared part of η∗(x), we

make use of the spatial gradient expansion, consider a

region near the origin and write

η∗(x) = η∗(0)−vixi+. . . , vi = −∂iη∗(x)|x=0 , (18)

where dots denote higher order terms in x. Impor-

tantly, the field ∂i∂jη∗(x) has blue power spectrum, un-

like η∗(x) and ∂iη∗(x), so the major effect of the infrared

modes is accounted for by considering the two terms of

the gradient expansion written explicitly in (18). Fur-
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thermore, we assume in what follows that |v| ≪ 1. The

expansion in |v| is legitimate, since the field v(x) has

flat power spectrum (cf. (17)), so the fluctuation of v

is of order h2| log Λ|, where Λ is the infrared cutoff, and

it is small for small h and not too large | log Λ|.
Keeping the two terms in (18) only, we have, instead

of (3),

(δχ2)
′′ − ∂i∂i δχ2 −

2

[η∗(0)− vx − η]2
δχ2 = 0 . (19)

We observe that the denominator in the expression for

the background field

χc =
1

h[η∗(0)− η − vx]
(20)

contains the combination η∗(0)−(η+vx). We interpret

this as the local time shift and Lorentz boost of the origi-

nal background (2). Note that the field (20) is a solution

to the field equation (1) in our approximation. Our in-

terpretation makes it clear that the solutions to eq. (19)

can be obtained by time translation and Lorentz boost

of the original solution (6), (7). In particular, instead

of (9) the phase field freezes out at

δθ(x) = ih

∫

d3k

4π3/2
√
k(k + kv)

eikx−ikη∗(x)Âk + h.c.

(21)

So far we discussed the dynamics of the phase per-

turbations δθ at the conformal rolling stage which is

governed solely be their interaction with the background

field (20) as well as with the radial perturbations δχ1;

the evolution of the scale factor a(η) is irrelevant. Af-

ter the end of conformal rolling, the situation is re-

versed. Once the radial field |φ| has relaxed to the min-

imum of the scalar potential, the phase θ is a massless

scalar field minimally coupled to gravity (this is true

for any Nambu–Goldstone field [35]). Since we are talk-

ing about a yet unknown pre-hot epoch, it is legitimate

to ask what happens to the perturbations of the phase

right after the end of conformal rolling. Barring fine

tuning, there are two possibilities for the perturbations

δθ:

(i) they are already superhorizon in the conventional

sense at that time, or

(ii) they are still subhorizon.

3..1 Superhorizon phase perturbations

Let us consider the first sub-scenario [30, 31]: phase

perturbations do not evolve after the end of the con-

formal rolling stage, and the properties of the adiabatic

perturbations are determined entirely by the dynamics

at conformal rolling (modulo possible non-Gaussianity

generated at the conversion epoch, see Sec. 1..3). This

option is particularly natural in the Galilean Genesis,

but it is not contrived in the conformal rolling scenario

of Sec. 1..1 either.

In that case, there are no potentially observable ef-

fects to the linear order in v. Indeed, using (21) one

finds for, e.g., two-point correlation function

〈δθ(x)δθ(x′)〉 ∝
∫

d3k

k

1

(k + ~k~v)2
ei
~k(~x−~x′)−ik(η∗(~x)−η∗(~x

′))

=

∫

d3q

q

1

q2
ei~q(~x−~x′), (22)

where we have used (18) in the exponent and changed

the integration variable from k to

q = k+ kv , q = |q| = k + kv, (23)

which is nothing but Lorentz boost. The result (22) is

precisely the two-point correlation function of the lin-

ear field (9). The latter argument is straightforwardly

generalized to multiple correlators: for a given realiza-

tion of the random field η∗(x), they are all expressed in

terms of the two-point correlation function (22). The

reason for the disappearance of the linear order effect is

obviously Lorentz invariance.

The non-trivial effect of the large wavelength pertur-

bations δη∗(x) on the perturbations of the phase, and

hence on the resulting adiabatic perturbations, occurs

for the first time at the second order in the gradient

expansion, i.e., at the order ∂i∂jη∗ [30]. Let us concen-

trate for the moment on the effect of the modes of δη∗
whose present wavelengths exceed the present Hubble

size. We are dealing with one realization of the random

field δη∗, hence at the second order of the gradient ex-

pansion, ∂i∂jη∗ is merely a tensor, constant throughout

the visible Universe. In this long wavelength regime the

perturbation of the phase has the following form

δθ(k) =
iheikx−ikη∗(x)

4π3/2
√
kq

(

1− π

2k

kikj
k2

∂i∂jη∗

)

· Âk + h.c.,

(24)

where q is given by (23). It results in the power spec-

trum of the adiabatic perturbation which depends on

directionality of momentum (see [30] for details)

Pζ(k) = P0(k)

(

1+c1 ·h·
H0

k
· (nk)i(nk)jwij

−c2 · h2 · (nku)
2

)

. (25)

In the first non-trivial term, wij is a traceless symmet-

ric tensor of a general form with unit normalization,
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wijwij = 1, nk is a unit vector, nk = k/k, and c1 is a

constant of order 1 whose actual value is undetermined

because of the cosmic variance. The last term is the

result of the expansion of δθ in h; the corresponding

term is not present in (24). In this term, u is a unit

vector independent of wij , and the positive parameter

c2 is logarithmically enhanced due to the infrared ef-

fects, c2 ∝ log H0

Λ . This is the first place where the

deep infrared modes show up. Clearly, their effect is

subdominant for small h.

We see that the large wavelength modes induce sta-

tistical anisotropy in the adiabatic perturbations. The

statistical anisotropy encoded in the second term in

(25) is similar to that commonly discussed in inflation-

ary context [36] (see Ref. [37] for earlier analysis), and,

indeed, generated in some concrete inflationary mod-

els [38]: it does not decay as momentum increases and

has special tensorial form (nku)
2 with constant u. On

the other hand, the first non-trivial term in (25) has the

general tensorial structure and decreases with momen-

tum. The latter property is somewhat similar to the

situation that occurs in cosmological models with the

anisotropic expansion before inflation [39].

Surprisingly, the statistical anisotropy in the form of

the special type quadrupole was found in the WMAP

5 and 7 years data [40, 41, 42, 43]. It was argued,

however, that the anomaly may result from the detec-

tor beam asymmetry not accounted for in the WMAP

analysis [44]. In the final 9 years data release, WMAP

collaboration provided a set of maps deconvolved with

the instrument response function corresponding to the

beam asymmetry effect [45]. Deconvolved maps do

not indicate the statistical anisotropy allowing to con-

strain the coupling constant in the first sub-scenario:

h2 log H0

Λ < 1.2 [46]. Later, the Planck data led to

stronger constraints on the statistical anisotropy [47, 48]

and correspondingly to tighter limits on the coupling

constant, h2 log H0

Λ < 0.30 [49].

Another effect that emerges at order h2 is the non-

Gaussianity of the perturbations δθ, and hence the adi-

abatic perturbations [31, 32], over and beyond the non-

Gaussianity that may be generated at the time when

the phase perturbations get reprocessed into the adia-

batic perturbations. In the absence of the cubic self-

interaction of the field θ, the intrinsic bispectrum van-

ishes, so we have to consider the trispectrum. It is fully

calculated [32], the most striking feature being the sin-

gularity in the limit where two momenta are equal in ab-

solute value and have opposite directions (folded limit,

in nomenclature of Ref. [50]):

〈ζk1
ζk2

ζk3
ζk4

〉 = const · δ
(

n
∑

i=1

ki

)

1

k12k41k
4
3

×
[

1− 3

(

k12k1

k12k1

)2
][

1− 3

(

k12k3

k12k3

)2
]

(26)

k12 = k1 + k2 → 0 ,

i.e., the trispectrum blows up as k−1
12 . This is in con-

trast to trispectra obtained in single-field inflationary

models; indeed, there are general arguments [51] show-

ing that in these models, the four-point function is finite

in the limit k12 → 0. The singularity in the four-point

function (26) is due to the enhancement of the radial

perturbations δ|φ| at low momenta.

Even though the results (25), (26) were first derived

in the concrete model with negative quartic potential

(Sec. 1..1), they are actually consequences of consistency

relations [52] valid in the whole class of conformal mod-

els. Furthermore, these consistency relations enable one

to calculate the one-loop non-Gaussianity in the folded

limit k12 → 0. Interestingly the one-loop contribution

to the trispectrum is even more singular in the folded

limit than the tree-level result (26): one finds [52]

〈ζk1
ζk2

ζk3
ζk4

〉(1−loop) = const·δ
(

n
∑

i=1

ki

)

1

k312k
3
1k

3
3

log
k12
Λ

with suppressed coefficient (the suppression factor is h2

in the model of Sec. 1..1). The k−3
12 -enhancement of the

one-loop trispectrum in the folded limit makes the non-

Gaussianity even more promising from the observational

viewpoint.

3..2 Subhorizon phase perturbations

Let us consider another option: assume that there is

a long enough period of time after the end of conformal

rolling, at which the phase perturbations remain sub-

horizon in the conventional sense [34]. This option is

fairly natural in the conformal rolling model of Sec. 1..1

and more contrived in Galilean Genesis.

The behavior of δθ between the end of conformal

rolling and horizon exit depends strongly on the evolu-

tion of the scale factor at this intermediate stage. In

order that the flat power spectrum (10) be not grossly

modified at this epoch, the scale factor should evolve

in such a way that the dynamics of δθ is effectively

nearly Minkowskian. Although this requirement sounds

prohibitively restrictive, it is obeyed in the bouncing

Universe, with matter at the contracting stage having

super-stiff equation of state, p ≫ ρ. It is worth noting

in this regard that stiff equation of state is preferred at
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Fig. 3. Due to the perturbations of the radial field, the

evolution of phase perturbations proceeds in inhomoge-

neous background. Perturbations δθ oscillate in time at

early stage (region I), freeze out at time η = η×(x) and

temporarily stay constant (region II) until the end of

conformal rolling that occurs at η = η∗(x). Then they

evolve again, now in nearly Minkowskian regime (region

III), until the horizon exit time η1. Later on (region IV),

perturbations δθ are superhorizon and stay constant.

the contracting stage for other reasons [53, 54] and is

inherent, e.g., in a scalar field theory with negative ex-

ponential potential, like in the ekpyrotic model [5]. It is

known [55] that in models with super-stiff matter at con-

tracting stage, the resulting power spectrum of scalar

perturbations is almost the same as that of massless

scalar field in Minkowski space, P(k) ∝ k2. In tractable

bouncing models like those of Ref. [6], the phase per-

turbations evolve almost like in Minkowski space, exit

the horizon at the contracting stage, pass through the

bounce unaffected (cf. Ref. [9]), remain superhorizon

early at the hot expansion epoch and get reprocessed

into adiabatic perturbations, as discussed in Sec. 1..3.

Let the effectively Minkowskian stage ends at some

time η1 (see Fig. 3). The field δθ(x, η∗), determined by

the dynamics at the conformal rolling stage, serves as

the initial condition for further Minkowskian evolution

from η∗ to η1. We are interested in the properties of the

phase perturbations at η = η1, as these properties are

inherited by the adiabatic perturbations.

To the leading order in h, we find nothing new: the

phase perturbations at η = η1 are Gaussian and have

flat power spectrum. Subleading orders in h are more

interesting. The effect of the perturbations δη∗(x) on

the phase perturbations δθ is twofold. First, the pertur-

bations δη∗ modify the dynamics of δθ at the conformal

rolling stage. This property is the same as in Sec. 3..1.

Second, the initial condition for the Minkwskian evo-

lution is now imposed at the non-trivial hypersurface

η = η∗(x). This is illustrated in Fig. 3. The net re-

sult is that the perturbation δθ(x) at the time η1 is a

combination of two Gaussian random fields originating

from vacuum fluctuations of the phase θ and radial field

|φ|, respectively. This leads to potentially observable

effects.

Let us consider the phase perturbation of given mo-

mentum k. At the end of conformal rolling it is given by

(21) with ∂δθ/∂η = 0. This gives the initial condition

for the evolution at the intermediate stage, when the

perturbation is a linear combination of exp(ikx± ikη).

So, after the second freeze-out it is a linear combination

of waves coming from the direction nk = k/k and from

the opposite direction and traveling distance r = η1−η∗.

This leaves an imprint on δθ(k) of the random field v

existing at points x = ±nkr. In particular, one finds

the power spectrum with the non-trivial dependence on

nk:

Pδθ(k) = P0 (1 + nk · [v(x = +nkr) − v(x = −nkr)]) .

As a result, the statistical anisotropy of the adiabatic

perturbations has the form

Pζ(k) = P(0)
ζ (k) [1 +Q(nk)] , (27)

where P(0)
ζ is independent of the directionality of mo-

mentum (nearly flat spectrum with small tilt) and

Q(nk) is itself a random field, which depends on the

direction of k only. Unlike the statistical anisotropy

discussed in the inflationary context [36, 38, 39] and

also in Sec. 3..1, the function Q(nk) contains all even

angular harmonics, starting from quadrupole. We give

here the expression for Q(nk) which accounts for the

quadrupole component only (see Ref. [34] for all multi-

poles), Q(nk) = Q·wijn
i
k
nj
k
where wij is a general sym-

metric traceless tensor normalized to unity, wijwij = 1,

and the variance of the quadrupole component (in the

sense of an ensemble of universes) is

〈Q2〉 = 225h2

32π2
. (28)

Of course, the precise values of the multipoles of Q(nk)

in our patch of the Universe are undetermined because

of the cosmic variance. It is worth noting also that all

multipoles are independent of k and, hence, unlike in the

version of Sec. 3..1, there is no suppression of the leading

order effect on cosmic microwave background (CMB)

power spectrum at large l. This property enables one

to utilize the high statistics of the Planck data up to
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l = 1600 and place a strong limit on the coupling con-

stant in the sub-scenario with intermediate stage [49]:

h2 < 0.0011 . (29)

The statistical anisotropy is probably the most promis-

ing signature of this sub-scenario.

The second effect is non-Gaussianity. While, as be-

fore, the bispectrum vanishes, the four-point correlation

function has a peculiar form

〈ζkζk̃ζk′ζ
k̃′〉 =

P(0)
ζ (k)

4πk3
P(0)
ζ (k′)

4πk′ 3
δ(k+ k̃)δ(k′ + k̃′)

× [1 + FNG(nk · nk′)] + (k ↔ k′) + (k̃ ↔ k′) .

(30)

The leading term in (30) (unity in square brackets) is

the Gaussian part, while the non-Gaussianity is encoded

in FNG = O(h2). Note that the structure of the non-

Gaussian part is fairly similar to that of the discon-

nected four-point function. Note also that FNG depends

on the angle between k and k′ only. If the angle between

k′ and k is small, i.e., |nk − nk′ | ≪ 1, the leading be-

havior of FNG is

FNG =
3h2

π2
log

const

|nk − nk′ | ,

where constant in the argument of logarithm cannot be

reliably calculated because of the cosmic variance. The

logarithmic behavior does not hold for arbitrarily small

|nk−nk′ |: the function FNG(nk−nk′) flattens out most

likely at |nk − nk′ | ∼ [k(η1 − η∗)]
−1/2, and certainly at

|nk−nk′ | ∼ [k(η1 − η∗)]
−1. So, the parameter (η1 − η∗)

is detectable in principle.

The third effect is negative scalar tilt

ns − 1 = −3h2

4π2
.

However, this is not a particularly strong result, as small

scalar tilt in our scenario may also originate from ex-

plicit violation of conformal invariance at the conformal

rolling stage [17] and/or not exactly Minkowskian evo-

lution of δθ at the intermediate stage. Moreover, to

account for the whole scalar tilt detected by WMAP

and Planck, one needs h ≃ 0.6, in conflict with the con-

straint (29).

4. CONCLUSIONS

Flat or nearly flat power spectrum of the adia-

batic perturbations may be a consequence of confor-

mal symmetry rather than de Sitter symmetry. Models

of this sort include conformally coupled complex scalar

field with negative quartic potential, Galilean Gene-

sis and decay of conformally invariant metastable vac-

uum. Properties of the perturbations in these models

are to large extent dictated by conformal invariance and

the predictions are mostly model-independent, at least

at the leading non-linear level (modulo effects due to

conversion of field fluctuations into adiabatic perturba-

tions). A peculiar property which has potentially ob-

servable consequences is fluctuations along rolling di-

rection. These fluctuations have red power spectrum

and can be interpreted in terms of the local time shift.

Interplay between phase perturbations, responsible for

density perturbations in the end, and local time shift

yields the non-trivial correlation properties of the den-

sity perturbations such as statistical anisotropy and the

intrinsic non-Gaussianity of special forms. The latter

properties are potentially observable with CMB data.
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