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I. INTRODUCTION

It is an inescapable inference from the physics of the last sixty years that we live in a
quantum mechanical universe — a world in which the basic laws of physics conform
to that framework for prediction we call quantum mechanics. If this inference is
correct, then there must be a description of the universe as a whole and everything
in it in quantum mechanical terms. The nature of this description and its observable
consequences are the subject of quantum cosmology.

Our observations of the present universe on the largest scales are crude and a
classical description of them is entirely adequate. Providing a quantum mechanical
description of these observations alone might be an interesting intellectual chal-
lenge, but it would be unlikely to yield testable predictions differing from those
of classical physics. Today, however, we have a more ambitious aim. We aim, in
quantum cosmology, to provide a theory of the initial condition of the universe
which will predict testable correlations among observations today. There are no
realistic predictions of any kind that do not depend on this initial condition, if only
very weakly. Predictions of certain observations may be testably sensitive to its
details. These include the large scale homogeneity and isotropy of the universe, its
approximate spatial flatness, the spectrum of density fluctuations that produced the
galaxies, the homogeneity of the thermodynamic arrow of time, and the existence
of classical spacetime. Further, one of the main topics of this school is the question
of whether the coupling constants of the effective interactions of the elementary
particles at accessible energy scales may depend, in part, on the initial condition
of the universe. It is for such reasons that the search for a theory of the initial
condition of the universe is just as necessary and just as fundamental as the search
for a theory of the dynamics of the elementary particles.∗

The physics of the very early universe is likely to be quantum mechanical in
an essential way. The singularity theorems of classical general relativity† suggest
that an early era preceded ours in which even the geometry of spacetime exhibited
significant quantum fluctuations. It is for a theory of the initial condition that de-
scribes this era, and all later ones, that we need a quantum mechanics of cosmology.
That quantum mechanics is the subject of these lectures.

The “Copenhagen” frameworks for quantum mechanics, as they were for-
mulated in the 1930’s and ’40’s and as they exist in most textbooks today,‡ are
inadequate for quantum cosmology on at least two counts. First, these formu-
lations characteristically assumed a possible division of the world into “obsever”
and “observed”, assumed that “measurements” are the primary focus of scientific
statements and, in effect, posited the existence of an external “classical domain”.
However, in a theory of the whole thing there can be no fundamental division into
observer and observed. Measurements and observers cannot be fundamental no-
tions in a theory that seeks to describe the early universe when neither existed. In

∗ For reviews of quantum cosmology see lectures by Halliwell in this volume and
Hartle (1988c, 1990a). For a bibliography of papers on the subject through 1989
see Halliwell (1990).
† For a review of the singularity theorems of classical general relativity see Geroch

and Horowitz (1979). For the specific application to cosmology see Hawking and
Ellis (1968).
‡ There are various “Copenhagen” formulations. For a classic exposition of one of

them see London and Bauer (1939).

3



a basic formulation of quantum mechanics there is no reason in general for there to
be any variables that exhibit classical behavior in all circumstances. Copenhagen
quantum mechanics thus needs to be generalized to provide a quantum framework
for cosmology.

The second count on which the familiar formulations of quantum mechanics
are inadequate for cosmology concerns their central use of a preferred time. Time
is a special observable in Hamiltonian quantum mechanics. Probabilities are pre-
dicted for observations “at one moment of time”. Time is the only observable for
which there are no interfering alternatives as a measurement of momentum is an
interfering alternative to a measurement of position. Time is the sole observable
not represented by an operator in the familiar quantum mechanical formalism, but
rather enters the theory as a parameter describing evolution.

Were there a fixed geometry for spacetime, that background geometry would
give physical meaning to the preferred time of Hamiltonian quantum mechanics.
Thus, the Newtonian time of non-relativistic spacetime is unambiguously taken
over as the preferred time of non-relativistic quantum mechanics. The spacetime
of special relativity has many timelike directions. Any one of them could supply
the preferred time of a quantum theory of relativistic fields. It makes no difference
which is used for all such quantum theories are unitarily equivalent because of
relativistic causality. However, spacetime is not fixed fundamentally. In a quantum
theory of gravity, in the domain of the very early universe, it will fluctuate and be
without definite value. If spacetime is quantum mechanically variable, there is no
one fixed spacetime to supply a unique notion of “timelike, “spacelike” or “spacelike
surface”. In a quantum theory of spacetime there is no one background geometry
to give meaning to the preferred time of Hamiltonian quantum mechanics. There is
thus a conflict between the general covariance of the physics of gravitation and the
preferred time of Hamiltonian quantum mechanics. This is the “problem of time”
in quantum gravity.∗ Again the familiar framework of quantum mechanics needs
to be generalized.

These lectures discuss the generalizations of Copenhagen quantum mechanics
necessary to deal with cosmology and with quantum cosmological spacetimes. Their
purpose is to sketch a coherent framework for the process of quantum mechanical
prediction in general, and for extracting the predictions of theories of the initial
condition in particular. Throughout I shall assume quantum mechanics and I shall
assume spacetime. Some hold the view that “quantum mechanics is obviously
absurd but not obviously wrong” in its application to the macroscopic domain. I
hope to show that it is not obviously absurd. Some believe that spacetime is not
fundamental. If so, then a quantum mechanical framework at least as general as
that sketched here will be needed to discuss the effective physics of spacetime on
all scales above the Planck length and revisions of the familiar framework at least
as radical as those suggested here will be needed below it.

The strategy of these lectures is to discuss the generalizations needed for
a quantum mechanics of cosmology in two steps. I shall begin by assuming in
Section II a fixed background spacetime that supplies a preferred family of timelike
directions for quantum mechanics. This of course, is an excellent approximation
on accessible scales for times later than 10−43 sec after the big bang. The familiar
apparatus of Hilbert space, states, Hamiltonian and other operators then may be

∗ For classic reviews of this problem from the perspective of canonical quantum grav-
ity see Wheeler (1979) and Kuchař (1981).
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applied to process of prediction. Indeed, in this context the quantum mechanics
of cosmology is in no way distinguished from the quantum mechanics of a large
isolated box containing both observers and observed.∗

The quantum framework for cosmology I shall describe in Section II has its
origins in the work of Everett and has been developed by many.† Especially taking
into account its recent developments, notably the work of Zeh (1971), Zurek (1981,
1982), Joos and Zeh (1985), Griffiths (1984), Omnès (1988abc, 1989) and others, it
is sometimes called the post-Everett interpretation of quantum mechanics. I shall
follow the development in Gell-Mann and Hartle (1990).

Everett’s idea was to take quantum mechanics seriously and apply it to the
universe as a whole. He showed how an observer could be considered part of this
system and how its activities — measuring, recording, calculating probabilities, etc.
— could be described within quantum mechanics. Yet the Everett analysis was not
complete. It did not adequately describe within quantum mechanics the origin of
the “classical domain” of familiar experience or, in an observer independent way,
the meaning of the “branching” that replaced the notion of measurement. It did
not distinguish from among the vast number of choices of quantum mechanical
observables that are in principle available to an observer, the particular choices
that, in fact, describe the classical domain.‡ It did not sufficiently address the
construction of history, so important for cosmology, independently of the memory
of an observer.

The post-Everett framework stresses the importance of histories for quan-
tum mechanics. It stresses the consistency of probability sum rules as the primary
criterion for assigning probabilities to histories rather than any notion of “measure-
ment”. It stresses the initial condition of the universe as the ultimate origin within
quantum mechanics of the classical domain. There are many problems in this ap-
proach to quantum mechanics yet to be solved, but, as I hope to show, post-Everett
quantum mechanics provides a framework that is sufficiently general for cosmology
and sufficiently detailed that the remaining questions can be attacked.

Having obtained in Section II an understanding of how to generalize familiar
quantum mechanics to make predictions for closed systems, the remainder of the
lectures will be concerned with the generalizations needed to accomodate quantum
spacetime. In Section III a broad framework for quantum mechanical theories will
be introduced. Hamiltonian quantum mechanics is one instance of such a quantum
mechanics but not the only possible one. This will be illustrated in Section IV
where, motivated by the problem of time, various examples of generalized quantum
mechanics that have no equivalent Hamiltonian formulations will be discussed. In
Section V a generalized sum-over-histories quantum mechanics for closed cosmo-

∗ Thus, those who find it unsettling for some reason to consider the universe as a
whole may substitute the words “closed system” for “cosmology” and “universe”
without any change in meaning in Sections II-IV. As we shall see in Section II.6,
however, as far as physical mechanisms which insure the emergence of a classical
domain, the only “closed system” of interest is essentially the universe as a whole.
† The original reference is Everett (1957). The idea was developed by many, among

them Wheeler (1957), DeWitt (1970), Geroch (1984), and Mukhanov (1985) and
independently arrived at by others, e.g. Gell-Mann (1963) and Cooper and Van
Vechten (1969). There is a useful collection of early papers in DeWitt and Graham
(1973).
‡ This is sometimes called the “basis problem”.
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logical spacetimes will be described that is free from the problem of time.∗ This
quantum mechanics too has no obvious equivalent Hamiltonian formulation. Fi-
nally, in Section VI we shall review the rules by which semiclassical predictions are
extracted from a wave function of the universe.

Any generalization of the familiar framework of quantum mechanics has the
obligation to recover that framework in suitable limiting circumstances. For the
generalizations discussed here those circumstances concern the existence of a “clas-
sical domain” and, in particular, the existence of classical spacetime. Classical
behavior is not a consequence of all states in quantum theory; it is a property of
particular states. It will be a constant theme of these lectures that, in the gener-
alizations discussed, the familiar formulations of quantum mechanics are recovered
as limiting cases in circumstances defined by the particular state the universe does
have. That is, most fundamentally, they are recovered because of this universe’s
particular quantum initial condition. The “classical domain” of the Copenhagen
interpretations is not a general feature of a quantum theory of the universe but
it may be a feature of its particular initial conditions and dynamics at late times.
In a similar way Hamiltonian quantum mechanics, with its preferred time, may
not be the most general formulation of quantum mechanics, but it may be an ap-
proximation to a yet more general sum-over-histories framework appropriate in the
late universe where a nearly classical background spacetime is realized because of
a specific initial condition. In this way, the Copenhagen formulations of quantum
mechanics can be seen as approximations in which certain approximate classical fea-
tures of the universe are idealized as exact — approximations that are not generally
applicable in quantum theory, but made appropriate by a specific initial condition.
From this perspective, the “classical domain” with its classical spacetime are “ex-
cess baggage” in the fundamental theory of a kind that is seen elsewhere in the
development of physics. (See, e.g. Hartle, 1990b) They are true features of the late
epoch of this universe perceived to be fundamental because of the limited character
of our observations. They may be more successfully viewed as but one possibility
out of many in a yet more general theory.

II. POST-EVERETT QUANTUM MECHANICS†

II.1. Probability

II.1.1. Probabilities in general

Even apart from quantum mechanics, there is no certainty in this world and there-
fore physics deals in probabilities.‡ It deals most generally with the probabilities for

∗ Several authors have suggested, in various ways, that sum-over-histories quantum
mechanics might be a fruitful approach to a generally covariant quantum mechan-
ics of cosmological spacetime, among them recently Teitelboim (1983abc), Sorkin
(1989) and the author (Hartle, 1986b, 1988ab, 1989b). The latter approach is
described in Section V.
† Most of the material in this Section is an abridgement or amplification of Gell-Mann

and Hartle (1990).
‡ For a lively review of the use of probability in physics most of whose viewpoints are

compatible with those expressed here see Deutsch (1991).
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alternative time histories of the universe. From these, conditional probabilities ap-
propriate when information about our specific history is known may be constructed.

To understand what these probabilities mean, it is best to understand how
they are used. We deal, first of all, with probabilities for single events of the
single system that is the universe as a whole. When these probabilities become
sufficiently close to zero or one there is a definite prediction on which we may
act. How sufficiently close to 0 or 1 the probabilities must be depends on the
circumstances in which they are applied. There is no certainty that the sun will
come up tomorrow at the time printed in our daily newspapers. The sun may be
destroyed by a neutron star now racing across the galaxy at near light speed. The
earth’s rotation rate could undergo a quantum fluctuation. An error could have
been made in the computer that extrapolates the motion of the earth. The printer
could have made a mistake in setting the type. Our eyes may deceive us in reading
the time. We watch the sunrise at the appointed time because we compute, however
imperfectly, that the probability of these things happening is sufficiently low.

Various strategies can be employed to identify situations where probabilities
are near zero or one. Acquiring information and considering the conditional prob-
abilities based on it is one such strategy. Current theories of the initial condition
of the universe predict almost no probabilities near zero or one without further
conditions. The “no boundary” wave function of the universe, for example, does
not predict the present position of the sun on the sky. It will predict, however, that
the conditional probability for the sun to be at the position predicted by classical
celestial mechanics given a few previous positions is a number very near unity.

Another strategy to isolate probabilities near 0 or 1 is to consider ensembles
of repeated observations of identical subsystems. There are no genuinely infinite
ensembles in the world so we are necessarily concerned with the probabilities for
deviation of a finite ensemble from the expected behavior of an infinite one. These
are probabilities for a single feature (the deviation) of a single system (the whole
ensemble). To give a quantum mechanical example, consider an ensemble of N
spins each in a state |ψ >. Suppose we measure whether the spin is up or down for
each spin. The predicted relative frequency of finding n↑ spin-ups is

f↑N =
n↑
N

= | <↑ |ψ > |2 , (II.1.1)

where | ↑> is state with the spin definitely up. Of course, there is no certainty
that we will get this result but as N becomes large we expect the probability of
significant deviations away from this value to be very small.

In the quantum mechanics of the whole ensemble this prediction would be
phrased as follows: There is an observable f↑N corresponding to the relative fre-
quency of spin up. Its operator is easily defined on the basis in which all the spins
are either up or down as

f↑N =
∑
s1···sN

|s1 > · · · |sN >

(∑
i

δsi ↑
N

)
< sn| · · · < s1| . (II.1.2)

Here, |s >, with s =↑ or ↓, are the spin eigenstates in the measured direction. The
eigenvalue in brackets is just the number of spin ups in the state |s1 > · · · |sN >.
The operator f↑N thus has the discrete spectrum 1/N, 2/N, · · · , 1. We can now

calculate the probability that f↑N has one of these possible values in the state

|Ψ >= |ψ > · · · |ψ > (N times) , (II.1.3)

7



which describes N independent subsystems each in the state |ψ >. The result is
simply a binomial distribution. The probability of finding relative frequency f is

p(f) =

(
N

fN

)
pfN↑ p

N(1−f)
↓ (II.1.4)

where p↑ = | <↑ |ψ > |2 and p↓ = 1 − p↑. As N becomes large this approaches
a continuum normal distribution that is sharply peaked about f = p↑. The width

becomes arbitrarily small with large N as N−
1
2 . Thus, the probability for finding

f in some range about p↑ can be made close to one by choosing N sufficiently
large yielding a definite prediction for the relative frequency. In a given experi-
ment how large does N have to be before the prediction is counted as definite? It
must be large enough so the probability of error is sufficiently small to isolate a
result of significance given the status of competing theories, competing groups, the
consequences of a lowered reputation if wrong, the limitations of resources, etc.

The existence of large ensembles of repeated observations in identical circum-
stances and their ubiquity in laboratory science should not obscure the fact that
in the last analysis physics must predict probabilities for the single system which
is the ensemble as a whole. Whether it is the probability of a successful marriage,
the probability of the present galaxy-galaxy correlation function, or the probability
of the fluctuations in an ensemble of repeated observations, we must deal with the
probabilities of single events in single systems. In geology, astronomy, history, and
cosmology, most predictions of interest have this character. For some it is easier to
discuss such probabilities by employing the fiction that they are definite predictions
of the relative frequencies in an imaginary infinite ensemble of repeated indentical
universes.∗ Here, I shall deal directly with the individual events.

The goal of physical theory is, therefore, most generally to predict the prob-
abilities of histories of single events of a single system. Such probabilities are, of
course, not measurable quantities. The success of a theory is to be judged by
whether its definite predictions (probabilities sufficiently close to 0 or 1) are con-
firmed by observation or not.

Probabilities need be assigned to histories by physical theory only up to the
accuracy they are used. Two theories that predict probabilities for the sun not
rising tomorrow at its classically calculated time that are both well beneath the
standard on which we act are equivalent for all practical purposes as far as this
prediction is concerned. For example, a model of the Earth’s rotation that includes
the gravitational effects of Sirius gives different probabilities from one which does
not, but ones which are equivalent for all practical purposes to those of the model
in which this effect is neglected.

The probabilities assigned by physical theory must conform to the standard
rules of probability theory: The probability for both of two exclusive events is the
sum of the probabilities for each. The probabilities of an exhaustive set of alterna-
tives must sum to unity. The probability of the empty alternative is zero. Because
probabilities are meaningful only up to the standard by which they are used, it is
useful to consider approximate probabilities which need satisfy the rules of proba-
bility theory only up to the same standard. A theory which assigns approximate

∗ For developments of this point of view in the quantum mechanical context see
Finkelstein (1963), Hartle (1968), Graham (1970), Farhi, Goldstone and Gutmann
(1989).
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Fig. 1: The two-slit experiment. An electron gun at right emits an
electron traveling towards a screen with two slits, its progress in space
recapitulating its evolution in time. When precise detections are made
of an ensemble of such electrons at the screen it is not possible, because
of interference, to assign a probability to the alternatives of whether an
individual electron went through the upper slit or the lower slit. However,
if the electron interacts with apparatus that measures which slit it passed
through, then these alternatives decohere and probabilities can be assigned

probabilities in this sense could always be augmented by a prescription for renor-
malizing the probabilities so that the rules are exactly obeyed without changing
their values in any relevent sense. As we shall see, it is only through the use of
such approximate probabilities that quantum mechanics can assign probabilities to
interesting time histories at all. We shall return to issues connected with the use
of approximate probabilities in Section II.11.

II.1.2. Probabilities in Quantum Mechanics

The characteristic feature of a quantum mechanical theory is that not every history
that can be described can be assigned a probability. Nowhere is this more clearly
illustrated than in the two slit experiment. In the usual “Copenhagen” discussion if
we have not measured which of the two slits the electron passed through on its way
to being detected at the screen, then we are not permitted to assign probabilities
to these alternative histories. It would be inconsistent to do so since the correct
probability sum rule would not be satisfied. Because of interference, the probability
to arrive at y is not the sum of the probabilities to arrive at y going through the
upper or lower slit:

p(y) 6= pU (y) + pL(y) (II.1.5)

because
|ψL(y) + ψU (y)|2 6= |ψL(y)|2 + |ψU (y)|2 . (II.1.6)

If we have measured which slit the electron went through, then the interference is
destroyed, the sum rule obeyed, and we can meaningfully assign probabilities to
these alternative histories.
We cannot have such a rule in quantum cosmology because there is not a funda-
mental notion of “measurement”. There is no fundamental division into observer
and observed and no fundamental reason for the existence of classically behaving
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measuring apparatus. In particular, in the early universe none of these concepts
seem relevant. We need an observer-independent, measurement-independent rule
for which histories can be assigned probabilities and which cannot. It is to this rule
that I now turn.

II.2. Decoherent Histories

II.2.1. Fine and Coarse Grained Histories

I shall now describe the rules that specify which histories of the universe may be
assigned approximate probabilities. They are essentially those put forward by Grif-
fiths (1984), developed by Omnès (1988abc, 1989), and independently but later
arrived at by Gell-Mann and the author (Gell-Mann and Hartle, 1990). Since his-
tories are our concern, it’s convenient to begin with Feynman’s sum-over-histories
formulation of quantum mechanics. A completely fine-grained history is then spec-
ified by giving a set of generalized coördinates qk(t) as functions of time. These
might be the values of fundamental fields at different points of space

Completely fine-grained histories cannot be assigned probabilities; only suit-
able coarse-grained histories can. Examples of coarse grainings are: (1) Specifying
the qi not at all times but at a discrete set of times. (2) Specifying not all the qi at
any one time but only some of them. (3) Specifying not definite values of these qi

but only ranges of values. An exhaustive set of ranges at any one time consists of
regions {∆α} that make up the whole space spanned by the qi as α passes over all
values. An exhaustive set of coarse-grained histories is then defined by exhaustive
sets of ranges {∆i

α} at times ti, i = 1, · · · , n.

II.2.2. Decohering Sets of Coarse Grained Histories

The important theoretical construct for giving the rule that determines whether
probabilities may be assigned to a given set of alternative histories, and what these
probabilities are, is the decoherence functional D [(history)′, (history)]. This is a
complex functional on any pair of histories in a coarse-grained set. It is most trans-
parently defined in the sum-over-histories framework for completely fine-grained
history segments between an initial time t0 and a final time tf , as follows:

D
[
q′i(t), qi(t)

]
= δ

(
q′if − qif

)
exp
{
i
(
S[q′i(t)]− S[qi(t)]

)
/h̄
}
ρ(q′i0 , q

i
0) . (II.2.1)

Here, ρ is the initial density matrix of the universe in the qi representation, q′i0 and
qi0 are the initial values of the complete set of variables, and q′if and qif are the final
values. The decoherence functional for coarse-grained histories is obtained from
(2.1)∗ according to the principle of superposition by summing over all that is not
specified by the coarse graining. Thus,

D
(

[∆α′ ], [∆α]
)

=

∫
[∆α′ ]

δq′
∫

[∆α]

δqδ(q′if − qif ) ei{(S[q′i]−S[qi])/h̄}ρ(q′i0 , q
i
0) . (II.2.2)

∗ (2.1) refers to eq.(II.2.1). Section numbers are omitted when referring to equations
within a given section.
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Fig. 2: The sum-over-histories construction of the decoherence func-
tional.

More precisely, the sum is as follows (Fig. 2): It is over all histories q′i(t), qi(t) that
begin at q′i0 , q

i
0 respectively, pass through the ranges [∆α′ ] and [∆α] respectively,

and wind up at a common point qif at any time tf > tn. It is completed by summing
over q′i0 , q

i
0, and qif (Fig. 2). The result is independent of tf . The three forms of

information necessary for prediction — initial condition, action, and specific history
are manifest in this formula as ρ, S, and [∆α] respectively.

The connection between coarse-grained histories and completely fine-grained
ones is transparent in the sum-over-histories formulation of quantum mechanics.
However, the sum-over-histories formulation does not allow us to consider coarse-
grained histories of the most general type directly. For the most general histories
one needs to exploit the transformation theory of quantum mechanics and for this
the Heisenberg picture is convenient.∗ In the Heisenberg picture D can be written

D
(

[Pα′ ], [Pα]
)

= Tr
[
Pnα′

n
(tn) · · ·P 1

α′
1
(t1)ρP 1

α1
(t1) · · ·Pnαn(tn)

]
, (II.2.3)

where the P kα(t) are a set of projection operators corresponding to an exhaustive
set of alternatives at one time. These satisfy∑

α
P kα(t) = 1 , P kα(t)P kβ (t) = δαβP

k
β (t) . (II.2.4)

Here, k labels the set, α the alternative, and t the time. The operators representing
the same alternatives at different times are connected by

P kα(t) = eiHt/h̄Pα(0)e−iHt/h̄ . (II.2.5)

∗ The utility of this Heisenberg formulation of quantum mechanics has been stressed
by many authors, among them Groenewold (1952) Wigner (1963), Aharonov,
Bergmann, and Lebovitz (1964), Unruh (1986), and Gell-Mann (1987).
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A set of alternative histories, [Pα], is represented by a set of exhaustive projections
(P 1
α1

(t1), P 2
α2

(t2), · · · , Pnαn(tn)) as α1, · · · , αn range over all values. An individual
history in the set is a particular set of values α1, · · · , αn. In the Heisenberg picture
a completely fine-grained set of histories is defined by giving a complete set of
projections (one dimensional ones) at each and every time. Every possible set
of alternative histories may then be obtained by coarse graining the various fine-
grained sets, that is, by using P ’s in the coarser grained sets which are sums of those
in the finer grained sets. Thus, if [P β ] is a coarse graining of the set of histories
{[Pα]}, we write

D
(
[Pβ′ ], [Pβ ]

)
=

∑
all P ′

α

not fixed by [P
β′ ]

∑
all Pα

not fixed by [Pβ ]

D ([Pα′ ], [Pα]) . (II.2.6)

A set of coarse-grained alternative histories is said to decohere when the off-
diagonal elements of D are sufficiently small:

D ([Pα′ ], [Pα]) ≈ 0 , for any α′k 6= αk . (II.2.7)

This is a generalization of the condition for the absence of interference in the two-slit
experiment (approximate equality of the two sides of (1.6)). It has as a consequence
the purely diagonal formula

D
(
[Pβ ], [Pβ ]

)
≈

∑
all Pαnot

fixed by [Pβ ]

D ([Pα], [Pα]) . (II.2.8)

The rule for when approximate probabilities can be assigned to a set of his-
tories of the universe is then this: To the extent that a set of alternative histories
decoheres, probabilities can be assigned to its individual members. The probabili-
ties are the diagonal elements of D. Thus,

p([Pα]) = D([Pα], [Pα])

= Tr
[
Pnαn(tn) · · ·P 1

α1
(t1)ρP 1

α1
(t1) · · ·Pnαn(tn)

]
(II.2.9)

when the set decoheres. We shall frequently write p(αntn, · · ·α1t1) for these prob-
abilities, suppressing the labels of the sets.

The probabilities defined by (2.9) obey the rules of probability theory as a
consequence of decoherence. The principal requirement is that the probabilities be
additive on “disjoint sets of the sample space”. For histories this gives the sum rule

p
(
[Pβ ]

)
≈

∑
all Pαnot

fixed by [Pβ ]

p ([Pα]) . (II.2.10)

These relate the probabilities for a set of histories to the probabilities for all coarser
grained sets that can be constructed from it. For example, the sum rule eliminating
all projections at one time is∑

αk
p(αntn, · · ·αk+1tk+1, αktk, αk−1tk−1, · · · , α1t1)

≈ p(αntn, · · ·αk+1tk+1, αk−1tk−1, · · · , α1t1) . (II.2.11)
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The p([Pα]) are approximate probabilities in the sense of Section II.1 which
approximately obey the probability sum rules. If a given standard by which these
sum rules are satisfied is required, it can be met by coarse graining at the requisite
level. It is possible to demand exact decoherence. For example, sets of histories
consisting of alternatives at a single time exactly decohere because of the cyclic
property of the trace in (2.3) and (2.4). Once a standard is met, further coarse
graining of a decoherent set of alternative histories produces a set of decoherent
histories since the probability sum rules continue to be satisfied. (Those for the
coarser grained set are contained among those for the finer grained set.) Further
fine graining can result in the loss of decoherence.

Given this discussion, the fundamental formula of quantum mechanics may
be reasonably taken to be

D ([Pα′ ], [Pα]) ≈ δα′
1α1
· · · δα′

nαn
p([Pα]) (II.2.12)

for all [Pα] in a set of alternative histories. Vanishing of the off-diagonal elements of
D gives the rule for when probabilities may be consistently assigned. The diagonal
elements give their values.

We could have used a weaker condition than (2.7) as the definition of deco-
herence. Eq. (2.7) is sufficient. To understand the necessary condition, consider
the weakest coarse graining in which just two projections, Pa(t) and Pb(t) in an
exhaustive set of alternatives at one time t are lumped together in a single alter-
native (Pa(t) + Pb(t)) in the coarser grained set. (This corresponds to the logical
operation “or”.) The probability sum rules (2.10) require

D (· · · (Pa(t) + Pb(t)) · · · ρ · · · (Pa(t) + Pb(t)) · · ·) =

D (· · ·Pa(t) · · · ρ · · ·Pa(t) · · ·) +D (· · ·Pb(t) · · · ρ · · ·Pb(t) · · ·) , (II.2.13)

or equivalently

D (· · ·Pa(t) · · · ρ · · ·Pb(t) · · ·) +D (· · ·Pb(t) · · · ρ · · ·Pa(t) · · ·) = 0 . (II.2.14)

Considering all such cases the necessary and sufficient condition for the validity of
the sum rules (2.10) of probability theory is:

D ([Pα], [Pα′ ]) +D ([Pα′ ], [Pα]) ≈ 0 (II.2.15)

for any α′k 6= αk, or equivalently

Re {D ([Pα], [Pα′ ])} ≈ 0 . (II.2.16)

This is the condition used by Griffiths (1984) as the requirement for “consistent
histories”. However, while, as we shall see, it is easy to identify physical situations
in which the off-diagonal elements of D approximately vanish as the result of coarse
graining, it is hard to think of a general mechanism that suppresses only their real
parts. In the usual analysis of measurement (as in the two-slit experiment, cf. (1.6))
the off-diagonal parts of D approximately vanish. We shall, therefore, explore the
stronger condition (2.7) in what follows.
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II.2.3. No Moment by Moment Definition of Decoherence

Decoherence is a property of coarse-grained sets of alternative histories of the
universe. The decoherence of alternatives in a given coarse-grained set in the past
can be affected by further fine graining in the future. The further fine graining
produces a different coarse-grained set of histories that may or may not decohere.

Consider by way of example, a Stern-Gerlach experiment in which an atomic
beam divides in an inhomogeneous magnetic field according to a spin component,
sz, of the atoms, and later to recombines under the action of a further appropriate
inhomogeneous magnetic field. In a coarse graining that concerns only sz at mo-
ments when the beams were separated, the alternative values of this variable would
decohere because they are correlated with orthogonal trajectories of the beams. In
a coarse graining that, in addition, includes sz at later moments when the beams
are recombined, the alternative values of sz when the beams are separated would
not decohere. The interference destroyed by separating the beams has been restored
by recombining them.

Thus, generally, decoherence cannot be viewed as an evolving phenomenon
in which certain alternatives decohere and remain so. Decoherence is a property
of sets of alternative histories, not of any summary of the system at a moment of
time. Further fine grain the set and it may no longer decohere. Having made this
general point it should also be noted that I shall later argue (Section II.7) that the
decoherence of coarse-grained histories constructed from certain kinds of variables
associated with the classical domain of familiar experience are insensitive to further
fine graining by the same kinds of variables. Even here, however, as we shall see,
there is always some fine graining in the future which will destroy the decoherence
of alternatives in the past.∗

II.3. Prediction, Retrodiction, and History

II.3.1. Prediction and Retrodiction

Decoherent histories are what we utilize in the process of prediction in quantum
mechanics, for they may be assigned probabilities. Decoherence thus generalizes and
replaces the notion of “measurement”, which served this role in the Copenhagen
interpretations. Decoherence is a more precise, more objective, more observer-
independent idea. For example, if their associated histories decohere, we may assign
probabilities to various values of reasonable scale density fluctuations in the early
universe whether or not anything like a “measurement” was carried out on them
and certainly whether or not there was an “observer” to do it. We shall return to
a specific discussion of typical measurement situations in Section II.9.

The joint probabilities p(αntn, · · · , α1t1) for the individual histories in a de-
cohering set are the raw material for prediction and retrodiction in quantum cos-
mology. From them, relevant conditional probabilities may be computed. The
conditional probability of one subset, {αiti}, given the rest, {αiti}, is generally

p
(
{αiti}|{αiti}

)
=
p(αntn, · · · , α1t1)

p
(
{αiti}

) . (II.3.1)

∗ This has been forcefully stated by Bell (1975).
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For example, the probability for predicting alternatives αk+1, · · · , αn, given that the
alternatives α1, · · · , αk have already happened, is

p(αntn, · · · , αk+1tk+1|αktk, · · · , α1t1) =
p(αntn, · · · , α1t1)

p(αktk, · · · , α1t1)
. (II.3.2)

The probability that αn−1, · · · , α1 happened in the past, given an alternative αn at
the present time tn, is

p(αn−1tn−1, · · · , α1t1|αntn) =
p(αntn, · · · , α1t1)

p(αntn)
. (II.3.3)

Decoherence ensures that the probabilities defined by (3.1) – (3.3) will approxi-
mately add to unity when summed over all remaining alternatives, because of the
probatility sum rules (2.10).

Despite the similarity between (3.2) and (3.3), there are differences between
prediction and retrodiction. Future predictions can all be obtained from an effective
density matrix summarizing information about what has happened. If ρeff is defined
by

ρeff(tk) =
P kαk(tk) · · ·P 1

α1
(t1)ρP 1

α1
(t1) · · ·P kαk(tk)

Tr[P kαk(tk) · · ·P 1
α1

(t1)ρP 1
α1

(t1) · · ·P kαk(tk)]
, (II.3.4)

then

p(αntn, · · · , αk+1tk+1|αktk, · · · , α1t1)

= Tr[Pnαn(tn) · · ·P k+1
αk+1

(tk+1)ρeff(tk)P k+1
αk+1

(tk+1) · · ·Pnαn(tn)] .(II.3.5)

The density matrix ρeff(tk) represents the usual notion of “state of the system at
time tk”. It is given here in the Heisenberg picture and is constant between tk and
tk+1 after which a new ρeff(tk+1) must be used for future prediction. Its Schrödinger
picture representative which evolves with time, would be given by

e−iH(t−tk)/h̄ρeff(tk)eiH(t−tk)/h̄ (II.3.6)

for tk < t < tk+1. In contrast to prediction, there is no effective density matrix rep-
resenting present information from which probabilities for the past can be derived.
As (3.3) shows, history requires knowledge of both present records and the initial
condition of the universe.

Prediction and retrodiction differ in another way. Because of the cyclic prop-
erty of the trace in (2.3), any final alternative decoheres and a probability can be
predicted for it. By contrast we expect only certain variables to decohere in the
past, appropriate to present data and the initial ρ.

These differences between prediction and retrodiction are aspects of the arrow
of time in quantum mechanics. Mathematically they are consequences of the time
ordering in the decoherence functional (2.3). The theory can be rewritten with
the opposite time ordering. Field theory is invariant under CPT. Performing a
CPT transformation on (2.3) or (2.9) results in an equivalent expression in which
the CPT transformed ρ is assigned to the far future and the CPT-transformed
projections are anti-time-ordered. (See Section IV.2 for more details) Either time
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ordering can, therefore, be used; the important point is that there is a knowable
Heisenberg ρ from which probabilities can be predicted. It is by convention that we
think of it as an “initial condition”, with the projections in increasing time order
from the inside out in (2.3) and (2.9). The words “prediction” and “retrodiction”
are used in this paper in the context of this convention.

While the formalism of quantum mechanics allows the universe to be discussed
with either time ordering, the physics of the universe is time asymmetric, with a
simple condition in what we call “the past.” For example, the present homogeneity
of the thermodynamic arrow of time can be traced to the near homogeneity of the
“early” universe implied by ρ and the implication that the progenitors of approxi-
mately isolated subsystems started out far from equilibrium at “early” times.

II.3.2. The Reconstruction of History

In classical physics reconstructing the past history of the universe, or any subsystem
of it, is most honestly viewed as the process of assigning probabilities to alternatives
in the past given present records. We assign the date 55BC to the Roman conquest
of Britain on the basis of present textual records. We use present observations of the
position of the sun and moon on the sky to reconstruct their past trajectories. We
use the fossil record to estimate that the probability is high that dinosaurs roamed
the earth from 230-65 million years ago. We believe that matter and radiation
were in thermal equilibrium some 12 billion years ago on the basis of records such
as the present values of the Hubble constant, the mean mass density, and the
temperature of the cosmic background radiation. History becomes predictive and
testable when we predict that further present records will be consistent with those
already found. Texts yet to be discovered are predicted to be consistent with the
story of Caesar. Present records of past eclipses are predicted to be consistent
with our past extrapolations of the position of the sun and moon. Fossils yet to
be unearthed are predicted to lie in appropriate strata. New measures of the age
of the universe (such as that provided by the evolution of globular clusters) are
predicted to be consistent with those obtained from other sources. In such ways
history becomes a predictive science.

Most fundamentally, the reconstruction of history, including the classical pro-
cess described above, must be seen in the context of the process quantum mechanical
retrodiction discussed in the preceding subsection. Certain features of the quan-
tum mechanical process deserve to be stressed to contrast them with the classical
process.

First, quantum mechanics does not allow probabilities to be assigned to arbi-
trary sets of alternative histories; the set must decohere. As the two slit example
shows the reconstruction of history generally is forbidden in quantum mechanics.
Second, for interesting sets of alternatives that do decohere, the decoherence and
the assigned probabilities will be approximate. It is unlikely, for example, that the
initial state of the universe is such that the interference is exactly zero between
two past positions of the sun on the sky. (See Section II.10 for further discus-
sion.) Third, the decoherence of a set of histories as well as the probabilities for
the individual histories in the set depend on the initial condition of the universe
as well as on present data. Eq.(3.3) gives the conditional probability for a string
of alternatives α1, · · · , αn−1 in the past, given alternatives αn representing the val-
ues of present records. This depends on ρ as well as the αn and, therefore, there
is no present effective density matrix for retrodiction as there is for prediction.
The reconstruction of history on the basis of present data alone is not possible in
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quantum mechanics in general. The classical reconstruction of history from present
data alone is possible only for sets of histories that exhibit high levels of classical
correlation in time. This will be discussed in Section II.7.

In classical physics new and better present data lead to new and more accu-
rate probabilities for the past. It was the vision of classical physical physics that
probabilities were the result of ignorance and sufficient fine graining would establish
a unique past. This is not the case in quantum mechanics. Arbitrarily fine-grained
sets of histories do not decohere. Sets sufficiently coarse-grained to be assigned
probabilities will generally have alternative pasts with probabilities neither zero or
one. However, in quantum mechanics there is not even a unique set of alternative
histories. Alteration of the coarse graining in the future can change the possibilities
for retrodiction of the past as discussed in Section II.2.3. Consider the Schrödinger
cat experiment carried out at a certain time. In future coarse grainings confined
to the quantities of classical physics the cat can be said to have been either alive
or dead with certain probabilities at the time of the experiment. However, in a
coarse graining that, at a later time, involves operators sensitive to the interference
between configurations in which the cat is alive or dead it will not, in general, be
possible even to assign probbabilities to these past alternatives.

II.4. Branches (Illustrated by a Pure ρ)

Decohering sets of alternative histories give a definite meaning to Everett’s branches.
For each such set of histories, the exhaustive set of P kαk at each time tk corresponds
to a branching. To illustrate this even more explicitly, consider an initial density
matrix that is a pure state, as in typical proposals for the wave function of the
universe:

ρ = |Ψ >< Ψ| . (II.4.1)

The initial state may be decomposed according to the projection operators that
define the set of alternative histories

|Ψ > =
∑

α1···αn

Pnαn(tn) · · ·P 1
α1

(t1)|Ψ > (II.4.2)

≡
∑

α1···αn

|[Pα],Ψ > . (II.4.3)

The states |[Pα],Ψ > are approximately orthogonal as a consequence of their deco-
herence

< [Pα′ ],Ψ|[Pα],Ψ >≈ 0, for any α′k 6= αk . (II.4.4)

Eq.(4.4) is just a reëxpression of the definition of decoherence (2.7), given (4.1).
When the initial density matrix is pure, it is easily seen that some coarse

graining in the present is always needed to achieve decoherence in the past. If the
Pnαn(tn) for the last time tn in the decoherence functional (2.3) were projections
onto a complete set of states, D would factor and could never satisfy the condition
for decoherence (2.7) except for trivial histories composed of projections that are
exactly correlated with the Pnαn(tn). Similarly, it is not difficult to show that some
coarse graining is required at any time in order to have decoherence of previous
alternatives with the same kind of exceptions.

After normalization, the states |[Pα],Ψ > represent the individual histories
or individual branches in the decohering set. We may, as for the effective density
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matrix of Section II.3.1, summarize present information for prediction just by giving
one of these wave functions with projections up to the present.

II.5. Sets of Histories with the Same Probabilities

If the projections P are not restricted to a particular class (such as projections onto
ranges of qi variables), so that coarse-grained histories consist of arbitrary exhaus-
tive families of projection operators, then the problem of exhibiting the decohering
sets of strings of projections arising from a given ρ is a purely algebraic one. As-
sume, for example, that the initial condition is known to be a pure state as in (4.1).
The problem of finding ordered strings of exhaustive sets of projections [Pα] so that
the histories Pnαn · · ·P

1
α1
|Ψ > decohere according to (4.4) is purely algebraic and

involves just subspaces of Hilbert space. The problem is the same for one vector
|Ψ > as for any other. Indeed, using subspaces that are exactly orthogonal, we may
identify sequences that exactly decohere.

However, it is clear that the solution of the mathematical problem of enu-
merating the sets of decohering histories of a given Hilbert space has no physical
content by itself. No description of the histories has been given. No reference has
been made to a theory of the fundamental interactions. No distinction has been
made between one vector in Hilbert space as a theory of the initial condition and
any other. The resulting probabilities are merely abstract numbers.

We obtain a description of the sets of alternative histories of the universe
when the operators corresponding to the fundamental fields are identified. We
make contact with the theory of the fundamental interactions if the evolution of
these fields is given by a fundamental Hamiltonian. Different initial vectors in
Hilbert space will then give rise to decohering sets having different descriptions in
terms of the fundamental fields. The probabilities acquire physical meaning.

Two different simple operations allow us to construct from one set of histories
another set with a different description but the same probabilities.∗ First consider
unitary transformations of the P ’s that are constant in time and leave the initial ρ
fixed

ρ = UρU−1 , (II.5.1)

P̃ kα(t) = UP kα(t)U−1 . (II.5.2)

If ρ is pure there will be very many such transformations; the Hilbert space is
large and only a single vector is fixed. The sets of histories made up from the
{P̃ kα} will have an identical decoherence functional to the sets constructed from the
corresponding {P kα}. If one set decoheres, the other will and the probabilities for
the individual histories will be the same.

In a similar way, decoherence and probabilities are invariant under arbitrary
reassignments of the times in a string of P ’s (as long as they continue to be ordered),
with the projection operators at the altered times unchanged as operators in Hilbert
space. This is because in the Heisenberg picture every projection is, at any time, a
projection operator for some quantity.

The histories arising from constant unitary transformations or from reassign-
ment of times of a given set of P ’s will, in general, have very different descriptions in
terms of fundamental fields from that of the original set. We are considering trans-
formations such as (5.2) in an active sense so that the field operators and Hamilto-
nian are unchanged. (The passive transformations, in which these are transformed,

∗ Discussions with R. Penrose were useful on this point.
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are easily understood.) A set of projections onto the ranges of field values in a
spatial region is generally transformed by (5.2) or by any reassignment of the times
into an extraordinarily complicated combination of all fields and all momenta at all
positions in the universe! Histories consisting of projections onto values of similar
quantities at different times can thus become histories of very different quantities
at various other times.

In ordinary presentations of quantum mechanics, two histories with different
descriptions can correspond to physically distinct situations because it is presumed
that the various different Hermitian combinations of field operators are potentially
measurable by different kinds of external apparatus. In quantum cosmology, how-
ever, apparatus and system are considered together and the notion of physically
distinct situations may have a different character.

II.6. The Origins of Decoherence in Our Universe

II.6.1. On What Does Decoherence Depend?

What are the features of coarse-grained sets of histories that decohere in our uni-
verse? In seeking to answer this question it is important to keep in mind the basic
aspects of the theoretical framework on which decoherence depends. Decoherence
of a set of alternative histories is not a property of their operators alone. It depends
on the relations of those operators to the density matrix ρ, the Hamiltonian H, and
the fundamental fields. Given these, we could, in principle, compute which sets of
alternative histories decohere.

We are not likely to carry out a computation of all decohering sets of al-
ternative histories for the universe, described in terms of the fundamental fields,
anytime in the near future, if ever. However, if we focus attention on coarse grain-
ings of particular variables, we can exhibit widely occurring mechanisms by which
they decohere in the presence of the actual ρ of the universe. We have mentioned
that decoherence is automatic if the projection operators P refer only to one time;
the same would be true even for different times if all the P ’s commuted with one
another. In cases of interest, each P typically factors into commuting projection
operators, and the factors of P ’s for different times often fail to commute with one
another, for example factors that are projections onto related ranges of values of the
same Heisenberg operator at different times. However, these non-commuting fac-
tors may be correlated, given ρ, with other projection factors that do commute or,
at least, effectively commute inside the trace with the density matrix ρ in eq.(2.3)
for the decoherence functional. In fact, these other projection factors may com-
mute with all the subsequent P ’s and thus allow themselves to be moved to the
outside of the trace formula. When all the non-commuting factors are correlated
in this manner with effectively commuting ones, then the off-diagonal terms in the
decoherence functional vanish, in other words, decoherence results. Of course, all
this behavior may be approximate, resulting in approximate decoherence.

This type of situation is fundamental in the interpretation of quantum me-
chanics. Non-commuting quantities, say at different times, may be correlated with
commuting or effectively commuting quantities because of the character of ρ and H,
and thus produce decoherence of strings of P ’s despite their non-commutation. For
a pure ρ, for example, the behavior of the effectively commuting variables leads to
the orthogonality of the branches of the state |Ψ >, as defined in (4.4). Correlations
of this character are central to understanding historical records (Section II.3.2) and
measurement situations (Section II.9).
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Specific models of this kind of decoherence have been discussed by many
authors, among them Joos and Zeh (1985), Zurek (1984), and Caldeira and Leggett
(1983), and Unruh and Zurek (1989). We shall now discuss two examples.

II.6.2. A Two Slit Model

Let us begin with a very simple model due to Joos and Zeh (1985) in its essential
features. We consider the two slit example again but this time suppose that in
the neighborhood of the slits there is a gas of photons or other light particles
colliding with the electrons (Fig. 3). Physically it is easy to see what happens, the
random uncorrelated collisions can carry away delicate phase correlations between
the beams even if they do not affect the trajectories of the electrons very much.
The interference pattern will then be destroyed and it will be possible to assign
probabilities to whether the electron went through the upper slit or the lower slit.
Let us see how this picture is reflected in mathematics. Initially, suppose the state
of the entire system is a state of the electron |ψ > and N distinguishable “photons”
in states |ϕ1 >, |ϕ2 >, etc., viz.

|Ψ >= |ψ > |ϕ1 > |ϕ2 > · · · |ϕN > . (II.6.1)

|ψ > is a coherent superposition of a state in which the electron passes through the
upper slit |U > and the lower slit |L >. Explicitly:

|ψ >= α|U > +β|L > . (II.6.2)

The wave functions of both states are confined to moving wave packets in the x-
direction so that position in x recapitulates history in time. We now ask whether for
the initial condition (6.1) of this “universe”, the history where the electron passes
through the upper slit and arrives at a detector at point y on the screen decoheres
from that in which it passes through the lower slit and arrives at point y. That is,
as in Section II.4, we ask whether the two vectors

PyPU |Ψ > , PyPL|Ψ > (II.6.3)

are nearly orthogonal, the times of the projections being those for the nearly clas-
sical motion in x. The overlap can be worked out in the Schrödinger picture where
the initial state evolves and the projections on the electron’s position are applied to
it at the appropriate times. Collisions occur, but the states |U > and |L > are left
more or less undisturbed. The states of the “photons”, of course, are significantly
affected. If the photons are dilute enough to be scattered once by the electron in
its time to traverse the gas the two states of (6.3) will be approximately

αPy|U > SU |ϕ1 > SU |ϕ2 > · · ·SU |ϕN > , (II.6.4a)

and
β Py|L > SL|ϕ1 > SL|ϕ2 > · · ·SL|ϕN > . (II.6.4b)

Here, SU and SL are the scattering matrices from an electron in the vicinity of the
upper slit and the lower slit respectively. The two branches in (6.4) decohere because
the states of the “photons” are nearly orthogonal. The overlap is proportional to

< ϕ1|S†USL|ϕ1 >< ϕ2|S†USL|ϕ2 > · · · < ϕN |S†USL |ϕN > . (II.6.5)
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Fig. 3: The two slit experiment with an interacting gas. Near the slits
light particles of a gas collide with the electrons. Even if the collisions do
not affect the trajectories of the electrons very much they can still carry
away the phase correlations between the histories in which the electron
arrived at point y on the screen by passing through the upper slit and
that in which it arrived at the same point by passing through the lower
slit. A coarse graining that consisted only of these two alternative his-
tories of the electron would approximately decohere as a consequence of
the interactions with the gas given adequate density, cross-section, etc.
Interference is destroyed and probabilities can be assigned to these alter-
native histories of the electron in a way that they could not be if the gas
were not present (cf. Fig. 1). The lost phase information is still avail-
able in correlations between states of the gas and states of the electron.
The alternative histories of the electron would not decohere in a coarse
graining that included both the histories of the electron and operators
that were sensitive to the correlations between the electrons and the gas.

This model illustrates a widely occuring mechanism by which cer-
tain types of coarse-grained sets of alternative histories decohere in the
universe.

Now the S-matrices for scattering off the upper position or the lower position can
be connected to that of an electron at the orgin by a translation

SU = e−ik·xUS e+ik·xU , (II.6.6a)

SL = e−ik·xLS e+ik·xL . (II.6.6b)

Here, h̄k is the momentum of a photon, xU and xL are the positions of the slits
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and S is the scattering matrix from an electron at the origin.

< k′|S|k >= δ(3)
(
k− k′

)
+

i

2πωk
f
(
k,k′

)
δ
(
ωk − ω′k

)
, (II.6.7)

where f is the scattering amplitude and ωk = |~k|.
Consider the case where all the photons are in plane wave states in an inter-

action volume V , all having the same energy h̄ω, but with random orientations for
their momenta. Suppose further that the energy is low so that the electron is not
much disturbed by a scattering and low enough so the wavelength is much longer
than the separation between the slits, k|xU −xL| << 1. It is then possible to work
out the overlap. The answer according to Joos and Zeh (1985) is(

1− (k|xU − xL|)2

8π2V 2/3
σ

)N
(II.6.8)

where σ is the effective scattering cross section. Even if σ is small, as N becomes
large this tends to zero. The characteristic time for this loss of coherence is that
for which the number of collisions times the second term in the argument of (6.8)
is near unity. That is,

tdecoherence ∼
V 2/3τ

(k|xU − xL|)2σ
, (II.6.9)

where τ is the collision time. In this way decoherence becomes a quantitative
phenomenon.

II.6.3. The Caldeira-Leggett Oscillator Model

A more sophisticated model has been studied by Caldeira and Leggett (1983),
Zurek (1984), and others. The model consists of a distinguished oscillator in one
dimension, interacting linearly with a large number of other oscillators, and a coarse
graining which involves only the coördinate of the distinguished oscillator. Let x
be the coördinate of the distinguished oscillator and Xk the coördinates of the rest.
The Lagrangians for the distinguished oscillators by themselves are

Hfree(p, x) =
1

2M
(p2 + ω2x2) (II.6.10)

and

Hosc(pk, Xk)) =
1

2m

∑
k

(
P 2
k + ω2

kX
2
k

)
. (II.6.11)

The interaction is linear,

Hint(X,Xk) = x
∑

k
CkXk , (II.6.12)

defining couplings Ck. Consider the special case where the initial density matrix of
the whole system factors into a density matrix ρ̄(x′, x) for the particle and a density
matrix describing a thermal bath at temperature T = 1/βk for the oscillators:

< x′X ′k|ρ|xXk >= ρ̄(x′, x)
∏
k

ρk(X ′k, Xk) . (II.6.13)
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The density matrix for each oscillator of the bath is

ρk(X ′k, Xk) =< X ′k|e−βHosc |Xk > /Tr(e−βH) =
[mωk
πh̄

tanh

(
h̄ωkβ

2

)] 1
2

(II.6.14)

× exp
[
−
{

mωk
2h̄ sinh(h̄βωk)

[(
X ′2k +X2

k

)
cosh(h̄βωk)− 2X ′kXk

]} ]
. (II.6.15)

Now, imagine constructing the decoherence functional following only intervals of
the position of the particle, [∆k], and completely integrating out the coördinates
of the bath. It should be clear that the integrals can be done because everything
about the bath is the exponential of a quadratic form. All integrals are Gaussian
path integrals. The result has the general form

D ([∆α′ ], [∆α]) =

∫
[∆α′ ]

δx′
∫

[∆α]

δxδ(x′f − xf ) exp

{
i
(
Sfree[x′(t)]− Sfree[x(t)]

+W [x′(t), x(t)]
)
/h̄

}
ρ̄(x′0, x0) , (II.6.16)

where Sfree is the free action of the distinguished oscillator with frequency renormal-
ized by the interaction to ωR. The intervals [∆α] refer only to the variables of the
distinguished particle. The sum over the rest of the oscillators has been carried out
and is summarized by the Feynman-Vernon influence functional exp(iW [x′(t), x(t)]).
The remaining sum over x′(t) and x(t) is as in (2.2).

W [x′(t), x(t)] will be quadratic in the paths of the special particle. I shall
not quote its general form given in Caldeira and Leggett (1983), but just that of a
simple case. This is a cutoff continuum of oscillators with couplings

ρD(ω)C2(ω) =

{
4Mmγω2

π ω < Ω
0 ω > Ω

(II.6.17)

where ρD(ω) is the density of oscillators with frequency ω. Then in the further
Fokker-Planck limit where kT >> h̄Ω >> h̄ωR

W [x′(t), x(t)] = −Mγ

∫
dt [x′ẋ′ − xẋ+ x′ẋ− xẋ′]

+ i
2MγkT

h̄

∫
dt [x′(t)− x(t)]

2
, (II.6.18)

where γ summarizes the interaction strengths of the distinguished oscillator with the
bath. The real part of W contributes dissipation to the equations of motion. The
imaginary part squeezes the trajectories x(t) and x′(t) together, thereby providing
approximate decoherence. Very roughly, primed and unprimed position intervals
separated by distances d in (6.16) will decohere when spaced in time by intervals

tdecoherence >∼
1

γ

[(
h̄√

2MkT

)
·
(

1

d

)]2

. (II.6.19)
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As stressed by Zurek (1984), for typical macroscopic parameters this minimum time
for decoherence can be many orders of magnitude smaller than a characteristic
dynamical time, say the damping time 1/γ. (The ratio is around 10−40(!) for
M ∼ gm, T ∼ 300◦K, d ∼ cm.)

What the above models convincingly show is that decoherence will be wide-
spread in the universe for certain familiar “classical” variables. Alternative histories
of the position of a mm. size dust grain, initially in a coherent superposition of
two different positions separated by similar dimensions, decohere, if for no other
reason, by the interaction of the grain with the 3◦ cosmic background radiation if
the successive localizations are spaced by more than a nanosecond (Joos and Zeh,
1985).∗

II.6.4. The Evolution of Reduced Density Matrices

The coarse graining in the Caldeira-Leggett model focusses on one variable at a
succession of times. The probabilities for this variable at any one time can be
computed from a reduced density matrix on the Hilbert space of the distinguished
oscillator

ρ̃eff(t) = Sp[ρeff(t)] . (II.6.20)

Here, ρeff(t) is the effective density matrix for the whole system at the time t as
introduced in Section II.3 and Sp denotes a trace over the Hilbert spaces of all the
other oscillators. The mechanism for decoherence that has been described for this
example also leads to interesting time behavior of this reduced density matrix.

In the position representation there is a convenient path integral summary∗

of the evolution of ρ̃eff .

< x′|ρ̃eff(t)|x >=

∫
[∆β′ ]

δx′
∫

[∆β ]

δx

× exp

{
i
(
Sfree[x′(t)]− Sfree[x(t)] +W [x′(t), x(t)]

)
/h̄

}
ρ̄(x′0, x0) . (II.6.21)

The integral over x(t) is over paths that begin at x0, pass through all intervals
[∆α] that are at times before t, and end at time t at the position x specified by the
matrix element < x′|ρ̃eff(t)|x >. The integration over x′(t) is analogous. Eq.(6.21)
is similar to (6.16) except that the class of paths integrated over is different. In
particular the paths in (6.21) do not end at a common value that is then integrated
over as they do in (6.16). The similarity is enough, however, to show that the
same imaginary part of W that squeezes the coarse-grained histories x(t) and x′(t)
together will cause the reduced density matrix ρ̃eff to evolve to near diagonal form
in the position representation on the decoherence time scale (6.19).

The approach to diagonal form of a reduced density matrix has often been
discussed in connection with mechanisms that effect decoherence. However, the

∗ It should be clear from examples such as this that the only realistic closed systems
in which many widespread mechanisms of decoherence operate are of cosmological
dimensions — the cosmological event horizon if one is discussing the history of the
universe and even light hours in the discussion of laboratory experiments.

∗ A slight generalization of that of Feynman and Vernon (1963).

24



approach to diagonal form of a reduced density matrix cannot be taken to be
the definition of decoherence. First, a reduced density matrix is suitable only for
limited kinds of coarse grainings — those which distinguish particular variables
and the same variables at each time. (More precisely it is appropriate only coarse
grainings defined as sequences of projections that operate on a fixed number of
factors of a tensor product Hilbert space.) There are many more general and more
realistic kinds of coarse graining. Second, and more importantly, as discussed in
II.2.3, decoherence is a property of sets of alternative histories and therefore cannot
be described by an effective density matrix at a moment of time. Even if the off-
diagonal elements vanish at one moment of time there is nothing to guarantee that
at a later moment they may not become non-vanishing again.†

II.7. Towards a Classical Domain

As observers of the universe, we deal with coarse grainings that reflect our own
limited sensory perceptions, extended by instruments, communication and records
but in the end characterized by a large amount of ignorance. Yet, we have the
impression that the universe exhibits a finer graining, independent of us, defining
an always decohering “classical domain”, to which our senses are adapted, but deal
with only a small part of. Setting out for a journey to a distant, unseen part of
the universe we do not imagine that we need to equip ourselves with spacesuits
having receptors sensitive, say, to coherent superpositrons of familiar “classical
variables”. We expect the finer graining resulting from adjoining sufficiently coarse-
grained “classical variables” in the new region to continue to decohere and to exhibit
correlations in time for the most part conforming to classical dynamical laws.

To what should we attribute the existence of our “classical domain”. Funda-
mentally there are three elements of the framework of quantum mechanics under
discussion — the initial condition ρ, the Hamiltonian describing evolution, and
the projection operators defining the possible alternative coarse-grained histories.
There are no sets of operators comprising a coarse graining that define a classical
domain in every circumstance. Rather, like decoherence itself, a classical domain
can only be a property of the initial condition of the universe and the Hamiltonain
describing evolution. Given the Hamiltonian of the elementary particles, there may
be a wide range of initial conditions that give rise to a classical domain even though
most do not. The existence of a classical domain would then not be much of a test
of a theory of the initial condition. Yet, given the Hamiltonian it is still interesting
to ask, What is the class of initial conditions that give rise to classical domains?
Are the familiar variables of classical physics uniquely singled out to describe such
coarse grainings or are there other possibilities? Does the initial condition of our
universe define one or more classical domains? To answer this kind of question we
need more precise criteria for what kinds of coarse grainings constitute a classical
domain. Such criteria would apply both to the probabilities of the individual histo-
ries in the classical domain and to their descriptions in terms of fundamental fields.
No completely satisfactory criteria have yet been given∗ but some attributes of a
successful definition can at least be sketched in words if not yet fully in equations:

A classical domain would be a set of coarse-grained, alternative, decohering
histories with at least the following properties:

† There are interesting examples of this. See e.g. Leggett, et al. (1987).
∗ For a fuller discussion see Gell-Mann and Hartle (1990).
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(1) A classical domain should be maximally refined consistent with decoher-
ence so that it is a property of the universe and not the choice of any particular
observer. However, it should not contain trivial refinements such as would be
obtained, for example, by mindlessly interpolating projections on the particular
branch at every time

(2) A classical domain should be made up of histories that consist, for the
most part, of the same variables at different times. That is, they should be made up
of habitually decohering variables. However, the histories cannot consist entirely
of such variables because, as we shall see, in a measurement situation there may
be very different variables that decohere, not habitually, but only by virtue of their
correlation with a habitually decohering one.

(3) The histories of a classical domain should exhibit, as much as possible,
patterns of classical correlation among the habitually decohering variables. That is,
successive projections onto related ranges of habitually decohering variables should
follow roughly classical orbits with probabilities as near to unity as possible. How-
ever, this pattern of classical correlation cannot be exact or otherwise we would
never know quantum mechanics! The pattern of classical correlation may be dis-
turbed by inclusion, in the set of projection operators, of other variables neither
habitually decohering nor normally classically correlated as in a quantum measure-
ment situation. The pattern may also be disturbed by quantum spreading and by
quantum and classical fluctuations.

Thus we can, at best, deal with quasiclassical sets of alternative decohering
histories with trajectories that split and fan out. There are no classical domains
only quasiclassical ones. We shall refer to the operators that habitually define them
as “quasiclassical operators”.

We can understand the origin of at least some quasiclassical operators in
reasonably general terms as follows: In the earliest instants of the universe the
operators defining spacetime on scales well above the Planck scale emerge from the
quantum fog as quasiclassical. Any theory of the initial condition that does not
imply this is simply inconsistent with observation in a manifest way. A background
spacetime is thus defined and conservation laws arising from spacetime symmetries
have meaning. Then, where there are suitable conditions of low temperature, etc.,
various sorts of hydrodynamic variables may emerge as quasiclassical operators.
These are integrals over suitable small volumes of densities of conserved or nearly
conserved quantities. Examples are densities of energy, momentum, baryon number,
and, in later epochs, nuclei, and even chemical species. The sizes of the volumes are
limited above by the requirement that the histories be refined as much as possible
consistent with decoherence. They are limited below by classicality because they
require sufficient “inertia” to enable them to resist deviations from predictability
caused by their interactions with one another, by quantum spreading, and by the
quantum and statistical fluctuations summed over to produce decoherence. Suitable
integrals of densities of approximately conserved quantities are thus candidates for
habitually decohering quasiclassical operators. Field theory is local, and it is an
interesting question whether that locality somehow picks out local densities as the
source of habitually decohering quantities. It is hardly necessary to note that such
hydrodynamic variables are among the principal variables of classical physics.

In the case of densities of conserved quantities, the integrals would not change
at all if the volumes were infinite. For smaller volumes we expect approximate per-
sistence. When, as in hydrodynamics, the rates of change of the integrals form part
of an approximately closed system of equations of motion, the resulting evolution
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is just as classical as in the case of persistence.
It would be a striking and deeply important fact of the universe if among

the decoherent sets of alternative histories there were one roughly equivalent group
with much higher classicalities than all the others. That would then be the quasi-
classical domain, completely independent of any subjective criterion, and realized
within quantum mechanics by utilizing only the initial condition of the universe
and the Hamiltonian of the elementary particles. It would have the form of alterna-
tive histories, constantly branching and fanning out. Supplemented by the specific
information gained from observation, which restricts the branches, it would be the
arena for prediction in quantum mechanics.

It might seem at first sight that in such a picture the complementarity of
quantum mechanics would be lost. In a given situation, for example, either a
momentum or a coördinate could be measured, leading to different kinds of histories.
That impression is illusory. The history in which an observer, as part of the universe,
measures p and the history in which that observer measures x are two decohering
alternatives. In each of these branches, numerous variables referring to things like
the 3◦K photons are integrated over. (These variables are not necessarily the same
for all branches, so that some aspects of the 3◦K background radiation, for example,
may belong to one branch of the quasiclassical domain but not to another.) The
important point is that the decoherent histories of a quasiclassical domain contain
all possible choices that might be made by all possible observers that might exist,
now, in the past, or in the future.

The EPR or EPRB situation is no more mysterious. There, a choice of mea-
surements, say, σx or σy for a given electron, is correlated with the behavior of
σx or σy for another electron because the two together are in a singlet spin state
even though widely separated. Again, the two measurement situations (for σx and
σy) decohere from each other, but here, in each, there is also a correlation between
the information obtained about one spin and the information that can be obtained
about the other.

II.8. The Branch Dependence of Decoherence

As the discussion in Sections II.6 and II.7 shows, physically interesting mechanisms
for decoherence will operate differently in different alternative histories for the uni-
verse. For example, hydrodynamic variables defined by a relatively small set of
volumes may decohere at certain locations in spacetime in those branches where a
gravitationally condensed body (e.g. the earth) actually exists, and may not deco-
here in other branches where no such condensed body exists at that location. In
the latter branch there simply may be not enough “inertia” for densities defined
with too small volumes to resist deviations from predictability. Similarly, alterna-
tive spin directions associated with Stern-Gerlach beams may decohere for those
branches on which a photographic plate detects their beams and not in a branch
where they recombine coherently instead. There are no variables that are expected
to decohere universally. Even the mechanisms causing spacetime geometry at a
given location to decohere on scales far above the Planck length cannot necessarily
be expected to operate in the same way on a branch where the location is the center
of a black hole as on those branches where there is no black hole nearby.

How is such “branch dependence” described in the formalism we have elabo-
rated? It is not described by considering histories where the set of alternatives at
one time (the k in a set of P kα) depends on specific alternatives (the α’s) of sets
of earlier times. Such dependence would destroy the derivation of the probability
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sum rules from the fundamental formula. However, there is no such obstacle to the
set of alternatives at one time depending on the sets of alternatives at all previous
times. It is by exploiting this possibility, together with the possibility of present
records of past events, that we can correctly describe the sense in which there is
branch dependence of decoherence, as we shall now discuss.

A record is a present alternative that is, with high probability, correlated
with an alternative in the past. The construction of the relevant probabilities was
discussed in Section II.3, including their dependence on the initial condition of the
universe (or at least on information that effectively bears on that initial condition).
Even non-commuting alternatives such as a position and its momentum at different,
even nearby times may be stored in presently commuting record variables.

The branch dependence of histories becomes explicit when sets of alternatives
are considered that include records of specific events in the past. To illustrate this,
consider the example above, where different sorts of hydrodynamic variables might
decohere or not depending on whether there was a gravitational condensation. The
set of alternatives that decohere must refer both to the records of the condensation
and to hydrodynamic variables. Hydrodynamic variables with smaller volumes
would be part of the subset with the record that the condensation took place and
vice versa.

The branch dependence of decoherence provides the most direct argument
against the position that a classical domain should simply be defined in terms of a
certain set of variables (e.g. values of spacetime averages of the fields in the classical
action). There are unlikely to be any physically interesting variables that decohere
independent of circumstance.

II.9. Measurement

When a correlation exists between the ranges of values of two operators of a quasi-
classical domain, there is a measurement situation. From a knowledge of the value
of one, the value of the other can be deduced because they are correlated with
probability near unity. Any such correlation exists in some branches of the universe
and not in others; for example, measurements in a laboratory exist only in those
branches where the laboratory was actually constructed!

I use the term “measurement situation” rather than “measurement” for such
correlations to stress that nothing as sophisticated as an “observer” need be present
for them to exist. If there are many significantly different quasiclassical domains,
different measurement situations may be exhibited by each one.

When the correlation we are discussing is between the ranges of values of
two quasiclassical operators, of the kind discussed in Section II.7, which habitually
decohere, we have a measurement situation of a familiar classical kind. However,
besides the quasiclassical operators, the highly classical sets of alternative histories
of a quasiclassical domain may include other operators whose ranges of values are
highly correlated with the quasiclassical ones at particular times. Such operators,
not normally decohering, are, in fact, only included among the decohering set by
virtue of their correlation with a habitually decohering one. In this case we have a
measurement situation of the kind usually discussed in quantum mechanics. Sup-
pose, for example, in the inevitable Stern-Gerlach experiment, that σz of a spin-1/2
particle is correlated with the orbit of an atom in an inhomogeneous magnetic field.
If the two directions decohere because of interaction with something else that is
summed over, (the atomic excitations in a photographic plate for example), then
the spin direction will be included in the set of decoherent histories, fully correlated
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with the decohering orbital directions. The spin direction is thus measured.
The recovery of the Copenhagen rule for when probabilities may be assigned

is immediate. Measured quantities are correlated with decohering histories. De-
cohering histories can be assigned probabilities. Thus in the two-slit experiment
(Fig. 1), when the electron interacts with an apparatus that determines which
slit it passed through, it is the decoherence of the alternative configurations of the
apparatus that enables probabilities to be assigned for the electron.

Correlation between the ranges of values of operators of a quasiclassical do-
main is the only defining property of a measurement situation. Conventionally,
measurements have been characterized in other ways. Essential features have been
seen to be irreversibility, amplification beyond a certain level of signal-to-noise, as-
sociation with a macroscopic variable, the possibility of further association with a
long chain of such variables, and the formation of enduring records. Efforts have
been made to attach some degree of precision to words like “irreversible”, “macro-
scopic”, and “record”, and to discuss what level of “amplification” needs to be
achieved. Such characterizations of measurement are difficult to define precisely.

An example of this occurs in the case of “null measurements” discussed by
Renninger (1960), Dicke (1981), and others. An atom decays at the center of
a spherical cavity. A detector that covers all but a small opening in the sphere
does not register. We conclude that we have measured the direction of the decay
photon to an accuracy set by the solid angle subtended by the opening. Certainly
there is an interaction of the electromagnetic field with the detector, but did the
escaping photon suffer an “irreversible act of amplification”? The point in the
present approach is that the set of alternatives, detected and not detected, decohere
because of the place of the detector in the universe.

Despite the lack of precise measures, characteristics such as irreversibility,
amplification, etc. may be seen to follow roughly from the present definition in
familiar measurement situations as follows:

Correlation of a variable with a quasiclassical domain (actually, inclusion in
its set of histories) accomplishes the amplification beyond noise and the association
with a macroscopic variable that can be extended to an indefinitely long chain of
such variables. The relative predictability of the classical domain is a generalized
form of record. The approximate constancy of, say, a mark in a notebook is just a
special case; persistence in a classical orbit is just as good.

Irreversibility is more subtle. One measure of it is the cost (in energy, money,
etc.) of tracking down the phases specifying coherence and restoring them. This is
intuitively large in many typical measurement situations. Another, related measure
is the negative of the logarithm of the probability of doing so. If the probability of
reversing the phases in any particular measurement situation were significant, then
we would not have the necessary amount of decoherence. The correlation could
not be inside the set of decohering histories. Thus, this measure of irreversibility is
large. Indeed, in many circumstances where the phases are carried off to infinity or
lost in photons impossible to catch up with, the probability of recovering them is
truly zero and the situation perfectly irreversible — infinitely costly to reverse and
with zero probability for reversal!

Defining a measurement situation solely as the existence of correlations in a
quasiclassical domain, if a suitable general definition of classicality can be found,
would have the advantages of clarity, economy, and generality. Measurement sit-
uations occur throughout the universe and without the necessary intervention of
anything as sophisticated as an “observer”. Thus, by this definition, the production
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of fission tracks in mica deep in the earth by the decay of a uranium nucleus leads
to a measurement situation in a quasiclassical domain in which the tracks directions
decohere, whether or not these tracks are ever registered by an observer.

II.10. The Ideal Measurement Model and the Copenhagen Approximation to
Quantum Mechanics

In conventional discussions of measurement in quantum mechanics it is useful to
consider ideal models of the measurement process (See, e.g. von Neumann 1932,
London and Bauer, 1939, Wigner, 1963 or almost any current text on quantum
mechanics). Such models idealize various approximate properties of realistic mea-
surement situations as exact features of the model. For example, configurations
of an apparatus corresponding to different results of an experiment are typically
represented by exactly orthogonal states in these models. This kind of ideal model
is useful in isolating the essential features of many laboratory measurement situa-
tions in an easily analysable way. Ideal measurement models are useful in quantum
cosomology for the same reasons. Beyond that, however, they are useful in indi-
cating how the Copenhagen formulation of quantum theory can be derived as an
approximation to the quantum mechanics of the universe described here. I shall
describe one such model.

Consider a closed system one part of which is a subsystem to be studied and
the rest of which can be organized into various types of measuring apparatus. The
latter includes any “observer” that may be present. Corresponding to this division,
we assume a Hilbert space that is a tensor product, Hs⊗Hr, of a Hilbert space for
the subsystem and a Hilbert space for the rest. We assume an “initial condition”
that is a product of a density matrix for the subsystem in Hs and another for the
rest in Hr

ρ = ρs ⊗ ρr . (II.10.1)

Various sets of alternatives for the subsystem are represented by exhaustive
and exclusive sets of projection operators {Skα(t)}, α = 1, 2, 3, · · ·. Their Schrödinger
picture representatives are of the form Skα = skα ⊗ Ir where the skα are a set of
projection operators acting on Hs. Of course, since the subsystem and the rest are
interacting, the Heisenberg picture representatives Skα(t) will not in general have this
product form. The various possible configurations of an apparatus which measures
the set of alternatives {Skα(t)} are described by an exhaustive set of alternatives

for the rest {R(k,τ)
β (t)}, β = 1, 2, 3 · · ·. The operator R

(k,τ)
β (t) corresponds to the

alternative that the apparatus has recorded the alternative β for the subsystem
studied in the set k at time τ . We can ask about the value of this record at any
time and so R

(k,τ)
β (t) itself depends on t. For example, we could ask whether the

record of the result of the measurement persists. The S’s and the R’s at the same
time are assumed to commute with one another.

Two of the three crucial assumptions defining the ideal measurement model
are the following:

i. Correlation: The alternatives {Skα(t)} and {R(k,τ)
β (t)} are exactly correlated,

that is

Tr
[
R

(n,tn)
β′
n

(tn)Snα′
n
(tn) · · ·R(1,t1)

β′
1

(t1)S1
α′

1
(t1)ρS1

α1
(t1)R

(1,t1)
β1

(t1) · · ·Snαn(tn)R
(n,tn)
βn

(tn)
]

∝ δα′
nβ

′
n
· · · δα′

1β
′
1
δα1β1

· · · δαnβn . (II.10.2)
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This is an idealization of the measurement situation correlations discussed in the
previous section. The existence of such correlations is not inherent in the prop-
erties of the operators {Skα(t)} and {Rkα(t)}. Their existence depends also on the
Hamiltonian and on choosing an initial ρ that models an experimental preparation
of apparatus and subsystem and which will lead to a measurement situation. We
assume in the model that we have a ρ and H of this character.∗

ii. Persistent Records: We assume that as a consequence of ρ and H, dis-
tinguishable, persistent, non-interacting records are formed of the results of the
measurements of the various times t. The R

(k,τ)
β (t) describe the alternative values

of these records at time t. More precisely we assume that if t2 > t1 are any two
times later than τ then these operators have the property

Tr
[
· · ·R(k,τ)

β′
2

(t2) · · ·R(k,τ)
β′

1
(t1) · · · ρ · · ·R(k,τ)

β1
(t1) · · ·R(k,τ)

β2
(t2) · · ·

]
∝ δβ′

2β
′
1
δβ1β1

,

(II.10.3)
where the elipses (· · ·) stand for any combination of R’s and S’s in the correct time
order. That is, the record projections effectively commute with all other projections
at time t > τ . Eq. (10.3) is the statement that values of the records at later times
are exactly correlated with those of earlier times. An assumption like (10.3) is
not needed if only one measurement situation at one time is to be discussed, as
is common in models of the measurement process. It is needed for discussions of
sequences of measurements, as here, to ensure that subsequent interactions do not
reëstablish the coherence of different measurement alternatives.

The questions of interest in this model are whether the set of histories of
“measured” alternatives {[Sα]} decoheres, and, if so, what their probabilities are.
The answers are supplied by analysing the decoherence functional

D ([Sα′ ], [Sα]) = Tr
[
Snα′

n
(tn) · · ·S1

α′
1
(t1)ρS1

α1
(t1) · · ·Snαn(tn)

]
. (II.10.4)

Alongside each Skαk(tk) in the above expression insert a resolution of the identy into
record variables ∑

βk
R

(k,tk)
βk

(tk) = 1 . (II.10.5)

Because of the assumption (i) of exact correlation between the subsystem alterna-
tives Skαk and the records [eq. (10.2)], only the term with βk = αk is this sum
survives.

A consequence of condition (10.3) and the properties of projections (2.4) is
that all the inserted R’s can be dragged to the outside of the decoherence functional
and evaluated at the last time. The decoherence functional is then

D ([Sα′ ], [Sα]) = Tr
[
R

(n,tn)
α′
n

(tn) · · ·R(1,t1)
α′

1
(tn)Snα′

n
(tn) · · ·S1

α′
1
(t1)ρ

×S1
α1

(t1) · · ·Snαn(tn)R(1,t1)
α1

(tn) · · ·R(n,tn)
αn (tn)

]
. (II.10.6)

∗ A more realistic model would treat a more general ρ but include as the first set of
projections in the string defining a history a set one member of which is the alter-
native “ready to measure the alternatives in the set k”. The relevant probabilities
defining the correlations of a measurement situation would then be conditioned on
this alternative for the apparatus.
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Then, since the record variables, R
(k,τ)
β , are exclusive by construction, we may

use the cyclic property of the trace to show that the off-diagonal terms in the
α’s of (10.6) vanish identically. The records decohere. However, since the records
are exactly correlated with measured properties of the system studied according
to assumption (i), this decoherence accomplishes the decoherence of the measured
alternatives of the system. Thus, as a consequence of the existence of alternatives
{R(k,τ)

β (t)} with the properties (i) and (ii) the decoherence functional (10.4) is
exactly diagonal and we can write

D ([Sα′ ], [Sα]) = δα′
nαn
· · · δα′

1α1
Tr
[
Snαn(tn) · · ·S1

α1
(t1)ρS1

α1
(t1) · · ·Snαn(tn)

]
(II.10.7)

Put differently, we can say that the decoherence of the records in the larger universe
has accomplished the exact decoherence of the measured quantity of the subsystem
studied.∗ noindent The third assumption of the ideal measurement model is the
following: (iii) Measured Quantities are Undisturbed. We assume that the diagonal
elements of the decoherence functional (10.5), which give the probabilities of the
histories [Sα], are the same as if they were calculated with the operators skα(t)⊗ Ir
where skα(t) are the alternatives for the subsystem evolved with its own Hamiltonian.
Thus,

p([Sα]) = tr
[
snαn(tn) · · · s1

α1
(t1)ρss

1
α1

(t1) · · · snαn(tn)
]
. (II.10.8)

where ρs, the projection operators {skα(t)}, and the trace tr refer to the Hilbert
space Hs. This is the assumption that the measurement interaction instantaneously
reduces the off-diagonal elements of the subsystem’s decoherence functional to zero
while leaving the diagonal elements unchanged. The values of measured quantities
are thus left undisturbed.

In idealized models of this kind, the fundamental formula is exact and the
rule for assigning probabilities can be restated: Probabilities can be assigned to
histories that have been measured and the probability is (10.8). This is the rule
of the Copenhagen interpretations for assigning probabilities. Eq. (10.8) may be
unfamiliar to those used to working with a state vector that evolves unitarily in
between measurements and by reduction of the state vector at a measurement. In
fact, it is a compact and efficient expression of these two forms of evolution as
has been stressed by Groenewold (1952), Wigner (1963), Aharonov, Bergmann,
and Lebovitz (1964), Unruh (1986), and Gell-Mann (1987) among others. I shall
demonstrate this equivalence explicitly below but for the moment let us discuss the
significance of the ideal measurement model.

The ideal measurement model shows how the Copenhagen rule for assigning
probabilities fits into the more general post-Everett framework of quantum cosmol-
ogy. The rule holds in the model because certain approximate features of some
measurement situations have been idealized as exact. Specifically, these idealiza-
tions include the exact factorization of the initial density matrix ρ [eq. (10.2)], the

∗ A slightly different idealization leading to the same result would be to assume that
the correlations expressed in (10.2) are with projections {R(k,τ)

α (t)} that always
exactly decohere because of the properties of the initial ρ no matter where located
in a string of projections in the decoherence functional. Such variables are typically
described as “macroscopic”. There is some economy in such a sweeping idealization
but the model of persistent records suggests a mechanism by which such decoherence
might be accomplished. (Cf. the discussion in Section II.6.1)
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exact correlation between measured system and registering apparatus [eq. (10.2)],
and the exact persistence and independence of measurement records [eq. (10.3)].
In practice none of these idealizations will be exactly true. There are many typical
experimental situations involving measurements at a single time, however, where
they are true to an excellent approximation. (See Section II.11 for some estimates
of the degree of approximation) The further idealization that measured quantities
are undisturbed almost never holds for measurements of microscopic quantities but
is typical for measurements of macroscopic ones. For experimental situations where
the idealizations of measurement model are approximately true, the Copenhagen
rule supplies an approximation for the probabilities of the fundamental formula.
The fundamental formula, however, applies more generally and precisely, for exam-
ple, to situations in the early universe where nothing like the idealizations of this
measurement model may be appropriate.

I conclude this subsection by returning to the equivalence of eq.(10.8) with
the usual picture of a unitarily evolving state vector reduced on measurement.
To see the equivalence let us calculate the probability for a sequence of just two
measurements at times t1 and t2 according to the usual story in the Heisenberg
picture, given and an initial pure ρs = |ψ >< ψ| at time t0. The state |ψ > is
constant from t0 to t1. The probability that the outcome of the first measurement
is α1 is

p(α1) =< ψ|s1
α1

(t1)|ψ > . (II.10.9)

The normalized state after the measurement is reduced to

|ψα1
>=

s1
α1

(t1)|ψ >√
< ψ|s1

α1
(t1)|ψ >

. (II.10.10)

The probability of obtaining the result α2 on the next measurement given the result
α1 on the first is

p(α2|α1) =< ψα1
|s1
α1

(t2)|ψα1
>

=
< ψ|s1

α1
(t1)s2

α2
(t2)s1

α1
(t1)|ψ >

< ψ|s1
α1

(t1)|ψ >
. (II.10.11)

The joint probability for α2 followed by α1 is

p(α2, α1) = p(α2|α1)p(α1) . (II.10.12)

so that using (10.9) and (10.11) we have

p(α2, α1) =< ψ|s1
α1

(t1)s2
α2

(t2)s1
α1

(t1)|ψ > . (II.10.13)

This is just the formula (10.8) for the Copenhagen probabilities for the special case
of a history with two times and a pure initial density matrix ρs.

II.11. Approximate Probabilities Again

The discussion of the ideal measurement model just given provides a convenient
opportunity for reviewing in a more concrete context the notion of approximate
probability introduced in Section II.1.
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As discussed in Section II.5, given the initial condition ρ, it is possible to
exhibit the sets of alternative histories of the universe that exactly decohere and
for which the probability sum rules are exactly satisfied. Among these exactly
decohering sets, there may be some that have the correlations of the ideal measure-
ment model perhaps even with an “initial” effective density matrix of the product
form (10.1). For these situations the assumptions and consequences of the model
would be exact, and the probabilities with which it deals would exactly satisfy the
probability sum rules. However, measurement situations of familiar kinds, in which
quasiclassical variables participate as records, will not correspond to exact deco-
herence. Rather, the decoherence and the probabilities of the fundamental formula
will be approximate. In interesting situations this approximation will be VERY,
VERY good.

Consider, for example, a measurement situation in which one of the partici-
pants in the defining correlations is the center of mass position X and momentum
P of a massive body (many atoms) such as the often discussed “pointer”. Suppose
further, that the decoherence of alternative histories is to be effected by the orthog-
onality or near orthogonality of states of the massive body with sufficiently differing
position and momentum much as in the example described at the beginning of Sec-
tion II.6. More precisely, the states of the body are to be concentrated on cells of
phase space of size ∆X and ∆P consistent with the uncertainty principle. A wave
function cannot be exactly concentrated on a phase space cell. If ψ(X) vanishes
outside a region of compact support, then

φ(P ) =

∫
dX exp

(
−iPX/h̄

)
ψ(X) (II.11.1)

will be analytic in P and cannot vanish except at isolated points. There are,
therefore, no exactly orthogonal states corresponding to phase space cells. However,
one can find approximately orthogonal states. For example, gaussian wave packets
with minimum uncertainties (∆Xmin, ∆Pmin) contained within the phase space
cells would do the job.∗ Wave functions concentrated on different cells would at
most have overlaps of order

exp

[
−1

4
(∆X/∆Xmin)

2

]
. (II.11.2)

Thus, in such a measurement situation, decoherence would be approximate and
the resulting probabilities approximately satisfy the sum rules up to a standard set
roughly by (11.2).

For accuracies ∆X only modestly larger than ∆Xmin the violation of proba-
bility sum rules suggested by (11.2) will be very small. This, however, is not the
whole story, for we know from the discussion in Section II.6 that in realistic situa-
tions the center of mass of the massive body will become coupled by collisions with
a large number of photons, molecules, and similar variables. As the model at the
start of that Section suggests, this coupling acts to improve the orthogonality of the
states of combined system of massive body and decohering agents corresponding

∗ These have approximate classical evolution as well, (See, e.g. Hepp, 1974). For
more on approximate projectors onto phase space cells see Omnès (1989) and the
references therein
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to different values of X and P . Eq.(11.2) is, in effect, multiplied by the overlaps
of the coupled many particle states of the form (6.5). Accepting uncritically the
estimates of Joos and Zeh (1985), contained essentially in (6.8), one finds that after
a milisecond the overlap factor for a pointer of linear dimension 1 cm interacting
with molecules of air might be of order

10−1040

(II.11.3)

where the words “of order” refer to the exponent of the exponent! This is a VERY
small number. One cannot expect such estimates to be reliable in any usual sense.
They suffice, however, to show that the decoherence will be very, very nearly exact
in such circumstances and the probability sum rules very, very nearly satisfied.

One standard by which this accuracy might be measured is the probability
that we have simply imagined our whole personal histories up until now. The
author does not pretend to know how to estimate this in a sensible fashion but a
naive guess might be (p)N where p is an atomic tunneling probability per relevent
atom and N is the number of atoms involved. Simple guesses for N and p give
numbers that are negligibly small but possibly larger than (11.3). Thus, when I
speak of approximate decoherence and approximate probabilities in discussions of
quasiclassical domains and measurement situations I mean, decoherence achieved
and probability sum rules satisfied beyond any standard that might be conceivably
contemplated for the accuracy of prediction and the comparison of theory with
experiment.

A theory which uses approximate probabilities conforming to standards such
as those described above can always be converted into a theory for which the prob-
ability sum rules are exact. Simply augment the theory by an ad hoc rule for
renormalizing the probabilities of exhaustive sets of alternatives when the failure
of the sum rules to be satisfied falls below a certain level. There surely exists some
level below which the predictions of such a theory would be indistinguishable from
one using approximate probabilities such as described above. At such a standard
it seems simpler to employ approximate probabilities.

The small numbers which estimate the failure of decoherence among familiar
quasiclassical operators show how excellent the approximation of exact decoherence
is in the ideal measurement model of the Copenhagen approximation to quantum
mechanics. Other features of the model such as the exact correlations and the ex-
act persistance are likely to be much less accurate approximations. Similarly small
numbers measure the minute failure of decoherence of alternative past positions of
massive bodies (e.g. the sun) thus justifying in part the approximation of recon-
structing their histories classically. Indeed, these numbers are so small that one
might reasonably ask whether it is not possible to find sets of histories that are
“nearly” the quasiclassical ones but which exactly decohere. The main issue in
this question is whether operators defining such histories would have a description
in terms of repeated quantities for the most part correlated in time according to
classical laws of motion.

II.12. Complex Adaptive Systems

Our picture is of a universe that, as a consequence of a particular initial condition
and of the underlying Hamiltonian, exhibits at least one quasiclassical domain made
up of sets of alternative histories with as much classicality as possible. The quasi-
classical domains are a consequence of the theory and its boundary condition, not
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an artifact of our construction. How do we characterize our place as a collectivity
of observers in the universe?

Both singly and collectively we are examples of the general class of complex
adaptive systems. (See, e.g. Gell-Mann, 1990.) When they are considered as
portions of the universe, making observations, we refer to such complex adaptive
systems as information gathering and utilizing systems (IGUSes). From a quantum
mechanical point of view the foremost characteristic of an IGUS is that, in some
form of approximation, however crude or classical, it employs the fundamental for-
mula, with what amounts to a rudimentary theory of ρ, H, and quantum mechanics.
Probabilities of interest for observations by the IGUS include those for correlations
between its memory and its external world up to the present. (Typically these are
assumed perfect; not always such a good approximation!) The approximate funda-
mental formula is used to compute probabilities on the basis of present data, make
predictions, control future perceptions on the basis of these predictions (i.e., exhibit
behavior), acquire further data, make further predictions, and so on.

To carry on in this way, an IGUS uses probabilities for histories referring both
to the future and the past. Typically, an IGUS performs further coarse graining
on a quasiclassical domain. Naturally, its coarse graining is very much coarser than
that of the quasiclassical domain and utilizes only a few of the variables in the
universe.

The reason such systems as IGUSes exist, functioning in such a fashion, is
to be sought in their evolution within the universe. It is reasonable to suppose
that they evolved to make predictions because it is adaptive to do so. The reason,
therefore, for their focus on decohering variables is that these are the only variables
for which predictions can be made. The reason for their focus on the histories
of a quasiclassical domain is that these present enough regularity over time to
permit prediction by relatively rudimentary, easily evolved algorithms. The reason,
specifically, that we do not see Mars spread out in a quantum superposition of
different positions is that we have evolved to use, in perception, a coarse graining
in which such superpositions rapidly decohere.

If there is essentially only one quasiclassical domain, then naturally IGUSes
evolve to utilize further coarse grainings of it. If there are many essentially in-
equivalent quasiclassical domains, then there is an interesting question of which
particular domain or set of such domains IGUSes evolve to exploit. However they
evolve, IGUSes, including human beings, occupy no special place and play no pre-
ferred role in the laws of physics. They merely utilize the probabilities presented
by quantum mechanics in the context of a quasiclassical domain of this universe.

Thus, the most fundamental, assumption free, way of “including the observer
in the universe” is to see it as a system that has evolved within the universe. Un-
derstanding this evolutionary process would seem an intractable task were it not
plausibly divisible into two parts: The first of these is understanding why this quan-
tum mechanical universe exhibits one or more quasiclassical domains. The second
part is understanding nuclear, chemical, and biological evolution in a universe that
exhibits quasiclassical domains. Providing criteria for a quasiclassical domain is
a way of dividing the problem into these two parts. The first of these may be
tractable within physics.

II.13. Open Questions

There are many open questions whose resolutions would help to complete, test, and
affirm the view of quantum mechanics adumbrated in this section: The mechanisms
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of decoherence need to be explored quantitatively in increasingly realistic models
especially in regard to the quasiclassical coarse grainings of Section II.7. Sets of
alternative decohering histories need to be exhibited explicitly for model initial con-
ditions and Hamiltonians. It is central to complete the definition of a quasiclassical
domain by finding the general definition for classicality. Once that is accomplished,
the question of how many and what kinds of essentially enequivalent quasiclassical
domains follow from ρ and H is a topic for serious theoretical research. So is the
question of what kinds of IGUSes can exist in the universe exploiting particular
quasiclassical domains, or the unique one if there is only one.

Beyond these specific questions, resolution of the problems of interpretation
presented by quantum mechanics seems best accomplished not by further intense
scrutiny of the subject as it applies to reproducible laboratory situations, but rather
through an examination of the origin of the universe and its subsequent history.
Quantum mechanics is best and most fundamentally understood in the context of
quantum cosmology. The founders of quantum mechanics were right in pointing out
that something external to the framework of wave function and Schrödinger equa-
tion is needed to interpret the theory. But it is not a postulated classical domain
to which quantum mechanics does not apply. Rather it is the initial condition of
the universe that, together with the action function of the elementary particles and
the throws of quantum dice since the beginning, is the likely origin of quasiclassical
domain(s) within quantum theory itself.

III. GENERALIZED QUANTUM MECHANICS

III.1. General Features

What might we mean, most generally, by quantum mechanics for a closed system
such as the universe as a whole? Roughly speaking, by a quantum mechanics
we mean a theory that admits a notion of fine and coarse grained histories, the
amplitudes for which are connected by the principle of superposition and for which
there is a rule (decoherence) for when coarse-grained histories can be assigned
probabilities obeying the standard sum rules of probability calculus. More precisely,
from the discussion in the preceeding section it is possible to abstract the following
three elements of quantum mechanics in general:

1) Fine-Grained Histories: These are the sets of fine-grained, exhaustive,
alternative histories of the universe {f} which are the most refined description to
which one can contemplate assigning probabilities. There may be many such sets.

2) Coarse Graining: A coarse graining of an exhaustive set of histories is a
partition of that set into exhaustive and exclusive classes {h}. The possible coarse-
grained sets of alternative histories of the universe are all possible coarse grainings
of fine-grained sets.

3) Decoherence Functional: The decoherence functional, D(h, h′), is defined
on each pair of coarse-grained histories in an exhaustive set {h}. With it a prob-
ability p(h) is assigned to individual members of a set of coarse grained histories
that decohere according to the fundamental formula.

D(h, h′) ≈ δhh′p(h) . (III.1.1)

The decoherence functionalD on the fine-grained histories must satisfy the following
properties:
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i) Hermiticity:
D(f, f ′) = D∗(f ′, f) , (III.1.2)

ii) Positivity:
D(f, f) ≥ 0 , (III.1.3)

iii) Normalization: ∑
f,f ′

D(f, f ′) = 1 . (III.1.4)

The decoherence functional a the coarse-grained set of alternative histories may
then be defined by the principle of superposition:

iv) The principle of superposition:

D(h, h′) =
∑
all f
in h

∑
all f′
in h′

D(f, f ′) . (III.1.5)

This definition must be consistent; if a set of histories can arise by a coarse graining
of two different fine-grained sets the same decoherence functional must result.

As a consequence of its definition, the decoherence functional D(h, h′) on
coarse-grained sets of histories satisfies four analogous conditions. In particular if
{h} is an exhaustive set of alternative coarse-grained histories and {h̄} is a coarser
grained partition of it we have

i) Hermiticity:
D(h, h′) = D∗(h′, h) , (III.1.2a)

ii) Positivity:
D(h, h) ≥ 0 , (III.1.3a)

iii) Normalization: ∑
h,h′

D(h, h′) = 1 , (III.1.4a)

iv) The principle of superposition:

D(h̄, h̄′) =
∑
all h
in h̄

∑
all h′
in h̄′

D(h, h′) . (III.1.5a)

These conditions are equivalent to the conditions (1.2)-(1.4) if the set of all coarse-
grained sets of histories is taken to include the fine-grained sets.

As a consequence of these four conditions, the approximate probabilities for
prediction and retrodiction defined by the fundamental formula (1.1) will obey the
rules of probability theory to the standard that decoherence is enforced. By virtue
of (i), (ii), and (iii) the probabilities p(h) are real numbers lying between 0 and 1.
By virtue of (iv) they satisfy the sum rules

p(h̄) =
∑
all h
in h̄

p(h) (III.1.6)
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for all coarse grainings.
These three elements — fine-grained histories, coarse graining, and decoher-

ence — capture the essential features of quantum mechanical prediction for a closed
system in a way that is general enough for the physical situations to be considered
later. They do not, however, represent the most general formulation which could
be given. For example, following the discussion at the end of Section II.2 a funda-
mental formula with ReD replacing D in (1.1) is sufficient for the probability sum
rules.

Hamiltonian quantum mechanics implements the three elements in a specific
way. However, I shall argue that the Hamiltonian framework is not the only way of
implementing these elements of quantum mechanics and that alternative implemen-
tations that are, in this sense, generalizations of Hamiltonian quantum mechanics
may be of interest in connection with quantum mechanical theories of spacetime.
In the remainder of this section I shall show how some familiar formulations of
quantum mechanics look from this generalized point of view.

III.2. Hamiltonian Quantum Mechanics

First, we consider Hamiltonian quantum mechanics from this general perspective.
In Hamiltonian quantum mechanics sets of histories are represented by time se-
quences of projections onto exhaustive sets of orthogonal subspaces of a Hilbert
space. The three elements of a quantum mechanics are implemented as follows:

1) Fine-Grained Histories: These correspond to sequences of sets of projections
onto a complete set of states, one set at every time. There are thus many different
sets of fine-grained histories corresponding to the various possible complete sets of
states at each and every time.

2) Coarse Graining: A set of histories is a coarse graining of a finer set if each
projection in the coarser grained set is a sum of projections in the finer grained set.
The projections constructed as sums define a partition of the histories in the finer
grained set.

By way of example, consider the quantum mechanics of a particle and the
completely fine-grained set of histories that consists of specifying the position at
every moment of time, that is, specifying the particle’s path in configuration space.
A coarse graining consisting of projections onto an exhaustive set of ranges of
position at, say, three different times defines a partition of the configuration space
paths into those that pass through the various possible combinations of ranges at
the different times.

3) Decoherence Functional: For Hamiltonian quantum mechanics this is (II.2.3).
In the present notation h stands for the history corresponding to a particular se-
quence of projections [Pα]. Thus,

D(h, h′) = Tr
[
Pnαn(tn) · · ·P 1

α1
(t1)ρP 1

α′
1
(t1) · · ·Pnα′

n
(tn)

]
, (III.2.1)

which is easily seen to satisfy properties (i)-(iv) above.
The structure of sets of alternative coarse-grained histories of Hamiltonian

quantum mechanics is shown schematically in Fig. 4. The sets of coarse-grained
histories form a partially ordered set defining a semi-lattice. For any pair of sets
of histories, the least coarse grained set of which they are both fine grainings can
be defined. However, there is not, in general, a unique most fine-grained set of
which two sets are a coarse graining. There is an operation of “join” but not of
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“meet”. The many possible fine-grained starting points in Hamiltonian quantum
mechanics are a reflection of the democracy of transformation theory. No one basis
is distinguished from any other.

III.3. Sum-Over-Histories Quantum Mechanics for Theories with a Time.

The three elements of a sum-over-histories formulation of the quantum me-
chanics of a theory with a well defined physical time are as follows:

1) Fine-Grained Histories: The fine-grained histories are the possible paths
in a configuration space of generalized coördinates qi expressed as single-valued
functions of the physical time. Only one configuration is possible at each instant.
Sum-over-histories quantum mechanics, therefore, starts from a unique fine-grained
set of alternative histories of the universe in contrast to Hamiltonian quantum
mechanics that starts from many.

2) Coarse Graining: There are many ways of partitioning the fine-grained
paths into exhaustive and exclusive classes. However, the existence of a physical
time allows an especially natural coarse graining because paths cross a constant time
surface in the extended configuration space (t, qi) once and only once. Specifying
an exhaustive set of regions {∆α} of the qi at one time, therefore, partitions the
paths into the class of those that pass through ∆1 at that time, the class of those
that pass through ∆2 at that time, etc. More generally, different exhaustive sets
of regions {∆k

α} at times tk, k = 1, · · · , n similarly define a partition of the fine-
grained histories into exhaustive and exclusive classes. Other kinds of partitions
can be contemplated (see e.g. Hartle, 1988a) but these will suffice for our later
discussions.

3) Decoherence Functional: The decoherence functional for sum-over-histories
quantum mechanics for theories with a time is

D(h, h′) =

∫
h

δq

∫
h′
δq′δ(qif − q′if ) exp

{
i
(
S[qi(t)]− S[q′i(t)]

)
/h̄

}
ρ(qi0, q

′i
0 ) .

(III.3.1)
Here, we consider an interval of time from an initial instant t0 to some final time
tf . The first integral is over paths qi(t) that begin at qi0, end at qif , and lie in
the partition h. The integral includes an integration over qi0 and qif . The second
integral over paths q′i(t) is similarly defined. If ρ(qi, q′i) is a density matrix, then it
is easy to verify that D defined by (3.1) satisfies conditions (i)-(iv) of Section III.1.
When the coarse graining is defined by sets of configuration space regions {∆k

α}
as discussed above, then (3.1) coincides with the sum-over-histories decoherence
functional previously introduced in (II.2.2). However, more general partitions are
possible.

The density matrix ρ(qi, q′i). may be thought of as defining the initial con-
dition of the closed system under consideration. Some initial conditions may be
specified simply and elegantly as conditions on the class of fine-grained histories.
For example,

ρ(qi, q′i) = δ(qi −Qi)δ(q′i −Qi) (III.3.2)

corresponds to the condition that paths qi(t) and q′i(t) both begin at the particular
configuration space point Qi at t = t0. An initial condition that ρ represents a pure
momentum eigenstate

ρ(qi, q′i) = (2πh̄)−n exp
[
iPi(q

i − q′i)/h̄
]

(III.3.3)

40



Fig. 4: The schematic structure of the space of sets of possible histories
in Hamiltonian quantum mechanics. Each dot in this diagram represents
an exhaustive set of alternative histories for the universe. (This is not
a picture of the branches defined by a given set!) Such sets, denoted by
{[Pα]} in the text, correspond in the Heisenberg picture to time sequences
(P 1
α1

(t1), P 2
α2

(t2), · · · Pnαn(tn)) of sets of projection operators, such that
at each time tk the alternatives αk are an orthogonal and exhaustive set
of possibilities for the universe. At the bottom of the diagram are the
completely fine-grained sets of histories each arising from taking projec-
tions onto eigenstates of a complete set of observables for the universe
at every time. For example, the set Q is the set in which all field vari-
ables at all points of space are specified at every time. This set is the
starting point for Feynman’s sum-over-histories formulation of quantum
mechanics. P might be the completely fine-grained set in which all field
momenta are specified at each time. D might be a degenerate set in which
the same complete set of operators occurs at every time. But there are
many other completely fine-grained sets of histories corresponding to all
possible combinations of complete sets of observables that can be taken
at every time.

The dots above the bottom row are coarse-grained sets of alternative
histories. If two dots are connected by a path, the one above is a coarse
graining of the one below — that is, the projections in the set above
are sums of those in the set below. A line, therefore, corresponds to an
operation of coarse graining. At the very top is the degenerate case in
which complete sums are taken at every time, yielding no projections at
all other than the unit operator! The space of sets of alternative histories
is thus partially ordered by the operation of coarse graining.

The heavy dots denote the decoherent sets of alternative histories.
Coarse grainings of decoherent sets remain decoherent.
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can be approximated through a condition on paths that defines momentum by time
of flight. (See e.g. Feynman and Hibbs, 1965.)

When initial and final conditions are expressed as conditions on the fine-
grained paths, C, we may write compactly

D(h, h′) =

∫
h,C

δq

∫
h′,C

δq′ei(S[qi(t)]−S[q′i(t)])/h̄ , (III.3.4)

where the sum is over paths qi(t), q′i(t) meeting the initial condition, the final
condition that their endpoints coincide, and lying in the partitions h and h′ respec-
tively.

The structure of the collection of sets of coarse-grained histories in sum-over-
histories quantum mechanics is illustrated in Fig. 5. Because there is a unique fine
grained set of histories, many fewer coarse grainings are possible in a sum-over-
histories formulation than in a Hamiltonian one, and the space of sets of coarse-
grained histories is a lattice rather than a semi-lattice.

III.4. Differences and Equivalences between Hamiltonian and Sum-Over-Histories
Quantum Mechanics for Theories with a Time.

From the perspective of generalized quantum theory the sum-over-histories quan-
tum mechanics of Section III.3 is different from the Hamiltonian quantum mechanics
of Section III.2. Even when the action of the former gives rise to the Hamiltonian
of the latter, the two formulations differ in their notions of fine-grained histories,
coarse graining and in the resulting space of coarse-grained sets of histories as Figs
4 and 5 clearly show. Yet, as is well known, the sum-over-histories formulation and
the Hamiltonian formulation are equivalent for those particular coarse grainings
in which the histories are partitioned according to exhaustive sets of configuration
space regions, {∆k

α}, at various times tk. More precisely the sum-over-histories
expression for the decoherence functional, (3.1), is equal to the Hamiltonian ex-
pression, (2.1), when the latter is evaluated with projections onto the ranges of
coördinates that occur in the former. Crucial to this equivalence, however, is the
existence of a well defined physical time in which the paths are single-valued. To
see this let us review the derivation of the equivalence in more detail.

When restricted to projections P∆α
onto ranges ∆α of the q’s, the trace in

(2.1) may be expanded as follows:

Tr
[
P∆n

(tn) · · ·P∆1
(t1)ρP∆′

1
(t1) · · ·P∆′

n
(tn)

]
=

∫
dqf

∫
dq0

∫
dq′0 < qf tf |P∆′

n
(tn) · · ·P∆′

1
(t1)|q0t0 >

× < q0t0|ρ|q′0t′0 >< q′0t
′
0|P∆′

1
(t1) · · ·P∆′

n
(tn)|qf tf > . (III.4.1)

Here, to keep the notation manageable, the index “i” on the q’s has been suppressed,
the index k on ∆k

α has been suppressed, |qt > has been written for the Heisenberg
state that is an eigenvector of qi(t) with eigenvalue qi, and dq for the volume element
on the space spanned by the qi. We now demonstrate the following identity

< qf tf |P∆n
(tn) · · ·P∆1

(t1)|q0t0 >=

∫
[q0∆1···∆nqf ]

δq(t)eiS[qi(t)]/h̄ , (III.4.2)
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Fig. 5. The schematic structure of the space of sets of histories in sum-
over-histories quantum mechanics. The completely fine-grained histories
arise from a single complete set of observables, say the set Q of field
variables qi at each point in space and every time. The possible coarse-
grained histories will then be a subset of those of Hamiltonian quantum
mechanics illustrated in Fig. 4.

where the sum is over all paths that begin at q0 at t0 pass through ∆1, · · · ,∆n at
t1, · · · , tn respectively and end at qf at time tf . To see how the argument goes,
consider just one interval ∆k at time tk. The matrix element on the left of (4.2)
may be further expanded as

< qf tf |P∆k
(tk)|q0t0 >=

∫
∆k

dqk < qf tf |qktk >< qktk|q0t0 > . (III.4.3)

Since the paths cross the surface of time tk at a single point qk, the sum on the
right of (4.2) may be factored as shown in Fig. 6,∫

[q0∆kqf ]

δq eiS[qi(t)]/h̄ =

∫
∆k

dqk

(∫
[qkqf ]

δqeiS[qi(t)]/h̄

)(∫
[q0qk]

δqeiS[qi(t)]/h̄

)
.

(III.4.4)
But, it is an elementary calculation to verify that

< q′′t′′|q′t′ >=

∫
[q′q′′]

δqeiS[qi(t)]/h̄ (III.4.5)
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Fig. 6: Factoring a sum over paths single-valued in time across a sur-
face of constant time. Shown at left is the sum over paths defining the
amplitude to start from q0 at time t0, proceed through interval ∆k at time
tk, and wind up at qf at time tf . If the histories are such that each path
intersects each surface of constant time once and only once, then the
sum on the left can be factored as indicated at right. The factored sum
consists of a sum over paths before time tk, a sum over paths after time
tk, followed by a sum over the values of qk at time tk inside the interval
∆k. The possibility of this factorization is what allows the Hamiltonian
form of quantum mechanics to be recovered from a sum-over-histories
formulation. The sum over paths before and after tk define wave func-
tions on that time-slice and the integration over qk defines their inner
product. The notion of state at a moment of time and the Hilbert space
of such states is thus recovered.

If the sum on the left were over paths that were multiple valued in
time, the factorization on the right would not be possible.

and that inverting the time order on the right is the same as complex conjugation.
Thus (4.3) is true and, by extension, also the equality (4.1).

The equivalence of the Hamiltonian and the sum-over-histories formulations
of quantum mechanics on position coarse grainings is thus seen to be a consequence
of the existence of surfaces in the extended configuration space (t, qα) that the
histories cross once and only once. We shall soon discuss cases where there are no
such surfaces and no associated time.

Despite their equivalence on certain coarse-grained sets of alternative histories,
Hamiltonian quantum mechanics and sum-over-histories quantum mechanics are
different because their underlying sets of fine-grained histories are different. Are the
more limited coarse grainings of sum-over-histories quantum mechanics adequate
for physics? They are if all testable statements can be reduced to statements about
configuration space variables — positions, fields of integer and half-interger spin,
etc. Certainly this would seem sufficient to describe the coarse graining associated
with any classical domain.
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III.5. Classical Physics and the Classical Limit of Quantum Mechanics.

In a trivial way classical physics may be regarded as a generalized quantum me-
chanics. The three elements are:

1) Fine-grained histories: The fine-grained histories are paths in phase space,
(pi(t), q

i(t)), parametrized by the physical time.
2) Coarse graining: The most familiar type of coarse graining is specified by

cells in phase space at discrete sequences of time. The paths are partitioned into
classes defined by which cells they pass through.

3) Decoherence Functional: From the perspective of quantum theory, the
distinctive features of classical physics are that the fine-grained histories are exactly
decoherent and exactly correlated in time according to classical dynamical laws. A
decoherence functional that captures these features may be constructed as follows:
Let zi = (pi, q

i) serve as a compact notation for a point in phase space. zi(t) is
a phase space path. Let zicl(t; z

i
0) denote the path that is the classical evolution of

the initial condition zi0 at time t0. The path zicl(t) = (pcli (t), qicl(t)) satisfies

ṗcli = − ∂H
∂qicl

, q̇icl =
∂H

∂pcli
, (III.5.1)

where H is the classical Hamiltonian, and satisfies the initial condition zi(t0; zi0) =
zi0. Define a classical decoherence functional, Dcl, on pairs of fine-grained histories
as

Dcl[z
i(t), z′i(t)] = δ[zi(t)− z′i(t)]

∫
dµ(zi0)δ[zi(t)− zicl(t; z0)]f(zi0) . (III.5.2)

Here δ[·] denotes a functional δ-function on the space of phase space paths, and
dµ(zi) is the usual Liouville measure, Π[dpi dq

i/(2πh̄)]. The function f(zi0) is
a real, positive normalized distribution function on phase space which gives the
initial condition of the closed classical system. The first δ-function in (5.2) enforces
the exact decoherence of classical histories; the second guarantees correlation in
time according to classical laws.

A coarse graining of the set of alternative fine-grained histories may be defined
by giving exhaustive partitions of phase space into regions {Rkα} at a sequence of
times tk, k = 1, · · · , n. Here, α labels the region and k the partition. As in Section
II, we denote one history in the coarse-grained set corresponding to a particular
sequence α1, · · · , αn by [Rα]. The decoherence functional for the set of coarse-
grained alternative classical histories is

Dcl

(
[Rα], [Rα′ ]

)
=

∫
[Rα]

δz

∫
[Rα′ ]

δz′Dcl[z
i(t), z′i(t)] , (III.5.3)

where the integral is over pairs of phase space paths restricted by the appropriate
regions and the integrand is (5.2). Easily one has

Dcl

(
[Rα], [Rα′ ]

)
= δα1α′

1
· · · δαnα′

n
pcl(α1, · · · , αn) , (III.5.4)

where pcl(α1, · · · , αn) is the classical probability to find the system in the sequence
of phase space regions [Rα] given that it is initially distributed according to f(zi0).

45



It is then also easy to see that (5.3) and (5.1) satisfy the conditions (i)-(iv) of
Section III.1 for decoherence functionals.

In certain situations the decoherence functional of a quantum mechanics may
be well approximated by a classical decoherence functional of the form (5.2). For
example, in Hamiltonian quantum mechanics it may happen that for some coarse
grained set of alternative histories {[Pα]}

D
(

[Pα], [Pα′ ]
)

= Tr
[
Pnαn(tn) · · ·P 1

α1
(t1)ρP 1

α′
1
(t1) · · ·Pnα′

n
(tn)

]
' Dcl

(
[Rα], [Rα′ ]

)
, (III.5.5)

for some corresponding coarse graining of phase space {[Rα]} and distribution func-
tion f . One has then exhibited the classical limit of quantum mechanics.

Some coarse graining is needed for a relation like (5.5) to hold because oth-
erwise the histories would not decohere. Moreover, a relation like (5.5) cannot be
expected to hold for every coarse graining. Roughly, we expect that the projections
{Pα} must correspond to phase space regions, for example, by projecting onto suffi-
ciently crude intervals of configuration space and momentum space or onto coherent
states corresponding to regions of phase space. (See, e.g. Hepp 1974, Omnès, 1989
for more on this.) Moreover, for a fixed coarse graining, a relation like (5.5) can-
not not hold for every initial condition ρ. Only for particular coarse grainings and
particular ρ do we recover the classical limit of a quantum mechanics in the sense
of (5.5)

III.6. Generalizations of Hamiltonian Quantum Mechanics.

As the preceeding example of classical physics illustrates, there are many ex-
amples of generalized quantum mechanics that do not coincide with Hamiltonian
quantum mechanics. The requirements for a generalized quantum mechanics are
weak. Fine-grained histories, a notion of coarse graining, and a decoherence func-
tional are all that is needed. There are probably many such constructions.∗ It
is thus important to search for further physical principles with which to winnow
these possibilities. In this search there is also the scope to investigate whether the
familiar Hamiltonian formulation of quantum mechanics might not itself be an ap-
proximation to some more general theoretical framework for quantum cosmology
valid only for certain coarse grainings and particular initial conditions. If D were
the deocherence functional of the generalization then

D(h, h′) ' Tr
[
Pnαn(tn) · · ·P 1

α1
(t1)ρP 1

α′
1
(t1) · · ·Pnα′

n
(tn)

]
(III.6.1)

only for certain {h}’s and corresponding strings of P ’s and for a limited class of
ρ’s. Thus, in cosmology it is possible to investigate which features of Hamiltonian

∗ As further examples, one can imagine decoherence functionals based on purely Eu-
clidean sums-over-histories (although then there is no decoherence and no probabil-
ities) or decoherence functionals describing certain linear alternatives to quantum
mechanics (e.g. Pearle, 1989).
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quantum mechanics are fundamental and which are “excess baggage” that only
appear to be fundamental because of our position late in a particular universe able
to employ only limited coarse grainings.† In the next sections I shall argue that
one such feature is the preferred time of Hamiltonian quantum mechanics.

IV. TIME IN QUANTUM MECHANICS

Time plays a special role in the quantum mechanics of cosmology set forth in Section
II. Every projection in a history was assumed to be characterized by some time t.
It was possible to define exhaustive sets of alternatives for the universe at one time.
The string of projections defining a history was time ordered in the fundamental
formula. As a consequence the future was treated differently from the past in the
predictive formalism and there was a quantum mechanical arrow of time.

In this section we shall ask whether such special roles for time in quantum me-
chanics might not be equally well seen as special features of our particular universe
in generalized quantum mechanical frameworks for prediction in which such roles
are not so singled out. In answering this question affirmatively we shall illustrate,
in simple, take it or leave it, ways, routes towards generalization that will become
essential for our discussion of quantum spacetime below. At the same time we
shall illustrate how certain notions, in particular the notion of “state of the system
at a moment of time”, are inextricably linked to the preferred time in quantum
mechanics.

IV.1. Observables on Spacetime Regions

The measurable quantities in a field theory are not the values of a field at a space-
time point, φ(x). Rather they are the averages of fields over spacetime regions of
the form

φ(R) =
1

V (R)

∫
R

d4xφ(x) (IV.1.1)

where V (R) is the volume of the region R. A region of negligible temporal extent
approximates a spatial field average “at one moment of time”. However, in a dif-
ferent Lorentz frame such regions will have extension in time. It would be possible
to restrict attention to the Lorentz invariant class of regions which have negligible
extent in some timelike direction, but the natural Lorentz invariant class of ob-
servables for field theory consists of field operators averaged over general spacetime
regions with extent in both space and time. These are the variables that occur in
discussions of field measurements (Bohr and Rosenfeld 1933, 1950, DeWitt 1962).
The projection operators onto ranges of values of such average fields are easily con-
structed from the operators (1.1). But what times should be assigned to sequences
of such projection operators to construct the Hamiltonian decoherence functional
for such coarse-grained histories according to (II.2.3)? There is no natural an-
swer and therefore there is no natural Hamiltonian quantum mechanics. However,
a generalized quantum mechanics for these observables can be constructed∗ for
coarse-grained histories consisting of field averages over spacetime regions that are

† For more along these lines see Hartle (1990b).
∗ The author owes the essential ideas of this extension to R. Sorkin.
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causally consistent in the following sense: The future of a spacetime region R is the
union of the future light cones and their interiors for each point in R. The past of
R is similarly defined. Two regions, R′′ and R′, are said to be causally consistent if
neither region intersects both the future and the past of the other. Thus, there is
one member of the pair such that every point of it lies to the future or is spacelike
separated from the other. A set of regions is said to be causally consistent if each
pair is causally consistent.

A causally consistent set of regions can be partially time ordered. A region
R′′ lies to the future of R′ if there are some points in R′′ that are the future of R′.
Two regions that are entirely spacelike to each other are therefore not ordered and
for this reason there is only a partial time ordering of a causally consistent set of
spacetime regions.

With these definitions the three ingredients of a generalized quantum me-
chanics for observables defined from field averages over a set of causally consistent
spacetime regions are as follows:

1) Fine-Grained Histories: The fine-grained histories are the four-dimensional
field configurations, φ(x).

2) Coarse Graining: Coarse grainings are defined by specifying ranges of
products of field averages defined on a causally consistent set of spacetime regions
Ri, i = 1, · · · , n. We denote the projections onto an exhaustive and exclusive set of
ranges of a quantity constructed from field operators of the region Ri by P kα(Ri)
where k denotes the particular quantity considered. A history consists of a sequence
[Pα] =

(
P 1
α1

(R1), · · · , Pnαn(Rn)
)

of such “yes-no” alternatives. An exhaustive set of
histories is obtained by allowing the α’s to run over an exhaustive set of ranges.

Combining smaller ranges into bigger ones is one kind of coarse graining.
Forming new sets of regions by taking unions of old preserving causal consistency
is another example of coarse graining. In both cases the projections defining the
coarser graining are sums of the projections defining the finer grained sets of histo-
ries.

3) Decoherence Functional: The decoherence functional of a set of coarse-
grained histories is defined by

D
(

[Pα], [Pα′ ]
)

= Tr
[
Pnαn(Rn) · · ·P 1

α1
(R1)ρP 1

α′
1
(R1) · · ·Pnα′

n
(Rn)

]
, (IV.1.2)

where the projection operators are ordered according to the partial time order of the
regions Ri. If two regions are not time ordered, then they are spacelike separated,
the projections associated with them commute, and the value of (1.2) is unaffected
by their order in the expression.

These three ingredients define a quantum mechanics with a weaker notion
of time ordering than in the familiar Hamiltonian framework. The generalization
coincides with Hamiltonian quantum mechanics when the regions have a negligi-
ble time extension in a particular Lorentz frame∗ but generalizes it to allow the

∗ An intermediate generalization could be based on a Lorentz invariant coarse grain-
ing that consisted entirely of averages over spatial regions with negligible extent in
time provided all possible such regions were allowed and not just those associated
with the constant time surfaces of a particular Lorentz frame. For a given set of
such regions a family of non-intersecting spacelike hypersurfaces can be found such
that each region lies in some spacelike surface. An equivalent Hamiltonian quantum
mechanics can be formulated with a notion of state on these spacelike surfaces.
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Fig. 7: Causally consistent spacetime regions and their partial time
order. A pair of spacetime regions is causally consistent if neither region
contains both some points that are to the future and some points that
are in the past of the other region. Put differently, there is one member
of the pair such that every point in it lies to the future, or is spacelike
separated from, every point in the other. A set of regions, such as the
eight shown in this figure, are causally consistent if every pair is causally
consistent.

Causally consistent regions can be partially time ordered. Region
R is later than region R′ (R > R′) if there are points in R which are in
the future of R′. In the figure, for example, R2 > R1, R8 > R1, R7 >
R4, etc. (R2 consists of two disconnected pieces) Completely spacelike
separated regions are not time ordered as, for example, the pairs (R7, R8),
(R3, R4), (R3, R5), etc.

A generalized quantum mechanics can be constructed for coarse
grainings of the completely fine-grained field history that consist of speci-
fying ranges of values of field averages over causally consistent spacetime
regions. The decoherence functional is given by the usual Heisenberg
trace formula in which the operators respect the partial time order.

discussion of alternatives that are not simply “at one moment of time”. There is,
however, a price for this generalization. It is no longer possible to follow (II.3.4)
to construct an effective density matrix which gives an unambiguous notion of the
state of the system on any spacelike surface that intersects one of the regions R.
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Neither, therefore, is it possible to naturally describe evolution as a combination
of unitarily evolving state vector and “collapse of the wave packet” for such times.
It is not that it is impossible to define the notion of a unitarily evolving state vec-
tor. It is the “second law of evolution”, the “reduction of the wave packet”, that
fails to hold in this generalized quantum mechanics when there are regions that are
extended in both space and time. The Schrödinger picture does not exist for this
generalized quantum mechanics. Despite this, the probabilities can be assigned to
histories by the fundamental formula and the theory is predictive.

IV.2. The Arrow of Time in Quantum Mechanics

There is an arrow of time in the quantum mechanics of Section II. The formalism
treated the future differently from the past. Recall, for example, that we were able
to predict the future from a state describing the universe at the present moment,
but we could not retrodict the past. Mathematically such aspects of the arrow of
time are consequences of the time ordering of the operators in the fundamental
formula

D ([Pα], [Pα′ ]) = Tr
[
Pnαn(tn) · · ·P 1

α1
(t1)ρP 1

α′
1
(t1) · · ·Pnα′

n
(tn)

]
, (IV.2.1)

t1 ≤ t2 ≤ t3 ≤ · · · ≤ tn! This time ordering does not mean that quantum mechanics
singles out an absolute direction in the parameter t. Field theory is TCP invariant.
The TCP transformed projections

P̃ kα(−t) = (TCP )P kα(t)(TCP )−1 (IV.2.2)

still evolve according to the Hamiltonian H. Thus (2.1) could equally well be
written

D ([Pα], [Pα′ ]) = Tr
[
P̃nαn(−tn) · · · P̃ 1

α1
(−t1)ρ̃ P̃ 1

α′
1
(−t1) · · · P̃nα′

n
(−tn)

]
(IV.2.3)

where ρ̃ is the TCP transformed ρ. In (2.3) the operators are anti-time-ordered.
Either time ordering can, therefore, be used; the important thing is that on one end
of the strings of P ’s in (2.2) there is a knowable Heisenberg ρ while at the other
there is nothing. It is by convention that we call the end with the ρ — the end
that we know — the “past” and refer to an “initial” condition. It is a convention,
however, that I shall stick to in the remainder of the lectures.

The future then is treated differently from the past in the quantum mechanics
of Section II. A time asymmetry is built in. Of course, empirically the future
is different from the past.∗ We know something of the past; we are ignorant of
the future. But should this observed asymmetry be built in? Should it not be
possible to consider quantum mechanically universes with less asymmetry between
the future and the past? I will now argue that a slight generalization of the quantum
mechanics of Section II would enable us to do so.

Imagine that we are members of a very advanced civilization interested in
testing quantum cosmology in the laboratory. We learn how to isolate very large
sections of the universe, thousands of Mpc on a side, and fix their quantum states

∗ See, for example, the discussion in Penrose (1979).
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at an initial moment of time at will. We do this for an ensemble of such systems
selecting the initial states randomly. Allowing the systems to evolve to a later time
we check on whether the system is in a particular state |Ψ >. If the answer is yes,
we retain it in the ensemble; if not, we discard it.

What we have done, in effect, is to create an ensemble of “universes” of the
type shown in Fig. 7 in which the future state is determined but the past state is
random. Suppose we had investigated along the way whether the members of the
ensemble contained observers and, if sufficiently advanced, what kind of quantum
cosmology they would have induced. I do not know how to do the calculation that
would predict what should be seen; although in principle it should be possible to do.
One imagines that the prediction would be that most observers inside the region
insulated from our initial conditions, would have induced a quantum mechanics of
the kind we have been describing, asymmetric in time, but with a “past” and “fu-
ture” that are oppositely ordered to ours. The observers would be “living backward
in time”.

Next, consider the case where we have not chosen the initial state of the
ensemble randomly but according to some definite rule represented in quantum
mechanics by a density matrix ρf . The probabilities of histories are, of course, easy
to calculate for us. The joint probabilities for a history, [Pα], and the final state,
|Ψ >, would arise from the decoherence functional

D ([Pα], [Pα′ ]) = Tr
[
|Ψ >< Ψ|Pnαn(tn) · · ·P 1

α1
(t1)ρfP

1
α′

1
(t1) · · ·Pnα′

n
(tn)

]
,

(IV.2.4)
which includes the projection selecting the final state. Probabilities for histories
conditioned on this final state are these joint probabilities divided by a suitable
normalization [cf. (II.3.3)]. One imagines that observers evolving in such a universe
would have induced a correct formula for the decoherence functional giving these
conditional probabilities. If they used conventions like ours they would have written
it

D ([Pα], [Pα′ ]) = Tr
[
ρf P̂

n
αn(τn) · · · P̂ 1

α1
(τ1)ρiP̂

1
α′

1
(τ1) · · · P̂nα′

n
(τn)

]
/Tr(ρiρf )

(IV.2.5)
where ρi = |Ψ >< Ψ|, the operators P̂nα correspond exactly to the P kαn when
restricted to the spacetime region under investigation, but with times τn and labels
k ordered back from our future. In such a universe there would be both initial and
final conditions. One could know something of both past and future. There would
not be causality as we know it.

How do we know that we do not live in such a universe? The answer, I
believe, is not determined à priori. Its an empirical question whether we can find
out something about the future and the framework of quantum mechanics should
be big enough to handle it if we can. The above framework is. It is a generalized
quantum mechanics in the sense Section III.1. The fine-grained histories and notion
of coarse grainings are the same as in Hamiltonian quantum mechanics. Only the
decoherence functional is different; both initial and final conditions are possible.
This quantum mechanics is applicable to our universe. The final condition that
best fits our data is complete ignorance.

As was shown by Aharonov, Bergman, and Lebovitz (1964) over twenty years
ago and as more recently discussed by Griffiths (1983) there is no arrow of time
in this generalization of quantum mechanics. Because of the cyclic property of
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Fig. 8: An experiment in quantum cosmology. The figure shows a
thought experiment in quantum cosmology. An ensemble of very large
regions of the spacetime of the late universe, one of which is illustrated
here, is constructed by preparing the state of the system according to the
statistics of a density matrix ρf across a large spatial region of extent L
in the spacelike hypersurface t = t′. The region inside the large triangle
(the future Cauchy development of the spatial region) is thus causally
isolated from the initial condition of the larger universe. The ensemble
of regions is refined by selecting the state on the surface t = t′′ according
to the statistics of a density matrix ρi. If ρf ∝ I (a random selection of
the state at t′) the physics in the heavily outlined region should be indis-
tinguishable from that in a universe with an initial condition ρi in which
the quantum mechanical arrow of time is reversed from its direction in
the larger universe. The statistics of the evolution of IGUSes in such re-
gions, and the physical theories they induce, are in principle predictions
of the quantum cosmology of the larger universe and are subject to exper-
imental test in such an ensemble! One expects that these IGUSes will,
by induction, arrive at a quantum mechanics with a similar fundamental
formula to that of the larger universe but with the quantum mechanical
arrow of time reversed.

If the ensemble is constructed with a ρf not proportional to I then,
one expects that the fundamental formula would have both initial and
final conditions as in (IV.2.5). It is an empirical question whether or
not we live in such a universe.

the trace, it is time symmetric! Of course, particular ρi and ρf may be very
different from one another producing an effective arrow of time for some physical
phenomena, but there is no independent quantum mechanical arrow of time. The
quantum mechanical formalism is time symmetric.

In this generalization there is no built in notion of causality and it is not
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Fig. 9: Closed timelike lines in a wormhole geometry. The figure
shows a spacetime diagram (time upward) with two wormhole mouths
(the shaded regions). The wormhole geometry is multiply connected so
that it is possible to pass nearly simultaneously from points in one worm-
hole mouth to another. The wormhole mouth on the left remains at rest
in an inertial frame. The one at right is initially at rest with respect to
the first at t = 0 but then begins to rotate about it. The figure shows the
corotating frame and the readings of a clock at the center of each worm-
hole mouth. As a consequence of time dilation in the rotating mouth,
this spacetime has closed timelike curves of which one is shown. The
dotted segment represents the nearly instantaneous passage through the
wormhole throat.

possible to have a notion of “state at a moment of time” from which probabilities
can be extracted either for events in the past or the future. ¿From this perspective
the notion of the state of the system at a moment of time in Hamiltonian quantum
mechanics is a consequence of our ignorance of the future.

IV.3. Topology in Time

As a third illustration of how closely our familiar formulation of quantum mechanics
is tied to assumptions about spacetime, I would like to consider the question of
constructing quantum mechanics on spacetimes whose time direction has a non-
trivial topology.

An interesting example is the kind of wormhole spacetime discussed by Morris,
Thorne, Yurtsver (1989) and others that is illustrated in Fig. 8. These are not the
four-dimensional wormholes that are the subject of this school. They are handles
on three-dimensional space. The topology of spacetime is R×M3 with M3 being
multiply connected.
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Imagine that before some time t = ts the wormhole mouths are at rest with respect
to one another. At time ts they begin to rotate about one another and continue
until a moment of time symmetry when they reverse their motion eventually coming
to relative rest at time te. Before ts and after te there are no closed timelike lines
and it is possible to define surfaces of constant time that foliate those portions of
spacetime. In between ts and te, however, because of time dilation in the rotating
wormhole mouth, there are closed timelike lines, as Fig. 8 illustrates. By going
through the wormhole throat it is effectively possible to go backward in time. Such
wormhole spacetimes are time orientable but not causal.

It is clear that there is no straightforward Hamiltonian quantum mechanics in
a wormhole spacetime between the surfaces ts and te. What would be the surfaces of
the preferred time? How would unitary evolution of arbitrary states in the Hilbert
space be defined in the presence of closed timelike lines?

A generalized quantum mechanics of the kind we have been discussing, how-
ever, may be constructed for this example using a sum-over-histories decoherence
functional. The three ingredients would be the following∗

1) Fine-Grained Histories: For the fine-grained histories we may take single-
valued field configurations, φ(x), on the wormhole spacetime.

2) Coarse Grainings: The fine-grained histories may be partitioned according
to their values on spacetime regions.† Select a set of spacetime regions, specify an
exhaustive set of ranges for the average values of the field in these regions, and
one has partitioned the four dimensional field configurations into classes, {h}, that
have the various possible values of the average field. For example one might specify
averaged spatial field configurations on an initial constant time surface with t < ts
and on a final constant time surface with t > te. The resulting probabilities would
be relevant for defining the S-matrix for scattering from the wormhole.

3) Decoherence Functional: A sum-over-histories decoherence functional is

D(h, h′) =

∫
h

δφ

∫
h′
δφ′ δ[φf (x)− φ′f (x)]

× exp

{
i
(
S[φ(x)]− S[φ′(x)]

)
/h̄

}
ρ0 [φ0(x), φ′0(x)] . (IV.3.1)

The integrations are over field configurations between some initial constant time
surface t0 < ts and some final constant time surface tf > te. φ0(x) and φ′0(x)
are the spatial configurations on the initial surface; their integral is weighted by
the density matrix ρ0. φf (x) and φ′f (x) are the spatial configurations on the final
surface; their coincidence is enforced by the functional δ-function. The integral over
φ(x) is over the class of field configurations in the class h. For example, if h specifies
that the average value of the field in some region lies in a certain range, then the
integral is only over φ(x) that have such average values. Formally, this decoherence
functional satisfies conditions (i)-(iv) of Section III.1. The results of Friedman et
al. (1990) on the existence of solutions to the classical initial value problem gives
some hope that it may be well defined, at least for quadratic field theories.

With the generalized quantum mechanics based on the three elements de-
scribed above probabilities can be assigned to coarse-grained sets of field histories

∗ This generalization was developed in discussions with G. Horowitz.
† Thus generalizing the causally consistent coarse graining discussed in Section IV.1
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in the wormhole spacetime. These probabilities obey the standard probability sum
rules. There is no equivalent Hamiltonian formulation of this quantum mechanics
because this wormhole spacetime, with its closed timelike lines, provides no foliat-
ing family of spacelike surfaces to define the required preferred time. Nevertheless,
the generalized theory is predictive. What has been lost in this generalization is
any notion of “state at a moment of time” and of its unitary evolution in between
the surfaces te and ts. This is not surprising for a region of spacetime that has no
well defined notion of “at a moment of time”.

IV.4. The Generality of Sum Over Histories Quantum Mechanics.

What the examples of this Section argue is that the Hamiltonian formulation of
quantum mechanics is closely tied to fixed spacetimes that admit a foliation by
spacelike surfaces and that may have definite initial conditions but that must have
ignorance of the future as a final condition. By contrast sum-over-histories quantum
mechanics applies more generally to cases that do not have such a preferred time.
Other examples would be interesting to investigate. A short list might include: field
theories with interactions that are non-local in time (e.g. Bloch, 1952), field theory
in identified flat spacetimes with interesting topology in time, particle path-integral
quantum mechanics in spacetimes with interesting topology in time, theories with
a discrete number of possible spacetimes, etc. However, in the next section I shall
proceed directly to the case of quantum gravity where in general, there is no fixed
spacetime. There I shall argue that the sum-over-histories formulation is the natural
generally covariant way of constructing quantum mechanics.

V. THE QUANTUM MECHANICS OF SPACETIME

V.1. The Problem of Time

V.1.1. General Covariance and Time in Hamiltonian Quantum Mechanics

A consistent and manageable quantum theory of gravity is a central prerequisite
for any quantum cosmology. Providing such a theory is the subject of intensive
contemporary research in a variety of directions including string theory, general-
ized canonical quantum gravity, discrete spacetime models, low dimensional models,
and non-perturbative approaches to the quantization of Einstein’s theory. In all of
these approaches, spacetime, whether a fundamental quantity or not, is a dynami-
cal quantum variable rather than fixed and given as in all our previous discussion.
Therefore, each of the theories, however they may differ on their assumptions con-
cerning fundamental fields or their approach to the divergences of the theory, must
confront the second count on which the usual framework of Hamiltonian quan-
tum mechanics is insufficiently general for quantum cosmology. This concerns the
“problem of time”.∗

The discussion of the preceeding sections shows that time plays a special and
peculiar role in Hamiltonian quantum mechanics. What are the physical grounds
for singling out one variable to play such a special role in the predictive formalism?
They arise, I believe, from the fact that as observed on all directly accessible scales,
over the whole of the accessible universe, spacetime does appear to have a fixed,

∗ For classic reviews of the problem of time see Wheeler (1979) and Kuchař (1981).
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classical geometry. It is this background geometry that supplies an unambiguous
notion of time for quantum mechanics. In the spacetime of non-relativistic physics
there is a preferred family of spacelike surfaces of constant Newtonian time that
define the preferred time of non-relativistic quantum mechanics. In the spacetimes
of special relativistic physics there are many foliating families of spacelike surfaces.
There is thus an issue as to which defines the preferred time of quantum mechan-
ics. Causality, however, implies that the quantum mechanics constructed from one
choice is unitarily equivalent to that for any other. All choices give equivalent
results.

In the quantum gravity of cosmological spacetimes there are no fixed back-
grounds in general. In particular, in the early universe we expect quantum fluctua-
tions of spacetime. What then supplies the preferred time required by Hamiltonian
quantum mechanics? Certainly it is not the classical theory of spacetime — Ein-
stein’s general relativity. That theory is generally covariant∗ and no one family
of spacelike surfaces is preferred over any other. Further in the absence of a fixed
background to define a notion of causality there is no evidence that the quantum
mechanics constructed from two different choices of preferred spacelike surfaces are
unitarily equivalent.† There is thus a conflict between the framework of Hamiltonian
quantum mechanics and covariant theories of spacetime such as general relativity
or string theory. This is the problem of time.

The traditional route out has been to keep quantum mechanics “as is” and
give up on spacetime. Perhaps there is a preferred family of spacelike surfaces in
quantum mechanics. General covariance is thereby broken at the quantum level and
the beautiful synthesis of Einstein and Minkowski can emerge only in the classical
limit.‡

Perhaps there are other variables, now hidden, that would play the role of
time in a Hamiltonian formulation of quantum gravity.‡ Perhaps in a theory in
which spacetime is not a fundamental variable such a preferred time would be
distinguished naturally. However, to formulate a Hamiltonian quantum mechanics
with a time variable other than a family of spacelike surfaces in spacetime is, most

∗ By a generally covariant theory I do not mean one which can be expressed in a
form that is invariant under general coördinate transformations. Rather, as usual in
general relativity, I mean a theory in which gravitational phenomena are described
by the spacetime metric alone. Invariance can be accomplished for any theory by
introducing sufficiently many tensor fields, say, those specifying a preferred family
of spacelike surfaces. It is the absence of such fields — general covariance — that
is the orgin of the problem of time in relativity.
† See, e.g. Isham and Kuchař (1985) and the references therein.
‡ This is the approach taken in what is usually called canonical quantum gravity.

A preferred time variable is identified from among the variables describing three-
geometry. The Wheeler-DeWitt equation is reorganized as a “Schrödinger” equa-
tion in this time variable and an inner product introduced in the remaining vari-
ables. For reviews see again Kuchař (1981) and the discussion in Ashtekar and
Stachel (1991). By canonical quantum gravity we shall mean this kind of schema.
We do not mean merely implementing the constraints as operator equations on su-
perspace and neither do we mean the generalized canonical approach of Ashtekar
and others (Ashtekar, 1988).
‡ See, e.g. the variety of ideas in Unruh and Wald (1989), Brown and York (1990),

Henneaux and Teitelboim (1989), and Hoyle and Hoyle (1963).
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honestly, a generalization of familiar quantum mechanics. All such generalizations
have the obligation to show how the familiar formulation with spacelike surfaces as
the preferred time variable emerges in appropriate limits.

Each of the ideas described above could be right. However, in these lectures I
would like to explore another way to resolve the problem of time. This is the idea
that Hamiltonian quantum mechanics with its preferred time is an insufficiently
general framework for a generally covariant quantum theory of spacetime. I would
like to pursue the idea that quantum theories of spacetime should be formulated
in a generalized quantum mechanics in the sense of Section III that is generally
covariant. In such a formulation Hamiltonian quantum mechanics would be but
an approximation appropriate to those special initial conditions and those special
coarse grainings in which spacetime is approximately classical and fixed and a no-
tion of spacelike surface is defined. Further, I would like to sketch a particular
sum-over-histories generalized quantum mechanics that is general enough to incor-
porate both generally covariant theories without a preferred time and also theories
that have such a variable.∗ In this way a preferred time and its associated Hamil-
tonian quantum mechanics become a special property of certain theories, or an
approximate property of the universe’s initial condition, and not a prerequisite for
the application of quantum mechanics to the geometry of the universe.

V.1.2. The “Marvelous Moment”

As a response to the problem of time the idea is sometimes advanced that there
is no fundamental notion of time. That it is sufficient for prediction to calculate
probabilities for observation from a single wave function on a single spacelike sur-
face. That any notion of time is to be recovered from a study on that surface
of the probabilities for the correlations between the indicators of clocks and other
variables. That our impression of the past is but an illusion more properly viewed
as correlations between records existing at the “marvelous moment” now.† That
quantum general relativity is most properly viewed as a theory of space rather than
a theory of quantum spacetime.

However, to abandon spacetime just because there is no natural candidate for
the ordering parameter in Hamiltonian quantum mechanics seems, to me, an over-
reaction. While it is no doubt true that many interesting probabilities, especially
in cosmology, are for observations that are more or less on one spacelike surface
they do not exhaust those predicted by familiar quantum mechanics nor those that
are important.

As we saw in Section II.3, the objects of predictions in history are most hon-
estly correlations between present records. However, these correlations can be said
to describe history only when theory implies a further correlation between records
in the present and events in the past. Our ability to calculate such probabilities
is central to our ability to organize and explain present data. It would be an im-
possibly complex task to predict from one wave function of the universe analysed

∗ The ideas in this section were sketched in Hartle (1986b) and have been developed
in Hartle (1988ab, 1989b). For related sum-over-histories approaches to a covariant
quantum mechanics of spacetime see Teitelboim (1983abc) and Sorkin (1989).
† For modern versions of this idea see e.g. Page and Wootters (1983), Wootters (1984,

1986). The idea is an old one, see e.g. Augustine (399).
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solely in the present that similar dinosaur bones should be located in similar ge-
ologic strata. The reason is that such correlations are not thereby distinguished
from other correlations that exist in the present. The simple explanation for the
observed correlation that similar dinosaur bones are located in similar strata is that
dinosaurs did roam the earth many millions of years ago and their bones are per-
sistent records of this epoch. It is by calculating probabilities between the past and
different records today that correlations are predicted between these records. It is
by such calculations that the probability for error in present records is estimated.
Such calculations cannot be carried out solely on one spacelike surface.

Many other interesting probabilities involve several spacelike surfaces. Just
to describe in an objective way the subjective experience of the passage of time
requires such probabilities. The correlations that distinguish classical spacetime
are between a sequence of spacelike surfaces. Similarly, the correlations satisfied by
other classical dynamical laws involve many spacelike surfaces. A physical system
can be said to behave as a good clock when the probability is high that the position
of its indicator is correlated with the location of successive spacelike surfaces in
spacetime.

It may be that the search for unity between gravitation and other interactions
will lead us to abandon as fundamental, time, space, or both. In this case a revision
of the predictive framework of quantum mechanics seems inevitable. A distinction
needs to be drawn, however, between such motivations and those arising from the
preferred status of time in the familiar framework. Before we invoke the conflict
between that familiar framework and covariant spactime as reason to abandon one
of the most powerful organizing concepts of our experience, it may be of interest to
see whether the familiar framework of quantum mechanics might be generalized a
bit to apply to theories of spacetime.

V.2. A Quantum Mechanics for Spacetime

V.2.1. What we Need

What we need is a generalized quantum mechanics in the sense of Section III that
supplies probabilities for correlations between different spacelike surfaces, that does
not prefer one set of spacelike surfaces to another, and that reduces approximately
to Hamiltonian quantum mechanics when spacetime is classical in the late universe
as a consequence of its initial condition. Such a generalized quantum mechanics is
specified by the three elements: the set of fine-grained histories, a notion of coarse
graining, and a decoherence functional. In this Section I shall describe an example
of such a generalized quantum mechanics of spacetime. It is a sum-over-histories
generalized quantum mechanics that assumes that spacetime is fundamental. This
means, in particular, that the fine-grained histories are cosmological four geometries
with matter field configurations upon them.

There is considerable speculation that spacetime is not fundamental. Even in
a theory where it is not, however, it must be possible to construct a coarse graining
that defines spacetime geometry on scales modestly below the Planck scale and to
construct an effective quantum theory of such coarse-grained histories. In such a
theory one might expect the following schematic sequence of approximations to the
decoherence functional:

Dfundamental(h, h
′) ' Dspacetime(h, h′) ' DHamiltonian(h, h′) . (V.2.1)

The first approximate equality describes how a spacetime theory could be an ef-
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fective limit of the more fundamental theory. It would be expected to hold only
for coarse grainings that define spacetime and matter fields on scales of about the
Planck length and above. The second approximate equality, of the kind discussed
in Section III.6, describes how Hamiltonian quantum mechanics with its preferred
time is recovered from a generalized quantum mechanics of spacetime. It would be
expected to hold only for coarse graining defining classical spacetimes in the late
universe with quantum matter fields on them.

Thus, the generalized sum-over-histories quantum mechanics to be described
may be thought of either as a model for the kind of framework necessary in a more
fundamental theory or as a representation of the effective theory of spacetime such
a theory is expected to provide.

V.2.2. Sum-Over-Histories Quantum Mechanics for Theories Without a Time

I begin by describing generalized sum-over-histories quantum mechanics for theories
with no preferred time. The three elements of this formulation are supplied as
follows:

1) Fine-grained histories: The fine-grained histories are paths, Qα(τ), in
a configuration space that includes the physical time if there is one. The value
of a parameter τ along the path is not specified as part of a fine-grained history;
only the path itself is specified. The parameter τ is a label, useful in constructing a
sum-over-paths, but not itself assigned a probability in general. Thus, in the Hamil-
tonian quantum mechanics discussed in Section II, Qα = (t, qi). There, because the
histories are single-valued in t, the time t could be used as the parameter τ . No
such time would exist, for example, for the quantum mechanics on the spacetimes
of Section IV.3 that are multiply connected in time.

2) Coarse-grained histories: One type of coarse graining is defined by giving
regions in the configuration space and partitioning the paths according to whether
they pass through them or not (Fig. 10). Thus, with two regions R1 and R2 there
are the set of four exhaustive alternative classes of histories:

h1: The paths that go through both regions R1 and R2 at least once.

h2: The paths that go through R1 at least once but not R2.

h3: The paths that go through R2 at least once but not R1.

h4: The paths that go through neither R1 nor R2.

A coarser graining might be

h̃1: The paths that go through R1 or R2 at least once.

h̃2: The paths that go through neither R1 nor R2.

A finer graining might specify the exact number of times a path crosses a region.
For the case of the quantum mechanics of Section II these regions were associated
with a precise time, but in the discussion of the quantum mechanics of field averages
they have extent in time.

3) Decoherence functional: In a sum-over-histories quantum mechanics this
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Fig. 10: Coarse-grained histories for a sum-over-histories quantum
mechanics for theories without a preferred time variable. The figure is
a schematic illustration of a configuration space {Qα} that includes any
physical time. The fine-grained histories are all possible paths thus space
satisfying prescribed initial and final conditions. A coarse-grained set of
histories is a partition of the set of all paths into exhaustive and exclusive
classes. The behavior of histories with respect to a set of regions can be
used to define such a partition. The illustrated history is a member of
the class that passes through regions R1 and R2 at least once but not
through R3.

has the form

D(hi, hj) =

∫
hi,C

δQα
∫
hj ,C

δQ′αei(S[Qα(τ)]−S[Q′α(τ)])/h̄ . (V.2.2)

The sum over Qα(τ) is over all paths in the class hi that satisfy certain initial and
final conditions. The sum over Q′α(τ) is similar but in the class defined by hj .
In sum-over-histories quantum mechanics these conditions, C, include the initial
condition of the universe (the initial ρ) and ignorance of the future or other final
condition.

We cannot expect such a quantum mechanics to have an equivalent Hamil-
tonian formulation unless there are surfaces in the space of the Qα that the paths
cross once and only once (Fig. 11). This was the lesson of Section III.4. Thus,
we cannot expect to recover a notion of “state at a moment of time” (there is no
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Fig. 11: Hamiltonian quantum mechanics as a special case of general-
ized sum-over-histories quantum mechanics. If the fine-grained histories
have the property that there is a set of surfaces that the paths cross once
and only once, then it is possible to construct an equivalent Hamilto-
nian formulation for coarse grainings that are regions limited to these
surfaces. As described in Section III.4 the sums over histories can be
factored across such surfaces and the factorization used to define unitar-
ily evolving states and their inner product on the preferred surfaces.

time) or its unitary evolution. We have the predictibility without states and con-
servation of probability (represented by the probability sum rules) without unitary
evolution.∗

V.2.3. Sum-Over-Spacetime-Histories Quantum Mechanics

∗ One might have thought one could factor the sum over histories across any surface
into a sum on one side of the surface times a sum on the other followed by a sum
over the various ways the paths could cross the surface thereby defining states
and then inner products on these surfaces. For sums-over-histories defined on a
spacetime lattice this is indeed possible. However, as the lattice spacing becomes
small the sum defining some particular way of crossing the surface (say, a fixed
number of intersection points) vanishes. This is because the dominant paths are
non-differentiable and the expected number of crossings is infinite. As a consequence
no useful Hamiltonian quantum mechanics is recovered in the continuum limit.
(Hartle, 1988a)
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How does the sum-over-histories quantum mechanics described above look specifi-
cally for four-dimensional cosmological spacetimes? I shall first sketch the story in
terms of words and pictures. More technical details of how to do the relevant sums
over histories are sketched in Section V.3.

The fine-grained histories in cosmology are all cosmological four-geometries
with matter field configurations upon them. An example is the standard classical
Friedman evolution of a closed universe from the big bang to a big crunch. Of
course, there are many other possible non-classical histories that must be assigned
amplitudes quantum mechanically. These histories may be thought of as successions
of three-dimensional geometries — an expanding and contracting three sphere in
the case of the Friedmann universe. They may, therefore, be thought of as paths
in the space of three-geometries and three-dimensional matter field configurations
(Fig. 12). This can be made explicit by writing the metric in a gauge in which
g00 = −1 and g0i = 0:

ds2 = −dt2 + hij(x, t)dx
idxj . (V.2.3)

The three-metric hij(x, t) describes the three-geometry and t defines the succession
of them. Fine-grained histories may thus be thought of as curves in the superspace
of three-metrics, hij(x), and spatial matter field configurations χ(x), parameterized
by the proper time t. Put differently, the Qα of the general discussion above are
(t, hij(x), χ(x)).

Implicit in such a description is a limitation on the topology of the cosmological
histories to be R×M3 where M3 is some compact three-manifold. This, as we shall
see in Section V.2.4, is not an essential limitation. The sums over geometries that
define the decoherence functional could be extended to include geometries that
bifurcate into separate universes, include wormholes, etc. However, to keep the
discussion manageable let us, for the moment, make this simplifying assumption on
topology.

There are many kinds of coarse grainings of these fine-grained histories that
might be of interest. Of course, the coarse grainings must be diffeomorphism in-
variant. That is the set of possible four-metrics describing possible cosmological
histories must be partitioned into diffeomorphism invariant classes. Perhaps the
coarse grainings which are most analogous to those used in familiar quantum me-
chanics are those associated with a set of non-overlapping regions in superspace,
{Ri}, that are invariant under three-dimensional diffeomorphisms. A history which
passes through a region R once, has a sequence of foliating, spacelike, three-surfaces
whose spatial geometries and matter field configurations are fixed within the error
allowed by the region R. A history that passes through R twice would have two
such regions, and so forth.

Coarse graining by superspace regions that are thin in one direction can cap-
ture the canonical notion of “at a moment of time”. Consider, for example, a region
of superspace which lies along a constant value of some scalar field, χ, to be used as
a “clock” and allows negligible variation in the value of that scalar field. A history
which passes through such region once has one spacelike surface on which χ has the
specified value. A history which passes through such a region twice has two such
regions, etc. A history passing through two such regions with different values of χ,
is a history which has two spacelike surfaces with different “times”, χ.

By using the word “time” in this discussion I do not mean to imply that any
of these variables is the preferred time of Hamiltonian quantum mechanics. I shall
argue below that they are not. It is through such variables, however, that the
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Fig. 12: Superspace. A cosmological history is a four dimensional
cosmological spacetime with matter fields upon it. A two dimensional
representation of such a history is shown in the upper left of this figure
proceeding from a big bang to a big crunch. In the gaussian gauge of
(2.3) a cosmological history can be thought of as a succession of three-
dimensional geometries and spatial matter field configuration. Super-
space is the space of such three-dimensional geometries and matter field
configurations. A “point” in superspace is particular three-geometry and
spatial matter field configuration. The succession of three-geometries and
matter fields that make up a four-geometry and field history, therefore,
trace out a path in superspace.

canonical notion of configurations on several different spacelike surfaces is defined.
More general regions can be considered that make use of the proper time in the
full configuration space {t, hij(x), χ(x)}. For example, one could consider coarse
grainings in which the proper time t was specified between spacelike surfaces labeled
by χ.

Given a set of exclusive regions in the configuration space, the set of fine-
grained histories can be partitioned into exhaustive and exclusive classes by their
behavior with respect to these regions, exactly as in the general discussion of the
preceding section. Exhaustive sets of coarse-grained sets of alternative histories
histories thus can be defined. As a simple example, consider the coarse-grainings
specified by one region R in superspace that is thin in the χ direction. The fine-
grained histories can be partitioned into the classes:

h0 : histories that never pass through R,
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h1 : histories that pass through R at least once.

These classes might be described as follows: h1 is the class of histories that have
at least one spacelike surface with the specified χ, the specified range of hij(x),
and other matter fields, and any value of t. h0 is the class with no such spacelike
surfaces.

A more refined coarse graining would be

h̃0 : histories that never pass through R,

h̃1 : histories that pass through R once,

h̃2 : histories that pass through R twice,

h̃3 : histories that pass through R three times, etc.

In such a coarse graining the number of spacelike surfaces with given three-geometry
and spatial field configuration in the four-geometry is specified.

The above discussion of coarse graining is incomplete on at least two important
physical issues that are topics for further research.

1) Which Coarse Grainings Make Sense? We know from non-relativistic
quantum mechanics that it is possible to specify coarse grainings in words that make
no sense when examined in the full light of the mathematics of functional integrals
(e.g. Hartle, 1988a). Consider, for example, partitioning the fine-grained paths
of a non-relativistic particle according to how many times they cross a segment of
timelike surface. Such a partition can be defined in a lattice approximation to the
sums over histories. In the continuum limit, however, the amplitude for any fixed,
finite number of crossings vanishes. This is because the paths are non-differentiable
and the expected number of crossings is infinite. Which of the coarse grainings
of geometries sketched above fail to make sense in this manner? We need a more
explicit and manageable definition of a sum over geometries to find out.

2) Which Coarse Grainings do We Use? Our observations fall far short of
determining anything like the three-geometry on a spacelike surface or the spatial
matter field configurations there. We deal with much coarser grainings of the uni-
verse that are heavily branch dependent in the sense of Section II.8. How are they
most honestly described as partitions of the fine-grained histories discussed above?

With these caveats in mind, we can pass on to the third element of a gener-
alized quantum mechanics for spacetime — the decoherence functional. For sum-
over-histories quantum mechanics the decoherence functional is naturally defined
on a set of coarse-grained histories {hi} as

D(hi, hj) =

∫
hi,C

δgδφ

∫
hj ,C

δg′δφ′ei(S[g,φ]−S[g′,φ′])/h̄ . (V.2.4)

Here, S is the action for gravity and matter fields. The integral is over four-
dimensional metrics, g, and field configurations, φ, that lie in the partition hj . The
integral over g′ and φ′ is similarly defined with respect to the partition hj . It is
assumed that the initial and final conditions on the histories are incorporated in the
sum over histories as conditions, C, on the fine-grained histories in a way analogous
to that discussed in Section III.3. These conditions may involve both hi and hj
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as in the conditions that enforce the coincidence of the final endpoints in (II.2.2).
It is because of such conditions that (2.4) does not factor. I shall not discuss the
details of these conditions further because the exact forms representing, say, the “no
boundary” initial condition and final ignorance are still open questions. I assume
that they exist.

In addition to the conditions, C, several other ingredients of the functional
integral need to be supplied. These include specification of the parametrization of
the sum-over-geometries, the measure, the gauge fixing machinery, and the contour
of integration. A few aspects of these problems are discussed in the next subsection.
Until they are specified equations like (2.4) must be regarded as schematic forms.

Using this decoherence functional, decoherent sets of histories can be iden-
tified and probabilities assigned to them that approximately obey all the rules of
probability theory. There is, in general, no possible choice of time variable such
that this quantum mechanics of spacetime can be put into Hamiltonian form. For
that to be the case, we would need a time function on superspace whose constant
time surfaces the paths cross once and only once as in Fig. 11. There is none. Put
differently, there is no purely geometrical quantity that uniquely labels a spacelike
hypersurface. The volume of the universe, for example, may single out just a few
surfaces in a classical cosmological history, but in quantum mechanics we must
consider all possible histories. A non-classical history may have arbitrarily many
surfaces of a given volume.

While we do not recover a Hamiltonian formulation precisely and generally, we
may recover it approximately in restricted domains of superspace, for special coarse
grainings, and for particular initial conditions. Suppose, for example, that the initial
condition were such that for coarse grainings defined by sufficiently unrestrictive
regions of superspace, R, in a regime of three geometries much larger than the
Planck scale, only a single spacetime geometry, ĝ, contributed to the sum defining
the decoherence functional (Fig. 13). Then if

S[g, φ] = SE [g] + SM [g, φ] , (V.2.5)

we would have approximately

D (hi, hj) '
∫
hi,C

δφ

∫
hj ,C

δφ′ ei(S[ĝ,φ]−S[ĝ,φ′])/h̄ . (V.2.6)

The remaining sum over φ(x) defines the quantum mechanics of a field theory in the
background spacetime ĝ. Any family of spacelike surfaces in this background picks
out a unique field configuration since the sum is over fields that are single-valued on
spacetime. The field paths are then single-valued in any time defined by a foliating
family of spacelike surfaces, there is a notion of causality, and we recover an ordinary
field theory in the background spacetime ĝ. Because the field histories are single
valued in time the sums over fields may be factored across any spacelike surface of
the geometry ĝ, as in Section III.4, and an equivalent Hamiltonian formulation of
this quantum mechanics recovered.

Typical proposals for theories of the initial condition do not single out a single
classical history for the late universe. It is hard, for example, to see how a sim-
ple initial condition could summarize all the complexity we see in our particular
history. Rather typical proposals, such as the “no boundary” proposal, predict an
ensemble of possible decohering background, classical spacetimes. This will be dis-
cussed in more detail in Section VI. In each member of the ensemble an approximate
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Fig. 13: Recovery of Hamiltonian quantum mechanics in the late uni-
verse. The figure shows a schematic representation of the superspace of
three-geometries and spatial matter field configurations. The large three-
geometries of the late universe are contained in the region surrounded
by the dotted line. For some initial and final conditions it may be true
that, for coarse grainings that fix spacetime geometry only on scales well
above the Planck length, only a class of decoherent classical spacetimes
contribute to the sum-over-histories defining the decoherence functional.
The remaining sum over matter fields is then over histories that assume
one and only one spatial field configuration on any of the spacelike sur-
faces of the classical geometry. That sum then defines a decoherence
functional for the matter fields that does have an equivalent Hamilto-
nian formulation. The possible preferred times are the preferred time
directions of the classical spacetimes. In this way Hamiltonian quantum
mechanics could be an emergent, approximate feature of the late uni-
verse appropriate to those initial conditions and coarse grainings that
imply approximately classical spacetime there.
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Hamiltonian quantum mechanics is the associated background spacetime could be
constructed. If an initial condition does not predict decoherent quasiclassical space-
time on familiar scales it is simply inconsistent with observation in a manifest way.

It would be in this way that the familiar Hamiltonian framework of quan-
tum mechanics emerges as an approximation appropriate to the classical spacetime
about our special position in the late universe as a consequence of its particular
initial condition.

V.2.4. Extensions and Contractions

The extension of the quantum mechanics of spacetime described in the preceding
subsections to topologies other than R ×M3 presents no issues of principle. The
fine-grained histories consist of the variety of manifolds allowed in the defining
sums over histories with metrics and matter fields upon them. Coarse grainings
are partitions of these fine-grained histories into exclusive classes. The decoherence
functional would be constructed as in (2.4) with additional sum over manifolds in
the allowed class, for example as

D(hi, hj) =
∑

MM ′
ν(M)ν(M ′)

∫
hi,C(M)

δgδφ

∫
hj ,C(M)

δg′δφ′

× exp
{
i
(
S[g, φ,M ]− S[g′, φ′,M ′]

)
/h̄
}
, (V.2.7)

where ν(M) is a positive weight on the class of manifolds summed over.∗ The
further elements which need to be specified when topology is not fixed include
the weight ν(M) and the dependence of the action, S, and conditions, C, on the
manifolds. A more serious problem is to identify the physically meaningful coarse
grainings.

As the discussion in Sections V.2.2 and III.4 show, the predictions of sum-
over-histories quantum mechanics can coincide with a Hamiltonian formulation for
particular coarse grainings when histories are single-valued in a physical time. Thus,
a sum-over-histories formulation is general enough to deal both with theories that
have such a physical time and those that do not. Were there a physical time
variable waiting to be discovered in spacetime theories, it might be still instructive
to begin with a sum-over-histories point of view. Alternatively, a preferred time can
be introduced into the theory by imposing restrictions on the class of fine-grained
histories.

To formulate a canonical quantum gravity in sum-over-histories terms first
identify the extended configuration space {Qα} that includes the physical time.
Then, within that space identify surfaces of constant time and restrict the fine-
grained histories to paths that are single-valued in that time. Finally construct the
decoherence functional according to (2.2) for suitable action and measure.

Consider by way of example, the popular choice of the trace of the extrinsic
curvature, K, as a canonical time variable (Kuchař, 1972, York 1972). We could
consider a superspace consisting of K and the conformal three-metric h̃ij(x). The

∗ It is assumed that the sum is over a class of manifolds that is classifiable. This is
not the case for the class of all four-manifolds. For some discussion of this issue see
Hartle (1985b), Geroch and Hartle (1986) and the references therein.
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fine-grained histories would then be paths in this superspace that are single-valued
in K. Appropriate coarse grainings would define alternative values of h̃ij(x) and
matter fields at given values of K. This choice of fine-grained histories is not
generally covariant in the sense that term is used here because a general metric may
have many surfaces of a given value of K. The canonical fined-grained histories are,
therefore, a non-covariant restriction of the general set. Nevertheless the resulting
quantum mechanics may still be of interest to investigate, and the sum-over-histories
formulation may provide interesting an alternative tool with which to do so.

V.3. The Construction of Sums Over Spacetime Histories

I would now like to turn to the more technical issue of what one means by the
sums over histories defining the decoherence functional. The particular method I
shall employ, although still completely formal, will, through increased concreteness,
shed some light on the diffeomorphism invariance of the theory and its connection
with the role of a preferred time.∗ For true concreteness we should consider lattice
techniques for computing sums over geometries using, say, the methods of the Regge
calculus.∗∗

We were not able to construct a Hamiltonian quantum mechanics of spacetime
that preserved the general covariance of the classical theory because Hamiltonian
quantum mechanics required a preferred family of spacelike surfaces. One set of
spacelike surfaces is as good as any other. However, there is a standard trick in
quantum mechanics that is often useful in constructing amplitudes for theories with
such symmetries. We extend the description of the histories with auxiliary labels
that break the symmetry. We calculate amplitudes as always, but we make the
rule that physically acceptable coarse grainings ignore these labels so that we sum
amplitudes over them before squaring to calculate probabilities.

The most familiar example is in the theory of identical particles. We can
begin a discussion of N identical particles by introducing N coördinates, ~Xi, i =
1, · · · , N where the label i distinguishes one particle from another. A general wave
function ψ( ~X1, · · · , ~XN ) characterizes a state in which one particle is distinguishable
from another. However, when we sum that wave function over different possible
values of the label for each argument we symmetrize it. The symmetry reflects
the indistinguishability of the particles and the unobservability of the label. Other
examples are the use of gauge variant fields rather than gauge invariant ones to
describe gauge theories and the use of an unobservable proper time label to describe
the relativistic particle.

In the language of decoherence functionals, the labels are treated differently
from other variables in the final condition representing future ignorance. For ex-
ample, in the sum-over-histories decoherence functional of eq.(II.2.2) the final δ-
function enforcing the coincidence of the paths at the final time does not involve
the lavels. The final values of the label variables are summed separately in the ex-
pression for the decoherence functional. Put differently but equivalently, the inner
product defining the overlap between different branches in (II.4.4) is in the Hilbert
space of physical variables. If it is represented in terms of wave functions on an
extended configuration space, including the label variables, these labels must be

∗ The material in this subsection was reported in Hartle (1989b).
∗∗ See, e.g. Hamber and Williams (1985, 1986ab), Hamber (1986), Hartle (1985a,

1986a, 1989a).
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integrated out of each wave function separately before constructing the overlap on
the physical variables.

We can do the same thing with time. We introduce labels for a preferred
family of spacelike surfaces. We construct quantum amplitudes by the familiar
rules using these surfaces as the preferred time. Since the labels are unobservable,
we ignore these labels in all coarse grainings. By introducing auxiliary labels we
break general covariance. By integrating over them we restore it. I will now work
out this idea in some detail focussing, for convenience, on amplitudes rather than
decoherence functionals. (It’s then one sum-over-histories to write rather then two.)

Isham and Kuchař (1985) have given a convenient formalism for the additional
labels needed to describe a preferred family of spacelike surfaces in spacetime. A
foliating family of spacelike surfaces is described by four functions, Xµ(τ, xi), that
specify on which spacelike surface a point of spacetime lies and where it lies in the
surface. We may think of these four functions as four additional scalar fields on
the spacetime or more physically as the readings Xµ = (T,Xm) of ideal clocks and
rods that give a system of coordinates for spacetime. If, for definiteness, we further
assume that the trajectories of the clocks at fixed Xm are orthogonal to the surfaces
of constant T , then the spacetime metric in these special coordinates is

ds2 = −dT 2 + smn(X, T )dXmdXn . (V.3.1)

The time T of the preferred coordinates supplies the preferred time of quantum
mechanics. The geometrical quantum variables are the components of the smn.
Thus we write for a state

ψ = ψ[T, smn(X), χ(X)] . (V.3.2)

This evolves by the Schrödinger equation

−i ∂ψ
∂T

+Hψ = 0 (V.3.3)

where H is the total Hamiltonian. For Einstein gravity we could construct H by
the standard canonical procedure from the action

`2SE = 2

∫
∂M

d3x
√
hK +

∫
M

d4x
√
−g(R− 2Λ) (V.3.4)

after (3.1) has been substituted into it. (` = (16πG)
1
2 is the Planck length in the

units with h̄ = c = 1 that are used throughout.) The inner product is

(ψ,ψ′) =

∫
δsmnδχ ψ̄(T, smn, χ)ψ′(T, smn, χ) . (V.3.5)

In relativity, however, we should be able to state our results invariantly us-
ing any spacelike surface, not just the special surfaces of constant T . Indeed, it is
important to do so to express the invariance of the theory under coordinate trans-
formations. Isham and Kuchař (1985) tell us how to do it. In a general system of
coordinates xµ = (τ, xi) the metric (3.1) is

ds2 =

[
−∇αT∇βT + smn∇αXm∇βXn

]
dxαdxβ . (V.3.6)
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Substitute this into the action (3.4). One obtains an action that is a functional
of the Xµ(x) and smn(x). Equivalently it may be thought of as a functional of
the embedding functions and the three-metric hij on a surface of constant general
coordinate τ . This is because smn and hij are related on that surface by

hij = smnDiX
mDjX

n +DiTDjT , (V.3.7)

Di being the derivative in the surface.
The action that results is for a parametrized theory in which the coördinates

Xµ have been elevated to the status of dynamical variables coupled to curvature.
The theory is invariant under diffeomorphisms because the coordinates (τ, xi) were
arbitrary. It is not, however, generally covariant because gravitational phenomena
are now described by four scalar fields Xµ in addition to the metric. As a con-
sequence of diffeomorphism invariance there are four constraints. Classically they
can be written

nµPµ +H(πij , hij , πχ, χ) = 0 , (V.3.8a)

and
(DiX

µ)Pµ +Hi(πij , hij , πχ, χ) = 0 . (V.3.8b)

Here, H and Hi are the familiar Hamiltonian and momentum constraints of the
classical theory – functions of the three-metric, hij , its conjugate momentum, πij ,
the scalar field, χ, and its conjugate momentum, πχ. Pµ is the momentum conjugate
to Xµ. nµ[Xµ, hij ] is the unit normal to the constant T hypersurfaces. It can be
expressed in terms of the Xµ and hij alone because nµ ∝ εµνστ (D1X

νD2X
σD3X

τ ).
Quantum mechanically the states are described by wave functions

ψ = ψ
[
Xµ(x), hij(x), χ(x)

]
(V.3.9)

that satisfy operator forms of the constraints (3.8)

inµ
δψ

δXµ(x)
= H

(
−i δ

δhij(x)
, hij(x),−i δ

δχ(x)
, χ(x)

)
Ψ , (V.3.10a)

iDiX
µ δψ

δXµ(x)
= Hi

(
−i δ

δhij(x)
, hij(x),−i δ

δχ(x)
, χ(x)

)
Ψ . (V.3.10b)

Eq. (3.10a) is the covariant form of the Schrödinger equation (3.3) (i.e. the
Tomonaga-Schwinger equation). Eq. (3.3) follows from (3.10a) by considering only
variations in Ψ that uniformly advance a surface of constant T . The additional con-
straints (3.10b) ensure that Ψ is independent of the choice of spatial coordinates,
xi.

So far, the formalism is an exotic version of quantum mechanics but familiar
in all of its basic aspects. Let us now turn to the calculation of probabilities. For
simplicity suppose that the universe is in a pure state characterized by a wave
function Ψ[Xµ, hij , χ]. The crucial decision in the calculation of probabilities is
the status of the variables Xµ(x). If, as here, they are unobservable labels then
amplitudes should be summed over them and then squared to yield probabilities
for prediction. Thus, for example, the amplitude Ψ[hij , χ] that a single spacelike
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surface in the geometry has a metric hij(x) and a matter field configuration χ(x)
is

Ψ
[
hij(x), χ(x)

]
=

∫
foliations

δXµ(x)ψ
[
Xµ(x), hij(x), χ(x)

]
. (V.3.11)

The integration is over all foliations of spacetime. In particular, the integration is
over time, T , — both positive and negative values.

In constructing the sum (3.11) general covariance is restored, for if the Xα

are integrated over diffeomorphism invariant range, the constraints (3.10) imply∗

for Ψ
H(x)Ψ = 0, Hi(x)Ψ = 0. (V.3.12)

Another way to see that covariance is restored is to show that the amplitude
so defined can be restated as a sum over geometries and field configurations and
nothing else. Eqs.(3.10) are formally like the Schrödinger equation of ordinary
quantum mechanics. In a familiar way, Ψ could be constructed as a sum over
hij(x), φ(x), and Xµ(x) that matches the initial condition and the arguments of Ψ.
The sum over Xµ(x) in (3.11) is just that needed in addition to hij(x) to sum over
all four-geometries. ¿From the form of the metric (3.6), one sees that by summing
over all the Xµ(x) one is, in effect, summing over all the components of the metric
— the g00, g0i parts as well as the hij .

There is a good deal of gauge invariance in such a sum that must be fixed.
Under an infinitesimal diffeomorphism, xα → xα + ξα(x), the scalar Xµ transform
as

Xµ(x)→ Xµ(x) + ξα(x)∇αXµ(x) . (V.3.13)

A diffeomorphism that maps a region of the manifold into itself must not affect
the ranges of the coördinates xα; ξα must, therefore, vanish on the boundaries.
Thus, the values of Xµ(x) on the final surface cannot be transformed away. Put
differently by a diffeomorphism we can arrange for g00 = −1 and g0i = 0 in between
two spacelike surfaces. These are, in fact, the coördinates of (3.1). However, the
specification of the surface of interest in such coördinates, Xµ(x), carries physical
information — the location and orientation of the surface with respect to the initial
condition. The integration over foliations thus includes, in particular, an integration
over the physical time that separates the surface from the initial condition over
both positive and negative values. Including both positive and negative values is
necessary to ensure the constraints (3.13) which express diffeomorphism invariance.
(See, e.g. Teitelboim, 1983a, Halliwell and Hartle, 1990.)

V.4. Some Open Questions

The slight improvement in concreteness afforded by the methods of the last
section over the sketchy development of the preceeding one should not obscure the
fact that there are many unresolved issues, both mathematical and physical, in this
approach to a quantum kinematics of cosmology. Starting with the more technical
issues, there is the issue of the measure and gauge fixing in the defining sums over
geometries. A measure can be induced from the formal “Liouville” measure in
the “Schrödinger” quantum mechanics thus supplying a kind of unitarity in the
label time Xµ(x) But, how exactly is the sum-over-foliations to be carried out?
It is not a simple functional integral because arbitrary functions Xµ(x) will not

∗ For more details see Halliwell and Hartle (1990).
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describe an imbedding that is non-self-intersecting. What exactly is the connection
of the present discussion with Teitelboim’s (1983abc) propagator approach and how
exactly is the machinery for diffeomorphism fixing to be implemented?

Turning to more physical questions, there is the issue of how to implement
specific proposals for the initial condition especially the “no boundary” proposal?
What is the correct representation of final ignorance? What are the physically
appropriate and mathematically sensible coarse grainings to be allowed? What are
the details of the recovery of the limit of Hamiltonian quantum mechanics when
spacetime in classical? In particular, what is the exact connection between the
observables of familiar quantum mechanics in fixed backgrounds and the regions of
superspace? Are such regions enough? Are more complicated partitions of histories
useful? How does transformation theory emerge? What is the objective mechanism
for the decoherence of spacetime? That is, what are the sets of decohering histories
with high classicality? How are the semiclassical rules shortly to be described to
be justified in quantum cosmology?

Finally, how is such a program to be carried out in more fundamental theories
of quantum gravity such as string theory or in theories where spacetime is perhaps
not even a basic variable?

In view of these remaining issues, perhaps the main message that I would hope
the reader would take away from this part of these lectures is just the following: The
familiar structure of quantum mechanics is closely entwined with the assumption
of a fixed background spacetime. If we are to have a generally covariant quantum
theory of spacetime we may have to generalize this framework. Feynman’s sum-
over-histories framework may supply such a generalization in which Hamiltonian
quantum mechanics emerges as an approximation appropriate to our specific initial
conditions and our special place in the late universe.

VI. PRACTICAL QUANTUM COSMOLOGY

VI.1. The Semiclassical Regime

The aim of the quantum mechanics of cosmology described in the previous sections
is to extract predictions for correlations among observations of the universe today
from a theory of its dynamics and its initial condition. By and large, however,
the framework has not been applied in detail to produce predictions from anything
that might be called a theory of the initial condition. The historical reason is
that theories of the initial condition, and the quantum mechanical framework for
extracting predictions from these theories, are developing together. Earlier work
has, for the most part, focused on predictions of the ensemble of possible classical
spacetimes of the late universe. This is the prediction that can be confronted
most directly with observation. Practical prescriptions for extracting predictions
of classical spacetime from the wave function of the universe were developed by
analogy with non-relativistic quantum mechanics. By and large, these prescriptions
assume the decoherence of alternative classical spacetimes and identify the form of
wave functions from which one can expect classical correlations in time. These are
(as of mid 1990) the rules for practical quantum cosmology. It seems appropriate
to review them, if only to pose the problem of justifying them in terms of a more
precise quantum framework such as that of Section V.

VI.2. The Semiclassical Approximation to the Quantum Mechanics of a
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Non-Relativistic Particle.

Let us recall how the semiclassical approximation works in non-relativistic quantum
mechanics. Suppose we are given at t = 0, an initial wave function ψ(X). Then the
amplitude to arrive at position X at time t having passed through position intervals
∆1 · · ·∆n at time t1, · · · , tn is (see, e.g. Caves, 1986, 1987, Stachel, 1986):

< Xt|P∆n
(tn) · · ·P∆1

(t1)|ψ >=

∫
dX0

∫
[∆α]

δX eiS[X(t)]/h̄ψ(X0) . (VI.2.1)

The sum is over all the paths that start at X0 at t = 0, pass through the intervals
∆1, · · · ,∆n at the appointed times, and wind up at X at time t (Fig. 14).
We recover classical dynamics when this path integral can be done by the method
of steepest descents. For then, only when ∆1, · · · ,∆n lined up so that a classical
path from X0 to X passes through them will the amplitude (2.1) be non-vanishing.
Classical correlations are thus predicted. Classical correlations are, however, as we
know from Section II, only one aspect of classical behavior. The other is deco-
herence. However, here I am assuming, as in Section II.10, that the particle has
been localized in intervals ∆1, · · · ,∆n by a “measurement” so that decoherence is
accomplished by the interactions of the localizing apparatus with the rest of the
universe.

Whether a steepest descents approximation is appropriate for the path inte-
gral depends on the intervals ∆1, · · · ,∆n, the times t1, · · · , tn, and the initial wave
function ψ(X). The ∆1, · · · ,∆n must be large enough and the times t1, · · · , tn
separated enough to permit the destructive interference of the non-classical paths
by which the steepest descents approximation operates. But, ψ(X) must be right
as well. There are a number of standard forms for ψ(X) for which the steepest
descents approximation can be seen to be valid. For example, if ψ(X) describes a
wave packet with position and momentum defined to an accuracy consistent with
the uncertainly principle, and the time intervals between the tk are short compared
with the time over which it spreads, and the ∆α are greater than its initial width,
then only a single path will contribute significantly to the integral — that clas-
sical path with the initial position and momentum of the wave packet. Another
case is when ψ(X) corresponds to two initially separated wave packets. Then, two
different classical paths contribute to the steepest descents approximation to (2.1)
corresponding to the two sets of initial data. A unique classical trajectory is not
predicted but rather one of two possible classical evolutions each with some prob-
ability. That is, given one of the ∆’s a classical correlation of the rest is predicted.
More precisely, the conditional probability for a particular classical trajectory given
that the particle passed through an interval that lies on one and not on the other
is a number near unity.

In general, therefore, a rather detailed examination of ψ(X) is needed to
determine if there are classical correlations predicted and what they are. However,
there is a simple case where these predictions can be read off immediately. This
is when the wave function ψ(X, t) is well approximated by a linear combination of
terms like

ψ(X, t) ≈ ∆(X, t) e±iS(X,t)/h̄ (VI.2.2)

where ∆(X, t) is a real slowly varying function of X and S/h̄ is a real, rapidly
varying function of X. Eq.(2.2) thus separates ψ into a slowly varying prefactor
and a rapidly varying exponential. It follows from the Schrödinger equation in these
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Fig. 14: The semiclassical approximation to the quantum mechanics of a non-
relativistic particle. Suppose at time t = 0 the particle is in a state described is
a wave function ψ(X0). Its subsequent evolution exhibits classical correlations in
time if successive determinations of position are correlated according to classical
laws, that is, if the amplitude for non-classically correlated positions is near zero.
The existence of such classical correlations is, therefore, a property not only of the
initial condition but also the coarse graining used to analyse the subsequent motion.
Classical correlations are properties of coarse-grained sets of histories of the particle.
The amplitude for the particle to pass through intervals ∆1,∆2, · · · ,∆n at times
t1, · · · , tn and arrive at X at t is the sum of exp (iS) over all paths to X(t) that
pass through the intervals, weighted by the initial wave function. For suitably spaced
intervals in time, suitably large intervals ∆i, and suitable initial wave function ψ,
this sum may be well approximated by the method of steepest descents. In that
case, only when the intervals ∆i are aligned about a classical path will there be
a significant contribution to this sum. Classical correlations are thus recovered.
How many classical paths contribute depends on the initial condition ψ(X0). If,
as illustrated here, it is a wave packet whose center follows a particular classical
history then only that particular path will contribute significantly. By contrast, if
ψ is proportional to exp [iS(X0)] for some classical action S(X0), then all classical
paths that satisfy mẊ = ∂S/∂X will contribute. Then the prediction is of an
ensemble of classical histories, each one correlated accords the classical equations
of motion.
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circumstances that S is a classical action approximately satisfying the Hamilton-
Jacobi equation

−∂S
∂t

+H

(
∂S

∂X
,X

)
= 0 , (VI.2.3)

where H is the Hamiltonian:

H =
P 2

2M
+ V (X) . (VI.2.4)

The forms (2.2) are called semiclassical approximations. When the semiclassi-
cal approximation (2.2) is inserted in (2.1), the functional integral and the integral
over X0 are integrals of a slowly varying prefactor with a rapidly varying exponent.
This is immediately of the form for which the steepest descents approximation will
be valid for suitable intervals ∆1, · · · ,∆n and times t1, · · · , tn. Like the two wave
packet example above, a unique classical trajectory is not predicted. The wave
function (2.2) is not peaked about some particular initial data. In fact, by the
slowly varying assumption for ∆, it treats many X0’s equally. However, the wave
function (2.2) does lead to the classical connection between position and momen-
tum implied by the action S. If ψ is integrated over a wave packet of appropriate
width, centered about X0, then, because

S(X) = S(X0) +

(
∂S

∂X

)
X0

(X −X0) + · · · (VI.2.5)

only momenta satisfying the classical relation

P =
∂S

∂X
(VI.2.6)

will contribute significantly. The width of the packet must be wide enough to allow
for rapid variation of exp(iS/h̄) but not so wide that higher terms in the expansion
(2.5) are important. Thus, for suitable subsequent intervals ∆i and times, t1, · · · , tn
a semiclassical wave function predicts not one classical trajectory, neither all of
them, but just those for which the initial momenta are related by (2.6) for the
particular classical action S. It thus predicts an ensemble of classical trajectories,
each differing from the other by the constant needed to integrate (2.6).

The prefactor ∆ is also of significance. |∆(X0, 0)|2 is probability of an initial
X0. Given that subsequent values of X are correlated by the classical trajectory
with this initial X and the initial momentum (2.6), |∆(X0, 0)|2 may be thought
of as the probability of a particular classical trajectory crossing the surface t = 0,
although the variation over trajectories is necessarily weak. The order h̄ implication
of the Schrödinger equation is that

∂|∆|2

∂t
+5 .

(
|∆|25S

M

)
= 0 (VI.2.7)

so that the probability density |∆|2 is conserved along the trajectories.

VI.3. Semiclassical Prediction in Quantum Cosmology
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The conclusion of the above analysis in particle quantum mechanics is that
when the wave function is well approximated by a semiclassical form that is a linear
combination of terms like (2.2), then it predicts that sufficiently crude observations
of position and momentum will be correlated along one of the classical trajectories
in the ensemble determined by the action S with a relative weight proportional
to the prefactor squared. In quantum cosmology this conclusion is generalized to
superspace to provide a direct prescription for extracting semiclassical predictions
from the wave function of the universe.

This generalization has been widely discussed in the literature and I shall
only briefly review it here. For more details and references to earlier literature, the
reader might consult the papers of Halliwell (1987) and Padmanabhan and Singh
(1990).

The wave function of the universe is the amplitude Ψ[hij(x), χ(x)] introduced
in (V.3.11) that the universe has a spacelike surface with three-metric hij(x) and
three-dimensional matter field configurations χ(x). This wave function is fixed by
the initial condition. For example, in the “no boundary” proposal, it is prescribed
directly as a certain Euclidean functional integral as described in the lectures of
Halliwell in this volume. To illustrate a possible semiclassical approximation to Ψ
consider a linear combination of terms of the form.

Ψ [hij(x), χ(x)] = ∆[hij(x)]e±iS0[hij(x)]/`2ψ [hij(x), χ(x)] , (VI.3.1)

where ∆ and ψ are slowly varying functionals of hij(x) and S0[hij(x)]/`2 is a real
classical action for gravity alone. That is, S0[hij(x)] is the action

S0 = 2

∫
∂M

d3x
√
hK +

∫
M

d4x
√
−g(R− 2Λ) (VI.3.2)

evaluated along a particular extremum having the metric hij(x) on ∂M . (Here,
as usual ` = (16πG)1/2 is the Planck length and Λ is the cosmological constant.)
Which extrema contribute to (3.1) is determined by the initial condition. We shall
return to the conditions that separate ∆ from ψ in a moment.

The action S0[hij(x)]/`2 satisfies the classical constraints (Peres, 1962, Ger-
lach, 1969)

`2Gijk`(x)πij(x)πk`(x) + `−2h
1
2
(
2Λ−3 R(x)

)
= 0 , (VI.3.3a)

Djπ
ij(x) = 0 , (VI.3.3b)

where the momentum πij(x) conjugate to hij(x) is

`2πij(x) =
δS0

δhij(x)
. (VI.3.4)

In these equations Di is the derivative constructed from the metric hij(x), 3R(x)
is that metric’s scalar curvature and

Gijk` = 1
2h
− 1

2 (hikhj` + hi`hjk − hijhk`) . (VI.3.5)
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The gradient (3.4) defines a vector field on superspace and its integral curves are
the classical spacetimes that give rise to the action S0. For example, if we work in
the guage where four-metrics have the form

ds2 = −dτ2 + hij(τ,x)dxidxj , (VI.3.6)

then eq.(3.4) becomes
1
2

dhij
dτ

= Gijk`
δS0

δhk`
. (VI.3.7)

Integrating (3.7) we recover a four-metric (3.6) that satisfies the Einstein equation.
The values of ψ along such an integral curve define ψ as a function of τ

ψ = ψ [hij(τ,x), χ(x)] = ψ [τ, χ(x)] . (VI.3.8)

The wave function Ψ[hij(x), χ(x)] must satisfy the operator form of the con-
straints (V.3.12) that implement the underlying gravitational dynamics. The three
momentum constraints, HiΨ = 0, guarantee that Ψ is independent of the choice
of coördinates in the spacelike surface. The fourth constraint may be written out
formally as

H(x)Ψ =

[
−`2∇2

x + `−2h
1
2 (2Λ−3 R) + h

1
2 T̂nn(χ,−iδ/δχ)

]
Ψ = 0 . (VI.3.9)

Here,

∇2
x = Gijk`(x)

δ2

δhij(x)δhk`(x)
+

 linear derivative
terms depending

on factor ordering

 (VI.3.10)

and T̂nn is the stress-energy of the matter field projected into the spacelike surface
(the Hamiltonian density) expressed as a function of the matter field χ(x) and the
operator −iδ/δχ(x) corresponding to its conjugate momentum. This fourth con-
straint is called the Wheeler-DeWitt equation (DeWitt, 1967, Wheeler, 1968). The
implications of the Wheeler-DeWitt equation (3.9) for that part of the semiclassical
approximation that varies slowly with three-metric may be found by inserting the
approximation (3.1) into (3.9), using the Hamilton-Jacobi equation (3.3a), and ne-
glecting second derivatives of slowly varying terms with respect to the three-metric.
The result is an equation for ∆ψ that can be organized in the following form:

−iψ
[
(∇2

xS0)∆ + 2Gijk`
δS0

δhij

δ∆

δhk`

]
+ ∆

[
−i2Gijk`

δS0

δhij

δψ

δhk`
+ h

1
2 T̂nnψ

]
= 0 .

(VI.3.11)
We now impose the condition that the two terms in (3.11) vanish separately. This
defines the decomposition of the slowly varying part, ∆ψ, into ∆ and ψ.

The condition on the ψ resulting from (3.11) may be rewritten using (3.7) and
(3.8) as

i
∂ψ

∂τ
= h

1
2 T̂nn

(
χ,−i δ

δχ

)
ψ . (VI.3.12)
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This is the Schrödinger equation in the field representation for a quantum matter
field χ executing dynamics in a background geometry of the form (3.6).

The condition on ∆ arising from (3.11) implies the following relation

Gijk`
δ

δhij

(
|∆|2 δS0

δhk`

)
= 0 . (VI.3.13)

This is the equation of conservation of the current |∆|2(δS0/δhij) in superspace.
It is the analog of the similar relation (2.7) in non-relativistic quantum mechanics.
Indeed, in view of (3.7), this is just the statement that the “density in superspace”,
|∆|2, is conserved along classical trajectories, the integral curves of (3.7).

The Schrödinger equation (3.12), the conservation law (3.13), and the analogy
with non-relativistic quantum mechanics suggest the following rule for extracting
predictions from a semiclassical approximation: Wave functions of the form (3.1)
predict that sufficiently coarse-grained histories of spacetime variables will be cor-
related as on one of the classical spacetimes in the ensemble defined by S0[hij(x)]
through (3.7). The various possible classical histories occur with a probability
weight proportional to |∆|2 reflecting the specific initial condition.∗ The ensemble
includes the spacetimes predicted by each contributing action if several different
terms of the form (3.1) contribute to the semiclassical approximation. For coarse-
grained histories involving matter fields as well as spacetime variables, the quantum
mechanics of the matter fields will be that of field theory in one of the classical
spacetimes in the ensemble. In short, a semiclassical wave function that is a super-
position of terms like (3.1) predicts classical spacetime and quantum matter field
theory in that classical curved spacetime.

Many other semiclassical approximations are possible besides the one based
on the form (3.1) and the action (3.2). For example, an approximate form in
which both spacetime and some matter variables behave classically would involve
an action defining the rapidly varying part of the wave function which depended
on both kinds of variables. One can consider ensembles of classical geometries
driven by expectation values of matter fields in which the constraints (3.3) contain
such terms as sources. Systematic approaches to obtaining such approximate wave
functions by expanding the solutions to the Wheeler-DeWitt equation in powers of
the inverse Planck length have been extensively discussed.† Indeed, it is essential

∗ The conserved current can be used to define a probability density on classical tra-
jectories. More precisely, this is the relative probability that a classical trajec-
tory crosses one part of a surface in superspace orthogonal to these trajectories
rather than crossing another part. It is the conservation of current expressed by
eq.(3.13) that makes the interpretation consistent and natural as has been stressed
by Vilenkin (1988). This is consistent with thinking of |Ψ|2 as a probability density
on superspace because a flux through a hypersurface is related to the integrated su-
perspace probability density over a volume behind the hypersurface with a thickness
proportional to the local velocity. In a semiclassical approximation these notions
are all defined and both ways of calculating a probability density on classical tra-
jectories agree. Thanks are due to D. Page and A. Vilenkin for a discussion on this
point.
† See, e.g. Halliwell (1987) and Padmanabhan and Singh (1990) for discussion and

further references
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to consider approximations with both matter and geometry behaving classically
since the late universe is certainly not a solution of the vacuum Einstein equation.
The defining feature of all these semiclassical approximations is the separation of
the wave function into a part rapidly varying in certain variables governed by a
classical action and a more slowly varying part. There are different approximations
depending on what variables are distinguished in this way.

Of course, there is no necessity for a theory of the initial condition to imply a
wave function that can be well approximated by any semiclassical form like (3.1),
but it is likely that successful theories will. The reason is that a successful theory
must predict classically behaving spacetime on scales above the Planck length in the
late universe. If it does not it is simply inconsistent with observation in a manifest
way. A wave packet, not of the form (3.1), could still imply classical behavior and
indeed a particular classical spacetime. But a single classical history with all the
complexity of the present classical universe is unlikely to be predicted by a simple
theory of initial condition. An ensemble of possibilities not strongly preferred one
to the other in most features seems more natural. Present theories do, by and large,
predict the classical behavior of spacetime through semiclassical forms like (3.1).

As a simple application of this discussion which is relevant for this school,
consider the prediction of the value of the cosmological constant. We determine
the present effective value of the cosmological constant by fitting the observed
data on the expansion of the universe with solutions of Einstein’s equation. A
probabilistically distributed cosmological constant would be a consequence of an
initial condition that predicted an ensemble of classical universes, some with one
value of the effective Λ, measured by the expansion of the universe, some with
another. The associated wave function of the universe would be well approximated
by a semiclassical approximation. An example is the form:

Ψ [hij(x), χ(x)] ≈
∫
dΛ∆ [hij(x),Λ] cos

(
S0[hij(x),Λ]/`2

)
× ψ (hij(x),Λ, χ(x)) . (VI.3.14)

Universes with different Λ would, therefore, be predicted with a relative weight
proportional to |∆|2. It is argued elsewhere in this volume that, in the no boundary
proposal, a sum over wormhole topologies can be replaced at low energies by such an
integral over an effective Λ and further that ∆ will be essentially arbitrarily sharply
peaked about Λ = 0. The point to stress here is that, since the cosmological constant
is determined from the large scale motion of the classical universe, it is through a
prediction of the ensemble of classical possibilities and their relative weights that
we most honestly have a prediction of its value.

The above prescription for extracting semiclassical predictions from a wave
function for the universe is perhaps compelling on the basis of its analogy with
non-relativistic quantum mechanics. However, it should be possible to justify this
prescription on a more fundamental basis than this analogy as, for example, it
is justified in non-relativistic quantum mechanics in Section VI.2. Specifically, it
should be possible to supply a quantitative answer to the questions: How good an
approximation does a semiclassical form like (3.1) supply to the genuine probabili-
ties of the theory? How small are the probabilities for non-classical behavior of a set
of alternative histories that are coarse-grained according to the above prescription?

As in the non-relativistic quantum mechanics of Section VI.2, answers to such
questions require the probabilities for sets of histories involving coarse-grained al-
ternatives on more than one spacelike surface. A wave function of the universe on
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a single spacelike surface will not be sufficient. What is needed first is an analysis
of the decoherence of coarse-grained spacetime histories in the context of a general-
ized quantum mechanics like that of Section V. Suggestive calculations of spacetime
decoherence phenomena have been made by several authors (e.g. Zeh, 1986, 1988,
Kiefer, 1987, Fukuyama and Morikawa, 1989, Halliwell, 1989, and Padmanabhan,
1989) but not for sets of alternative histories. Then a calculation of the probabil-
ities for patterns of classical correlation in such sets of decoherent histories needs
to be carried out for particular theories of the initial condition. While the basic
ingredients of such a demonstration can be found in Section V — sum-over-histories
decoherence functional, coarse graining by regions in superspace, steepest descents
approximation to the integrals defining probabilities, etc. — filling in this sketch
represents an important class of outstanding problems.
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APPENDIX: BUZZWORDS
Only a casual inspection of the literature reveals that many interpreters of

quantum mechanics who agree completely on the algorithms for quantum mechan-
ical prediction, disagree, often passionately, on the words with which they describe
these algorithms. This is the “words problem” of quantum mechanics. The agree-
ment on the algorithms for prediction suggests that such disagreements may have
as much to do with people as they do with physics. This does not mean that
such issues are unimportant because such diverging attitudes may motivate differ-
ent directions for further research. However, it is important to distinguish such
motivation from properties of the theory as it now exists.

A few “buzzwords” characterize the words problem for quantum mechan-
ics. They are phrases like “reduction of the wave packet”, “many worlds”, “non-
locality”, “state”, etc. These are words that evoke or challenge some of the core
assumptions that guide physicists in their work. To avoid confusion among the
variety of preconceived meanings commonly held for such terms, they have been
avoided in the preceding discussion. Now, in this appendix, it seems appropriate
to return to a brief discussion of the author’s attitudes and preferences concern-
ing these words (circa mid-1990). These comments are collected together in this
appendix to stress that they are not essential to the preceding discussion and to
emphasize that they represent nothing further than the author’s own preferences
and opinions in these matters. The text’s discussion of the quantum mechanical
process of prediction for closed systems is self-contained as far as it goes and the
material in this appendix may be dispensed with. Alternatively, the reader may
choose different words with which to surround the discussion and different attitudes
to it. In this spirit no attempt has been made to describe, discuss, confront, or refer
to other discussions of these words.

1. State. In classical physics there is a description of a system at a moment of
time that is all that is necessary to both predict the future and retrodict the past.
The most closely analogous notion in quantum mechanics is the effective density
matrix, ρeff(t), of eq. (II.3.4) expressed either in the Heisenberg picture, as there,
or in the Schrödinger picture. However, this quantum mechanical notion of “state
at a moment of time”, has a very different character from the classical analog.
The future may be predicted from ρeff alone but to retrodict the past requires, in
addition, a knowledge of the initial condition. (See Section II.3.) The quantum
mechanical notion of state is, therefore, already considerably weaker in its power
to summarize probabilities than its classical analog for deterministic theories.

It is important to distinguish the notions of “state at a moment of time”
represented by ρeff(t) in the discussion in Section II from the initial condition of
the system represented by the initial Heisenberg ρ. Both are commonly referred to
as the “state of the system”. However, the conclusion of the discussion in Sections
III and IV is that while an initial condition, or its equivalent, is an essential feature
of the quantum mechanical process of prediction, a notion of “state at a moment
of time” is not. As Section II shows, the familiar theory may be organized without
this notion. When, as in quantum theories of spacetime, such as that in Section V,
there is no well defined notion of time it is unlikely that it is possible to introduce
a notion of “state at a moment of time”.

2. Reduction of the Wave Packet. Two senses of this phrase can be distin-
guished. The first concerns the updating of probabilities by an IGUS on acquisition
of information. The second concerns the evolution in time of the effective density
matrix, ρeff(t), corresponding to the notion of “state at a moment of time”. I shall
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consider these senses separately, first for the quantum mechanics of closed systems.
Then I shall discuss the evolution of the effective density matrices, ρs,eff(t), of
sub-systems under observation in the Copenhagen approximation.

Much has been made of the normalization of joint probabilities that occurs
in the calculation of the conditional probabilities for prediction [eq. (II.3.2)] or
retrodiction [eq. (II.3.3)]. An IGUS utilizing these formulae would update the
conditional probabilities of interest as new information is acquired (or perhaps lost).
There is, however, nothing specifically quantum mechanical about such updating; it
occurs in any statistical theory. In a sequence of horse races the joint probabilities
for a sequence of eight races is naturally converted, after the winners of the first
three are known, into conditional probabilities for the outcomes of the remaining
five races by exactly this process. All probabilities are available to the IGUS, but,
as new information is acquired, new conditional probabilities become relevant for
prediction and retrodiction.

For those quantum mechanics of closed systems that permit the construction,
according to (II.3.4), of an effective density matrix, ρeff(t), to summarize present
information for future prediction, the process of the reassessment of probabilities
described above can be mirrored in its “evolution” according to the following rule:
The effective density matrix, ρeff(t), is constant in the Heisenberg picture between
two successive times when data is acquired, tk and tk+1. When new information
is acquired at tk+1, ρeff(t) changes by the action of a new projection on each side
of (II.3.4) and division by a new normalizing factor. One could say that “the
state of the system is reduced”∗ at tk+1. It might be clearer to say that a new
set of conditional probabilities has become appropriate for future predictions and
therefore a new ρeff(t) is relevant.

It should be clear that in the quantum mechanics of a closed system this
“second law of evolution” for ρeff(t) has no special, fundamental status in the theory
and no particular association with a measurement situation or any physical process.
It is simply a convenient way of organizing the time sequence of probabilities that
are of interest to a particular IGUS. Indeed, as the development of Section II
shows, it is possible to formulate the quantum mechanics of a closed system without
ever mentioning “measurement”, “an effective density matrix”, its “reduction” or
its “evolution”. Further, as in the framework for quantum spacetime discussed in
Section V, there may be quantum mechanical theories where it is not possible to
introduce an effective density matrix at all, much less discuss its “evolution” or
“reduction”.

It is in the ideal measurement model of Section II.10, upon which the Copen-
hagen approximation to quantum mechanics is based, that we can connect the
reassessment of probabilities with the “reduction of the wave packet” on measure-
ment. There, as can be seen from (II.10.8), [cf. (II.3.4)-(II.3.5)] the effective density
matrix.

ρs,eff(tk) =
skαk(tk) · · · s1

α1
(t1)ρss

1
α1

(t1) · · · skαk(tk)

tr
[
skαk(tk) · · · s1

α1
(t1)ρss

1
α1

(t1) · · · skαk(tk)
] (A.1)

summarizes present information for future prediction of the subsystem under ob-
servation. Every projection operator in (A.1) is part of a measurement situation

∗ Typically it is not reduced very much! The P ’s of a coarse graining of a typical
IGUS fix almost none of the variables of the whole universe and therefore corre-
spond to very large subspaces of its Hilbert space. Most variables are still available,
untouched, for future projections.
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in this idealized model. That is, in the larger universe of apparatus and subsystem
each projection is exactly correlated with an exactly decohering record variable.
Thus, it is possible to say that ρs,eff(t) is constant in between measurements (in
this Heisenberg picture), but is “reduced” at a measurement.

Two remarks may be useful concerning the “reduction of the wave packet”
in the Copenhagen approximation. First, again, the quantum mechanics of a sub-
system under observation may be formulated directly in terms of probabilities for
histories [eq. (II.10.6)] without an effective density matrix or its reduction. To
introduce these notions is, therefore, to some extent a choice of words. Second,
and more importantly, the association of the “reduction” with “measurement” is a
special property of the ideal measurement model. This has suggested to some that
there is a physical mechanism behind the reduction of the wave packet. However,
in the more general situations in which a closed system is considered, there is no
necessary association of “reduction” with a measurement situation.

Do the Everett class of interpretations eliminate the “reduction of the wave
packet”? Some have said so. (Everett 1957, DeWitt 1970). The argument is crudely
that only probabilities for correlations at one moment of time — the “marvelous
moment now” — are of interest. For these ρeff = ρ and no further reduction need
be contemplated. However, in general, probabilities for histories involving more
than one time are of interest and for these sequences of projections are necessary.
(See Section V.1.2.) Then, the Everett interpretation can, if one so chooses, be
formulated in terms of a ρeff(t) that is “reduced”. On the other hand, the “re-
duction of the wave packet” is not a necessary element of a quantum mechanics of
cosmology. If one chooses, it need never be mentioned. It is, thus, no less necessary
or more necessary in the Everett class of formulations than it is in the Copenhagen
approximation to it. Its a matter of words. In a generalized quantum mechanics
these words may not even be possible.

3.The Measurement Problem. Quantum mechanics does not predict a partic-
ular history for a closed system; it predicts the probabilities of a set of alternative
histories. This is the case even when the histories constitute a quasiclassical domain
and refer to the “macroscopic” description of objects consisting of many particles.
Some describe this state of affairs as the “quantum measurement problem” or even
the “quantum measurement paradox”. However, such words can be confusing be-
cause there is no evidence that quantum mechanics is logically inconsistent, no
evidence that it is inconsistent with experiment, and no evidence of known phe-
nomena that could not be described in quantum mechanical terms.

If there is a “quantum measurement problem”, therefore, nothing said in
this exposition of quantum mechanics will resolve it. It is not a problem within
quantum mechanics; rather it seems to be a problem that certain researchers have
with quantum mechanics. Some find quantum mechanics unsatisfactory by some
standard for physical theory beyond consistency with experiment. The intuition
of others suggests that in domains where the predictions of quantum mechanics
have not yet been fully tested an experimental inconsistency will emerge and a
different theory will be needed. For example, perhaps the interference between
“macroscopically” different configurations predicted by quantum mechanics will
not be observed. (See, e.g. Leggett, 1980, Tesche, 1990). What is needed to
meet such standards, or to resolve such experimental inconsistencies, should they
develop, is not further research on quantum mechanics itself, but rather a new and
conceptually different theoretical framework. It would be of great interest to have
serious and compelling alternative theories if only to suggest decisive experimental
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tests of quantum mechanics.
4. Many Worlds. Quantum mechanics describes sets of alternative histories

of the universe and within a given set one cannot assign “reality” simultaneously
to different alternatives because they are contradictory. Everett (1957), DeWitt
(1970) and others have described this situation, not incorrectly, but in a way that
has confused some, by saying that all the alternative histories are “equally real”.
What is meant is that quantum mechanics prefers no alternative over another except
through its probability.

The author prefers the term “many histories” to “many worlds” as less con-
fusing and less inflammatory. However, either set of words, and no doubt others
as well, may be used to describe this theoretical framework without affecting its
predictive content.

5. Non-Locality. In an EPR or EPRB situation a choice of measurements, say
σx or σy for a given electron, is correlated with the behavior of σx or σy respectively
for another electron because the two together are in a singlet spin state even though
widely separated. A situation in which an IGUS measures the x-component of the
spin decoheres from one in which the y-component is chosen, but in each case
there is also a correlation between the information obtained about one spin and the
information obtained about the other. This behavior is called “non-local” by some
authors. However, it is straightforward to show very generally using techniques of
the present formulation that it involves no non-locality in the sense of quantum field
theory and no signaling outside the light cone. (For alternative demonstrations cf.
Ghirardi, Rimini, and Weber, 1980, Jordan, 1983.)

Consider the ideal measurement model discussed in Section II.10. In a partic-
ular Lorentz frame, let {s1

α1
(t1)} correspond to a set of alternatives at time t1 but

localized in space. For example, the projection operators s1
α1

(t1) might be projec-
tions onto ranges of field averages at time t1 over a certain spatial region R1. Let
{s2
α2

(t2)} be another set of alternatives at a later time t2 defined for a region R2

every point of which is spacelike separated from every point of R1. Let the initial
density matrix be ρs. These alternatives are assumed to decohere because they are
measured as described in Section II.10.

If no measurement is carried out at time t1, the probability of finding alter-
native α2 at the later time t2 is

pno meas(α2) = tr
[
s1
α2

(t2)ρs
]
. (A.2)

If a measurement is carried out at time t1, but the results are not known
(because they cannot be independently signaled from R1 to R2 faster than the
speed of light) then probability of finding alternative α2 is

pmeas(α2) =
∑
α1

p(α2, α1)

=
∑
α1

tr
[
s2
α2

(t2)s1
α1

(t1)ρss
1
α1

(t1)s2
α2

(t2)
]
. (A.3)

In general (A.3) and (A.2) will not be equal because of interference. This is consis-
tent because they correspond to two physically distinct situations: In the situation
described (A.2) no measurement was made at time t1. A measurement was made in
that described by (A.3). However, in the case of spacelike separated regions R2 and
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R1, the local operators skα2
(t2) and skα1

(t1) commute by relativistic causality. The
operators s1

α1
(t1) in (A.3) can therefore be moved to the outside of the trace, moved

from one side of ρs to the other by the trace’s cyclic property, and eliminated using
(s1
α1

)2 = s1
α1

and
∑
α1
s1
α1

= 1. Thus, the relativistic causality of the underlying
fields implies

pmeas(α2) = pno meas(α2), (A.4)

so that by a local analysis of the second measurement one cannot tell whether the
first was even carried out, much less gain any information about its outcome if it
was.

6. Reality. Quantum mechanics prefers no one set of histories to another
except by such criteria as decoherence and classicality. Quantum mechanics prefers
no one history to another in a given set of alternative decohering histories except
by probability. Thus, the only element of the theory that might conceivably lay
claim to the title of a unique, absolute, independent “reality” is the collection of
all sets of alternative coarse-grained histories of the universe, or what is essen-
tially the same thing, its initial condition.∗† Yet, to use the word “reality” in this
way is contentious, for this notion has no relation to the familiar “reality” of our
impressions. What are these impressions and how are they described quantum
mechanically? The familiar sense of reality arises, it seems, from the agreement
among many and varied collections of IGUSes on the values of the quasiclassi-
cal variables in a quasiclassical domain and the experience that this agreement is
largely independent of circumstance, position, and time. In quantum mechanics
this agreement would be described as follows: A coarse graining can be associated
with each IGUS which includes certain quasiclassical projection operators that the
IGUS can perceive and projection operators (not necessarily quasiclassical) that
describe the IGUS’s memory in which these perceptions are registered. To have a
good memory means that there is a nearly full correlation between the operators
describing the IGUS’s memory and the quasiclassical operators of the quasiclassical
domain. Perception is thus a particular type of measurement situation. Agreement
among several IGUSes means that there is a correlation between the various mem-
ories and common projection operators of a quasiclassical domain. The correlations
will not be perfect. There may be fluctuations and, indeed, situations where there
is a correlation between an IGUSes memory and some other part of its memory
rather than the appropriate quasiclassical variable describe symptons of schizophre-
nia commonly described as “loss of contact with reality”. Despite such anomalies,
the agreement that exists would seem to be the source of our impression of an
independent “reality”.

The focus by IGUSes on the quasiclassical operators of a quasiclassical do-
main can be explained by understanding evolution of IGUSes in the universe. That
is the only way of understanding why IGUSes employ the coarse grainings they do.

∗ This is worse than “all the alternative histories (worlds) are equally real”. It would
imply that “all the alternative sets of decohering histories are equally real”.
† As Bohm (1952), deBroglie (1956), Bell (1981), and others have demonstrated, it

is possible to use words to describe quantum mechanics that themselves specify a
“reality”. However, the predictions of quantum mechanics appear to be unaffected
by this choice. If that is the case, then such issues as the existence of quasiclassical
domains or the description of the reality of familiar experience remain as issues in
the alternative descriptions.

91



If, as a consequence of the initial conditions of the universe and the dynamics of
the fundamental fields, there is an essentially unique quasiclassical domain, then it
is plausible that IGUSes evolved to exploit this possibility that our particular uni-
verse presents. (See Section II.12.) The coarse grainings describing what IGUSes
perceive are then all coarser grainings of the coarse graining defining the essentially
unique quasiclassical domain. IGUSes agree because they are perceiving the same
quasiclassical projection operators. Thus, although quantum mechanics prefers no
one set of histories to another, or one history in a given set to another, IGUSes
may have evolved to do so.

Thus, if an essentially unique set of decohering alternative histories with high
classicality is an emergent feature of our universe it would seem reasonable to
associate the term “reality” in its familiar sense with that set of histories or with the
individual history in the set correlated with our present memory. Reality would then
be an approximate notion contingent on the approximate standard for decoherence,
the initial condition of the universe, and the dynamics of the elementary fields.
Universes for which no quasiclassical domains were emergent would have no such
notion of “reality”. The evolution, perceptions, and behavior of IGUSes in a
universe for which there is more than one quasiclassical domain are open and very
interesting questions. Thus, a central question for serious theoretical research in
quantum cosmology is whether our universe exhibits more than one quasiclassical
domain and, if so, the consequences of this fact for the evolution and behavior of
IGUSes and the evolution of their notions of “reality”.
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