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Assuming that the e-folding number is just determined by thechange of the scale factor, the tachyonic infla-
tion theory in LQC has been discussed. Considering the tachyon field with exponential potential and inverse
quadratic potential, we find that the evolutionary picturesof super inflation are affected by the potentials and the
initial conditions. However it cannot provides enough e-folding number to solve the horizon problem, no matter
which condition is chosen. Therefore a slow-rolling inflation is necessary. The e-folding number for slow-
rolling inflation depends on the values of the parameterα of the exponential potential and the initial conditions.
To get enough e-folding number,α should be small. Based on the slow-rolling inflation happensimmediately
when the super inflation ends, and the scale factor is continuously growing during the whole inflation stage, we
consider an e-folding number provided by the whole inflationary stage, and we find that the horizon problem is
easier to solve when the scale factor increases during all the inflation phase.

PACS numbers: 98.80.Cq

I. INTRODUCTION

Recently, Researchers from the BICEP2 collaboration an-
nounced the first direct evidence for the cosmic inflation [1].
The inflation theory is introduced to solve lots of cosmologi-
cal conundrums (the monopole, horizon, flatness, and entropy
problems) in the standard cosmological model [2]. Inflation-
ary models have has made huge success. In particular, it gen-
erates fluctuations that became the seeds for the growth of
structures [3]. Inflation happens while the Hubble parame-
ter H is approximately a constant, and ¨a > 0. In this stage,
the equation of state (EoS) parameter of inflationary field is
ω = −1 which means the potential energy of inflationary
field is dominant. This domination continues untilω = −1/3,
which indicates the kinetic energy can no longer be ignored.
Lots of evidences show that inflation is a brilliant candidate
theory to explain the very early universe (i.e., see [4, 5]).But
there are still some problems need to be solved, i.e., the gen-
erating initial conditions for inflation, the singularity of the
universe, and so on. As we know, if the universe is filled with
radiation and matter, according to the general relativity the-
ory, coming back in time, one concludes that there exists a
primeval singularity, i.e., big bang singularity. The big bang
singularity problem could be viewed as a defect of Einstein
cosmology at high energies scale.

To solve the big bang singularity problem, one possible so-
lution is modifying the theory of general relativity at highen-
ergy scale. There are lots of candidates, one of which is LQC
(more recently review, please see [6, 7]). LQC is a canoni-
cal quantization of homogeneous spacetimes based upon the
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techniques used in loop quantum gravity (LQG)[8, 9]. Due to
the homogeneity and isotropy of spacetime, the phase space
of LQC is simpler than LQG, e.g., the connection and triad
are described by just two quantitiesc andp, respectively. The
dynamics of LQC can be studied effectively by introducing
quantum gravity corrections to the gravity and matter Hamil-
tonian [6, 7], and the numerical evidence shows that the ef-
fective equations provide an excellent approximation to the
full dynamics of sharply peaked states [10–12]. In general,
two types of corrections are considered: inverse volume cor-
rection and holonomy correction. Considering these modifi-
cation, one can obtain many interesting results, e.g., the re-
placement of big bang by big bounce [10, 13], the avoidance
of most singularities [14, 15], the more likely occurrence of
inflation[16–19], and so on. But the first modification suffers
from gauge dependence which cannot be cured and thus yields
unphysical effects. Therefore we will discuss the tachyonic
inflation theory in LQC based on the second modification. In
this effective LQC, a term of−ρ2/ρc will be added to the right
hands of the standard Friedmann equation. Since this correc-
tion comes with a negative sign, the Hubble parameterH, then
ȧ will vanishes whenρ = ρc, at which the quantum bounce oc-
curs and the universe oscillates forever.

Since the Friedmman equation adds a term of−ρ2/ρc in ef-
fective LQC, the universe will enter a super inflation stage as
soon as the quantum bounce happens, i.e.,ρ = ρc. The su-
per inflation is totally caused by the quantum geometry effect
in LQC [20], and it has been studied by many papers [21–25].
The generating initial conditions for inflation are far fromeasy
in Einstein cosmology, but there are lots of works argued that
the phase of inflation is generic for the model with the holon-
omy corrections in LQC [16–19]. The inflation theory in LQC
has been discussed by many papers and the observational is-
sues of LQC also have been studied (for more recently review,
please see [26]).

We will study the tachyonic inflation in this paper. Tachyon
field might be responsible for the inflation at the early stage
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and could contribute to some new form of dark matter at late
time [27]. The behavior of tachyon field in LQC was studied
in [28], in which they considered the inverse volume mod-
ification. They found that there exists a super accelerated
phase in the semiclassical region. The dynamical behaviors
of non-interacting and interacting tachyon field are studied
in [29, 30]. It was shown there, the dynamical behavior of
tachyon field is different form the one in Einstein cosmology.
The inflation theory of tachyon field in LQC also been dis-
cussed [31, 34, 35]. The evolution picture and inflation of
tachyon field with exponential potential in LQC was studied
in [31]. It was shown there, for small value ofφ̇ the quantum
trajectories approach the classical inflationary attractor. But
they just considered the inflation stage, and the super-inflation
is ignored. The purpose of this paper is to discuss the su-
per inflation theory of tachyon field with exponential potential
and inverse square potential in LQC, also we will study the
slow-roll inflation of tachyon field with exponential potential
in LQC.

This paper is organized as follows. Firstly, we will intro-
duce some basic equations of LQC and the tachyon field in
section II, and then, in section III, we will show the tachyonic
inflation in LQC. Finally, we draw the conclusions in section
in the last section. For simplicity, we set 8πG = 1.

II. FRAMEWORK

We focus on the flat FRW cosmology in this paper. The
effective equations in LQC are derived from the LQC hamil-
tonian constraint operator and include the leading order quan-
tum gravity corrections to the classical Friedmann equation.
It turns out that the effective equations provide a surprisingly
good approximation to the dynamics of sharply peaked states
in LQC at all times, including at the bounce point where quan-
tum gravity effects are strongest [37]. In this paper, we fo-
cus on the holonomy correction, then the modified Friedmann
equation reads

H2 =
1
3
ρ

(

1−
ρ

ρc

)

, (1)

in whichρc is the critical energy density. For such model, en-
ergy density of matter cannot exceed the critical energy den-
sity. We consider the universe is sourced by a tachyon field.
The energy density and the pressure of tachyon field are

ρ =
V

√

1− φ̇2
, p = −V

√

1− φ̇2, (2)

in which V is the potential of tachyon field. The exponen-
tial potentialV = V0e−λφ with constantsV0, λ, the quadratic
potentialV = 1

2σφ
2 with constantσ, and inverse quadratic

potentialV = −βφ−2 with constantβ are always discussed
when the inflation properties of tachyon field are studied (see,
i.e., [42]). We will consider the inverse quadratic potential and
exponential one in this paper.

Using Eq. (2), and considering the continuity equation
ρ̇ + 3H(ρ + p) = 0, one can get the evolution equation of

the tachyon field as

φ̈ + (1− φ̇)

(

3Hφ̇ +
V′

V

)

, (3)

where prime denotes differentiation w.r.t.φ.
Considering the Eqs. (1) and (2) and the continuity equa-

tion, one can get

Ḣ = −
1
2

(ρ + p)

(

1−
2ρ
ρc

)

. (4)

According to Eq.(1), we can find thatH = 0 whenρ = ρc,
which is the quantum bounce point. It is easy to see thatḢ > 0
at the bounce point and it holds positive untilρ = 1

2ρc. Ḣ > 0
means the universe is in a super inflation stage. The Hub-
ble parameter and the scale factor increase during this stage.
And since super inflation is completely due to the modifica-
tion term in the Friedmann equation, it is rooted in the quan-
tum geometry effect.

Using Eqs.(1) and (4), it is easy to get the modified Ray-
chaudhuri equation

ä
a
= Ḣ + H2 =

1
3
ρ

(

1−
ρ

ρc

)

−
1
2

(ρ + p)

(

1−
2ρ
ρc

)

. (5)

As a basis for the next section, we discuss the general prop-
erties of slow-roll inflation theory in LQC in this section. This
job has been shown in [31, 41], but for comleteness’s sake, we
briefly review the discussion of [31, 41] in the following. To
make the discussion of slow-rolling inflation easy, we usually
introduce a slow-rolling parameterǫ which is related to the
evolution of the Hubble parameter

ε = −
Ḣ
H2
=

3
2

(1+ ω)
1− 2x
1− x

(6)

with x = ρ

ρc
andω is the equation of state (EoS) of tachyon

field

ω =
p
ρ
= φ̇2 − 1. (7)

The expression of EoS for tachyon field is only depends on
its kinetic energy rather than its potential energy. But remem-
ber that the form of potential will effect the changing rate of
kinetic energy, just as Eq.(3) showed. According to Eq.(7),it
easy to seeω ∈ [−1, 0]. We show the evolution picture ofω in
Fig. 1(a). The tracks of EoS for two different potentials have
similar trajectory at the very early time, and they become very
different at the late time. But it is should be noticed that, the
evolution of EoS depends on the initial values of the kinetic
energy and potential energy of the tachyon field, and we will
discuss these values in the next section.

The slow-rolling inflation happens whileε < 1. The condi-
tionε < 1 is totally equivalent to the conditionω(1−2x)−x

1−x < − 1
3.

To be specific, it isx > xω = (1+ 3ω)/(4+ 6ω) for ω > − 2
3,

and x < xω for ω < − 2
3 [35]. But noticed thatx ∈ [0, 1],

therefore, the conditions for inflation are [35]


























1
2
> x > xω > 0, for ω > −

1
3
,

0 < x <
1
2
, for −1 < ω < −

1
3
.

(8)
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Assumingω is a constant during the inflation stage, we give
the relationship betweenω andxω in Fig. 1(b). For tachyon
field, if the conditionρ + 3p < 0 is violated, i.e.,ω < − 1

3 is
violated, the inflation will stop in Einstein cosmology. Butjust
as we show in the Eq.(8), the inflation will not stop in LQC.
This effect is caused by the quantum geometry. So, as a word,
the quantum geometry changes the inflation in two aspects:
one is the super inflation stage, which is totally cased by the
quantum effect; the another one is inflation, the inflation still
continues whileω ≥ − 1

3.
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FIG. 1: (Color online)(a): The evolutionary picture of EoS of
tachyon field with exponential potential and inverse quadratic one.
The dot line isω = − 1

3 . (b): the relationship betweenω and
xω = 1+3ω

4+6ω , we assumeω is a constant during the inflation stage.

In this section, we give some basic equation for tachyon
field in LQC, and discuss the general inflation theory for LQC,
we will discuss the inflation theory for tachyon field with ex-
ponential potential and inverse quadratic potential in thenext
section.

III. TACHYONIC INFLATION

In the last section, we showed the general inflation theory
in LQC. In this section, we will discuss the super inflation for

tachyon field with exponential potential and inverse quadratic
one with different initial condition at first, and then, we will
study the slow-roll inflation of tachyon field with exponential
potential, and we will give more discussions about tachyonic
inflation in LQC.

A. Super inflation

Since there is an additional− ρ
2

ρc
term in Friedmann equa-

tion (see Eq. (1)), the Hubble parameter should be zero when
the energy density of tachyon fieldρ equals to the critical en-
ergy densityρc. At this moment,Ḣ > 0 for (1− 2 ρ

ρc
) = −1.

This means the universe will enter an super inflation stage as
soon as the bounce begins, and it will last untilḢ = 0, i.e.,
ρ = 1

2ρc. There are lots of studies discuss the properties of
super inflation [20–25]. As we know, to solve the horizon
problem, the scale factor should increase very fast in slow-
roll inflation stage to ensure the e-folding numberN > 60.
According to the truth that the e-folding number comes from
the changing of the scale factor in slow-roll inflation, some
concluded that the e-folding number created during super in-
flation in LQC is not sufficient [20], but then it was found
that the e-folding number during super inflation depends on
the initial conditions [32] or the parameter of the potential of
scalar field [22]. Noticed that the Hubble parameterH in-
creases during super inflation stage, some argue that the super
inflation can solve the horizon problem for the e-folding num-
ber corrected as̄N ≡ a(t f )H(t f )

a(ti )H(ti )
→ ∞ [24, 25]. In this subsec-

tion, we just consider the e-folding number from the change
of the scale factor during the super inflation stage.

We discuss the super inflation of tachyon field with expo-
nential potential and inverse quadratic potential. The purposes
of this subsection are two: one is to find out whether the dura-
tion of super inflation for tachyon field depends on the poten-
tial, the other is to study whether the change of scalar factor
depends on the initial values of kinetic and potential energy
during super inflation.

We consider three kinds of initial conditions: I, the poten-
tial energy dominates (PD) at the bounce point; II, the ki-
netic energy and potential energy sub-dominates (KPD) at the
bounce point ; and III, the kinetic energy dominates (KD) at
the bounce point. The evolution pictures for Hubble param-
eter H and scale factora for different initial conditions are
shown in Figs. 2 and 3. Fig. 2 shows the evolution pictures
for H anda under the condition that the universe is sourced by
tachyon field with exponential potential, while Fig. 3 shows
that the evolution pictures for the tachyon field with inverse
quadratic potential. We set the potential’s parameter as a con-

stant,V0 = 0.82, λ = 0.5, β =
√

5
3. These values just follows

the choice of [29, 31].
The Hubble parameterH increases immediately when the

quantum bounce happens and it is lasts untilḢ = 0, i.e.,
ρ = 1

2ρc, just as Fig. 2 and 3 shown. Also, it is easy to
find out that the growth rates ofH are almost the same for
the tachyon fields with the same potential but with different
initial condition, and the growth rates are different for the dif-
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FIG. 2: (Color Online) The evolutionary pictures of the Hubble pa-
rameterH and the scale factora with different initial conditions. The
universe is soured by the tachyon field with the exponential poten-
tial.There are three kinds of initial conditions: KD: the kinetic en-
ergy dominates at the bounce point; KPD: the kinetic and potential
energy sub-dominates at the bounce point, and PD: the potential en-
ergy dominates at the bounce point. The dot at the line represents the
ending point of super inflation.

ferent potential. This means that although the super inflation
is cased by the quantum geometry effect, but the duration of
it will be affected by the matter (i.e., same field with different
potentials, or different fields). This result is tenable for in-
teracting or non-interacting tachyon field [34], as well as for
the interacting or non-interacting scalar field [22, 25]. But the
growth rates of scale factora are very different from the ones
of Hubble parameterH. It is easy to find that the growth rates
of a are very different for the tachyon field with exponential
potential under different initial conditions, but the difference
is very small (at least in the same order of magnitude) for in-
verse quadratic potential.

To solve the horizon problem, if we consider the e-folding
number just depends on the change of scalar fieldN ≡ ln af

ai
,

the scale factor needs to increase at leaste60 times. If one
consider the universe sourced just by the tachyon field with
the inverse quadratic potential, it is impossible to solve hori-
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FIG. 3: (Color Online) The evolutionary pictures of the Hubble pa-
rameterH and the scale factora with different initial conditions. The
universe is soured by the tachyon field with the exponential poten-
tial.The three different conditions are as same as the ones in Fig. 2.
The dot at the line represents the ending point of super inflation.

zon problem, just as Fig. Fig. 3 showed, no matter which
initial condition chosen. Although the scale factora increases
very fast when one considers the initial condition that the po-
tential energy dominates at the bounce point, the change rate
of a is still less thane60. This result is different from [25], in
which we found that it is possible to solve the horizon prob-
lem during the super inflation of the interacting scalar field
and radiation, i.e., the change rate of scale factora is bigger
thane60 if the potential energy dominates at the bounce point
[25].

In this subsection, we discussed the super inflation of
tachyon field with exponential potential and inverse quadratic
potential in LQC. We find that it is impossible to solve the
horizon problem if we consider the e-folding number comes
from the change of the scale factor. To solve the horizon prob-
lem, if we still just consider the changes of the scale factor, the
slow-rolling inflation is necessary. We will discuss the slow-
rolling inflation in the next subsection.
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B. Slow-rolling inflation

The initial condition for slow-rolling inflation is a hard nut
to crack in Einstein cosmology, and the probability of infla-
tion is suppressed by the factore−3N [43], but the probability
of inflation in LQC, with at leastN = 65 e-folding numbers,
is very close to one for scalar field [16]. The slow-rolling in-
flation for tachyon field in LQC has been discussed by many
papers [31, 34, 35], we will discuss the tachyonic slow-rolling
inflation in LQC based on these papers. As same as [31], we
discuss the tachyon with a exponential potential in this sub-
section.
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FIG. 4: (Color Online) The evolution pictures of the Hubble param-
eter H and the scale factora for the condition that the kinetic and
potential energy sub-dominates at the bounce point. The circle dot
represents the ending point of super inflation, and the fork point de-
notes the end of the slow-rolling inflation.

The evolutionary pictures of the Hubble parameterH and
the scale factora are shown in Fig. 4. According to the numer-
ical analysis, we find out that the Hubble parameterH climbs
up at the super inflation stage, holds the value for a while ( not
a constant, but changes very slowly, just as theH − t picture
showed in Fig. 2), and then climbs down. But the scale fac-
tor changes rapidly. This appearance is just the requirement
of the slow-rolling inflation in standard inflation theory. In
the standard inflation theory, the second time derivative ofφ
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FIG. 5: (Color Online) (a): the evolution pictures of potential and
kinetic energy. (b): the evolution picture for the EoS. The star dot
denotes the end of the slow-rolling inflation.

is small enough, i.e.,|φ̈| ≪ |3Hφ̇|, |V′|, and the spacetime is
approximatelyde sitter, i.e.,a(t) ∼ eHt. The potential energy
dominates the kinetic energy during inflation stage, this means
thatω ∼ −1 at that time. We show the evolutionary pictures
for potential energy and kinetic energy and the EoS in Fig. 5.
We find that the potential energy dominates the kinetic energy
for a while, and the EoS holdω = −1 for a while and then
increases to the value that the slow-rolling inflation ends (the
star dot on theω − t line in Fig. 5(b) and it persistently in-
creases tillω = 0. Noted that the EoSω ≃ −0.3319 when
the slow-rolling inflation ends in LQC. This value is bigger
thanω = − 1

3 , and the slow-rolling inflation ending isω = − 1
3

in Einstein cosmology. This result is as same as the one we
discussed in the last section, and it is another correction for
inflation by the quantum geometry in LQC. Also, the track of
ω in Fig. 5 is different from the one in Fig. 1. This difference
comes from the different initial conditions. All these signals
show that the slow-rolling inflation happens as soon as the su-
per inflation ends in LQC when we considers the potential and
kinetic energy sub-dominates at the bounce point.

The slow-rolling inflation ends when the conditions is vi-
olated, i.e.,ε = 1. Unfortunately, there are still not enough
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e-folding numbers if the slow-rolling inflation ends when we
choseα = 0.5 with the initial condition that the potential and
kinetic energy sub-dominates at the bounce point. Just as the
left picture shows in Fig. 4, the e-folding number in this case
is N ≃ 33, less thanN = 60. To get enough e-folding num-
ber, a feasible method is choosing the parameters of potential
very carefully, i.e., picking some smallerα [31]. Based on
the method of [31], and using the numerical analysis, we can
find that the relationship betweenα and the e-folding num-
bers as showing in Table I. The e-folding numbersN is very
different when one chooses the sameα under different initial
conditions. Obviously, the e-folding number is bigger when
one chooses a smaller tachyon massα, no matter which ini-
tial condition is chosen. And the slow-rolling inflation is not
happening forα = 0.5, and 0.6 when one chooses the kinetic
energy dominates at the bounce point, since the slow-rolling
parameterε > 1 always.

α 0.1 0.2 0.3 0.4 0.5 0.6
NKPD 763 195 106 57 33 20
NPD 768 200 87 47 31 21
NKD 680 84 18 7 – –

TABLE I: The relationship between the tachyon massα and the e-
folding numberN. We setV0 = 0.82. KPD,PD and KD respectively
denotes the kinetic-potential dominates, potential energy dominates
and kinetic energy dominates at the bounce point. “–” denotes the
slow-rolling inflation condition is violated.

In this subsection, we discuss the slow-rolling inflation
for tachyon field with exponential potential in LQC. To get
enough e-folding number, the tachyon massα should be
small, at least should be smaller than 0.4 for potential/kinetic-
potential energy dominates at the bounce point and 0.3 for ki-
netic energy dominates at the bounce point. The slow-rolling
inflation does not happen for all the times, i.e., at least, when
α = 0.5 or α = 0.6, and the kinetic energy dominates at the
bounce point. If one considers the tachyon field with inverse
quadratic potential, it is easy to get similar conclusions,just
as [31] argued.

C. More discussions on tachyonic inflation

In the last two subsections, we discuss the super inflation
and slow-rolling inflation for tachyon field in LQC. We find
that the e-folding numbers of super inflation is less than 60,
and whether the slow-rolling inflation solve the horizon prob-
lem depends on the choice of tachyonic massα. To solve
the horizon problem, one way is consider the e-folding num-
bersN̄ ≡ a(t f )H(t f )

a(ti )H(ti )
→ ∞ during the super inflation stage for

H(ti) ∼ 0 in the bounce point, just as shown in [24, 25]; an-
other way is choosing the tachyon mass very careful, and the
slow-rolling inflation provides enough e-folding number, just
as the choice of [31] and we showed it in the last subsection.

Considering the e-folding numberN just depends on the
changes of the scale factor, there is still one more question
needs to be discussed. We show the evolution trajectory of the
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FIG. 6: (Color Online) Left: the evolution pictures of the Hubble
parameterH. The circle dot in the solid line and the trigonometric
point in the dash dot line respectively denote the ending point of
the super inflation. Right: the evolution picture for the scale factor.
We consider the tachyon field with exponential potential, and the
potential energy dominates at the bounce point.

Hubble parameterH in Fig. 6 (a). It is easy to find that the
potential energy dominates the kinetic energy as soon as the
super inflation ends and the EoS holds the valueω ≃ −1 just
we showed in the Fig. 5. Then, we can get the conclusion
that the slow-rolling inflation happens as soon as the super
inflation ends. This means that, considering the potential en-
ergy dominates at the bounce point, the inflation for tachyon
field with exponential potential continuously happens. During
the whole inflation stage, the Hubble parameter increases dur-
ing the super inflation stage, the increasing rate is very small,
and it almost a constant during the slow-rolling inflation stage.
But the scale factor sustains the growth during the whole in-
flation stage, from the quantum bounce point to the ending
time of slow-rolling inflation. This means that the e-folding
number has two contributions, one from the increasing of the
scale factor during the super inflation stage, and the another
one from the changing of it in the slow-rolling inflation phase.
Considering this truth, with the help of the numerical analyze,
it is easy to get the total e-folding numbers during the whole
inflation stage:Nα=0.4 ≃ 65 andNα=0.5 ≃ 41. This means
that the horizon problem can be solved when the tachyon field
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massα = 0.4.
The inflation in LQC has two phases, one is super infla-

tion, and the another one is slow-rolling inflation. If the slow-
rolling inflation happens as soon as the super inflation ends,
we can treat this two inflation stages as a one inflation phase.
During this inflation phase, the Hubble parameterH increases
at first and almost holds the values for a while until the in-
flation ends, and the scale factora becomes bigger and big-
ger during the whole inflation phase. In this inflation phase,
the Hubble parameterH increases very small, just as Fig. 2
shown, but the change rates of scale factora can be very huge
for some conditions. If one combines this two inflation stages
as one inflation phase, the solution to the horizon problem be-
comes easier, just as we showed in this subsection, at least
easier than just one considers the slow-rolling inflation.

A short conclusions for this section. We assume that the
value of e-folding number just depends on the changes of the
scale factor in this section. We find that the super inflation
phase cannot provides enough e-folding number to solve the
horizon problem, and slow-rolling inflation with small tachy-
onic massαmaybe can solve it. But for the slow-rolling infla-
tion happens immediately after the super inflation phase ends,
the horizon problem is easier to solve for the scale factor in-
creases during all the inflation phase.

IV. CONCLUSIONS AND DISCUSSIONS

We discuss the tachyonic inflation in LQC in this paper.
The inflation in LQC has two stage, one is the super inflation
stage, which is totally caused by the quantum geometry effect,
and the another one is the slow-rolling inflation stage. The
slow-rolling inflation in LQC is different from the one in Ein-
stein cosmology, for the existing of the quantum correction,
just as the Eq. (8) shows.

Considering the tachyon field with exponential potential or
inverse quadratic potential, we discuss the super inflationfor
tachyon field in LQC. We consider three different initial con-
ditions for two potentials, and get the evolutionary pictures for
the Hubble parameterH and the scale factora. We find that,
although the super inflation is a quantum geometry effect, the
duration of super inflation is influenced by the matter. Consid-
ering the e-folding number is totally depending on the change
of the scale factor, we find that the super inflation for tachyon
field cannot provide enough e-folding numbers, neither for the
tachyon field with exponential potential, nor for the one with
the inverse quadratic potential, and the slow-rolling inflation
is needed.

As an example, we discuss the slow-rolling inflation of
tachyon field with exponential potential. After the super in-
flation, the universe enters a slow-rolling inflation immedi-
ately for the initial conditions that kinetic-potential energy
dominates withα = 0.5 or potential energy dominates with

α = 0.4, 0.5 at the bounce point, just as Figs. 4 and 6
showed. To get enough e-folding numbers, the tachyonic mass
α should be small. No matter which initial condition is cho-
sen, the e-folding number is bigger for smallerα. And for
some values ofα, the slow-rolling inflation won’t even hap-
pen. The slow-rolling inflation happens while the super infla-
tion ends, and the scale factor continuously increases during
the whole inflation stage, then it is possible that the e-folding
number comes from the changes of scale factor during the su-
per inflation and slow-rolling inflation. Considering the poten-
tial energy dominates at the bounce point, we find that the total
e-folding number forα = 0.4 is enough to solve the horizon
problem, but it is not enough forα = 0.5. Considering the su-
per inflation stage and slow-rolling stage as a whole inflation
phase, we find that it is easier to solve the horizon problem.

In this paper, we consider the e-folding number that comes
from the changes of the scale factor, no matter this changes
comes from the super inflation stage, or the slow-rolling in-
flation stage. Although the horizon problem can be solved in
the super inflation stage [24, 25], but the slow-rolling inflation
still needs to be studied in LQC. On the one hand, the slow-
rolling inflation will be more likely to occur in LQC, just as we
showed in the last section, and showed by many other papers
[16–19], on the other hand, the observational effect of super
inflation is still absent, at least still needs to be studied [44],
but the observation issue of slow-rolling inflation in LQC has
been discussed by many papers (see [26] for a review). Al-
ways, the observational data give some constraints on the po-
tential and the parameters of the potentials. There are two pa-
rametersV0, α for exponential potential and one parameterβ
for inverse quadratic potential, we just consider there aresome
constants in this paper, but to find which values are suited,
more study is needed, and the observational data should also
be considered. We get a conclusion that the horizon problem
is easier to solve when the e-folding number depends on the
changes of scale factor during the super inflation and the slow-
rolling inflation phase if the slow-rolling inflation happens as
soon as the super inflation ends. If this conclusion is correct,
will the observational effects be evident? To understand the
inflation theory more deeply in LQC, and know which param-
eter are suitable, we need consider the observational effect,
just as [26, 45] did. But the perturbation theory of tachyon
matter in LQC is still empty, thus we just get some theoretical
results in this paper.
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