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We show that intermediate mass black holes conjectured to be the early precursors of supermassive
black holes and surrounded by relic cold dark matter density spikes can act as particle accelerators
with collisions, in principle, at arbitrarily high centre of mass energies in the case of Kerr black holes.
While the ejecta from such interactions will be highly redshifted, we may anticipate the possibility
of a unique probe of Planck-scale physics.
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In this Letter, we show that rotating black holes may
act as particle accelerators. The context we have in mind
is that of intermediate mass black holes conjectured to
be the early precursors of supermassive black holes and
surrounded by relic cold dark matter density spikes. Col-
lisions between particles, e.g. massive dark matter parti-
cles, may reach arbitrarily high center-of-mass energies.
Naively speaking this may not come as a surprise because
particles are infinitely blue shifted near the horizon (for
an observer sitting there). However, the center of mass
between two particles is a free fall frame and the energy
in this system is bounded. For Schwarzschild black holes,
the maximum energy is Emaxcm = 2

√
5m0, where m0 is the

mass of the two colliding particles [1]. Here it is assumed
that the particles at infinity are at rest, and the colli-
sion energy comes solely from gravitational acceleration.
Note that this limit does not depend on the mass of the
black hole.

Since it is expected that most astrophysical black holes
would have large angular momenta, in fact near extremal-
ity [2], it is natural to ask what is the maximum center
of mass energy for Kerr black holes. After computing
Ecm for Kerr we show that the maximum energy grows
with a = J

M . Furthermore, as the black hole becomes ex-
tremal, Emaxcm grows without limit providing an acceler-
ator that in principle allows collisions at arbitrarily high
energies. We concentrate here on our main new result,
namely computation of the limiting energy for Kerr black
holes. The energy distribution of particles colliding at
this maximum energy will be discussed in a future pub-
lication.

The general situation we consider in this paper is de-
picted in Fig. 1. Two particles are falling into the
black hole and collide near the horizon. The range of l,
the angular momentum per unit rest mass, for geodesics
falling in is −2(1 +

√
1 + a) ≤ l ≤ 2(1 +

√
1− a) (see

[3] for a detailed treatment of geodesics in Kerr back-
grounds). We shall not deal with the global properties of
the geodesics. The figure represents the local properties
before the collision. We start by describing the situation

r = 2a

r = r+ = 1 +
√

1− a2

−2(1 +
√

1 + a) < l < 2(1 +
√

1− a)

l1

l2

FIG. 1: Schematic picture of two particles falling into a black
hole with angular momentum a (per unit black hole mass)
and colliding near the horizon. The allowed range of l for
geodesics falling in to the black hole is also given.

for Schwarzschild black holes, as described in [1]. Our
treatment will be general enough such that the extension
to Kerr will be almost direct. Consider two particles ap-
proaching the black hole with different angular momenta
l1 and l2 and colliding at some radius r (see Fig. 1).
Later, we consider the collision point r to approach the
horizon, r = r+. The particles will be assumed to be at
rest at infinity. Non-rotating black holes are described
by the Schwarzschild metric (where we have set the mass
of the black hole to 1),

ds2 = −
(

1− 2
r

)
dt2+

(
1− 2

r

)−1

dr2+r2(dθ2+sin2 θdϕ2)

(1)
and the solution to the geodesic equation is (see [3] for a
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detailed analysis of geodesics on black hole spacetimes)

dt

dτ
=
(

1− 2
r

)−1

,

dr

dτ
= − 1

r2

√
r(2r2 + 2l2 − rl2),

dϕ

dτ
=

l

r2
. (2)

We assume throughout the paper that the motion of par-
ticles occur in the Equatorial plane. The maximum cen-
ter of mass energy arises when the particles approach the
black hole from opposite directions and maximum (op-
posite) angular momentum. There are two competing
effects. If the angular momentum is too large (see Fig.
(2a)), geodesics never reach r = r+ and the near hori-
zon physics is not probed. On the other hand, if the
angular momentum is too small, the particles fall radi-
ally with a small tangential velocity and the center of
mass energy does not grow either. Consequently, there
is a critical value for the angular momentum such that
particles reach the horizon with maximum tangential ve-
locity. For a Schwarzschild black hole, the critical values
are l = ±4.

Our aim is to compute the energy in the center of mass
frame for this collision. Since the background is curved,
we need to define the center of mass frame properly. It
turns out that there is a simple formula for Ecm valid
both in flat and curved spacetimes,

Ecm = m0

√
2
√

1− gµνuµ(1)uν(2) , (3)

where uµ
(1)

and uν
(2)

are the 4-velocities of the particles,

properly normalized by gµνuµuν = −1 (we use the mostly
plus signature). This formula is of course well-known in
special relativity, and the principle of equivalence should
be enough to ensure its validity on a curved background.

The derivation of (3) on curved backgrounds can be
done in an efficient way by using the notion of orthonor-
mal frames introduced in [3]. At any point one can set a
‘lab’ frame described by vectors êa satisfying êa ·êb = ηab.
The basis vectors êa and the coordinate basis ~eµ are re-
lated by an invertible matrix eaµ such that ~eµ = eaµêa. If
the metric gµν is known, then the matrix eaµ is uniquely
defined, up to a Lorentz transformation. Given the
worldline history xµ(τ) and the 4-velocity uµ = dxµ

dτ , we
can construct the 3-velocities observed in the lab frame
[3],

v(i) =
e
(i)
µ uµ

e
(0)
µ uµ

. (4)

In this frame special relativity holds, thus, the compo-
nents of the momentum of a particle of mass m0 are given
by

pa = m0γ(v)(1, v(i)), (5)
where γ(v) = (1 − v2)−1/2. In this frame, the center of
mass energy formula (3) holds with gµν replaced by ηab.
One can now directly go from the flat space version of
(3) into a curved background simply by using the trans-
formations given above, in particular gµν = eaµe

b
νηab.

We now apply (3) to the problem of two particles col-
liding in the Schwarzschild background. By direct re-
placement of (2) into (3) one finds,

1
2m2

0

(
E
Schw

cm

)2

=
2r2(r − 1)− l1l2(r − 2)−

√
2r2 − l21(r − 2)

√
2r2 − l22(r − 2)

r2(r − 2)
. (6)

The horizon is located at r = 2 and we naively observe
a pole 1/(r − 2) which seems characteristic of an infinity
blueshift. However, this is not the case as the numerator
also vanishes at r = 2. In fact the limit is finite and
equals

E
Schw

cm (r → 2) =
m0

2

√
(l2 − l1)2 + 16. (7)

The maximum center of mass energy occurs for l2 and
l1 opposite with their maximum allowed values (for
geodesics falling in to the black hole) l1 = 4 and l2 = −4.
Using these values in (7) one obtains 2

√
5m0, as stated

in the first paragraph [1]. Note also that if l2 = l1,
Ecm = 2m0 as it should be. A finite limit in the cen-
ter of mass energy follows from the fact that all particles

approach the horizon with the same incident angle (that
is they approach perpendicularly) and thus their relative
velocities go to zero. We shall now apply (3) for particles
moving on a Kerr black hole. We again restrict the dis-
cussion to equatorial geodesics. The extension to more
general geodesics has no conceptual problems but the for-
mulae involved get rather cumbersome. Our main goal
here is to show that on a Kerr black hole particles may
collide with arbitrarily large center of mass energy, and
this can already be seen on equatorial geodesics. Again,
we assume that the particles are at rest at infinity, and
that all collision energies are provided by gravitational
acceleration.

The Kerr black hole is described by the metric (where
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FIG. 2: For a Schwarzschild black hole (a) shows the variation of ṙ with radius for three different values of angular momentum
l = 2, 4 and 5. For l = 5 ṙ reaches zero, indicating a turning point, before reaching the horizon. These geodesics are not
interesting for us. l = 4 is a critical case where geodesics start falling in. For smaller values of |l| all geodesics fall in. Panel (b)
shows the variation of Ecm with radius for three combinations of l1 and l2. Note the kink corresponding to the critical geodesic
with l = 4. The vertical line at r = 2 is the horizon and we see that Ecm is finite in all cases.
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FIG. 3: For a Kerr Black hole with a = 1 (a) shows the variation of ṙ with radius for three different values of angular momentum
l = 0.4, 2 and 3. (b) shows the variation of Ecm with radius for three combinations of l1 and l2. For l1 = 2 we see that Ecm

blows up at the horizon.

again we have set the mass of the black hole to 1)

ds2 = −
(

1− 2r
Σ

)
dt2 −

(
4ar sin2 θ

Σ

)
dtdϕ

+
(

Σ
∆

)
dr2+Σdθ2+

(
r2 + a2 +

2a2r sin2 θ

Σ

)
sin2 θdϕ2

(8)

where a is its angular momentum per unit mass (0 ≤ a ≤
1) and the functions ∆ and Σ have the forms

∆ ≡ r2 + a2 − 2r (9)
Σ ≡ r2 + a2 cos2 θ (10)

Let xµ(τ) be the history of a particle of mass m0. The
geodesic equation can be fully integrated (Carter [4]).

The equations of motion governing the orbital trajectory
of a particle on the equatorial plane, θ = π/2, read (see
[3])

dr

dτ
= ± 1

r2

√
T 2 −∆(m2

0r
2 + (l − aE)2), (11)

dϕ

dτ
= − 1

r2
[(aE − l) + aT/∆] , (12)

dt

dτ
= − 1

r2
[
a(aE − l) + (r2 + a2)T/∆

]
, (13)

where T ≡ E(r2 + a2) − la. Here E is the total energy
of the particle and l = pϕ is the component of angular
momentum parallel to the symmetry axis per unit mass.

On a Kerr background, particles approaching from one
or the other side have different properties. Consider two
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particles coming from infinity with E1/m0 = E2/m0 = 1
and approaching the black hole with different angular

momenta l1 and l2. By direct application of (3) we find
the generalization of (6) for rotating backgrounds,

(
E
Kerr

cm

)2

=
2m2

0

r(r2 − 2r + a2)

(
2a2(1 + r)− 2a(l2 + l1)− l2l1(−2 + r) + 2(−1 + r)r2

−
√

2(a− l2)2 − l22r + 2r2
√

2(a− l1)2 − l21r + 2r2
)
. (14)

The horizon is located at the larger root of r2−2r+a2 =
0, that is r+ = 1 +

√
1− a2. As for the Schwarzschild

case, it appears that E
Kerr

cm diverges at r = r+ but again
this is not true because, although not totally evident, the
numerator vanishes at that point as well. The limiting
value of E

Kerr

cm at the horizon for generic values of a is
not very illuminating. However, in the case that a = 1
the form of the centre of mass energy at r+ reads

E
Kerr

cm (r → r+) =
√

2m0

√
l2 − 2
l1 − 2

+
l1 − 2
l2 − 2

, (a = 1)

(15)
which is indeed finite for generic values of l1 and l2. Ob-
serve that for a = 1 the denominator in (14) has a double
zero and it can also be shown that the numerator has a
double zero also. This is true except when l = 2. A new
phenomena appears if one of the particles participating
in the collision has the critical angular momentum l = 2.
We see that in this case the limit (15) ceases to exist, and
in fact the center of mass energy blows up at the horizon.

We plot in Fig. 3(b) E
Kerr

cm (r) for various values of l1
and l2. Observe that the critical value l = 2 corresponds
to particles coming from infinity with the maximum al-
lowed angular momentum for a geodesic falling into the
black hole. This is shown in Fig. 3(a). As we mentioned
before, a limit in the center of mass energy follows from
the fact that all particles approach the horizon with the
same incident angle (perpendicularly) and thus their rel-
ative velocities go to zero. This property fails for the
critical geodesic with l = 2 (at a = 1). In this case, the
particle hits the horizon non-perpendicularly and conse-
quently has a non zero tangential velocity allowing for
large center of mass energy collisions.

In this Letter, we have analysed the possibility that
Kerr black holes can act as natural particle accelerators.
It has previously been argued that the formation of cen-
tral or isolated black holes within cold dark matter sub-
halos or halos by baryonic accretion, either by gaseous
dissipation of an accretion disk or by stellar tidal dis-
ruption, is accompanied by generation of a central dark
matter spike [5]. The maximum extent of the spike is
determined by the gravitational radius, the density pro-
file slope by the initial dark matter core profile, and the

innermost extent where the spike flattens by the annihi-
lation cross-section. Such spikes yield detectable annihi-
lation signals in gamma rays, high energy neutrinos or
antiparticles.

In these earlier works the discussions considered anni-
hilations at rest. In this letter we note that some rare
collisions may occur at arbitrarily high energies for the
case of Kerr black holes. In effect we have a Planck scale
particle accelerator. Of course the ejecta from such in-
teractions will be highly redshifted. However, the possi-
bility of a unique probe of high-scale physics via signals
buried in the emerging debris is an intriguing prospect.
No terrestrial accelerator could conceivably approach the
energies that would be achievable in rare plunging orbits
around a Kerr black hole. In a future paper, we will
explore the flux and energy distribution of the collision
debris for particular particle models.
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