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A non-SUSY extension of the Poincaré group
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In this paper a nontrivial extension of the Poincaré group is presented, circumventing the Coleman-
Mandula no-go theorem in a very different way than that of SUSY. The extended part can be
identified with a gauge group, containing a U(1) component along with a nilpotent normal subgroup.
The physical interpretation of the nilpotent normal subgroup is given in terms of a quantum field
theory toy model. The presented mechanism could provide a unification of Standard Model gauge
groups, as well as relating the gauge symmetries to spacetime symmetries.
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Introduction.—The non-trivialness of the problemat-
ics of unification of internal symmetries to spacetime
symmetries is a well-known fact in particle field the-
ory. The Coleman-Mandula no-go theorem [1] forbids
the most simple unification scenarios. Namely, any fi-
nite dimensional connected Lie group, satisfying a set
of plausible properties required by a particle field the-
ory context, and containing the Poincaré group as a
subgroup as well as a “gauge” symmetry group with a
positive definite non-degenerate invariant scalar product
on its Lie algebra, must be of the trivial form: gauge
group × Poincaré group. Also, the earlier theorem of
McGlinn [2] in a mathematically slightly simpler setting
concluded in the same direction. The classification re-
sult of O’Raifeartaigh [3] on Poincaré group extensions
is also usually interpreted in a similar manner. After
the discovery of these results, the simple unification at-
tempts of internal (gauge) symmetries with spacetime
symmetries were not pursued further. Instead, a large
amount of research was carried out along the question:
can the Poincaré Lie algebra be extended at all in at
least by means of some mathematically generalized man-
ner? The answer was positive, as stated by the result of
Haag, Lopuszanski and Sohnius [4], and hence the era of
supersymmetry (SUSY) was born.

By studying the details of the proof of Coleman-
Mandula or McGlinn theorems, as presented e.g. in the
review in [5], one finds that the assumption of presence of
a positive definite non-degenerate invariant scalar prod-
uct on the Lie algebra of the gauge group is essential in
the argumentation. As such, the gauge group is assumed
to be direct product of copies of U(1) and a semisimple
compact Lie group. The motivations behind this require-
ment are threefold. (i) Group theoretical convenience:
the classification of semisimple Lie groups is well un-
derstood. (ii) Experimental justification: the Standard
Model has a gauge group U(1) × SU(2) × SU(3), which
satisfies the pertinent requirement. (iii) Positive energy
condition, or unitarity: the energy density expression of
a Yang-Mills (gauge) field involves the invariant scalar
product on the Lie algebra of the gauge group, and that

is required to be positive definite.

Traditionally, non-semisimple gauge groups, i.e. the
ones with a solvable normal subgroup, apart from a pos-
sible U(1) contribution, is considered unphysical. If that
is postulated, indeed there seems to be no other Poincaré
extensions than that of SUSY. However, if that require-
ment is relaxed, and only the existence of a positive
semidefinite invariant inner product is required on the
Lie algebra of the gauge group, then it is possible to
show quite natural Poincaré group extensions. In terms
of the group structure this would mean that only the so
called Levi factor of the gauge group needs to be com-
pact semisimple, not the entire gauge group itself. Our
example shall be of this nature. We argue that this prop-
erty is in accordance with the positive energy condition,
or equivalently with the unitarity: the energy density
expression of such a Yang-Mills field becomes positive
semidefinite, however this does not pose a major prob-
lem, as also the kinetic Lagrange density vanishes in the
degenerate directions and thus these do not become part
of the propagating degrees of freedom [6].

Overview on Levi decomposition.—The powerful tool
of Levi decomposition theorem of finite dimensional con-
nected Lie groups states that a Lie group always has
the structure R ⋊ L, R being a solvable normal sub-
group called the radical and L being a semisimple sub-
group called the Levi factor, and the symbol ⋊ denotes
semi-direct product. Whenever L is also a normal sub-
group, then we have simply a direct product decomposi-
tion R⋊L = R×L. The semisimpleness of L means that
the Killing form (x, y) 7→ Tr(adx ady) is non-degenerate
on the Lie algebra of L, using the symbol adx(·) := [x, ·]
for any Lie algebra element x. The solvability ofRmeans
that it represents the degenerate directions of the Killing
form. It may also be formulated in terms of an equivalent
property: for the Lie algebra r of R the sequence r0 := r,
r1 := [r0, r0], r2 := [r1, r1], . . . , rk := [rk−1, rk−1], . . . ,
arrives at the trivial Lie algebra in finite iterations, i.e.
rk = {0} for some finite k. A special case is when the
radicalR is said to be nilpotent : there exists a finite k for
which for all x1, . . . , xk ∈ r one has adx1

. . . adxk
= 0. An
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even more special case is when the radical R is abelian:
for all x ∈ r, one has adx = 0. The Levi decomposition
theorem is a consequence of Jordan’s decomposition theo-

rem in finite dimensional complex linear algebra, stating
that a linear operator can be always be uniquely split to
a diagonalizable part and to a nilpotent part.
A nice demonstration of a typical Levi decomposition

is the (proper) Poincaré group itself: it can be written in
the form T ⋊L, where T is the abelian normal subgroup
consisting of spacetime translations, being the radical,
and where L is the semisimple subgroup consisting of
the (proper) homogeneous Lorentz transformations, be-
ing the Levi factor. The group of spacetime translations,
quite naturally, act as

xa 7→ xa + da (1)

in terms of affine spacetime coordinates.
Overview on supersymmetry group.—The Levi decom-

position theorem also sheds a light on the group structure
of supersymmetry transformations. That has the Levi
decomposition of the form S ⋊ L, where S is the nilpo-
tent normal subgroup consisting of supertranslations, be-
ing the radical, and where L is the semisimple subgroup
consisting of the (proper) homogeneous Lorentz trans-
formations, being the Levi factor. The supertranslations
are defined as transformations on the vector bundle of
superfields [7–9]: they are of the form

θA 7→ θA + ǫA,

xa 7→ xa + da + σa
AA′ i

(
θAǭA

′

− ǫAθ̄A
′)

(2)

in terms of “supercoordinates” (Grassmann valued two-
spinors) and affine spacetime coordinates. From Eq.(2) it
is seen that although the pure spacetime translations T
form an abelian normal subgroup inside S, but S cannot
be further split in the form of T ⋊{some other subgroup},
and thus such splitting is not applicable for the entire su-
persymmetry group. The above structural observations
imply that the supersymmetry group is of type (iii) in the
classification theorem of O’Raifeartaigh [3] on Poincaré
group extensions: its Levi factor is the (proper) homoge-
neous Lorentz group, and the extension is on the side
of the radical, where the pure spacetime translations
form a normal subgroup of the radical. Our Poincaré
group extension presented in this paper shall also be of
such type, but the radical will be a split extension: it
shall be of the form T × {some other subgroup}, both
components coupling to the homogeneous Lorentz part.
Thus, our Poincaré group extension shall have the form
T ⋊{some group acting at points of spacetime}, which is
not the case for the supersymmetry group. Note that
in the paper of O’Raifeartaigh the pertinent type (iii)
Poincaré group extension is regarded as “unphysical”,
however it is seen that in fact, the SUSY mechanism is
just making use of that group theoretical possibility as
well.

As a closing note about the context of SUSY we would
like to reflect on a common way of presentation of SUSY
algebra. In the traditional view, also used by [4], the
SUSY algebra is not a Lie algebra, but rather a so called
graded Lie algebra, being a mathematically slightly gen-
eralized version of a Lie algebra with even and odd sec-
tors. However, as summarized in [7–9] and Eq.(2), it may
as well be also regarded as an ordinary Lie algebra and
corresponding Lie group, as done in the present paper.
The alternative Lorentz group extension.—We start by

defining the group action of our extended group at a
given point of spacetime. It shall be an extension of the
(proper) homogeneous conformal Lorentz group.
Let A be a finite dimensional complex unital asso-

ciative algebra, with its unit denoted by 1. When-
ever A is also equipped with a conjugate-linear involu-
tion (·)+ : A → A such that for all x, y ∈ A one has
(xy)+ = x+y+, then it shall be called a +-algebra [10].
Let now A be a finite dimensional complex associative
algebra with unit, being also +-algebra, and possessing
a minimal generator system (e1, e2, e3, e4) obeying the
identity

eiej + ejei = 0 (i, j ∈ {1, 2} or i, j ∈ {3, 4}),
eiej − ejei = 0 (i ∈ {1, 2} and j ∈ {3, 4}),

e3 = e+1 ,

e4 = e+2 ,

ei1ei2 . . . eik (1 ≤ i1 < i2 < · · · < ik ≤ 4, 0 ≤ k ≤ 4)
are linearly independent. (3)

Then we call A spin algebra, and we call a minimal gen-
erator system obeying Eq.(3) a canonical generator sys-

tem, whereas the +-operation is called charge conjuga-

tion. That is, spin algebra is a freely generated unital
complex associative algebra with four generators, and
the generators admit two sectors within which the gen-
erators anticommute, whereas the two sectors commute
with each-other, and are charge conjugate to each-other.
It is easy to check that if S∗ is a complex two dimen-
sional vector space (called the cospinor space), and S̄∗ is
its complex conjugate vector space, then Λ(S̄∗)⊗ Λ(S∗)
naturally becomes spin algebra, where Λ(·) denotes the
exterior algebra of its argument. It is also seen that any
spin algebra is isomorphic (not naturally) to this algebra,
i.e. they all have the same structure, but there is a free-
dom in matching the canonical generators. Some prop-
erties of the pertinent mathematical structure is listed in
[11]. In terms of a formal quantum field theory (QFT)
analogy, the spin algebra can be regarded as a creation
operator algebra of a fermion particle with two internal
degrees of freedom along with its antiparticle, at a fixed
point of spacetime, or equivalently, at a fixed point of
momentum space. It is important to understand, how-
ever, that in this construction the creation operators of
antiparticles are not yet identified with the annihilation
operators of particles, i.e. it is not a canonical anticom-
mutation relation (CAR) algebra.
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Given a canonical generator system (e1, e2, e
+
1 , e

+
2 ) of

A, one can define the following subspaces: Λp̄q are the
linear subspaces of p, q-forms, i.e. the polynomials con-
sisting of p powers of {e1, e2} and q powers of {e+1 , e

+
2 }

(p, q ∈ {0, 1, 2}), and one has A =
2
⊕

p,q=0
Λp̄q, called to

be the Z × Z-grading of A. Then, there are the linear
subspaces of k-forms, Λk, i.e. the polynomials consisting
of k powers of {e1, e2, e

+
1 , e

+
2 } (k ∈ {0, 1, 2, 3, 4}), and

one has A =
4
⊕
k=0

Λk, called to be the Z-grading of A.

Finally, there are the subspaces Λev and Λod being the
even and odd polynomials of {e1, e2, e

+
1 , e

+
2 }, and one has

A = Λev ⊕ Λod, called to be the Z2-grading of A. The
subspace B := Λ0̄0 = C1 of zero-forms and the sub-

space M :=
4
⊕
k=1

Λk of at-least-1-forms shall play an im-

portant role as well, and one has A = B⊕M . B is a one-
dimensional unital associative subalgebra of A, spanned
by the unity and called the unit algebra, whereas M is
the so called maximal ideal of A. An other important
subspace is Z = Λ0̄0 ⊕ Λ2̄0 ⊕ Λ0̄2 ⊕ Λ2̄2, the center of
A, being the largest unital associative subalgebra in A

commuting with all elements of A.

Our extension of the homogeneous conformal Lorentz
group shall be nothing but Aut(A), the automorphism

group of the spin algebra A. That consists of those in-
vertible A → A linear transformations, which preserve
the algebraic product as well as the charge conjugation
operation. It is seen that an element of Aut(A) maps
a canonical generator system to a canonical generator
system, and that an element of Aut(A) can be uniquely
characterized by its group action on an arbitrary pre-
ferred canonical generator system. Let us take such a
system (e1, e2, e

+
1 , e

+
2 ), with occasional notation e3 = e+1 ,

e4 = e+2 . The group structure of Aut(A) can then be
characterized with the following four subgroups. (i) Let
AutZ×Z(A) be the group of Z×Z-grading preserving au-
tomorphisms: they act on the canonical generators as
ei 7→

∑2
j=1 αijej and e+i 7→

∑2
j=1 ᾱije

+
j (i ∈ {1, 2}),

the bar (̄·) meaning complex conjugation and the 2 × 2
complex matrix (αij)i,j∈{1,2} being invertible. (ii) Let

J := {I, J} be the two element subgroup of Z-grading
preserving automorphisms, I being the identity and J

being the involutive complex-linear operator of particle-
antiparticle label exchanging acting as e1 7→ e3, e2 7→ e4,
e3 7→ e1, e4 7→ e2. (iii) Let Ñev be a subgroup of the
Z2-grading preserving automorphisms defined by the re-
lations ei 7→ ei + bi and e+i 7→ e+i + b+i with uniquely
determined parameters bi ∈ Λ1̄2 (i ∈ {1, 2}). (iv) Let
InAut(A) be the subgroup of inner automorphisms, i.e.
the ones of the form exp(a)(·) exp(a)−1 with some a ∈
Re(A). These are of the form ei 7→ ei+[a, ei]+

1
2 [a, [a, ei]]

(i ∈ {1, 2, 3, 4}) with uniquely determined parameter
a ∈ Re(Λ1̄0 ⊕ Λ0̄1 ⊕ Λ1̄1 ⊕ Λ2̄1 ⊕ Λ1̄2). With these, the

semi-direct product splitting

Aut(A) = InAut(A)⋊ Ñev
︸ ︷︷ ︸

=:N

⋊AutZ×Z(A)⋊ J
︸ ︷︷ ︸

=AutZ(A)

(4)

holds. It is seen that a Z-grading almost determines the
underlying Z×Z-grading: only the two-element discrete
group of label exchanging transformations J introduces
an ambiguity. The subgroup N shall be called the group
of dressing transformations, being a nilpotent normal
subgroup of Aut(A). These transformations are mixing
higher forms to lower forms, i.e. do not preserve the Z and
Z2-grading defined by our preferred canonical generator
system: they map a system of canonical generators like
ei 7→ ei + βi, the elements βi residing in the space of at-
least-2-forms M2 (i ∈ {1, 2, 3, 4}), deforming the original
Z and Z2-grading to an other one. By direct substitution
it is seen that the transformations (i)–(iv) indeed define
subgroups of the automorphisms of A, however the proof
of decomposition theorem Eq.(4) needs a bit more com-
plex mathematical apparatus [12]. The principle of the
proof is motivated by [13], studying the automorphism
group of ordinary finite dimensional complex Grassmann
(exterior) algebras.
By scrutinizing the subgroups, it is seen that the group

J of label exchanging transformations has the structure
of Z2. On the other hand, one has

AutZ×Z(A) ≡ GL(2,C) ≡ U(1)×D(1)× SL(2,C),(5)

where D(1) is the dilatation group, i.e. R+ with the real
multiplication. Note that D(1)× SL(2,C) is nothing but
the universal covering group of the (proper) homogeneous
conformal Lorentz group. As far as a fixed Z×Z-grading
is taken, A can be always be represented via ordinary
two-spinor calculus, and the algebra identification A ≡
Λ(S̄∗) ⊗ Λ(S∗) can greatly ease the calculations due to
well-known identities in that formalism [14, 15]. The
group of dressing transformations N , however, does not
fit automatically into that framework: it needs the proper
apparatus of the introduced spin algebra formalism, or
care is needed when represented in terms of two-spinors.
Due to the presence of the nilpotent normal subgroup

N , Aut(A) is not semisimple. As a consequence, there
can be nontrivial invariant subspaces even in the defin-
ing representation, i.e. when Aut(A) acts on A. How-
ever, for the same reason, the existence of an invari-
ant subspace in a representation of Aut(A) does not
imply the existence of an invariant complement. The
list of indecomposable Aut(A)-invariant subspaces of A
are the followings: B, M l (l ∈ {1, 2, 3, 4}), M2 ∩ Z,
V := Λ1̄0 ⊕ Λ0̄1 ⊕ Λ2̄0 ⊕ Λ0̄2 ⊕ Λ2̄1 ⊕ Λ1̄2 ⊕ Λ2̄2, U :=
Λ2̄0⊕Λ0̄2⊕Λ2̄1⊕Λ1̄2⊕Λ2̄2, W := Λ1̄1⊕Λ2̄1⊕Λ1̄2⊕Λ2̄2.
This is seen via the orbit of Λp̄q (p, q ∈ {0, 1, 2}) by J
and N . The existence of the trivial invariant splitting
A = B ⊕M is observed, which holds in any polynomial
algebra. The dual vector space A∗ of A has the following
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indecomposable Aut(A)-invariant subspaces: Ann(M),
Ann(B), Ann(B⊕M l) (l ∈ {2, 4}), Ann(Z), Ann(B⊕W ),
Ann(B⊕V ), where Aut(A) is understood to act on A via
the transpose group action. Here Ann(X) ⊂ A∗ denotes
annulator subspace of the subspace X ⊂ A, i.e. the sub-
space in A∗ which maps X to {0}. It is seen that the
Aut(A)-invariant subspace Ann(B⊕V ) ≡ Λ∗

1̄1 is nothing
but a four vector multiplet of Aut(A), on which Aut(A)
acts as the homogeneous conformal Lorentz group. In
the two-spinor representation A ≡ Λ(S̄∗) ⊗ Λ(S∗) one
has simply Λ∗

1̄1 ≡ S̄⊗S. The kernel of the corresponding
homomorphism of Aut(A) onto the homogeneous confor-
mal Lorentz group is said to be the gauge group, having
the structure N ⋊ U(1). Given a four dimensional real
vector space T , any injection T → Re(Λ∗

1̄1) is called a
Pauli injection, which is the analogue of the “soldering
form” in the traditional two-spinor calculus [14, 15], ex-
tending the group action of Aut(A) onto the real four di-
mensional vector space T . In the usual Penrose abstract
index notation that is nothing but the usual mapping
σAA′

a between spacetime vectors T and hermitian mixed
spinor-tensors Re(S̄ ⊗ S). It is seen that the group of
dressing transformations N respects this basic relation of
two-spinor calculus and hence realizes the group action of
Aut(A) on the spacetime vectors T as the homogeneous
conformal Lorentz group.

Adding the translation group.—Adding translations to
the presented homogeneous conformal Lorentz group ex-
tension is trivial. One simply takes a four dimensional
real affine space M as the model of the flat spacetime
manifold, with underlying vector space (“tangent space”)
T . One takes in addition the spin algebra A, and con-
structs the trivial vector bundle M × A. The algebraic
product on A extends to the sections of this vector bun-
dle (i.e. to the A-valued fields) pointwise, being trans-
lationally invariant. Given a Pauli injection (soldering
form) between T and Re(Λ∗

1̄1), Aut(A) acts on T as the
homogeneous conformal Lorentz group. The vector bun-
dle automorphisms of M × A preserving the algebraic
product of fields as well as preserving the Pauli injection
shall have the desired group structure including both the
spacetime translations and Aut(A) in a semi-direct prod-
uct, acting on M as the Poincaré group combined with
global metric rescalings. This also implies a causal struc-
ture on M.

The “gauging” of Aut(A), i.e. making Aut(A) a lo-
cal symmetry is also trivial. Let M be a four dimen-
sional real manifold modeling the spacetime manifold,
with tangent bundle T (M). Take in addition a vector
bundle A(M) whose fiber in each point is spin algebra.
Take also a pointwise Pauli injection between T (M) and
Re(Λ∗

1̄1)(M). The gauged version of Aut(A) shall be
nothing but the product preserving vector bundle au-
tomorphisms of A(M), and they act on T (M) as the
combined group of diffeomorphisms and pointwise space-
time metric conformal rescalings, being the symmetries

of (conformal) general relativity.
Discussion.—The presented approach can be used for

GUT attempts. Assume that a solvable normal subgroup
N is allowed in the symmetry group of matter fields at
a point of spacetime, then one could search for a unified
group having the structure

N ⋊

(

U(1)× SU(2)× SU(3)
︸ ︷︷ ︸

SM−internal
︸ ︷︷ ︸

full gauge group

× D(1)× SL(2,C)
︸ ︷︷ ︸

spacetime related

)

︸ ︷︷ ︸

symmetries of matter fields at a spacetime point or mom. space

(6)

which is indecomposable. In this mechanism, the solvable
normal subgroup N glues together the otherwise inde-
pendent gauge group to the spacetime related symmetry
group, and as a byproduct the Standard Model gauge
groups are glued to each-other as well. The unital con-
nected component of the group presented in this paper
provides a simplified example for the

N ⋊

(

U(1)
︸︷︷︸

internal
︸ ︷︷ ︸

full gauge group

× D(1)× SL(2,C)
︸ ︷︷ ︸

spacetime related

)

︸ ︷︷ ︸

symmetries of A−fields at a spacetime point or mom. space

(7)

case. When adding the translations as well, all this
falls into the type (iii) Poincaré group extension of
O’Raifeartaigh classification, and circumvents McGlinn’s
theorem as well as the Coleman-Mandula no-go theorem
because of the presence of the solvable normal subgroup
N . As mentioned, the presence of N shall not mean a
problem from the point of view of positivity of energy,
or equivalently, from the point of view of unitarity: the
Yang-Mills degrees of freedom in the direction of N will
not be propagating ones, since the corresponding Yang-
Mills kinetic Lagrangian also vanishes due to the degen-
eration of the Killing form in the directions of N .
In the presented example the physical meaning of

N could be understood as the “dressing” of pure one-
particle states of a formal QFT model at a fixed mo-
mentum. Note, that spin algebra differs from a CAR
algebra of QFT with the fact that the antiparticle cre-
ation operators are not yet identified with particle anni-
hilation operators. It can be shown however [12], that
an Aut(A)-covariant family of self-dual CAR algebras
can be associated to the spin algebra A, and vice-versa.
Here, the self-dual CAR algebra is a mathematical struc-
ture, introduced by Araki [16], formally describing the
algebraic behavior of quantum field operators. With the
use of this relation, the spin algebra looks like a conve-
nient reparametrization of the quantum field algebra of a
QFT at a fixed point of spacetime or momentum space.
The details of this correspondence is, however, out of the
scope of the present paper mainly focusing on Poincaré
group extensions.
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Conclusions.—In this paper a non-SUSY extension of
the Poincaré group was presented. The extended symme-
try group is an affine group, i.e. is a semi-direct product
of the group of spacetime translations and a subgroup
acting on fields at the points of spacetime. The latter
group is a semi-direct product of internal (gauge) sym-
metries and of the covering group of the homogeneous
conformal Lorentz group D(1) × SL(2,C). The normal
subgroup accounting for gauge symmetries has a semi-
direct product structure of a nilpotent normal subgroup
and of U(1). The presented example circumvents the
Coleman-Mandula theorem, because the invariant inner
product of the gauge group is required only to be pos-
itive semidefinite, or equivalently, only the Levi factor
of the gauge group is required to be compact semisim-
ple, not the entire gauge group. The nilpotent part glues
together the otherwise unrelated compact gauge group
U(1) and the group accounting for the spacetime sym-
metries. This mechanism could be used for unification
of Standard Model gauge groups along with relating the
gauge symmetries to spacetime symmetries.
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