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Arithmetic operations (addition, subtraction, multiplication, division), as well as the calculus they
imply, are non-unique. The examples of four-dimensional spaces, R4

+ and (−L/2, L/2)4, are con-
sidered where different types of arithmetic and calculus coexist simultaneously. In all the examples
there exists a non-Diophantine arithmetic that makes the space globally Minkowskian, and thus the
laws of physics are formulated in terms of the corresponding calculus. However, when one switches
to the ‘natural’ Diophantine arithmetic and calculus, the Minkowskian character of the space is lost
and what one effectively obtains is a Lorentzian manifold. I discuss in more detail the problem of
electromagnetic fields produced by a pointlike charge. The solution has the standard form when
expressed in terms of the non-Diophantine formalism. When the ‘natural’ formalsm is used, the
same solution looks as if the fields were created by a charge located in an expanding universe, with
nontrivially accelerating expansion. The effect is clearly visible also in solutions of the Friedman
equation with vanishing cosmological constant. All of this suggests that phenomena attributed to
dark energy may be a manifestation of a miss-match between the arithmetic employed in mathe-
matical modeling, and the one occurring at the level of natural laws. Arithmetic is as physical as
geometry.

PACS numbers: 04.50.Kd, 04.20.Cv, 05.45.Df

I. INTRODUCTION

The idea of relativity of arithmetic follows from the ob-
servation that the four basic arithmetic operations (ad-
dition, subtraction, multiplication, division) are funda-
mentally non-unique, even if one assumes commutativity
and associativity of ‘plus’ and ‘times’, and distributivity
of ‘times’ with respect to ‘plus’. The ambiguity extends
to calculus and algebra since even the most elementary
notions, such as derivatives or matrix products, involve
arithmetic operations, sometimes accompanied by limits
(‘to zero’, say). A ‘zero’, the neutral element of addition,
inherits its ambiguity from the ambiguity of addition.
The same concerns a ‘one’, the neutral element of multi-
plication.

The freedom of choosing arithmetic and its correspond-
ing calculus is a universal symmetry of any mathematical
model, but we are still lacking its physical understand-
ing. For all that, treated just as a mathematical trick,
the idea has found concrete applications in fractal theory
[1–3].

In the paper I discuss a situation where there is a miss-
match between the arithmetic employed at the level of
mathematical principles, and the one that is naturally
‘employed’ by Nature. We will see that consequences of
the miss-match can be similar to those of dark energy.

In natural sciences there exists at least one example of
such a miss-match, and we experience it in our everyday
life. This is the Weber phenomenon known from neuro-
science [4, 5]. Namely, it is an experimental fact that the
increment x → x+ kx of intensity of a stimulus (sound,
light, taste, etc.) is perceived by our nervous system as

being independent of x. k depends on the type of stim-
ulus and is known as a Weber constant. The Weber law
∆x/x = k ≈ const is valid in a wide range of stimulus
parameters.

From a mathematical point of view the Weber law ap-
pears as the solution of the following problem [6]: Find
a generalized subtraction 	 such that

(x+ kx)	 x = f−1
(
f(x+ kx)− f(x)

)
= δx (1)

is independent of x. The solution f is unique and is given
by a logarithm, as shown by G. Fechner in 1850 [7]. This
is the reason why decibels correspond to a logarithmic
scale. We hear, see, taste and feel the world outside of us
though a logarithmic channel of our neurons, although
we are typically as unaware of it, as we are unaware of
experiencing curvature of space when we feel our weight.

The Fechner problem extends to any natural science.
In order to appreciate it, consider the function f(x) = x3,
and define

x⊕ y = f−1
(
f(x) + f(y)

)
= 3
√
x3 + y3, (2)

x	 y = f−1
(
f(x)− f(y)

)
= 3
√
x3 − y3, (3)

x� y = f−1
(
f(x)f(y)

)
= xy, (4)

x� y = f−1
(
f(x)/f(y)

)
= x/y. (5)

Here multiplication is unchanged.
Mathematicians would generally say that we have in-

troduced two types of field , related by the field iso-
morphism f , but I prefer the terminology of Burgin
[8, 9] where formulas such as (2)-(5) occur in arithmetic
contexts. A terminology involving ‘fields’ or ‘relativ-
ity of fields’ would be very confusing in the context of
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physics, especially in relativistic field theory. An arith-
metic involving a non-trivial f is termed by Burgin a non-
Diophantine one, as opposed to the Diophantine case of
f(x) = x. I will also stick to this distinction, although
one should bear in mind that it is largely a matter of
convention which of the two arithmetics is Diophantine.

The non-Diophantine derivative

DA(x)

Dx
= lim

h→0

(
A(x⊕ h)	A(x)

)
� h (6)

satisfies all the basic rules of differentiation (the Leibnitz
rule for �, the chain rule for composition of functions,
linearity with respect to ⊕...). The solution of

DA(x)

Dx
= A(x), A(0) = 1, (7)

is unique, but it comes as some surprise, at least when
one first encounters it, that

A(x) = ex
3/3, (8)

as one can verify directly from definition (6). Had one
replaced f(x) = x3 by f(x) = x5, one would have found

A(x) = ex
5/5 = f−1(ef(x)), as the reader has probably

already guessed.
Notice that the change of f is not a change of variables.

The differential equation (7) remains linear in spite of
non-linearity of f . The change of f cannot be regarded
as a change of gauge either, with covariant derivative
D/Dx, since the corresponding connection would be triv-
ial, in spite of non-triviality of f . The change of arith-
metic operates at a more primitive level than a change
of variables or gauge.

Of course, one can denote g = f−1 and rewrite (2)-(3)
as

x+ y = g−1
(
g(x)⊕ g(y)

)
=
(

3
√
x⊕ 3
√
y
)3
, (9)

x− y = g−1
(
g(x)	 g(y)

)
=
(

3
√
x	 3
√
y
)3
. (10)

Now comes the fundamental question: Which of the
two additions, + or ⊕, is more natural or physical?
Which of them is Diophantine, and which is not? Clearly,
± and ⊕, 	 coexist in the same set, and it is hard to say
why (2)-(3) should be regarded as less simple, or more
weird, than (9)-(10).

Put another way, what kind of a rule is responsible
for the implicit preference of f(x) = x over any other
one-to-one f? The Ockham razor?

Expressing it yet differently, let us assume that it is
indeed the ‘natural’ (whatever it means) arithmetic with
± etc. that we should employ in practical computations.
What kind of a rule guarantees that the laws of physics
(variational principles, say) are formulated in terms of
the same arithmetic and calculus, and not by means of
⊕, �, D/Dx, and the like, for some unknown f?

I believe the questions are open.

Let us stress again that there are cases where a non-
trivial f naturally appears (fractal theory [1–3], neuro-
science [6]). Further examples can be found in the works
of Burgin [8, 9].

The goal of the present paper is to illustrate these prob-
lems on concrete examples from relativistic physics, and
to contemplate the possibility of detecting a non-trivial
f by means of physical observations. We will see that
phenomena of dark-energy variety may suggest the pres-
ence of some f between the universe of our mathematical
formulas, and the physical Universe.

We will consider two spaces, R4
+ and (−L/2, L/2)4,

which become Minkowski space-times when appropriate
arithmetic is selected. We will then consider the problem
of electromagnetic fields produced by pointlike sources,
but the Maxwell field will be formulated in terms of
this concrete arithmetic ⊕, 	, �, �, which will make
the space Minkowskian. However, when we switch back
to the ‘standard’ arithmetic the geometry becomes lo-
cally Lorenzian, with a non-Minkowskian global struc-
ture. Static charges will appear moving toward event
horizons of the space, thus creating an impression of an
expanding universe, with accelerating expansion. All of
this happens in spite of the fact that the spaces are static,
no matter which arithmetic one works with.

The paper is organized as follows. In the next sec-
tion two types of real numbers, equipped with their own
arithmetic and calculus, are introduced. The two types
of reals are related by a bijection f . In Section III the
two types of reals are employed in construction of two
types of Minkowski spaces. Sections IV and V discuss
in detail the two concrete examples of Minkowski spaces:
R4

+ and (−L/2, L/2)4. Section VI discusses electromag-
netic fields produced by a pointlike charge, with Maxwell
equations formulated in terms of a non-Diophantine for-
malism defined by some f . The formalism is implicitly
non-Diophantine since an observer who employs in his
observations and calculations the arithmetic defined by
the same f will never discover that some nontrivial f
is implicitly involved. However, in case there is a miss-
match, i.e. two different fs come into play, the conflict of
arithmetics can have observational consequences. This is
discussed on explicit examples in sections VII and VIII.
Finally, in section IX an example of a non-Diophantine-
calculus Friedman equation is discussed. We observe
accelerated expansion with vanishing cosmological con-
stant.

II. ‘LOWER’ AND ‘UPPER’ REALITY

Consider real numbers R equipped with the ‘standard’
arithmetic operations of addition (+), subtraction (−),
multiplication (·), and division (/). Let us term these real
numbers the ‘lower reals’, and denote them by lowercase
symbols. As usual, ‘·’ can be skipped: a · b = ab. Neutral
elements of addition and multiplication in R are denoted
by 0 and 1.
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Now, let us assume that there exist some ‘upper reals’,
whose set is denoted by

R

. By assumption,

R

is related to
R by some bijection, f :

R

→ R. Those upper reals are
equipped with their own arithmetic and calculus. The
arithmetic operations in

R

will be denoted by ⊕, 	, �,
�. We use the convention that elements of

R

are denoted
by upper-case fonts.

The arithmetic in

R

is non-Diophantine in the sense of
Burgin [8, 9],

X ⊕ Y = f−1
(
f(X) + f(Y )

)
, (11)

X 	 Y = f−1
(
f(X)− f(Y )

)
, (12)

X � Y = f−1
(
f(X)f(X)

)
, (13)

X � Y = f−1
(
f(X)/f(Y )

)
. (14)

Both arithmetics are commutative, associative, and mul-
tiplications are distributive with respect to (appropri-
ate) additions. Neutral elements of addition and mul-
tiplication in

R

are denoted by 0′ and 1′, which implies
0′ = f−1(0), 1′ = f−1(1).

A negative in

R

is defined by 	X = 0′ 	 X =
f−1

(
− f(X)

)
. Multiplication by zero yields zero in both

arithmetics, in particular 0′ �X = 0′.
Multiplication is equivalent to repeated addition in the

following sense. Let N ∈ N and X ′ = f−1(X) ∈

R

. Then

N ′ ⊕X ′ = (N +X)′, (15)

N ′ �X ′ = (NX)′ (16)

= X ′ ⊕ · · · ⊕X ′︸ ︷︷ ︸
Ntimes

. (17)

A power function A(X) = X � · · ·�X (N times) will be

denoted by XN ′
, since

XN ′
�XM ′

= X(N+M)′ = XN ′⊕M ′
. (18)

A derivative of a function A :

R

→

R

is defined by

DA(X)

DX
= lim

H→0′

(
A(X ⊕H)	A(X)

)
�H, (19)

as contrasted with the derivative of a function a : R→ R,
defined with respect to the lowercase arithmetic,

da(x)

dx
= lim
h→0

(
a(x+ h)− a(x)

)
/h. (20)

Now let A = f−1 ◦ a ◦ f . Then,

DA(X)

DX
= f−1

(
da
(
f(X)

)
df(X)

)
, (21)

∫ Y

X

A(X ′)DX ′ = f−1

(∫ f(Y )

f(X)

a(x)dx

)
, (22)

satisfy

D

DX

∫ X

Y

A(X ′)DX ′ = A(X), (23)∫ X

Y

DA(X ′)

DX ′
DX ′ = A(X)	A(Y ). (24)

Formula (21) follows directly from the definitions of
D/DX and d/dx. As stressed in the introduction, (21)
is not the usual formula relating derivatives of A =
f−1 ◦ a ◦ f with those of a. Indeed,

DA

DX
= f−1 ◦ da

dx
◦ f, (25)

so that D/DX behaves like a covariant derivative, but
with a trivial connection for any bijection f :

R

→ R.
The standard approach, employed in differential geome-
try or gauge theories, would employ the arithmetic of R,
and one would have to assume differentiability of f and
f−1. Here bijectivity is enough since no derivatives of
either f or f−1 will occur in (21) and (25). This is why
this type of calculus is so useful and natural in fractal
theory [1–3].

Partial derivatives and multidimensional integrals are
defined analogously.

III. LOWER AND UPPER MINKOWSKI
SPACE-TIMES

Consider a point x in Minkowski space R4 and assume

(x0, x1, x2, x3) =
(
f(X0), f(X1), f(X2), f(X3)

)
(26)

where (x0, x1, x2, x3) ∈ R4 and (X0, X1, X2, X3) ∈
R4.

The two spaces are Minkowskian in the sense that the
invariant quadratic forms are defined by

gabx
axb = (x0)2 − (x1)2 − (x2)2 − (x3)2, (27)

GabX
aXb = (X0)2

′
	 (X1)2

′
	 (X2)2

′
	 (X3)2

′
.(28)

Since

f−1
(
gabx

axb
)

= f−1
(
f(X0)2 − f(X1)2 − f(X2)2

− f(X3)2
)

(29)

= f−1
(
f(Gab)f(Xa)f(Xb)

)
(30)

= GabX
aXb, (31)

the two quadratic forms are related by f , and gab =
f(Gab). Covariant and contravariant world-vectors are
defined in the usual way,

Xa = GabX
b (32)

= f−1
( 3∑
b=0

f(Gab)f(Xb)
)

(33)

= f−1
( 3∑
b=0

gabx
b
)

= f−1(xa). (34)
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The quadratic forms are invariant with respect to Lorentz
transformations,

x′a = λa
bxb =

3∑
b=0

λa
bxb, (35)

X ′a = Λa
bXb = ⊕3

b=0Λa
b �Xb (36)

= f−1
( 3∑
b=0

f(Λa
b)f(Xb)

)
. (37)

This type of Lorentz transformation, but for f represent-
ing a Cantor set, was explicitly used in [1, 2] to construct
fractal homogeneous spaces.

We will later need an explicit boost,

Λab =

 Coshφ 	Sinhφ 0′ 0′

	Sinhφ Coshφ 0′ 0′

0′ 0′ 1′ 0′

0′ 0′ 0′ 1′

 , (38)

where Sinhφ = f−1
(

sinh f(φ)
)
, Coshφ =

f−1
(

cosh f(φ)
)

satisfy

Cosh 2′φ	 Sinh 2′φ = 1′. (39)

The four-velocity

Ua =

 Coshφ
Sinhφ

0′

0′

 , (40)

is mapped by (38) into (1′, 0′, 0′, 0′).

IV. MINKOWSKI SPACE-TIME R4
+

Now let us make the analysis more explicit. Let
the Fechner function f(X) = µ lnX + ν, µ > 0, be
the bijection f : R+ → R. Accordingly,

R

= R+.
f−1(x) = e(x−ν)/µ, and thus 0′ = f−1(0) = e−ν/µ,
1′ = f−1(1) = e(1−ν)/µ.

A. Arithmetic

Let us begin with the explicit form of arithmetic oper-
ations. Addition and subtraction explicitly read

X ⊕ Y = f−1
(
f(X) + f(Y )

)
= XY eν/µ, (41)

X 	 Y = f−1
(
f(X)− f(Y )

)
= e−ν/µX/Y. (42)

The arithmetic operations occurring at the right sides of
(41) and (42) are those from R and not from

R

(the latter
occur at the left sides of these formulas). For example,
X ⊕ 0′ = Xe−ν/µeν/µ = X.

Note that although X > 0 in f(X) = µ lnX + ν, one
nevertheless has a well defined negative number 	X =
0′	X = e−2ν/µ/X ∈

R

= R+, which is positive from the
point of view of the arithmetic of R. Let us cross-check
the negativity of 	X:

	X ⊕X = (	X)Xeν/µ (43)

= (e−2ν/µ/X)Xeν/µ (44)

= e−ν/µ = 0′. (45)

(

R

,⊕) = (R+,⊕) is a group, as opposed to (R+,+). In
consequence, the Minkowski space R4

+ is invariant under
the non-Diophantine Poincaré group.

The multiplication in

R

is explicitly given by

X � Y = f−1
(
f(X)f(Y )

)
= eµ lnX lnY+ν lnX+ν lnY+ν2/µ−ν/µ, (46)

X � Y = f−1
(
f(X)/f(Y )

)
= e(lnX+ν/µ)/(µ lnY+ν)−ν/µ. (47)

Again the expressions at the right-hand sides of (46) and
(47) involve the arithmetic of R.

B. Light cone

The light cone in R4
+ consists of vectors satisfying

GabX
aXb = f−1

(
f(Gab)f(Xa)f(Xb)

)
(48)

= f−1
(
gabf(Xa)f(Xb)

)
(49)

= 0′ = f−1(0) = e−ν/µ. (50)

This is equivalent to f(X0)2 = f(X1)2 + f(X2)2 +
f(X3)2, i.e.

X0 = f−1
(
±
√
f(X1)2 + f(X2)2 + f(X3)2

)
(51)

= e

(
±
√

(lnX1+ν/µ)2+(lnX2+ν/µ)2+(lnX3+ν/µ)2−ν/µ
)

(52)

Fig. 1 shows the light cone GabX
aXb = 0′ in 1 + 2 di-

mensional Minkowski space R3
+.

An arbitrarily located light cone

Gab(X
a 	 Y a)(Xb 	 Y b) = 0′ (53)

corresponds to

gab
(
f(Xa)− f(Y a)

)(
f(Xb)− f(Y b)

)
= 0, (54)

that is

X0 = Y 0e±
√

ln2(X1/Y 1)+ln2(X2/Y 2)+ln2(X3/Y 3). (55)

For Y 0 = · · · = Y 3 = 0′ = e−ν/µ we reconstruct (52).
Fig. 2 shows the light cones (55) in small neighbor-

hoods of various origins Y a. The plots suggest that
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FIG. 1: Light cone XaX
a = 0′ in 1+2 dimensional Minkowski

space R3
+, for µ = 10, ν = −20, and its close-up (right) in the

neighborhood of (0′, 0′, 0′), where 0′ = e−ν/µ = e2 ≈ 7.39.

a Lorentzian geometry is typical of both the standard
‘lower-case’ space-time R3 (where it is just globally
Minkowskian), and of the ‘upper-case’

R3. Recall that
the latter is also globally Minkowskian, but with respect
to the non-Diophantine calculus. Interestingly, when we
employ in

R3 the miss-matched formalism taken from R3,
the formulas are locally Lorentzian. The further away
from the ‘walls’ of R3

+ the observation is performed, the
more Minkowskian the geometry appears, provided one
does not observe objects that are too far away from the
observer, as we shall see later.

To prove the local Lorentzian structure analytically, let
Xa = Y a + εa. Here ‘+’ is from R since the observer is
assumed to perform his analysis in the ‘wrong’ formalism.
Then, for |εa/Y a| � 1,

gabf
′(Y a)εaf ′(Y b)εb = g̃ab(Y )εaεb ≈ 0 (56)

where

g̃ab = gabf
′(Y a)f ′(Y b) (no sum) (57)

= diag
(
(Y 0)−2,−(Y 1)−2,−(Y 2)−2,−(Y 3)−2

)
(58)

is the Lorentzian metric. g̃ab becomes just a conformally
rescaled Minkowskian gab if Y 0 = Y 1 = Y 2 = Y 3.

The same effect occurs for general hyperboloids
Gab(X

a 	 Y a)(Xb 	 Y b) 6= 0′.

V. MINKOWSKI SPACE-TIME (−L/2, L/2)4

Let

R

= (−L/2, L/2) and f(X) = tan(πX/L),
f−1(x) = (L/π) arctanx. f :

R

→ R is a possible bi-
jection, with 0′ = 0 and 1′ = L/4.

A. Light cone

The light cone Gab(X
a 	 Y a)(Xb 	 Y b) = 0′ corresponds to

X0 = f−1
(
f(Y 0)±

√(
f(X1)− f(Y 1)

)2
+
(
f(X2)− f(Y 2)

)2
+
(
f(X3)− f(Y 3)

)2)
(59)

=
L

π
arctan

tan
πY 0

L
±

√(
tan

πX1

L
− tan

πY 1

L

)2

+

(
tan

πX2

L
− tan

πY 2

L

)2

+

(
tan

πX3

L
− tan

πY 3

L

)2
 .

(60)

Now let Xa = Y a + εa, where |εa/L| � 1. The effective Lorentzian metric in a neighborhood of Y reads

g̃ab(Y ) =
π2

L2
diag

(
cos−4

πY 0

L
,− cos−4

πY 1

L
,− cos−4

πY 2

L
,− cos−4

πY 3

L

)
. (61)

Another example of a bijection f :

R

→ R is provided by
f(X) = arctanh(2X/L), f−1(x) = (L/2) tanhx.

VI. FIELD PRODUCED BY A POINTLIKE
CHARGE

The above two examples show that several different
types of arithmetic may coexist in the same space-time.
Let us try to find a phenomenon where a nontrivial f can
be detected.

I propose to concentrate on Maxwell equations, but

formulated in terms of this form of arithmetic that
makes the geometry globally Minkowskian. Consider the
d’Alembertian

�′ = Gab
D

DXa

D

DXb
(62)

defined with respect to non-Diophantine partial deriva-
tives. Let

R

3 S 7→ Xa(S) ∈

R4 be a world-line of a
pointlike charge, and let Ja(X) be the current associ-
ated with the world-line. The Maxwell equations can be
taken in the form

�′Aa(X) = Ja(X). (63)
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FIG. 2: Minkowskian correspondence principle in 1 + 2 di-
mensional Fechnerian space-time. Light cone (Xa	Ya)(Xa	
Y a) = 0′ for (A) (Y 0, Y 1, Y 2) = (10000, 10001, 10002),
(B) (Y 0, Y 1, Y 2) = (10000, 5000, 10000), (C)
(Y 0, Y 1, Y 2) = (10000, 10000, 5000), and (D) (Y 0, Y 1, Y 2) =
(5000, 10000, 10001). The further away from the boundaries
of R3

+, the more Minkowskian-looking the light cones are.

FIG. 3: Light-cone with the origin at (Y 0, Y 1, Y 2) =
(0,−0.4,−0.2) in 1 + 2 dimensional Minkowski space
(−0.5, 0.5)3 (L = 1). (A) The global picture, and (B) the
close-up of the origin of the cone

The procedure of finding Aa(X) is standard [10], but we
only have to take care of appropriate definitions of non-
Diophantine arithmetic and calculus. The end result is

Aa(X) = f−1

(
f(C)f

(
Ua(Y )

)
gbcf

(
U b(Y )

)(
f(Xc)− f(Y c)

)) .(64)

Here C is a constant, Ua(X) is the four-velocity of the
charge, and Xb 	 Y b is future-pointing and null. We say
that Xa ∈

R4 is future-pointing if xa = f(Xa) ∈ R4 is
future-pointing. The summation convention is applied
unless otherwise stated.

FIG. 4: The same as in the previous figure, but with
(Y 0, Y 1, Y 2) = (0.01,−0.02,−0.03).

The four-velocity is normalized by UaU
a = 1′ (where

1′ = f−1(1) is the neutral element of multiplication),
which is equivalent to

gabf
(
Ua(Y )

)
f
(
U b(Y )

)
= 1. (65)

The four-potential is a world-vector gauge field and
thus under the action of a Lorentz transformation Λ
transforms by Aa(X) 7→ A′a(X) = (ΛA)a(Λ−1X), up
to a gauge transformation. In standard notation

A′a(X) = C
ΛUa(Y )

Ub(Y )
(
(Λ−1X)b − Y b

) (66)

= C
ΛUa(Y )

(ΛU)b(Y )
(
Xb − (ΛY )b

) . (67)

Now consider a Y -independent Ua of the form (40)
and let Λab be given by (38). To simplify further anal-
ysis let us take the point of observation at the ori-
gin Xa = (0′, 0′, 0′, 0′) ≡ 0′ and the source at Y a =
(Y 0, Y 1, 0′, 0′). Y a is null and past-pointing, which im-
plies f(Y 0) = −|f(Y 1)| (notice that in our examples we
assume that f is increasing and there exist various argu-
ments why this is important for physical consistency of
the formalism). Accordingly,

(ΛY )0 = Y 0 � Coshφ	 Y 1 � Sinhφ, (68)

f
(
(ΛY )0

)
= −|f(Y 1)|

(
cosh f(φ) +

f(Y 1)

|f(Y 1)|
sinh f(φ)

)
= −|f(Y 1)|e

f(Y 1)

|f(Y 1)|
f(φ)

. (69)

The only non-vanishing component of the potential reads

A′0(0′) = C � (	ΛY )0 (70)

= f−1

(
f(C)

f(0′)− f
(
(ΛY )0

)) (71)

= f−1

 f(C)

|f(Y 1)|e
f(Y 1)

|f(Y 1)|
f(φ)

 . (72)

In order to continue we have to make f more concrete.
Let us begin with the Minkowski space (−L/2, L/2)4.
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VII. FIELDS IN (−L/2, L/2)4

f(X) = tan(πX/L) implies

A′0(0′) =
L

π
arctan

 f(C)

| tan(πY 1/L)|e
Y 1

|Y 1|
f(φ)

 .(73)

Let us first consider the case of |πY 1/L| � 1, but with Y 1

sufficiently far from the singularity at the origin 0′ = 0,
so that the arguments of both tan and arctan are small.
The field is then approximately Coulombian

A′0(0′) ≈ L

π

f(C)

|πY 1/L|e
Y 1

|Y 1|
f(φ)

(74)

=
L2

π2
f(C)

1

|Y |
e
− Y 1

|Y 1|
f(φ)

. (75)

Notice that up to this point we have worked with lin-
earized forms of f and f−1 since for small distances and
small potentials it is enough if one replaces exact non-
linear f by its linear approximation. This is where we
get closest to the formalism of Benioff [11–13]. In his
approach one allows for different linear fs at different
space-time points, which is essentially also what happens
here if one linearly approximates a single f by its Taylor
expansions around different points of observation.

Let us concentrate on a charge at rest, i.e. with
f(φ) = 0, and denote q = L2f(C)/π2. We conclude that
a source placed in a neighborhood of the origin produces
the Coulomb field whose value at the point of observation
is

A′0(0′) ≈ q

|Y |
(76)

where |Y | is the distance from the source.
Now, let us increase |Y | so that tan cannot be anymore

approximated by its argument. The argument of arctan
is even smaller, so here the approximation is still valid.
The result is

A′0(0′) ≈ L

π

f(C)

| tan(πY 1/L)|
(77)

=
q

|Y |
πY 1/L

tan(πY 1/L)
(78)

=
q

|Y |
e
− Y 1

|Y 1|
f
(
φ(Y 1)

)
(79)

So, in spite of our assumption that in the neighborhood
of the origin the charge is at rest, at large distances the
charge looks like moving with the four-velocity deter-
mined by certain φ(Y 1), defined by

e
Y 1

|Y 1|
f
(
φ(Y 1)

)
=

tan(πY 1/L)

πY 1/L
. (80)

The velocity β = tanh f
(
φ(Y 1)

)
is

β =
Y 1

|Y 1|

(
tan(πY 1/L)
πY 1/L

)2
− 1(

tan(πY 1/L)
πY 1/L

)2
+ 1

. (81)

β is the velocity deduced by the observer located at
Xa = 0′ who analyses his data on the basis of the
‘standard’ Diophantine arithmetic, whereas the physi-
cal non-Diophantine arithmetic, employed in Maxwell’s
equations, is given by �, ⊕, etc. The observer is re-
lated with the physical Universe by means of an ‘infor-
mation channel’ f , but is unaware of it. The miss-match
of mathematical structures leads to unexpected behavior
of distant objects.

Had the observer decided to employ Einstein’s general
relativity, a similar miss-match would have occurred. A
solution would produce an expanding universe whose be-
havior would be consistent with the Hubble law at small
distances, but very distant objects would acquire an un-
explained acceleration. We will demonstrate this explic-
itly in section IX.

As our second example consider

A′0(0′) =
L

2
tanh

 f(C)

|arctanh(2Y 1/L)|e
Y 1

|Y 1|
f(φ)

 . (82)

With the same approximations as before

A′0(0′) ≈ L

2

f(C)

|2Y 1/L|
e
− Y 1

|Y 1|
f(φ)

(83)

=
q

|Y |
e
− Y 1

|Y 1|
f(φ)

, (84)

where q = L2f(C)/4 and Y is in a neighborhood of the
origin. For Y further away from the origin and with
f(φ) = 0 we get

A′0(0′) ≈ L

2

f(C)

|arctanh(2Y 1/L)|
(85)

=
q

|Y |
2Y 1/L

arctanh(2Y 1/L)
. (86)

Repeating the remaining calculations we obtain

β =
Y 1

|Y 1|

(
arctanh(2Y 1/L)

2Y 1/L

)2
− 1(

arctanh(2Y 1/L)
2Y 1/L

)2
+ 1

. (87)

Fig. 5 compares (81) with (87). In both cases the charge
looks as if it moved toward the boundaries Y 1 = ±L/2,
where it approaches the velocity of light. The motion is
non-trivially accelerated.

VIII. FIELDS IN R4
+

It is instructive to consider explicitly also the case of
R4

+ since 0′ = e−ν/µ and thus certain counterintuitive
elements of a non-Diophantine arithmetic and calculus
become more visible. The example will make further gen-
eralizations easier to understand.
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FIG. 5: The plot of (81) (full) and (87) (dashed) for L = 1.
The velocity has the same sign as Y 1 so the motion is toward
the horizons Y 1 = ±1/2.

Here f(X) = µ lnX + ν, µ > 0, f−1(x) = e(x−ν)/µ ≈
e−ν/µ(1 + x/µ) = 0′ + xe−ν/µ/µ. Setting Y 1 = 0′ + r,
f(0′ + r) = µ ln[0′(1 + r/0′)] + ν = µ ln(1 + r/0′), and
assuming |r| � 1, we obtain

A′0(0′) = f−1

 f(C)

|f(Y 1)|e
f(Y 1)

|f(Y 1)|
f(φ)

 (88)

≈ 0′ +
f(C)e−ν/µ/µ2

| ln(1 + r/0′)|e
f(Y 1)

|f(Y 1)|
f(φ)

(89)

≈ 0′ +
f(C)(e−ν/µ/µ)2

|r|e
r
|r| f(φ)

. (90)

We identify q = f(C)(e−ν/µ/µ)2. For f(φ) = 0 and
larger r

A′0(0′) ≈ 0′ +
f(C)e−ν/µ/µ2

| ln(1 + r/0′)|
(91)

= 0′ +
q

|r|
∣∣∣ ln(1+r/0′)r/0′

∣∣∣ . (92)

An observer located at 0′ will conclude that the field is
produced by a charge which satisfies

e
r
|r| f(φ) =

∣∣∣∣ ln(1 + r/0′)

r/0′

∣∣∣∣ , (93)

hence

β =
r

|r|

(
ln(1+r/0′)

r/0′

)2
− 1(

ln(1+r/0′)
r/0′

)2
+ 1

. (94)

Fig. 6 shows that β given by (94) is always negative:
The charge moves toward the horizon Y 1 = 0. Fields
produced by charges located between the observer and
the horizon would be red-shifted. However, an observer
located between the horizon and the charge would detect
a blue-shifted field.

FIG. 6: The plot of (94): β as a function of r/0′.

FIG. 7: The plot of (96) (full) as compared with (t/t0)2/3 for
f(X) = tan(πX/L). Both models involve no dark energy, i.e.
Ωv = 0 = 0′.

IX. FRIEDMAN EQUATION

Taylor expansions of (81), (87) in a neighborhood
of Y 1 = 0 begin with third order terms ∼ (Y 1/L)3.
The effect is small. However, when we switch to non-
Diophantine generalized Einstein equations, the correc-
tion should become visible at large distances.

So, let us consider the Friedman equation for a flat,
matter dominated FRW model with exactly vanishing
cosmological constant [14]. In matter dominated cosmol-
ogy (Ωm = 1,Ωr = 0), with no dark energy (Ωv = 0),
the scale factor is given by a(t) = (t/t0)2/3. In the non-
Diophantine notation the solution reads

A(T ) = (T � T0)2
′�3′ (95)

= f−1
((
f(T )/f(T0)

)2/3)
. (96)

To make (96) more explicit, let us return to

R

=
(−L/2, L/2) and f(X) = tan(πX/L), f−1(x) =
(L/π) arctanx. Fig. 7 shows (96) as compared with the
standard (t/t0)2/3, for L = 20, T0 = 1′, and t0 chosen in
a way guaranteeing a reasonable fit of the two plots.

The curve bends up in a characteristic way, typical of
dark-energy models of accelerating Universe. The effect
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is of purely arithmetic origin, with no need of dark energy.
Arithmetic becomes as physical as geometry.

X. CONCLUSIONS

Gravity is geometry. Is dark energy just arithmetic? Is
dark energy dark, because it is always darkest under the

lantern, and we are so accustomed to ‘plus’ and ‘times’
that we overlooked the fundamental ambiguity of these
operations? Is there a physical law that determines the
form of arithmetic, a kind of Einstein equation for f?

The questions are relatively well posed. We can change
the paradigm and do physics with unspecified f , leaving
determination of f to experimentalists. Perhaps one day
we will understand which arithmetic is physical, and why.
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