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1 Spacetime

Einstein’s principle of general covariance states that all physical laws do not change
their form (are covariant) under continuous coordinate transformations in four-dimensional
spacetime.

1.1 Tensors

1.1.1 Vectors

Consider a coordinate transformation from old (unprimed) to new (primed) coordi-
nates in a four-dimensional manifold:

zt— z (), (1.1.1)

! . . . y . .
where x7 are differentiable and nondegenerate functions of ' and the index i can

be 0,1,2,3. Thus the matrix %ﬁj has the nonzero determinant |6fc/] # 0, so x' are
differentiable and nondegenerate functions of /. The matrix % is the inverse of
9z’ .
ozt * .. L
Ox "' Ox
=" 1.1.2
ZZ.: oxd o't 7’ ( )
where
5k—{0 z;ék:} (1.1.3)
The differentials and derivatives transform according to
o 0xd
dr’) = —da’, 1.14
= Gt (1.14)
g  ox* 0

90 " i on (1.L.5)

A scalar (invariant) is defined as a quantity that does not change:
¢ = . (1.1.6)

A contravariant vector is defined as a quantity that transform like a differential:

’; al’l] ;
A= —A" 1.1.7
o (1.1.7)
A covariant vector is defined as a quantity that transforms like a derivative:
ox'

Therefore a derivative of a scalar is a covariant vector. The coordinates z* do not
form a vector.



1.1.2 Tensors

A product of several vectors transforms such that each coordinate index transforms
separately:

B Or't 07 dxP Oxt
— Qx™ Oz O’k Oxl

A tensoris defined as a quantity that transforms like a product of vectors:

0z 929 Oz Da? .
Q™ Ozm Ox'k 9’ P
A tensor is of rank (k,[) if it has k contravariant and [ covariant indices. A scalar is a
tensor of rank (0,0), a contravariant vector is a tensor of rank (1,0), and a covariant
vector is a tensor of rank (0,1). A linear combination of two tensors of rank (k,[) is
a tensor of rank (k,l). The product of two tensors of ranks (k1,l;) and (ks,ls) is a
tensor of rank (ky + ko, [1 +l2). Tensor indices (all contravariant or all covariant) can
be symmetrized:

A'BY .. .CyDy. .. A™B"...C,D,.... (1.1.9)

T (1.1.10)

1
Tow=— 2 Tuw (1.1.11)
" permutations
or antisymmetrized:
1 m
Tiij..h) = nl Z T{ij...k}(_l) ) (1.1.12)
" permutations

where n is the number of symmetrized or antisymmetrized indices and m is the
number of permutations that bring Tj;  into T7;;. k. For example, for two indices:
Tiiry = %(le + Ti;) and Ty = %(le — Tyi), and for three indices: Tj;j5 = %(ka +
Tjki + Thij). If n > 4 then Tj;; 4 = 0. Symmetrized and antisymmetrized tensors or
rank (k,[) are tensors of rank (k,l). Symmetrization of an antisymmetric tensor or
antisymmetrization of a symmetric tensor bring these tensors to zero. Any tensor of
rank (0,2) is the sum of its symmetric and antisymmetric part,

Tiiry + Tiin) = Tig. (1.1.13)

The number 0 can be regarded as a tensor of arbitrary rank. Therefore all covariant
equations of classical physics must be represented in the tensor form: 7%; = 0.

1.1.3 Densities

The element of volume in four-dimensional spacetime transforms according to
|02
Ok
A scalar density is defined as a quantity that transforms such that its product with
the element of volume is a scalar, ('d*z’ = (d*z:

ox’

ox'k

d*a’

d*z. (1.1.14)

[/

(. (1.1.15)

5



A tensor density, which includes a contravariant and covariant vector density, is
defined as a quantity that transforms like a product of a tensor and a scalar density:
0x'" 9z’ QP Ot )

dx™ Jz™ Ox'k Ozl P

Iy ot

TY, = 527 (1.1.16)

For example, the square root of the determinant of a tensor of rank (0,2) is a scalar
density of weight 1:

p ozl dxm oxJ o’
VTl \/I(9 9k zml—\/IWPITikzlwl T (1.1.17)

The above densities are said to be of weight 1. One can generalize this definition of
densities by introducing densitites of Weight w, which transform like normal densities
except that |‘9 97| is replaced by |8 For example, d*z is a scalar density of
weight -1. A hnear combination of two densities of weight w is a density of weight
w. The product of two densities of weights w; and ws is a density of weight w; + ws.
Symmetrized and antisymmetrized densities of weight w are densities of weight w.
Densities of weight 1 are simply referred to as densities. Tensors are densities of
weight 0.

1.1.4 Contraction

We adopt Einstein’s convention: if the same coordinate index i appears twice (as a
contravariant index and covariant index) then we perform the summation Y, over a
given tensor or density. Such a tensor or density is said to be contracted over index
i. A contracted tensor of rank (k,1) transforms like a tensor of rank (k — 1,1 —1):

i ox't 0x'7 9xP 029 _, ox'7 Ox1 / ox'7 Oz
T Z]'.[“ — — : T mn... _ : 551T mn...  __ . m .

e Qg Qam Ozt Ot Pl g Ot Pl g Ot 7
(1.1.18)
For example, the contraction of a contravariant and covariant vector A'B; is a scalar
(scalar product). A contracted tensor density of rank (k,[) and weight w transforms

like a tensor density of rank (k — 1,1 — 1) and weight w:

fi iw Gyt 9T OxP Ol iw 'S Hpd
T = 8:6, Or"* Ox 8x/. 8x, mne. 8:6: Ox 8x, o0 /-
e |92’k Q™ Q™ O’ O Pad- | 9z'k| Oam Ox'l
ozt (v Ox'T Ozt
= e 1.1.1
ox'k| Ozm Ox’lm: - ( %)

Contraction of a symmetric tensor with an antisymmetric tensor (over indices with
respect to which these tensors are symmetric or antisymmetric) gives zero. If contrac-
tion of two tensors gives zero, these tensors are said to be orthogonal. Two orthogonal
vectors (one contravariant and one covariant) are said to be perpendicular.



1.1.5 Kronecker and Levi-Civita symbols
The Kronecker symbol 6;, (L1.3) is a tensor with constant components:

o't Ox i o't O
Oxd Ox'k L Qi o'k

6t = = (1.1.20)

A totally antisymmetric tensor of rank (4, 0), 7%* = TU*] has 1 independent com-
ponent T: TWk = Tk where €7* is the totally antisymmetric, contravariant per-
mutation Levi-Civita symbol:

B =1, M = (—1)™, (1.1.21)
and m is the number of permutations that bring €/* into €”'?*. The determinant of
a matrix S} is defined through the permutation symbol as

| STk = St ST Gk Glemnpa, (1.1.22)

; .
Taking S}, = %Lk gives

r li !4 /k /l
Gkl _ 8x{ Ox" Oz’ Ox " Oz (mnpa. (1.1.23)

ox's|dx™ Qx™ dxP Oxd
This equation looks like a transformation law for a tensor density with constant
components: € ¥ = €7k Accordingly, T is a scalar density of weight -1. We also

introduce the covariant Levi-Civita symbol ¢;;; through:

5, & & 4

m q
ii 5% (5% YA
€ jklemnm == Sk gk 5% 5% (1'1’24>

gosl sl gl
m n D

Thus the covariant Levi-Civita symbol is a tensor density of weight -1 and its product
with a scalar density is a tensor. The covariant Levi-Civita symbol is given by

€0123 — —1, €ijkl = (_1)m’ (1125)
where m is the number of permutations that bring €;;x; into €123, and satisfies
|St|€ijk1 = SfS;‘S,foemnpq. (1.1.26)

Contracting (I.I.24]) gives the following relations:

s, 0L &
€M epmp = — | 03, 67 63 |,
sk ok ok
€M e = —2(8807 — 6169,
Eijklemjkl = —65;1,
e Mle;in = —24. (1.1.27)



1.1.6 Dual densities

A contracted product of a covariant tensor and the contravariant Levi-Civita symbol
gives a dual contravariant tensor density:

EiklmAm _ gikl’ 6iklmBlm — %ik’ 6z'klmcvklm — @2 (1128)

A contracted product of a contravariant tensor and the covariant Levi-Civita symbol
gives a dual covariant tensor density:

€ibimA™ = Aty €mB™ = B, € CH™ = €. (1.1.29)

Therefore there exists an algebraic correspondence between covariant tensors and
contravariant densities, and between contravariant tensors and covariant densities.

1.1.7 Covariant integrals

A covariant line integral is an integral of a tensor contracted with the line differen-
tial da’: [T% da’. A covariant surface integral is an integral of a tensor contracted
with the surface differential df** = da'da’* — da®dx"" (which can be geometrically
represented as a parallelogram spanned by the vectors da? and dz'?): [ Tji‘,;___dfik. A
covariant hypersurface (volume) integral is an integral of a tensor contracted with

dz' dz'" dz”
the volume differential dS™* = | da* da'* da"* | (which can be geometrically rep-
det  dx'' da™

resented as a parallelepiped spanned by the vectors da?, dz’?) and da™: [ T%;, dS™*.
A covariant four-volume integral is an integral of a tensor contracted with the four-
volume differential dS“*, defined analogously to dS*'. The dual density correspond-
ing to the surface element is given by

1
df, = 5 Etmincl tm (1.1.30)

The dual density corresponding to the hypersurface element is given by

1
dsS; = éeklmidSklm. (1.1.31)

The dual density corresponding to the four-volume element is given by

1 )
dQ) = ﬂeiklmdS’klm = dz dxtda?da’. (1.1.32)
Covariant integrands that include the above dual densities of weight -1 must be mul-
tiplied by a scalar density, for example, by the square root of the determinant of a
tensor of rank (0, 2). According to Gauf’ and Stokes’ theorems, there exists relations



between integrals over different elements:

) .0
7 ik
0 0
RN — — — 1.1.34
dafx. dS,axk dSk@x” (1.1.34)
0
dS;  dQ——. 1.1.35
o ( )
1.1.8 Derivatives
A derivative of a covariant vector does not transform like a tensor:
0A, B Ox! i<8xm ) B ozt 9x™ OA,, Q%™ (1.1.36)
oxr't  9r' ot \ox'k" ™) Ox'i 9x'F Oxl ox'tog'* ™ o

because of the second term which is linear and homogeneous in A;, unless x* are linear

. !z . . . . . . . . .
functions of x7. This term is symmetric in the indices i, k so the antisymmetric part
of %’if with respect to these indices is a tensor:

, oxl Oz™ ox! dx™

A4 = 5ot arm A = G

) 01 A, (1.1.37)

where we denote 0; = 821-. The curl of a covariant vector A; is defined as twice the
antisymmetric part of 0;Ay: 0;Ar — OrA;, and is a tensor. We will also use ; = 8‘;
to denote a partial derivative with respect to x*. Similarly, totally antisymmetrized
derivatives of tensors of rank (0,2) and (0,3), 0;By and 0;Chyy), are tensors. If
By = Apy then 0By = 0, or conversely, if 0; By = 0 then there exists a vector
A; such that By = Apy. The divergence of a tensor (or density) is a contracted
derivative of this tensor (density): &-T"ﬁij:j. Because of the correspondence between
tensors and dual densities, divergences of (totally antisymmetric if more than 1 index)
contravariant densities are densities, dual to totally antisymmetrized derivatives of
tensors:

81-41" = Eiklmﬁ[icklm], 8,{3&““ = Eiklma[kBlm}, 8&’“ = Eiklmﬁ[lAm]. (1.1.38)

For example, the equations j}'ikﬂ- =i and F| i) = 0, that describe Maxwell’s electro-
dynamics, are tensorial.
References: [11 2].

1.2 Affine connection
1.2.1 Covariant differentiation of tensors

An ordinary derivative of a covariant vector A; is not a tensor, because its coordinate
transformation law contains an additional noncovariant term, linear and homogeneous
in A;. Consider the expression

A = A — T LA, (1.2.1)
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where the quantity '}, (in the second term which is linear and homogeneous in A;)
transforms such that A, is a tensor:

o ox! dx™ ox! dx™
= Al = —
kT or 9k T T 9t Qa'k

On the other hand (L.I.30) gives

(Apm — T Ay). (1.2.2)

A = Al — TiRA = %% Lm ajig;,iAn —~ gi: LA, (1.2.3)
so we obtain - 3l 5 o
92 = %@Fﬂn + FRTrwE (1.2.4)
Multiplying this equation by gﬁ: gives the transformation law for '}, :

/e , -
yj Oz 9zl 9a™ Oz OPam
kT 9an @i xR ™ T G 9k

=

(1.2.5)

The algebraic object I'}},, which equips spacetime in order to covariantize a derivative
of a vector, is referred to as the affine connection, affinity or simply connection.
The connection has generally 64 independent components. The tensor A, is the
covariant derivative of a vector A; with respect to z¢. We will also use V; =, to
denote a covariant derivative. The contracted affine connection transforms according
to

!

o &erl ox't 9"
xR 9gn 92RO
The affine connection is not a tensor because of the second term on the right-hand

side of (L2.5).

A derivative of a scalar is a covariant vector. Therefore a covariant derivative of
a scalar is equal to an ordinary derivative:

Gii = @i (1.2.7)

(1.2.6)

If we also assume that a covariant derivative of the product of two tensors obeys the
same chain rule as an ordinary derivative:

(TU), =T, U+TU,, (1.2.8)
then
(AxB*); = (AB*); = Ay B* + AyB, = Ay ;B* =TS AB' + A,B*,.  (1.2.9)
Therefore we obtain a covariant derivative of a contravariant vector:

B, =B*, +T/iB". (1.2.10)

10



The chain rule (I.2.8) also implies that a covariant derivative of a tensor is equal to
the sum of the corresponding ordinary derivative of this tensor and terms with the
affine connection that covariantize each index:

(1.2.11)
A covariant derivative of the Kronecker symbol vanishes:

A A ) (1.2.12)

The second term on the right-hand side of (LZ1]) does not depend on the affine
connection, but only on the coordinate transformation. Therefore the difference be-
tween two different connections transforms like a tensor of rank (1,2). Consequently,
the variation 6"/, which is an infinitesimal difference between two connections, is a
tensor of rank (1,2).

1.2.2 Parallel transport

Consider two infinitesimally separated points in spacetime, P(x*) and Q(z' + dx?),
and a vector field A which takes the value A* at P and A*+dA* at (). Because dA* =
AF idx' and AF; is not a tensor, the difference dA* is not a vector, which is related
to subtracting of two vectors at two points with different coordinate transformation
laws. In order to calculate the covariant difference between two vectors at two different
points, we must bring these vectors to the same point. Instead of subtracting from
the vector A* + dA* at ) the vector A* at P, we must subtract a vector A* 4+ §A*
at @ that corresponds to A* at P, so the resulting difference (covariant differential)
DA* = dA* — §A* is a vector. The vector A* 4+ §A* is the parallel-transported or
parallel-translated A* from P to (). A parallel-transported linear combination of
vectors must be equal to the same linear combination of parallel-transported vectors.
Therefore § A* is a linear and homogeneous function of A*. It is also on the order of
a differential, thus a linear and homogeneous function of dz*. The most general form
of 6 A" is

SAF =~ Aldy, (1.2.13)

(2
SO
k_ gak kAl 3.6 _ Ak 7.
DA® = dA" + T/ A'dx" = A" ;dx". (1.2.14)
Because dA* is not a vector, I')% is not a tensor. Because DA* is a vector, A¥, is
a tensor. The expressions for covariant derivatives of a covariant vector and tensors

result from
dp =0, §(TU) =6TU + T6U. (1.2.15)

1.2.3 Torsion tensor

The second term on the right-hand side of (LZ3) is symmetric in the indices 7, k so
the antisymmetric part of the connection with respect to these indices, S7,, = F[ijk],

is a tensor: o
. Ox7 0x' O™ _,

11



This tensor is called the Cartan torsion tensor. The torsion tensor has generally 24
independent components. The contracted torsion tensor,

S = Si, (1.2.17)
is the torsion trace vector.

1.2.4 Covariant differentiation of densities

A derivative of a scalar density of weight w, (, does not transform like a covariant
vector density:

ox Oxd |w oxt | Oz7 v oxt | Ox7 |w=1 | Oz"

o axzal(ax'k ) = Gt e O G ger g

oxt | Oz? v Yy 01' Ox? w1 dx" |0z i ox™

~ o0t oLk i 01"" ox'k 0x's | 0x™ Oxl Ox'n

Ozt 8x] w oxd (wor'™ 9™
T o2 o+ w}ﬁx'k oxm 8x'”8:€'i[' (1.2.18)

Consider the expression
[;Z’ = [72' — UJFZ[, (1219)

where the quantity I'; transforms such that (,; is a vector density of weight w:

Ozt | Ox | Ozt | Ox |
(= — || (= =—|=—| ({; —wlyl). 1.2.20
i or'i| o’k T 0a't | 9’k (s = whi) ( )
On the other hand (LZI]) gives
Oxt &BJ w ord (wor'™ g™ Oxd |w
(=1 —wlll = . ol + { — |1 1.2.21
i =Ll = 57 5| | Gem armartt ~ Ylger) Tb (12:21)

so we obtain the transformation law for I';:

o or'" 9™
MN=—I+————r 1.2.22
P ! * dx™ Ox' oz ( )

which is the same as the transformation law for I'}X, (LZ.6]). Therefore the difference
I; — '}k is some covariant vector V;.

If we assume that parallel transport of the product of a scalar density of any
weight and a tensor obeys the chain rule:

S((T) = 8T + (5T, (1.2.23)
so a covariant derivative of such product behaves like an ordinary derivative:

12



then a covariant derivative of a tensor density of weight w is equal to the sum of
the corresponding ordinary derivative of this tensor, terms with the affine connection
that covariantize each index, and the term with I';:

T =T A DT AT T+
-rp e —rneTs — . —wl, T . (1.2.25)

A covariant derivative of the contravariant Levi-Civita density is

ikl _ i njkl j inkl ko _ijni I _ijkn ijkl
e =) eI L T et 4 D e T €T — T e (1.2.26)

)

In the summations over n only one term does not vanish for each term on the right-

hand side of (.2.26), so

ijkl i n=i|jkl J iln=j|kl k ij|n=Kk|l l ijkln=l _ ikl
€ m = Fn:i\m6 + Fn:j\me + Fn:k\me + Fn:l\me FmE

= (I,)" —T,,)eiM = —V, 7k, (1.2.27)

The Levi-Civita symbol is a tensor density with constant components, so it does not
change under a parallel transport, de = 0. Therefore €” kl;m =0,s0 V; =0 and

I, =T/} (1.2.28)

1.2.5 Covariant derivatives

Totally antisymmetrized ordinary derivatives of covariant tensors, Ay, By and
Cliki;m), are tensors because of antisymmetrization. Totally antisymmetrized covariant
derivatives of tensors are clearly tensors because V; is a covariant operation, and are
given by direct calculation using the definition of a covariant derivative:

Apir) = Apig) — S A, Biiky) = Blikg) — 25", Brjm- (1.2.29)

Divergences of (totally antisymmetric if more than 1 index) contravariant densities,
@Ii,i, 33““7@- and giklﬂ-, are densities because of the correspondence between tensors and
dual densities. Covariant divergences of contravariant densities are clearly densities,
and are given by direct calculation:

1.2.6 Partial integration

If the product of two quantities (tensors or densities) T'U is a contravariant density
¢” then

[rUsan = [(ruya0 - [ 1ude = [(T0)d0+2 [ svan - [T
(1.2.31)

13



The first term on the right-hand side can be transformed into a hypersurface integral
[ TUdS}. Tf the region of integration extends to infinity and €* corresponds to some
physical quantity then the boundary integral [TUdS) vanishes, giving

/TQMQz?/&ﬂMQ—/ﬂdMQ (1.2.32)
If T = 6% then U = €' and

/WMQ:2/&@ML (1.2.33)

1.2.7 Geodesic frame of reference

Consider a coordinate transformation

! 1 i i
8 ="+ §aklm:£ brm, (1.2.34)

where a*,,,, is symmetric in the indices I, m. Substituting this transformation to (L2.5)

and calculating it at 2* = 2% = 0 gives

ox' ;
and ' . .
I3 =T7 +d,. (1.2.36)
Putting . '
@iy, = =L lai=o (1.2.37)
gives .
T =0. (1.2.38)

Therefore there always exists a coordinate frame of reference in which the symmetric
part of the connection vanishes locally (at one point). If the affine connection is
symmetric in the covariant indices, I/, = '/, (the torsion tensor vanishes) then

(L238)) gives .
I} = 0. (1.2.39)

The coordinate frame of reference in which the connection vanishes (locally) is referred
to as geodesic.

1.2.8 Affine geodesics and four-velocity

Consider a point in spacetime P(x*) and a vector dz* at this point. Construct a point

P'(2* + dx*) and find the vector d’z* which is the parallel-transported da* from P to

P'. Then construct a point P”(x* + da* + d’z*) and find the vector d”z* which is the

parallel-transported d’z* from P’ to P”. The next point is P (x* + da* +d'z* + d"z*)

etc. Repeating this step constructs a pkolygonal line which in the limit dz* — 0
dx

becomes a curve such that the vector %%~ (where A is a parameter along the curve)
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tangent to it at any point, when parallely translated to another point on this curve,
coincides with the tangent vector there. Such curve is referred to as an autoparallel
curve or affine geodesic. Affine geodesics can be attributed with the concept of length,
which, for the polygonal curve, is proportional to the number of parallel-transport
steps described above.

The condition that parallel transport of a tangent vector be a tangent vector is

dx’ dx’ dx’ - da® dzt  d*x
Y K Rty 1.2.4
o 5( ) ) o~ Degy e = ( o e ‘M) (1.2.40)

where the proportionality factor M is some function of A, or

@ n dxk da! 1-M dz’
o TUTI T T
from which it follows that M must differ from 1 by the order of dA. In the first term

on the left-hand side of (L2.41]) we can therefore put M = 1, and we denote 1 — M
by ¢(A)dA, so

M (1.2.41)

dzxi dx dx 2!
ry = 1.2.42
If we replace A by a new variable s(\) then (LZZ42) becomes
d?x? dak dat ps' — " dat
i demde 1.2.43
ds? Tl ds ds s?  ds’ ( )

where the prime denotes differentiation with respect to A. Requiring ¢s’ — s” = 0,
which has a general solution s = [* d\ exp[— [* ¢(z)dz], brings (LZ43) into

d%i—l—F dz® dx!
ds? Uds ds

=0, (1.2.44)

where the scalar variable s is the affine parameter. The autoparallel equation (L.2.44))
is invariant under linear transformations s — as + b since the two lower limits of
integration in the expression for s(\) are arbitrary. Defining the four-velocity vector

N
ul = dx (1.2.45)
S
brings (L2.14) into
DA* dAk .
=AFut, —— = AR 1.2.46
ds i s A ( )
S0 D i d i
d“ _ di + Tkt = ud = 0. (1.2.47)
s s ’

The relations (LZ40]) can be generalized to any tensor density 7"

DT . dT .
— =T, — =T, (1.2.48)



The vector %|Q is a parallel translation of %| p. Because ds is a scalar, it is invari-
ant under parallel transport, ds|g = ds|p. Therefore the vector dz'|g is a parallel
translation of dx’|p, so ds measures the length of an infinitesimal section of an affine
geodesic.

Only the symmetric part T(,f ) of the connection enters the autoparallel equation

(CLZ44) because of the symmetry of ddL:c;_r; with respect to the indices k,[; affine

geodesics do not depend on torsion. At any point, a coordinate transformation to

the geodesic frame (L.2.34]) brings all the components F(,fl) to zero, so the autopar-
du®

allel equation becomes <= = 0. The autoparallel equation is also invariant under a
projective transformation ' . '
where A; is an arbitrary vector. Substituting this transformation to (LZZT) gives
du . .
di + Thuful = —ulub A, (1.2.50)
s
If we replace s by a new variable §(s) then (L.2.50) becomes
au’ , uk A8 + 8" da’
— + U = ———— 1.2.51
= T R ( )
where 4
. 1t
Ui — 1.2.52
¥ ( )

and the prime denotes differentiation with respect to s. Requiring u* A3 + 3" = 0,
which has a general solution § = — [*dsexp|[® Ayu®(x)dz], brings (LZEI) into

i
d—Ug +IURU = 0. (1.2.53)

1.2.9 Infinitesimal coordinate transformations
Consider a coordinate transformation
=g+ &, (1.2.54)

where £ = §z' is an infinitesimal vector (variation of ). For a tensor or density T
define

0T =T'(z") — T(?), (1.2.55)
6T = T'(2%) — T(2%) = 0T — E*T.. (1.2.56)
For a scalar we find B
66 =0, d¢ = —&"¢,. (1.2.57)
For a covariant vector
k
5A, = 0T A~ A~ gt A, (1.2.58)
B oz o2
0A; = —€" A — &P A (1.2.59)
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The variation (LZ58) is not a tensor, but (LZ59) is:
0A; = —€F Ay — F Ay — 257,65 A;.

We refer to —0T as a Lie derivative of T, LT. For a contravariant vector

O
B =
d oxk

k i o i pk
B*— B ~¢ B,

For a scalar density

oxt :
(19 1\ n et
5t (‘ " >[ e

Ot me =€ = €My = —€'0 — ¥y + 25,7

(1.2.60)

(1.2.61)
(1.2.62)

(1.2.63)
(1.2.64)

The chain rule for ¢ implies that for a tensor density of weight w (which includes

tensors as densities of weight 0)

0T & T T T =~

m ij...
—w§ ,mm: Kkl

(1.2.65)

0T~ LT+ T = -

—wg™ T =T 280 T 28 T+

—28", MU —98n emTIs 4 2wS, T

(1.2.66)

A Lie derivative of a tensor density of rank (k,[) and weight w is a tensor density of

rank (k,1) and weight w.
The formula for a covariant derivative of T° can be written as

Ty =Ty +T4CIT, (1.2.67)
where C' is an operator acting on tensor densities:
Ai Ai i Ni ok ki A i
or generally
CrT = 0TV + 0T = T T~ - wi T
(1.2.69)
Such defined operator also enters the formula for 07"
0T = CFTE . (1.2.70)
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1.2.10 Killing vectors
A vector (; that satisfies

Climy = 0 (1.2.71)
is referred to as a Killing vector. Along an affine geodesic
D k(i ik k, i
£(u Gi) = u"(u'G) e = vu'u" G + Guiu'y, = 0. (1.2.72)

The first term in the sum in (L272) vanishes because of the definition of ¢; and
the second term vanishes because of the affine geodesic equation. Therefore, to each
Killing vector ¢; there corresponds a quantity u‘(; which is constant along an affine

geodesic.
References: [11 2, [3].

1.3 Curvature
1.3.1 Curvature tensor

The commutator of covariant derivatives of a contravariant vector is a tensor:
[Vj, Vk]Bi = QV[ij]Bi = 28[ij]B" — QF[,iﬂVlBi + 21“l"[ij]Bl
= 20Ty iy B™) + 285, ViB' + 21,00 B' + 2T ;L) iy B™

where || an index which is excluded from symmetrization or antisymmetrization.
Therefore R, .., defined as

mjk>

Rk = Ol = Okl + T = DT, (1.3.2)

mjo

is a tensor, referred to as the curvature tensor. The curvature tensor R’, ;. is an-
tisymmetric in the indices j, k and has generally 96 independent components. The
commutator of covariant derivatives of a covariant vector is

[V, Vi]A; = —=R™, ;1 Am + 255, VIA;, (1.3.3)

ijk
and the commutator of covariant derivatives of a tensor is

[Vj, vk] Ip... — R mjk Ip... +R mjk Ip... +...—R ljkT mp... R pik Im...

— 428, VT (1.3.4)

Ip...

A change in the connection . ' '

where T’ ZJ i 1 a tensor, results in the following change of the curvature tensor:
Riklm - Riklm + Tikm;l - ikl;m + T]kaijl - T]leij (136>
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For a projective transformation (L2.49), T%, = 6! Ay, so

Ry = Ry + 66 (At — Aim). (1.3.7)
The variation of the curvature tensor is
OR = (002 ) 0 — (60 ) m + 5Fjilrkjm + Fjil(srkjm - 5Fjimrkjl - Fjim(srkjl
= (5Fkim);l - Pjil(srkjm + ijl(srjim + Fnildrljj - (5Fkil);m + Fjimarkjl - ijm(srjil
S ) IPETENG) R AT ) AR R A ) o
1.3.2 Integrability of connection

The affine connection is integrable if parallel transport of a vector from point P to
point @ is independent of a path along which this vector is parallelly translated, or
equivalently, parallel transport of a vector around a closed curve does not change this
vector. For an integrable connection, we can uniquely translate parallelly a given
vector h' at point P to all points in spacetime:

Sh' = dn', (1.3.9)

or

Wy =T/ W (1.3.10)

Therefore
(Fjikhj),l - (Fjilhj),k = Fjithj - Fjikrvilhm - Fjiukhj + Fjilrikhm = Rijlkhj(: 0> )
1.3.11

so, because h' is arbitrary, .

Spacetime with a vanishing curvature tensor R’y;,, = 0 is flat. Consider 4 linearly
independent vectors h, where a is 1,2,3,4, and vectors inverse to h':

> hihia = 6. (1.3.13)

If the affine connection is integrable then (I.3.10) becomes
Le =T/, (1.3.14)
Multiplying (L3.14) by hj, gives
L/ = —hjohl ). = hjarhi,. (1.3.15)

An integrable connection has thus 16 independent components. If the connection is
also symmetric, S, = 0, then

hjak = Pkaj =0, (1.3.16)
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which is the condition for the independence of the coordinates

Q .
ya=/ hiadz’ (1.3.17)
P

of the path of integration PQ. Adopting y, as the new coordinates (with point
P =(0,0,0,0) in the center) gives

Y, oz’ ,
ey 28— 1.3.18
ox? Ya ( )
so (L315) becomes
ort 0%y,

F]k(I ) = a—yaaxkal’] . (1319)

The transformation law for the connection (ZH) gives (with y, corresponding to z7)

I’ (ya) = 0. (1.3.20)

J

A torsionless integrable connection can be thus transformed to zero; one can always
find a system of coordinates which is geodesic everywhere. If a connection is sym-
metric but nonintegrable then a geodesic frame of reference can be constructed only
at a given point (or along a given world line).

1.3.3 Parallel transport along closed curve

Consider parallel transport of a covariant vector around an infinitesimal closed curve.
Such transport changes this vector by

Ade= § 04, = f T Aida’ = % / <8(ka‘42') - a(F’”’L“))azﬁm

ox! ox™
1 Ol—‘klm arkll i n i m
1.
= _lelmAiAflmv (1321>

2

where we use Stokes’ theorem (LI.33)) and Ay ; = I'}/,A; which is valid along the curve
and thus is approximately valid (to terms of first order in Af™) inside this curve.
The change of a contravariant vector due to parallel transport around an infinitesimal
closed curve results from A(A;,B¥) = 0:

1 .
§B* = —§RkilmBlA i (1.3.22)

and the corresponding change of a tensor results from the chain rule for parallel
transport:

ik... i k... k ij... ik... ik... Im
oT np... _§(R jlmT] np... +R jlmT ]np... .= R]nlmT e R]plmT nj.. )Af .
(1.3.23)
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1.3.4 Bianchi identities
Consider o | |
V;ViiVyB' = §Vj(Rkale> + V(5™ Vi B) (1.3.24)
and
. 1 . 1 . . 1 .
V;iVuViB" = —§J~Em’ljkaBZ + iRijleBm + 5" Vi VI B* = —§lej,,€VmBZ

1. . ) .

Total antisymmetrization of the indices j, k, [ in (L3:24) and (L.3:25]) gives

(1.3.26)
and
) 1 m 1 1 7 m m )
Vi ViV B = —§R 1jn Vm B' + 53 mijk Vo B + 573,V Vi B
8"k R gy B+ 28" 1S gy Vi B, (1.3.27)
SO
+25™ 1S i VB (1.3.28)

Comparing terms in (C3.28) with B gives the first Bianchi identity or simply Bianchi
identity: | |
R ) = 2R S "y (1.3.29)

while comparing terms with V; B? gives the second Bianchi identity or cyclic identity:
For a symmetric connection, Sijk = 0, these identities reduce to

R g = 0, (1.3.31)
The cyclic identity ([.3.32) imposes 16 constraints on the curvature tensor, so the
curvature tensor with a vanishing torsion has 80 independent components.
1.3.5 Ricci tensor

Contraction of the curvature tensor with respect to the contravariant index and the
second covariant index gives the Ricci tensor:

21



Contraction of the curvature tensor with respect to the contravariant index and the
third covariant index gives the Ricci tensor with the opposite sign due to the anti-
symmetry of the curvature tensor with respect to its last indices. Contraction of the
curvature tensor with respect to the contravariant index and the first covariant index
gives the homothetic or segmental curvature tensor:

Q=R =T/,-T/ (1.3.34)

jik>

which is a curl. A change in the connection ([.3.5]) results in the following changes of
the Ricci tensor and segmental curvature tensor:

Ry — Rig + Ty — Tl + T T — T Ty, (1.3.35)
Qi = Qi+ T — T 1 (1.3.36)
For a projective transformation (L2409
Rix — Rip + Ay — Ak, (1.3.37)
Qi — Qi + 4(Api — Aik). (1.3.38)

Therefore the symmetric part of the Ricci tensor is invariant under projective trans-
formations. The variation of the Ricci tensor is

SRir, = (0T )a — (0T} — 257,61, (1.3.39)
while the variation of the segmental curvature tensor is

5sz = (5Fjjk),i - (5Fjji),k- (1.3.40)

1.3.6 Geodesic deviation

Consider a family of affine geodesics characterized by the affine parameter s and
distinguished by a scalar parameter t. Define the separation vector

dz?

vt = T (1.3.41)
SO
vi;kuk — ui;kvk = v"kuk — uikvk — 25wyl = % — % — 28 ufvl = =287kl
Therefore 342
l;zf = (v )t = (07l — 2(SEu) 0

T 0 S R S P R I N
= u' pvlu” + ' v’ put = 2(Sut) yu
L e e
e vlut ol = 2(S )yl

R N R R Gkl
vt ut (w0t — 287 ut)

= ul;kjv’uk — Rlljkulv’uk — 25
i gk pi oLk
= u' v u” — R ppuv’u® — 28

—2(Syut o)l = (Ui;kuk);jvj + Rijkzujukvl — 2(Su )

) . D .
= R u/u*v' — 2£(Slklukvl) (1.3.43)
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or

D <Dvi
ds \ ds

This is the equation of geodesic deviation. If we replace affine geodesics by arbitrary
curves then ', u¥ # 0 and (L344) becomes

+ 2Siklukvl> = Rijklujukvl. (1.3.44)

D (Dvi
ds

s + QSiklukvl> = Rijklujukvl + (u' )00 (1.3.45)
S b

References: [1}, 2] 3] [4].

1.4 Metric
1.4.1 Metric tensor

An affine parameter s is a measure of the length only along an affine geodesic. In
order to extend the concept of length to all points in spacetime, we equip spacetime
with an algebraic object g;x, referred to as the covariant metric tensor and defined as

ds® = gipda'dz®. (1.4.1)
The metric tensor is a symmetric tensor of rank (0,2):

9ik = Gki- (1.4.2)

The affine parameter s, whose differential is given by (L4.1]), is referred to as the
interval. Because ds does not change under parallel transport along an affine geodesic
from point P(x%) to point Q(x'+dx?), ds|q = ds|p, and dz’|q is a parallel translation
of dz'|p, girlqg = gir|p + gir;dz? is a parallel translation of g;x|p:

giklg = girlp + 0gir, (1.4.3)
SO ‘ |
Dgir. = gijdx’ = dgir, — dgir. = girjdz’ — dgix = 0. (1.4.4)
Therefore a covariant derivative of the covariant metric tensor vanishes:
Njik = —Gik;j = 0 (145)
or
! ! B
ik — Lijome — Ty ;90 = 0, (1.4.6)

where ;i is the nonmetricity tensor. The symmetric contravariant metric tensor
g"* = ¢ is defined as the inverse of g;;:

A covariant derivative of the contravariant metric tensor also vanishes:

g* . =0. (1.4.8)



The metric tensor allows to associate covariant and contravariant vectors:

Al = gt Ay, (1.4.9)
B; = g B, (1.4.10)

because such association works for the covariant differentials of these vectors which
are vectors:

DA* = D(¢"*A,) = ¢*DA;, DB; = D(94xB") = g DB* (1.4.11)

(raising and lowering of coordinate indices commutes with covariant differentiation
with respect to I'£,). For covariant and contravariant indices of tensors and densities
this association is

gim@75 =T o (1.4.12)
i T L (1.4.13)

The square root of the absolute value of the determinant

5= |ga (L4.14)

of the metric tensor is a scalar density, which we can use to multiply covariant inte-
grands that contain dual densities of weight -1, since

iklm

Cikim = \/|8|€ikim, € = ——=¢€ (1.4.15)

are tensors. Thus the relations (LI27) are also valid if we replace € by e. The
variation of the determinant of the metric tensor is

og = a9 g = —agi0g™. (1.4.16)
A covariant derivative of the determinant of the metric tensor vanishes:
g, =0. (1.4.17)
A Lie derivative of the metric tensor is
Leg™ = 2660 — 4500 . (1.4.18)
where # = ¢**. The four-velocity vector (I.Z45]) is normalized due to (LZAI):
u'uy = 1, (1.4.19)

thus having 3 independent components.
The commutator of covariant derivatives (I.3.4)) of the metric tensor gives

R(ZJ)M _ _N[kw;l] — 5™ N U= _N[klj,l}v (1.4.20)
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so the segmental curvature tensor (L3.34]) is

Qu = _N[kijJ]gjj- (1.4.21)

Because the nonmetricity tensor (IL4.5]) vanishes, the curvature tensor is antisymmet-
ric in its first two indices:
Rijk = —Rjin- (1.4.22)

Thus the segmental curvature tensor also vanishes, and
Rijug” = Rk, (1.4.23)

so there is only one independent way to contract the curvature tensor, which gives
the Ricci tensor up to the sign.

1.4.2 Christoffel symbols

The condition ([L4.5)) is referred to as metricity or metric compatibility of the affine
connection, and imposes 40 constraints on the connection:

Giksj T kjsi — Gjisk = Gikj — Fz’ljglk - Fkljgil + grsi — Libigy — Fjligkl — Gjik + Fjlkgli
1951 = Ging + Grii — Gjik — 20 i jy 9w — 2890 — 25%95 = 0. (1.4.24)
Multiplying (L424) by ¢g*™ gives

T = {7 +25,™ (1.4.25)

@
where

1
{7} = §9mk(gki,j + Gkji = Gijk) (1.4.26)

are the Christoffel symbols, symmetric in their covariant indices:

{5 =144 (1.4.27)
Because I' Z’; = F(fj) + S kl-j, the metric-compatible affine connection equals

rE= {5} 4O (1.4.28)

where
E k k
C = QS(U) + S i (1.4.29)

is the contortion tensor, antisymmetric in its first two indices:
Cijk = —Cji. (1.4.30)
The inverse relation between the torsion and contortion tensor is

Sk = Clyy. (1.4.31)
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The difference between two affine connections is a tensor, so the sum of a con-
nection and a tensor of rank (1,2) is a connection. Therefore the Christoffel symbols
form a connection, referred to as the Levi-Civita connection. Define the covariant
derivative with respect to the Levi-Civita connection analogously to (L2.I1]), with
Fi'j replaced by {Zl;}, and denote it .; instead of ,;, or V;-{} instead of V;. A covariant
derivative with respect to the Levi-Civita connection of the metric tensor vanishes
due to the definition of the Christoffel symbols:

Gik:j = Gik,j — {ilj}glk - {klj}gil =0, (1.4.32)

which gives the inverse relation between ordinary derivatives of the metric tensor and
the Christoffel symbols. The variation of the Levi-Civita connection is a tensor:

55} = 50" (G0 + (Ga)i — (o)) (1.433)

The covariant derivative over s of a tensor density with respect to the Levi-Civita
connection is, analogously to (L2.48)),

DUT
ds

One can show that the following formulae hold:
{&) = (ln\/E),u (1.4.35)
oL =
{597 = —f(\/ag ") (1.4.36)

g

= T, (1.4.34)

. 1 .

B, = —(y/|a|BY) , 1.4.37
. m(ﬁ ) (1.4.37)
FE = ——(/|a|F™) ., (1.4.38)

Ak — Apei = Aig — Agi, (1.4.39)
¢ B lalds; = [ B,/lglas, (1.4.40)

where F* = —F*_The Christoffel symbols satisfy all formulae that are satisfied by

Filj- in which Sijk = 0. Because the Levi-Civita connection is a symmetric connection,

it can be brought to zero by transforming the coordinates to a geodesic frame. In a
geodesic frame, the covariant derivative with respect to the Levi-Civita connection,
V;-{}, coincides with the ordinary derivative 0;. A Lie derivative of the metric tensor

(LZI]) can be written as
Leg™ = =260, Legin = 2in), (1.4.41)
where “ = ¢g'*. A Killing vector (LZTI) for the Levi-Civita connection satisfies

Sy = 0, (1.4.42)
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thus becomes a generator of isometries, transformations that do not change the metric
tensor.
If the nonmetricity tensor does not vanish, the general formula for the affine

connection (L4.28) is
1
k k k k k
DS = {}+Chy = NG + 5N, (1.4.43)

1.4.3 Riemann curvature tensor

The curvature tensor constructed from the Levi-Civita connection is referred to as
the Riemann tensor:

Pk =0} — 0l + U — (L (1.4.44)
The commutator of covariant derivatives of the metric tensor vanishes:
[v]{}v V}E}]glp = =Pk gmp = P"pjrgim = 0, (1.4.45)

so the covariant Riemann tensor F;,,;; is also antisymmetric in the indices ¢, m. Sub-
stituting (L.4.260)) in (1.4.44) gives

1 ) N e
Piam = 5 (Gima + Grtim = itk = Grmoar) + gin({emHitd —{aHid), (1.4.46)

which explicitly shows the following symmetry and antisymmetry properties:

Pigim = —Piknu, (1.4.47)
Pigim = —Pritm, (1.4.48)
Pikim = Pimit- (1.4.49)

Accordingly, the Riemannian Ricci tensor is symmetric:
Py = P’ = Py (1.4.50)
Substituting (L428) in (L3.3) and (L3.0]) gives the relation between the curvature

and Riemann tensors:

R = Pl + Clint = Ol + ClnCy — C7 O (1.4.51)
Contracting (L4.51]) with respect to in the indices 7,1 gives
Rim = P+ Cpig — Cliimn + €2 Oy — €700 (1.4.52)
Consequently, the Ricci or curvature scalar,
R = Ry.g™, (1.4.53)

is given by . '
R=P—g*2C, + Cjijclkl — ' C™), (1.4.54)
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where P is the Riemannian curvature scalar,
P = Pyg*. (1.4.55)

The variation of the Riemann tensor is, analogously to (L.3.8),

and the variation of the Riemannian Ricci tensor is
5Py, = (64 )0 — (641} (1.4.57)

The Bianchi identities (I.3.29) and (L.3.30) contracted with respect to one con-

travariant and one covariant index give

Ry = —=28" ) + 455,18 (1.4.59)

j
Contracting these equations with the metric tensor gives
Rt — Rtk + R = —2R0mS™y — 2R S™ 0 + 2R 0 S™ (1.4.60)
and the contracted cyclic identity:
Rj — Ry; = =28, + 28, — 25", + 45,57 (1.4.61)

Further contraction of (L4.60) with the metric tensor gives the contracted Bianchi
identity:

. 1 )
Ry — SR = 2Ry S™ — R*S™ . (1.4.62)
The Bianchi identities (I.3.31]) and (1.3.32)) for the Riemann tensor are
Pk = 0, (1.4.63)

Contracting these equations with the metric tensor gives

Pnk:l + Pinkl:i - Pnl:k = 0, (1465)
Py — P, =0, (1.4.66)

in agreement with (LZ50). Further contraction of (LZ.65) with the metric tensor
gives the covariant conservation,

G =0, (1.4.67)
of the symmetric Einstein tensor,
1
Gik = Py — §sz‘k- (1.4.68)

28



1.4.4 Properties of Riemann tensor

In two dimensions there is only 1 independent component of the Riemann tensor,
Pi515. The Riemann scalar is

P = 2P;212, (1.4.69)
where [ is the determinant of the two-dimensional metric tensor ~v;:
(= |yl = 11722 — V1o (1.4.70)
A surface near point x = 0,y = 0 is given by
z= ;—:1 + 2y—p22, (1.4.71)
where p; and ps are the radii of curvature. Substituting (L.4.7T]) to
di* = da® + dy? + d2* = yyda'da” (1.4.72)
gives v (z,y), which then gives
g K- ﬁ, (1.4.73)

where K is the Gaucurvature.

In three dimensions there are 3 independent pairs, 12, 23, and 31, so the Riemann
tensor has 6 independent components: 3 with identical pairs and 32—2 = 3 with different
pairs (the cyclic identity does not reduce the number of independent components).
The Ricci tensor has also 6 components, which are related to the components of the
Riemann tensor by

P
Popys = Payvps — PasVoy + PpsVay — PpyYas + 5(%;6767 — Yoy Y85)- (1.4.74)

Choosing the Cartesian coordinates at a given point, defined by the condition
gap = diag(1,1,1), (1.4.75)

and diagonalizing P, 3, which is equivalent to 3 rotations, brings P,z to the canonical
form with 6 — 3 = 3 independent components. Consequently, the Riemann tensor in
three dimensions has 3 physically independent components. The Gauficurvature of a
surface perpendicular to the x?® axis is given by

Ko Dm (1.4.76)

Y11V22 — Vi
In four dimensions there are 6 independent pairs, 01, 02, 03, 12, 23, and 31, so
there are 6 components with identical pairs and % = 15 with different pairs. The
cyclic identity reduces the number of independent components by 1, so the Riemann
tensor in four dimensions has generally 20 independent components. Choosing the
Cartesian coordinates at a given point and applying 6 rotations brings Pj;i; to the
canonical form with 20 — 6 = 14 physically independent components.
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1.4.5 Weyl tensor

In four dimensions the Weyl tensor is defined as

1 1
Wikim = Pikim — i(Pilgkm + Pemit — Pim9ri — Prigim) + EP(gilgkm — GimGk1). (1.4.77)

This tensor has all the symmetry and antisymmetry properties of the Riemann tensor,
and is also traceless (any contraction of the Weyl tensor vanishes).

1.4.6 Metric geodesics

Consider two points in spacetime, P and ). Among curves that connect these points,
one curve has the minimal value of the interval s = [ ds, and is referred to as a metric
geodesic. The equation of a metric geodesic is given by the condition that [ ds be an
extremum with the endpoints of the curve fixed:

, ddxtgde? 1 1 dg;:dxidx? o
5/ds :5/(gikdxldxk)1/2 = /M + 5/% = /gijujédxl

ds
1 o . 1] o
—l—§/gij,k5:£ku’u]ds = /d(ui&rz) — /dui&vz + §/g,~j,k5a?ku’u]ds
du; . . 1 o
= — dqi dx'ds + 3 /gjk,iéx’ujukds =0, (1.4.78)

where we omit the total differential term [ d(u;0z') because 6z’ = 0 at the endpoints.
Since d2° is arbitrary, we obtain

d L1 : du? 1 :
E(Qijuj) 3 /gjk,iujukds = 9i gt u® gij g’ — 3 /gjk,iu]ukds
du? ‘
= gz'jd—us +{/i Y gmulu* =0 (1.4.79)
or, after multiplying (L4.79) by g
D{}Ul dul 1 ik
ds = E + {jk}uju =0. (1480)
The metric geodesic equation (LZS80) can be written as
d*z' . da da!
— ——=0. 1.4.81
ds? ek ds ds ( )
Using (LZ28) and ([L429), the affine geodesic equation (L2.44]) can be written as
d*z’ dz® dx! ,da® da!

— == — = =0. 1.4.82
ds? ek ds ds 2 ds ds ( )
If the torsion tensor is completely antisymmetric then the last term in (LZ82) van-
ishes and the affine geodesic equation coincides with the metric geodesic equation.
The equation of geodesic deviation with respect to the Levi-Civita connection is,
analogously to (L.3.44)),

D20 S
T; = Pl (1.4.83)
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1.4.7 Galilean frame of reference and Minkowski tensor

At a given point, the nondegenerate (g # 0) metric tensor can be brought to a diagonal
(canonical) form g, = diag(+1,+1,4+1,+1). Physical systems are described by the
metric tensor with g < 0. Without loss of generality, we assume that the canonical
form of the metric tensor is

A frame of reference in which g;;. has the canonical form is referred to as Galilean.
The transformation (L234) with (L237) brings a symmetric affine connection, thus
the Christoffel symbols, to zero at a given point without changing the components
of the metric tensor because of (L2.35]). Therefore a frame of reference can be both
geodesic and Galilean. In such locally inertial frame first derivatives of the metric
tensor vanish because of (I.4.32). The corresponding metric tensor (I.4.84)) is referred
to as the Minkowski tensor. In a locally inertial frame the coordinates x?, not only
the differentials dz?, are components of a contravariant vector.

In the absence of torsion, spacetime with a vanishing Riemann tensor P4, =0

is flat. In the new coordinates y, (L317), (IL3I8) gives

oz Ox* ,
D O~ Gir(x) R = . (1.4.85)

9 () = ga(x)

Therefore in a flat spacetime without torsion one can always find a system of coordi-
nates which is Galilean everywhere.

1.4.8 Intervals, proper time and distances

The form of the Minkowski tensor distinguishes the coordinate x° from the rest of
the coordinates x®, where the index « can be 1,2,3. The temporal coordinate z° = ct,
where t is referred to as time and c is referred to as the wvelocity of propagation of
interaction. The coordinates x® are spatial and span space. The set of 4 coordinates
2" describe an event and span spacetime. The curve z*(\), where A is a parameter, is
referred to as a world line of a given point. The quantitites

_ e
o dt

,UOC

(1.4.86)
are the components of a three-dimensional vector, the wvelocity of this point. An
infinitesimal interval ds is timelike if ds?> > 0, spacelike if ds* < 0, and null if ds* =
0. In the Galilean frame, the interval between two infinitesimally separated points
(events) is

ds® = nipda'da® = Adt* — dx®dz®, (1.4.87)

where dx’ are infinitesimal coordinate differences between the two points. The interval
between two finitely separated points is

As® = n A Ak = EAL — Ax® Az, (1.4.88)
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where Az’ are finite coordinate differences between the two points. If As is timelike,
one can always find a frame of reference in which the two events occur at the same
place, Az® = 0. A frame of reference in which dx® = 0 describes a point at rest and
is referred to as the rest frame. In this frame t = 7,

ds* = c2dr?, (1.4.89)

where 7 is the proper time. If dz® # 0 along a world line then the point moves. The
proper time for a moving point is equal to the time measured by a clock moving with
this point. If As is spacelike, one can always find a frame of reference in which the
two events occur at the same time (are synchronous), Az® = 0. If ds = 0 along a
world line, this world line describes the propagation of a signal (interaction), with

v = (v*v®)'/? = ¢. Equations ([L487) and (L489) give
1
dr? = dt* — ~dz“dz”, (1.4.90)
c
so the proper time 7 goes more slowly than the coordinate time ¢.

In the rest frame dz® = 0 gives u® = 0. At each point in space, the condition
dx® = 0 gives the relation between the proper time and the coordinate time:

1
dr = ~\/gooda®, (1.4.91)
c
which requires
goo = 0. (1.4.92)
The relation (L4.19) gives
u® = (goo) V2. (1.4.93)

The distance between two infinitesimally separated points cannot be obtained by
imposing dz° because 2° transforms differently at these points. Instead, consider a
signal that leaves point B(z® + dz®) at 2% + dz°, reaching point A(z®) at 2° and
coming back to point B at 2° + dz%. Therefore

ds® = goo(dz®)? + 2goadz’da® + gapda®da’ = (1.4.94)
gives
1
doy = g—(—gmdxa + /(90005 — Googas)dz>dz?). (1.4.95)
00

The difference in the time coordinate between emitting and receiving the signal at
point B is equal to the difference between dz' and dz° times /goo/c, and the distance
dl between points A and B is equal to this difference times ¢/2:

dI* = yapdrda”, (1.4.96)
where Joud
0aY0

Yo = —Gap + L (1.4.97)
oo
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is the symmetric spatial metric tensor of spacetime. This tensor is used to raise and
lower spatial indices of quantities written in a three-dimensional (spatial) form:

A% =P Ay, (1.4.98)
B, = YasB”, (1.4.99)

where v is the inverse of v,z
g5 = 63, (1.4.100)

One can show that the following formulae hold:

7P = —gP, (1.4.101)
g = —gool, (1.4.102)
g% = —g", (1.4.103)

1
¢®° = — — ga9°, (1.4.104)

goo

where
[ = detvyag, (1.4.105)
o = — L2 (1.4.106)
oo

The components g, form a three-dimensional vector g.
The event at point A at z° is synchronized with the event at point B at the
arithmetic mean of the time coordinates of emitting and receiving the signal, i.e. at

1

Therefore
62" = g0z, (1.4.108)

which is equivalent to dzg = 0, is the difference in 2° between two synchronized
infinitesimally separated points.
1.4.9 Spatial vectors

The spatial components of a contravariant vector A’ form a three-dimensional vector
A:

A= (A%, A%) = (A% A). (1.4.109)

The spatial components of a covariant-vector operator 0; form a spatial gradient
operator grad = V: R 5

g (2 2y (2 ) La1no

cot’ cox® cot ( )

The scalar product of two spatial vectors is

A B =~,34°B". (1.4.111)
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The square of a spatial vector A is
A2 =A-A. (1.4.112)
In three-dimensional space, the permutation symbol is defined as
€afy = —€0afy- (1.4.113)

The three-dimensional equivalent of (LATH) is

L oy (1.4.114)

Vi

The cross product of two three-dimensional vectors A and B, C = A x B is

6,157 = \/l_‘fagfy, 6(1[%{ =

Co = ap, A’BY, C% = e AgB, (1.4.115)
The three-dimensional divergence of a spatial vector A is, in analogy to (L437,
1
VI

The three-dimensional curl of a spatial vector is

divA =V - A = —(VIAY) . (1.4.116)

(curlA)® = (V x A)* = e A 5. (1.4.117)
The Laplacian operator is the divergence of the gradient,
AN=V*=V.V. (1.4.118)

In a locally galilean frame of reference, the covariant and contravariant three-dimensional
components of a vector are identical, because

Yap = 504[37 (14119)
where 0,4 is the Cartesian metric tensor,

Sup = diag(1,1,1), 6°° = diag(1,1,1). (1.4.120)

2

In this frame we refer to the coordinates x!, 22, #®, which are Cartesian, as z, ¥, 2.

The permutation symbol (LAIT3) satisfies

€aﬁw€a5g = 0350,¢c — 03¢0ns, (1.4.121)
€apn€™’s = 26,5, (1.4.122)
€apye™”T = 6. (1.4.123)
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One can show that the following formulae hold:

AxB=-BxA, ( )
curl grad¢ = 0, ( )
divcurl A =0, (1.4.126)
grad(¢y) = gradg ¢ + ¢ grady, ( )
grad(A -B) = (A-V)B + (B- V)A + A x cul B

+B x curl A, (1.4.128)
div(pA) = gradg - A + ¢ div A, (1.4.129)
curl(pA) = gradp x A + ¢ curl A, (1.4.130)
div(A x B) =B - curl A — A - curl B, (1.4.131)
curlAxB)=(B-V)A—-(A-V)B+AdivB—-BdivA, (1.4.132)
curlcurl A = graddivA — AA, (1.4.133)
where
(A-V)B = A°9,B. (1.4.134)

References: [1}, 2] 3] [4].

1.5 Tetrad and spin connection
1.5.1 Tetrad

In addition to the coordinate systems, at each spacetime point we set up four linearly
independent vectors e’ such that

efleib = Nab, (1.5.1)

where a,b = 0, 1,2, 3 are Lorentz indices and n,, = diag(1l, —1, —1, —1) is the coordinate-
invariant Minkowski metric tensor in a locally geodesic frame of reference at this point.
This set of four vectors is referred to as a tetrad. The inverse tetrad e satisfies

= (1.5.2)
elef = or. (1.5.3)

The coordinate metric tensor g;;. is related to the Minkowski metric tensor through
the tetrad:

Gir = €2€2nap. (1.5.4)

Accordingly, the determinant g of the metric tensor g;; is related to the determinant
of the tetrad ¢ = |e?| by

la| =e. (1.5.5)
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Any vector V' can be specified by its components V* with respect to the coordinate
system or by the coordinate-invariant projections V'* of the vector onto the tetrad
field:

Vi=etVi V, =€V, (1.5.6)
Vi=elV® V= eV, (1.5.7)

and similarly for tensors and densities with more indices. We can use 7,, and its
inverse % to lower and raise Lorentz indices, as we use g;, and its inverse ¢ to
lower and raise coordinate indices.

1.5.2 Lorentz transformation

The relation (L5.4]) imposes 10 constraints on the 16 components of the tetrad, leaving
6 components arbitrary. If we change from one tetrad e’ to another, é, then the
vectors of the new tetrad are linear combinations of the vectors of the old tetrad:

& = Ael. (1.5.8)
The relation (L5.4) applied to the tetrad field é;,
Gik = €€ b, (1.5.9)
imposes on the matrix A’ the orthogonality condition:
A N e = Nab- (1.5.10)
We refer to A®, as a Lorentz matriz, and to a transformation of form (L5.8) as the
Lorentz transformation.
1.5.3 Tetrad transport
A natural choice for the zeroth component of a tetrad at a given point is
eh = u'. (1.5.11)

Along a world line this tetrad should be transported such that the zeroth component
always coincides with the four-velocity. The Fermi- Walker transport of a tetrad is
defined as

Ve! .. Du; Du'
o = il 2 iu,. 1.5.12
ds ¢ ds * ds Catly ( )
Putting a = 0 in (L5I2) gives
vVut  Du
— 1.5.13
ds ds’ ( )

so the Fermi-Walker transport of the four-velocity is equivalent to its covariant change
and thus (5.7 is valid at all points. This transport does not change the orthogo-

nality relation for tetrads (L5.0) since (L512) gives

%(ezeib) = 0. (1.5.14)
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1.5.4 Spin connection

Define
wlak — ela;k — ela’k ‘I‘ Fjlke';. (1515)
The quantities .

W = ejw’y, (1.5.16)

transform like vectors under coordinate transformations. We can extend the notion
of covariant differentiation to quantities with Lorentz coordinate-invariant indices

by regarding w®, as a connection, referred to as Lorentz or spin connection. For a

contravariant Lorentz vector
“=VY 4w, VP, (1.5.17)

where |; is a covariant derivative of such a quantity with respect to 2'. The covariant
derivative of a scalar V*W, coincides with its ordinary derivative:

(VW) = (VWa) 4, (1.5.18)
which gives a covariant derivative of a covariant Lorentz vector:

Wi = Wi — W' Wh. (1.5.19)

ar

The chain rule implies that a covariant derivative of a Lorentz tensor is equal to
the sum of the corresponding ordinary derivative of this tensor and terms with spin
connection corresponding to each Lorentz index:

T =T 4w T+’ %+ —w T —w T —. ... (1.5.20)

We assume that the covariant derivative |; is total, that is, also recognizes coordinate
indices, acting on them like ;. For a tensor with both coordinate and Lorentz indices

T i = T% iAW T% +TAT % 4. =T % —TL T —... . (1.5.21)
A total covariant derivative of a tetrad is

Capte = €ag + T kel — w'ope; = 0, (1.5.22)

due to (L5IH). Therefore total covariant differentiation commutes with converting
between coordinate and Lorentz indices. Equation (L5.22]) also determines the spin
connection w?, in terms of the affine connection, tetrad and its ordinary derivatives:

W = ei(et; +T5ep). (1.5.23)

Conversely, the affine connection is determined by the spin connection, tetrad and its
derivatives: ' '
I = wiy + €5 ren. (1.5.24)

The torsion tensor is then . ' '
Sk = iy + € (1.5.25)
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and the torsion vector is
Si = why + €l yeb. (1.5.26)

Metric compatibility of the affine connection leads to
Giksj = Gikly = € ChManly = — €4 Ep(W 0o + W hiMac) = —(Whij +wing) =0, (1.5.27)
so the spin connection is antisymmetric in its first two indices:

7

Accordingly, the spin connection has 24 independent components. The contortion
tensor is
Cijr. = wijk + Dijr, (1.5.29)

where

Aiji = €iaClj 1] — €jalli i) — €kaCli )] (1.5.30)
are the Ricci rotation coefficients. The first term on the right-hand side in (L5.29)) is
expected because both the contortion tensor and spin connection are antisymmetric
in their first two indices. The quantities

Dok = Co = Coy + {116 (1.5.31)

form the Levi-Civita spin connection and are related to the Ricci rotation coefficients

by ([529) with Cjyp = 0,
@ijk = —Dijr, (1.5.32)
S
Cijk = Wijk — Wijk- (1.5.33)

1.5.5 Tetrad representation of curvature tensor

The commutator of the covariant derivatives of a tetrad with respect to the affine
connection is

k
26@;[]'2']

= R, eq + 25 ek, (1.5.34)

This commutator can also be expressed in terms of the spin connection:

lij

k k kE b kb b k
€aijji] = W aljs) = (€W afi)ii) = Woaljw" ) + Wl €y

kb b k 1k
Consequently, the curvature tensor with two Lorentz and two coordinate indices de-
pends only on the spin connection and its ordinary derivatives:

a _ a a a C a C
R = whi i — W + 0w, — W w5 (1.5.36)

Because the spin connection is antisymmetric in its first two indices, the tensor
(L536) is antisymmetric in its first two (Lorentz) indices, like the Riemann ten-
sor. The contraction of the curvature tensor (L5.36) with a tetrad gives the Ricci
tensor with one Lorentz and one coordinate index:

Ry; = R% e (1.5.37)
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The contraction of the tensor R?; with a tetrad gives the Ricci scalar,
R = R%¢! = R®, ¢'el. (1.5.38)

i -a

The Riemann tensor with two Lorentz and two coordinate indices depends on the
Levi-Civita connection (IL5.31) the same way the curvature tensor depends on the
affine connection:

a _ a a a c a c
Py = @i — @iy + @@ — @@ (1.5.39)

The contraction of (I.5.39) with a tetrad gives the Riemannian Ricci tensor with one
Lorentz and one coordinate index:

B, = P, € (1.5.40)

- bij“a
The contraction of the tensor P?% with a tetrad gives the Riemann scalar,

P = P%! = P% ¢iel. (1.5.41)

tj
References: [3] 5] 6] [7, [§].

1.6 Lorentz group
1.6.1 Subgroups of Lorentz group and principle of relativity

A composition of two Lorentz transformations A; and A,
A%y = A[(ll)c fz)ba (1-6-1>

satisfies (L5.10), so it is a Lorentz transformation. The Kronecker symbol dj also sat-
isfies (L5.10), so it can be regarded as the identity Lorentz transformation. Therefore
Lorentz transformations form a group, referred to as the Lorentz group. Taking the
determinant of the relation (L5.10) gives

A% = +1. (1.6.2)

A Lorentz transformation with |A%| = 1 is proper and with |A%| = —1 is improper.
Proper Lorentz transformations form a group because the determinant of the product
of two proper Lorentz transformations is 1. Improper Lorentz transformations include
the parity transformation P

A%(P) = diag(1, -1, —1, —1), (1.6.3)

and the time reversal T
A% (T) = diag(—1,1,1,1). (1.6.4)

The relation (L5I0) gives A% A% — A° A° =1, so

|A%] > 1. (1.6.5)
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Lorentz transformations with AOO > 1 are orthochronous and form a group. If z° is
a timelike vector, z'z; > 0, then for an orthochronous transformation z’® = A%z° +
A° 22,

A% %] < \JAQLA, PaB < \J(A%)2(20)2 = [A%a]. (1.6.6)

Thus the time component of a timelike vector does not change the sign under or-
thochronous transformations. Einstein’s principle of relativity states that all physical
laws are invariant under transformations within the orthochronous proper subgroup
of the Lorentz group.

Under the parity transformation, the spatial components of contravariant and
covariant vectors (three-dimensional vectors) change the sign, while the spatial com-
ponents of dual vectors (cross products) do not change the sign. Similarly, the scalar
contraction of the Levi-Civita symbol and a tensor changes the sign, while a scalar
does not. Quantities that transform under proper Lorentz transformations like vec-
tors and do not change the sign in their spatial components under parity are referred
to as axial vectors or pseudovectors. Quantities that transform under proper Lorentz
transformations like scalars and change the sign under parity are referred to as pseu-
doscalars.

1.6.2 Infinitesimal Lorentz transformations

Consider an infinitesimal Lorentz transformation
A, =08 + €, (1.6.7)
where €/, are infinitesimal quantities. The relation (L5I0) gives
€uy = —€up, (1.6.8)

where the indices are raised and lowered using the Minkowski metric tensor. Therefore
Lorentz transformations are given by 6 independent antisymmetric parameters €, .
The corresponding transformation of a contravariant vector A* is

v 1 loa v 1 g v
At = AP 4t AV = AF + 56” (05N — 0mp ) AY = AF + §€p Jh A (1.6.9)
where
J[ﬁ‘po’ - 557701/ - 5gnpl/~ (1610)
Define matrices J,, such that
(o)t = T (1.6.11)
Therefore, in the matrix notation (with A* treated as a column),
1
A= (1+ 5ef”Jpo)A. (1.6.12)

The 6 matrices J,, are the infinitesimal generators of the vector representation of the
Lorentz group. The explicit form of the generators of the Lorentz group in the vector
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representation is

0 —1 0 0 0 0 —1 0
-1 0 00 0 0 0 0
Jor = 0 0 00 » Joz = -1 0 0 0|
0 0 00 0 0 0 0
0 00 —1 00 0 0
0 00 0 00 —1 0
Jos = 0 00 0 » 2 = 01 0 0
-1 00 0 00 0 0
000 0 0 0 0 0
000 0 0 0 01
Ts=1 000 -1 =10 0 0ol (1.6.13)
001 0 0 -1 0 0

1.6.3 Generators and Lie algebra of Lorentz group

The commutator of the generators of the Lorentz group in the vector representation
is, using (L.6.10) and (LG.1T),

e, Tools = (Jer)8 o)y = (Jpo A (ir )i = (= Tptlre = Jratlep + Jrallep + JT”(W)ZL’ )
1.6.14

SO
[JHW JPU] = —anﬂm - JTcrnnp + wanTp + errf]/-w- (1615>

The relation (L6.I5) constitutes the Lie algebra of the Lorentz group. If a set of
qantitites ¢ transforms under a Lorentz transformation A with a matrix D(A)

¢ — D(A)o, (1.6.16)
then D is a representation of the Lorentz group if
D(I) =1, D(MAs) = D(A1)D(Ay), (1.6.17)

where I denotes the identity transformation, and A; and A, are two Lorentz trans-
formations. Therefore

D(A™Y) = D7H(A), (1.6.18)

where A1 is the Lorentz transformation to A: AA~! = I. For an infinitesimal Lorentz
transformation in any representation,

1
D(A) = I+ 5 Iy, (1.6.19)

according to (L.6.12). The relation
D(AAATY) = D(A)D(Ay) D (AY) (1.6.20)

gives (LG.TH), valid for any representation of the Lorentz group.
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If Ay and A, are two group transformations then Ag = A1A2A1_1 is a group trans-
formation. If Ay = I 4+ €,G5 is an infinitesimal group transformation with generator
Gy then Ay =1 + ezAngAl_l is an infinitesimal group transformation with genera-
tor G5 = AngAfl. If Ay = I+ €,(GG; is an infinitesimal group transformation with
generator (G; then, neglecting terms in €; of higher order, G5 = Gy + €[G1, Gs], so
[G1, G3] is a generator. For a finite number N of linearly independent generators, a
general infinitesimal group transformation is A = I + X €,G,. Because [G,, Gy is
a generator, it is a linear combination of the N generators: (G4, Gy = SN furcGe,

where f,. are structure constants of the Lie algebra of the given group. For the
Lorentz group, €,G, = D(A) — I, where D(A) is given by (L6.19).

1.6.4 Rotations and boosts

Rotations are proper orthochronous Lorentz transformations with
A, =A% =0, A% =1 (1.6.21)

Rotations act only on the spatial coordinates z and form a group, referred to as the
rotation group. Boosts are proper orthochronous Lorentz transformations with

A% =0. (1.6.22)
Define
1
Jy = ieaﬁyﬂ”, (1.6.23)
K, = Joa, (1.6.24)
and
1
9, = ieamem, (1.6.25)
Na = €0a (1626)

(for the Lorentz group g = 1, so the tensors e and densities € are numerically iden-
tical). The explicit form of the generators of the rotation group J, in the vector
representation is

00 O 0 01 0 -1 0
L=loo 1|, m=| 000, =10 0] (1627
01 0 -1 0 0 0 0 O
For an infinitesimal Lorentz transformation (LG6.19)
D=1+9-J+n K. (1.6.28)

A finite Lorentz transformation can be regarded as a composition of successive
identical infinitesimal Lorentz transformations:

D =1lim, o(1+6-J/n+mn -K/n)" = ItK (1.6.29)
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The finite parameters 0, i are the canonical parameters for a given Lorentz transfor-
mations. For a finite Lorentz transformation, (LE6.19) gives

D(A) = e2""ro (1.6.30)
> oD(A)
i =~ s (1.6.31)

The explicit form of a finite Lorentz transformation in the vector representation is

10 0 0 1 0 0 0
By= e = 8 (1] 00039 —s?n@ , Ro=e' = 8 COOSG (1) Sl(I)1 ’ ’
0 0 sinf cosf 0 —sinf 0 cosf
1 0 0 0 coshn sinhn 0 0
: 0 cosf —sind 0 sinhn coshn 0 0
_ 003 _ — 0K
RBs=e =10 sng st 0| = = g 0 10|
0 0 0 1 0 0 01
coshn 0 sinhn 0 coshn 0 0 sinhp
0 10 0 0 10 0
_ K2 _ — nK3 _
By = e = sinhn 0 coshn 0 [’ By =" = 0 01 0 ’
0 0 0 1 sinhn 0 0 coshny
(1.6.32)

where R, denotes a rotation about the x*-axis and B, denotes a boost along this
axis. The canonical parameters 8 and 1 are referred to as the angle of rotation and
rapidity, respectively. The explicit form of a finite rotation in the three-dimensional
vector representation is

1 0 0 cosf 0 sind
Ri(0) =] 0 cosf —sinf |, Ry(A) = 0 1 0 :

0 sinf cosH —sinf 0 cosf

cosf) —sinf 0
R3(0) =] sinf cosd 0 |. (1.6.33)
0 0 1

For instance,

Ve Ve Vi Vycos — V,sinf
Vy l =V, | =Rs| V, [ =] Vesind+ Vjcost |. (1.6.34)
Vi Vi V. V.
The relation (LE3T) gives
_ ORa(0)
Jo= "7 oo (1.6.35)
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The commutation relation (LE.15) gives

[Ja, Jﬁ] = €a57J«/, (1636)
[Ja, Kg] = eaﬁyKy, (1637)
(Ko, K5) = —€apy ]y (1.6.38)

Therefore rotations do not commute and form a nonabelian group, rotations and
boosts do not commute, and boosts do not commute - changing the order of two
nonparallel boosts is equivalent to applying a rotation, referred to as the Thomas-
Wigner rotation. The structure constants of the Lie algebra of the rotation group are
fabe = €ape- Moreover, the square of the generators of rotation,

J? = Joda, (1.6.39)
commutes with J,:
(%, T3] = [Ju, J5)Ja + JulJas T3] = apy (Jyda + Judy) = 0. (1.6.40)
Definining
L= %(J +iK), (1.6.41)
Q= %(J —iK), (1.6.42)
gives
[La, Lg] = eapy L, (1.6.43)
[Qa, Q5] = €apr @y, (1.6.44)
[La, @8] = 0, (1.6.45)

so the Lorentz group is isomorphic with the product of two complex rotation groups.
Accordingly, the Lorentz group can be regarded as the group of four-dimensional
rotations in the Minkowski space, or the group of tetrad rotations.

1.6.5 Poincaré group

Under the infinitesimal coordinate transformation (L2.54]) in a locally flat spacetime,

(L4A41) gives
Nit — Nk — ik — Ehsie (1.6.46)

Thus the tensor 7, is invariant under (L254) (isometric) if ¢ is a Killing vector,
Einy =0, (1.6.47)
which has the solution

¢ = ekpy + ¢, (1.6.48)
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where ¢* and € are constant. The first term on the right-hand side of (L6.4S)

corresponds to a Lorentz rotation described by 6 parameters €*. The second term

on the right-hand side of (L.6.48)) corresponds to a translation. A combination of two
translations does not change if their order is reversed, so translations commute:

7., T,] =0, (1.6.49)

where T), is the generator of translation. The relations (LG.36) and (L6.37) mean
that J* and K¢ are spatial vectors under rotations. Spatial translations are spatial
vectors under rotations, while a time translation is a scalar:

[Ja, Tg] = €a57TW, (1650)
[Jo, To] = 0. (1.6.51)
The last relation indicates that the generators of rotations, like generators of spatial

translation, correspond to conserved quantities, which are quantities that do not
change in time. The covariant generalization of (LE.50) and (LE5T) is

[‘]/MM Tp] = Tunup - Tunup- (1652)
The relations (L.6.15)), (I.6.49) and (I.6.52)) constitute the Lie algebra of the inhomo-

geneous Lorentz or Poincaré group. In particular,
(Ko, Ts] = —Todag, (1.6.53)
(Ko, To) = =T,. (1.6.54)
The last relation indicates that the generators of boosts do not correspond to con-

served quantities.
For an infinitesimal rotation about the z-axis,

(140J,)f(ct,x) = D(R,(0))f(ct,x) = f(ct, R,(0)x) =~ f(ct,z — Oy,0x +y, 2)

of of
= f(ct,x) — Oy— + Oz — 1.6.
et x) = Oy + 0o (1.6.55)
or 5 9

J,=r— —y—, 1.6.56
"5y Yoz ( )

which gives the differential representation of rotations:
Ja = 6,157{17587. (1657)

For an infinitesimal boost along the z-axis,

(1+nK.)f(ct,x) = D(B.(n)) f(ct,x) = f(B:(n)(ct, x)) = f(ct +nz,y, 2 + net)
= f(et,x) + nzf—(;; + nctg—i, (1.6.58)

or

0
K, = S + ct— (1.6.59)



which gives the differential representation of boosts:

0 0
Ka 8 +ct % (1660)

The relation for an infinitesimal translation, analogous to (L.6.19)), is
D(t) = I + ¢"T}, (1.6.61)
so a finite translation is given by
D(t) = e, (1.6.62)
Translation in (.6.48)) can also be written as
tu(e)x” =" + €d,,. (1.6.63)

The relation analogous to (I.6.33)) is

T, = 8%726) o (1.6.64)
The differential representation of a translation is thus
T, = % (1.6.65)
1.6.6 Casimir operators of Lorentz and Poincaré group
Analogously to (L.6.40),
(L%, Lg) =0, (1.6.66)
[@%, Q5] =0, (1.6.67)

so L? and @Q* commute with all 6 generators of the Lorentz group. Consequently,
J? + K% and J - K commute with all generators of the Lorentz group, that is, are
the invariants or Casimir operators of the Lorentz group. The Casimir operators of
Lorentz group do not commute with the generators of translation 7),, so they are not
the invariants of the Poincaré group. Instead, the mass operator

m? = ~T"T, (1.6.68)

and
W? = WHW,, (1.6.69)

where WH is the Pauli-Lubanski pseudovector

1
W = 2 o T, (1.6.70)
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commute with all generators of the Poincaré group, so they are the Casimir operators
of the Poincaré group. The Pauli-Lubanski pseudovector obeys the commutation
relations

[T, Wo] =0, (1.6.71)
[J;UM Wp] = Wunup - Wunupa (1672)
(WH W] = "W, T,,. (1.6.73)

The relation (I.6.72) is analogous to (I.6.52) because W* behaves like a vector under
proper Lorentz transformations.
Define the four-momentum operator

P, =T, (1.6.74)

whose time component is the energy operator Py = i1, and spatial components form
the momentum operator P, = iT,. Define the angular four-momentum operator

M,uz/ = iJ,uz/a (1675)
whose spatial components form the angular momentum operator
M, =1iJ,. (1.6.76)
Therefore the following relations are satisfied:
(M, M) = —i(Mupnve + Muotpp — Muetup — Myptiue ), (1.6.77)
[Py, P)] =0, (1.6.78)
(M, Pyl = i(Punup — Pumyp), (1.6.79)
m? = P"P,, (1.6.80)
1
WH = —56“””"MPUP,,, (1.6.81)
[Py, W,] =0, (1.6.82)
(M, W] = i(Wunp — Winy), (1.6.83)
(WH WY = —iet"P" W, F,, (1.6.84)
(Mo, Mg| = ieqp,M,. (1.6.85)
1.6.7 Relativistic kinematics
Consider a boost in the direction of the z-axis
g = e My (1.6.86)

where z' and 2" have a form of a column (4x1 matrix), and e"53 is given by (L.6.32).
Therefore the coordinates in an inertial K-system (unprimed) are related to the co-
ordinates in an inertial K’-system (primed) by

ct = ct'coshn + 2'sinhn,

z=a, y=y,

z = Z'coshn + ct'sinhn). (1.6.87)
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Consider the origin of the K'-system, &’ =3’ = 2/ = 0, in the K-system. Therefore

ct = ct'coshn,
z = ct'sinhn, (1.6.88)

V[\;hlch gives the relation between the rapidity n and velocity V' = % of K’ relative to

tanhn = f3, (1.6.89)
where v
8= - (1.6.90)
Accordingly, coshn = v and sinhn = 3, where
V2, -1/2
7:(1—23) . (1.6.91)

The relations (I.6.87) become

t= v(t' + C—Zz'),
r=1, y=y,

z =~z + V'), (1.6.92)

and are referred to as a special Lorentz transformation in the z-direction. The reverse
transformation is

v
t = v(t - gz),

o=,y =y,

2 =7(z = Vt). (1.6.93)

For a boost along an arbitrary direction, the spatial vector x = (x, y, z) transforms
such that its component parallel to the velocity V = ¢B8 of K’ relative to K, x| =
(x - V)V /V? (similarly for primed), behaves like z in (L6.92) and its component
perpendicular to V, x; = x — x|, behaves like = in (L6.92):

/

tzvﬁﬂ%véx)

x, =X,
X| = ’V(Xﬁ + Vt/), (1694)

SO

(v-1D(V-x)V
V2 ’
Therefore the transformation law for the coordinates in two inertial frames of reference

1S
()-(h e Ba)(2)
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x = (x| + Vt') + x| =9Vt' +x' + (1.6.95)



or equivalently

() co)(8)

The matrix in ([.6.97) is called a boost matriz. In the local Minkowski spacetime,
contravariant vectors transform like z’, according to (L.6.96),

0 10
(5)-(5 o)) om

covariant vectors transform such that they remain related to contravariant vectors
by the Minkowski metric tensor, and tensors transform like products of vectors. For
example, if V. = ¢fZ is parallel to the z-axis, a tensor of rank (0,2) transforms
according to

Too = v(Too + BToy) = vV (Too + BTyo + BTyy + 37 Tys),

Tor = YTy + BT310),

Tos = v(Toy + BTow) = v (Toy + BTyy + BTy + 37 Ta),

Ty, =Ty,

Ty, =Ty + Blyyr),

Tys = v(Tsy + BTs0) = v (Tyy + BTyy + BTse + PTyy),  (1.6.99)

where the index L denotes either 1 or 2, and the transposed components T} =
Ty; transform like the transpositions of the right-hand sides in (LE99). If Ty is
antisymmetric then Tyz = Ty

The relations (L.6.92]) can be written as

1%
dt = y(dt’ + gdz/),
dr = da', dy = dy,

dz = ~y(dz' + Vdt'), (1.6.100)
which gives
,U/
Uy = —m’
y(1 4+ Vol /c?)
,U/
vy =—-"S2——!
v(1+ Vol /c?)
v +V
= T, 1.6.101
v 1+ Vol /e? (1.6.101)
where J i
X X
= — = —. 1.6.102
Vo VT ( )

Two special Lorentz transformations in the same direction commute because of (L6.385).
If a Lorentz transformation from K’ to K has parameters 3; and v, and a Lorentz
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transformation from K” to K’ has parameters (35 and ~,, then a Lorentz transforma-
tion from K” to K has parameters 3 and -3 such that

_ B+ B2
1+ 15,

For a boost along an arbitrary direction, (L6.96]) gives the Lorentz transformation of
velocities:

B3 ;3= Y21+ BiBe). (1.6.103)

VAV (=) V)V /1?2

V= Y1 +v'-V/c?) '

If v/ = |V'| = ¢ then v = |V| = ¢, in agreement with the constancy of the velocity of
propagation of interaction.

Consider two points at rest in the inertial frame of reference K with positions z;
and 29, so the distance between them is Az = z3—z;. In the inertial frame K’, moving
relative to K in the z-direction with velocity V', z; = v(2; + V1)) and 2z, = (254 V),
so if t§ = t, is the time at which we measure (simultaneously) the positions of the
two points then Az = y(z) — 2]) = vAz'. Therefore the length of an object in K’,
whose length in the rest frame K is [ (proper length), is

-l l, (1.6.105)
o

(1.6.104)

which is referred to as the Lorentz-FitzGerald contraction. The volume of an object
in K’, whose volume in the rest frame K is V' (proper volume), is

V= —. (1.6.106)
7

Suppose that there are two rods of equal lengths, moving parallel relative to each
other. From the point of view of an observer moving with the first rod, the second
one is shorter, and from the point of view of an observer moving with the second
rod, the first one is shorter. There is no contradiction in this statement because the
positions of both ends of a rod must be measured simultaneously and the simultaneity
is not invariant: from the transformation law (I.6.92) it follows that if 6¢ = 0 then
ot" # 0 and if t' = 0 then d§t # 0.

Consider a clock (any mechanism with a periodic or evolutionary behavior) at
rest in K’ with position 2’; the time difference between two events with ¢ and t}, as
measured by this clock, is At' = t, — ¢,. In the frame K, t; = (] + V2'/c?) and
ty =y(thy + V2 /c?), so

Thus the rate of time is slower for moving clocks than those at rest (time dilation),
in agreement with (L4.90) and (L4.96), from which c?dr? = 2dt* — dI* and

dr = Lat. (1.6.108)
v

Suppose that there are two clocks linked to the inertial frames K and K’, and that
when the clock in K passes by the clock in K’ the readings of the two clocks coincide.
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From the point of view of an observer in K clocks in K’ go more slowly, and from
the point of view of an observer in K’ clocks in K go more slowly. There is no
contradiction in this statement because to compare the rates of the two clocks in K
and K’ we must compare the readings of the same moving clock in K’ with different
clocks in K'; we require several clocks in one frame and one in the other, thus the
measurement process is not symmetric with respect to the two frames of reference.
The clock that goes more slowly is the one which is being compared with different
clocks in the other frame. The time interval measured by a clock is equal to the
integral

1
At = E/ds (1.6.109)

along its world line. Since the world line is a straight line for a clock at rest and a
curved line for a clock moving such that it returns to the starting point, the integral
J ds taken between two world points has its maximum value if it is taken along the
straight line connecting these two points.
For a Lorentz transformation with velocity V = | V|, (L6104) gives
v'sind’

tanf = 1.6.11
an ~y(v'cost + V)’ (1.6.110)

where 6 is the angle between v and V, and ¢ is the angle between v/ and V. If
v =1" = ¢ then
cosf' + %

—_— 1.6.111
1+ %cos@” ( )

cosf =

which is referred to as the aberration of a signal. Suppose an observer in frame K
measures a periodic signal with period T, frequency v = % and wavelength A = 2,
propagating in the —z direction; the number of pulses in time dt is n = vdt. A second
observer in frame K’, moving in the z direction with velocity V relative to the first
one, travels a distance Vdt and measures % more pulses: n’ = v(1+ %)dt. Because
the time interval dt with respect to K’ is dt’ = %, the frequency of the signal in K’
sV =1+ %) or
vV =ev. (1.6.112)

This dependence of the frequency of a signal on a frame of reference is referred to as
the Doppler effect.

When ¢ — oo (at which v — 1) the above formulae, referring to relativistic
kinematics, reduce to their nonrelativistic limit. The Lorentz transformation (L.6.96])
reduces to the Galileo transformation,

t=1t,
x=x"+Vt, (1.6.113)

so the time is an absolute (invariant) quantity in nonrelativistic (Newtonian) physics.
Any two Galileo transformations commute. The transformation law for velocities
(LE.104) reduces to the simple addition of vectors,

v=v +V. (1.6.114)
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1.6.8 Four-acceleration

In a locally inertial frame of reference, the four-velocity is

A%

Ut = (7,7%), u; = (7, —fyz), (1.6.115)

where v is the velocity and v = (1 — Z—;)_l/z. Define the four-acceleration

. Du'  D%*f
L — =_ - 1.6.116
v ds ds?’ ( )
which is orthogonal to u’ because of (L4I9):
w'u; = 0, (1.6.117)

thus having 3 independent components. In a locally inertial frame of reference, the
four-acceleration is

;du' dPxt _2( LV -a

2 J(v-a)v
W= = Yat+ gt (1.6.118)

)
C

where a is the three-dimensional acceleration vector

dv  d’x
=—=—. 1.6.119
T T ar ( )
The invariant square of the four-acceleration is thus
whw; = —f(aQ + f(v +a)?) (1.6.120)
; i 2 ) 6.

If v = 0 at a given instant of time, the corresponding frame of reference is referred
to as the instantaneous rest frame. In this frame

W' = ——, (1.6.121)

ap = ¢\ —wiw; (1.6.122)

is the absolute value of the acceleration in the instantaneous rest frame.
References: [2, [3].

SO

1.7 Spinors
1.7.1 Spinor representation of Lorentz group

Let v* be the coordinate-invariant 4x4 Dirac matrices defined as

AP APyt = 28T (1.7.1)
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where I is the unit 4x4 matrix (4 is the lowest dimension for which (L7.J)) has
solutions). Accordingly, the spacetime-dependent Dirac matrices, 7* = e!~?, satisfy

Yyl Ayt = 2¢"1. (1.7.2)
Under a tetrad rotation, (L5.8) gives
3t =A% (1.7.3)
Let L be a 4x4 matrix such that
7 =AY LA LT = LA LT, (1.7.4)

where L~! is the matrix inverse to L: LL™' = L7'L = I. The condition (I7.4)
represents the constancy of the Dirac matrices v* under the combined tetrad rotation
and transformation v — LyL~'. We refer to L as the spinor representation of the
Lorentz group. The relation (L7.4]) gives the matrix L as a function of the Lorentz
matrix A%. For an infinitesimal Lorentz transformation (LG.1), the solution for L is

1 1
L=1+ 5%0@, Lt=1- §eabG“b, (1.7.5)

where G are the generators of the spinor representation of the Lorentz group:

1

G = 27" = "), (1.7.6)

A spinor 1) is defined as a quantity that, under tetrad rotations, transforms ac-
cording to

) = L. (1.7.7)
An adjoint spinor 1) is defined as a quantity that transforms according to
=L, (1.7.8)
so the product 1 is a scalar: .
VY =i (1.7.9)

The indices of the v* and L that are implicit in the 4x4 matrix multiplication in

(1), (C72) and (74 are spinor indices. The relation (L7.4) implies that the

Dirac matrices v* can be regarded as quantities that have, in addition to the invariant
index a, one spinor index and one adjoint-spinor index. The product ¥ transforms
like the Dirac matrices:

Q) = Ly L. (1.7.10)

The spinors v and 1) can be used to construct tensors. For example, 1y*1) transforms
like a contravariant Lorentz vector:

Vy"p — YLTIAY LA LT Ly = A%y ). (1.7.11)
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1.7.2 Spinor connection

The derivative of a spinor does not transform like a spinor:
;=L + L. (1.7.12)
If we introduce the spinor connection I'; that transforms according to
I, =LO,L7  + L, L7 (1.7.13)

then a covariant derivative of a spinor,

Vi =1 — I, (1.7.14)
is a spinor:
by =1 — Db = Lip; + L — (LT.L7 + L, LY Loy = Lab. (1.7.15)
Because (%) is a scalar, ) _
(V) = (Vo) 4, (1.7.16)

the chain rule for covariant differentiation gives a covariant derivative of an adjoint
spinor
Vi = + YL (1.7.17)
Also
Wi =P Vi = Ve (1.7.18)
The Dirac matrices 7 transform like 11, whose covariant derivative is

(W) = Yab + Py = (Y) ; — Taptp + Ty = (Ya) ; — [T, ). (1.7.19)

Therefore a covariant derivative of the Dirac matrices is

fyaﬂ' = fya,i - [Flv ,ya] = _[qu f)/a]u (1720)
Vj;i = 7]|i = 7j,i + ij, ﬂk — [Ty, 7] (1.7.21)

Accordingly
7 = wh” = D). (1.7.22)

The quantity @Miw‘i transforms under Lorentz rotations like a scalar:
Yy — YL LY LT Ly = oy (1.7.23)
The relation 7,; = 0 implies that
7 =0, (1.7.24)

because the Dirac matrices v* only depend on 7,,. Multiplying both sides of ([L.7.22))
by 7, from the left gives

wabi VY — al'7® +4L; = 0. (1.7.25)
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We seek the solution of (L7.25) in the form

1
I = —Zwamw — A, (1.7.26)
where A; is a spinor-tensor quantity with one vector index. Substituting (I.7.26)) to

(LZ.27), together with the identity v.v*y*v¢ = 4n®, gives
— YA +44; =0, (1.7.27)

so A; is an arbitrary vector multiple of I. Therefore the spinor connection I'; is
given, up to the addition of an arbitrary vector multiple of I, by the Fock-Ivanenko
coefficients:

1 1
Fi = —Zwabi’}/a”)/b - _iwabiGab- (1728>
Using the definition (L5.IH), we can also write (I7.28) as
1 J c 1 J
Fi = _gec;i[’yjﬁf}/ ] = g[’y ;i”yj]' (1729)

1.7.3 Curvature spinor

The commutator of total covariant derivatives of a spinor is
i = g = (W) — Dabyy — Do — (@) 5 + Ty + Ty
= —Tjap + D0 + Ty jib — TTinp 4 285 by, = Kijib + 25% 4y, (1.7.30)
where K;; = —Kj; is defined as
Kij=Ty; =i+ Iy, 1), (1.7.31)

Substituting (L.7.I3) to (L7.31]) gives

Ky=T; =T+ [, 0] = L(Ty; — Ty + [0y, )L~ = LK L7, (1.7.32)

so K, transforms under tetrad rotations like the Dirac matrices 7%, that is, Kj; is
a spinor with one spinor index and one adjoint-spinor index. We refer to Kj;; as the
curvature spinor.
The relation (L7.24) leads to
7 = 0. (1.7.33)

Thus the commutator of covariant derivatives of the spacetime-dependent Dirac ma-
trices vanishes:

298 = REuy' + 28575 + Ky, 7" = RNy + [Kiy, " = 0. (1.7.34)
Multiplying both sides of (L7.34]) by v, from the left gives
R+ + v Kiy* — 4K = 0. (1.7.35)
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We seek the solution of (L7.35) in the form
1
Kij = ZRklij”Yk”Yl + Bij, (1736)

where B;; is a spinor-tensor quantity with two vector indices. Substituting (L.7.36])

to (LZ39) gives
i Bijy* — 4By = 0, (1.7.37)

so B;j is an antisymmetric-tensor multiple of /. The tensor B;; is related to the vector

By = Aji — Aij + [Ai, Aj. (1.7.38)

Because 1 has no indices other than spinor indices, A; is a vector and [A4;, A;] = 0.
The invariance of (I7.30) under the addition of an antisymmetric-tensor multiple
B;j of the unit matrix to the curvature spinor is related to the invariance of (L7.25)
under the addition of a vector multiple A; of the unit matrix to the spinor connection.
Setting A; = 0, which corresponds to the Fock-Ivanenko spinor connection, gives
B;; = 0. Therefore the curvature spinor Kj; is given, up to the addition of an
arbitrary antisymmetric-tensor multiple of I, by

1

Kz’j:4

1
RkliijVZ = §Rkliijl- (1.7.39)

References: [3, [4].
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2 Fields

2.1 Principle of least action

The most general formulation of the law that governs the dynamics of classical systems
is Hamilton’s principle of least action, according to which every classical system is
characterized by a definite scalar-density function I, and the dynamics of the system
is such that a certain condition is satisfied. Let ¢4(z%) be a set of physical fields,
being differentiable functions of the coordinates, and let & be a Lorentz covariant
quantity constructed from the ¢4 and their derivatives. Consider a scalar quantity

1
S = E/ldﬂ, (2.1.1)

where the integration is over some region in locally Minkowski spacetime. Let d¢4
be arbitrary small changes in ¢4 (regarded as a dynamical variable) over the region
of integration, which vanish on the boundary. Then the change in S can be written
as

_ 1 A
5S = E/F 5 AdS). (2.1.2)

The principle of least action states that the dynamics of a physical system is given by
the condition the scalar S be a local minimum. Therefore any infinitesimal change in
the dynamics of the system does not alter the value of S:

55 =0 (2.1.3)

(S is a local extremum). If ¥ is covariant and ¢4 transform covariantly under the
Lorentz group, the variational condition (2.1.3]) gives the Lorentz covariant equations

¢a=0. (2.1.4)

These equations are also invariant for any other transformations (internal symmetries)
for which I is invariant. Z is referred to as the Lagrangian density, S is the action
functional, 65 = 0 is the principle of least action, and F4 = 0 are the field equations.
The field equations of a physical system are the result of the action being a local
extremum. The condition that the action be a local minimum imposes additional
restrictions on possible choices for S. The number of independent field equations for
a given system is referred to as the number of the degrees of freedom representing this
system.

In most cases & contains only ¢4 and their first derivatives (the Lagrangian den-
sity for the gravitational field contains second derivatives). A Lagrangian density
containing higher derivatives can always be written in terms of first derivatives by
increasing the number of the components of ¢ 4. Consider a physical system in the
galilean frame of reference. If & depends only on ¢4 and 0;¢4, L = (¢, ¢ ), then

5S 1/(815 4+ 2 5(¢,i))d9:%/(8—15¢+ o1 (5¢),Z-)d9

T ! ) agﬁ,é) , d¢ (o)
1 /0L i z
-- /(a_ﬂ _ 82'(8@,2-))(% + 8i(a(¢’i)5¢)>d9. (2.1.5)
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The last term in the second line of (Z1.7]) is a divergence, which, after integration,
can be transformed into a hypersurface integral over the boundary of integration
region, where ¢ = 0 on the boundary, so this term does not contribute to the action
variation:

55 = %/@% - &-(%))&bd@ + / %&bd& - %/(g—z - &-(%))Md@.

(2.1.6)
If 5 = 0 for arbitrary variations d¢ that vanish on the boundary then
o0& oL
— — &(—) =0, 2.1.7
55~ "\ai6) 247
or 5z
— = 2.1.
=0 (2.18)
where L 0L oL
O _ 9% _ 5 (9% 2.1.9
=55~ aey) 249

is a wvariational derivative of & with respect to ¢. This set of equations, for each
component ¢4, is referred to as the Lagrange equations. Generalizing the Lagrange
equations to an arbitrary coordinate frame gives

8_1 _ ol ( oL ) B
3 vl@@ﬁ 0. (2.1.10)
There is some arbitrariness in the choice of I; adding to it the divergence of an
arbitrary vector density or multiplying it by a constant produces the same field equa-
tions. If a system consists of two noninteracting parts A and B, with corresponding
Lagrangian densitites L4(p4,004) and Lp(pp, 0pp), then the Lagrangian for this
system is the sum L4 + L. This additivity of the Lagrangian density express the
fact that the field equations for either of the two parts do not involve quantities per-
taining to the other part. If L 4 also depends on ¢ and/or 0¢p, and/or Ly depends
on ¢4 and/or ¢4, then the subsystems A and B interact.
References: [11 2, [3].

2.2 Action for gravitational field

Consider a Lagrangian density that depends on the affine (or spin) connection and
its first derivatives. Such Lagrangian density can be decomposed into the covariant
part that contains derivatives of the affine/spin connection, which is referred to as the
Lagrangian density for the gravitational field, and the covariant part that does not
contain these derivatives, which is referred to as the Lagrangian density for matter.
The simplest covariant scalar that can be constructed from the affine/spin connection
and its first derivatives is the Ricci scalar R. The corresponding Lagrangian density
for the gravitational field is proportional to the product of R and the scalar density

V=B
1,= -5V (2.2.1)



where k is Finstein’s gravitational constant. There exist two variational principles
in the theory of the gravitational field. The metric variational principle regards the
metric tensor or tetrad as a dynamical variable and assumes the affine connection to
be the Levi-Civita connection. The metric-affine variational principle regards both
the metric tensor (or tetrad) and the metric-compatible affine connection (or spin
connection) as dynamical variables.

In the metric variational formulation, the Lagrangian density for the gravitational
field is proportional to the Riemann scalar P:

1
1, =——/—gP. (2.2.2)
2K
Because P is linear in derivatives of {};}:

V=P = =" ({ide = L + L0Hd = L HD |
= (V=g {i ) — i (V=89 — (V=ag" (i ) + {1} (V89"
+v=8g" (i Hmh = G HmD), (2.2.3)

we can subtract from /—gP total derivatives without altering the field equations,
replacing P by a noncovariant quantity G:

V=8G = {}(V=89") ks = {’ 3 (V=89") 1 + Vo ({7 i} = L0 H D)
= {3 (V=89")u + {73 V=89" — V=a{}i }¢’"" — V=8{/i}9")
{5 H(V=89")u + {1}V =8g" — vV=s{,}¢"* — V=8{i}g")
+V=ag" (T o = L)) = (B {V=eg™ — v=s{}}.}¢"*
—v=g{i}¢") — (/I V=8g" — v=a{;} " — V=a{};}¢")
V=g (G Ho s — P ) = V=sd™ (T H s — L) (224)
Therefore
G = g™ H oy = L), (2.2.5)

and the Lagrangian density for the gravitational field is

1
1, =5 V4G, (2.2.6)

Any coordinate transformation results in variations of g**, so S is not necessarily
a minimum with respect to these variations (only an extremum) because not all
dg"* correspond to actual variations of the gravitational field. In order to exclude
the variations §¢* resulting from changing the coordinates, we must impose on the
metric tensor 4 arbitrary constraints. If we choose

Goa =0, |gap| = const, (2.2.7)
then G becomes
L o0 af
G = 49 g*g" ga'y 0936,0- (2.2.8)
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In the locally galilean frame g,3 = —dq3, SO

1

G= —1900(9a5,0)2~ (2-2-9)

For physical systems ¢g° > 0. Therefore in order for S to have a minimum, s must
be positive, otherwise an arbitrarily rapid change of g, in time would result in an
arbitrarily low value of S and there would be no minimum.

References: [2, [3].

2.3 Matter

2.3.1 Metric dynamical energy-momentum density

The variation of the matter action S,, = [ &,,d€2 with respect to the metric tensor,

1 - 1 iy
5Sm = o [ Tydg a2 =~ [ T4g,;a0, 2.3.1
S 2c 199 2c Jii (231)
defines the metric dynamical energy-momentum density 7;;, which is symmetric:
T,; = Tj. (2.3.2)
Equivalently
ox oL 0.
T =2 7’7:2( 9 —m) 2.3.3
7 T g 0g" k( dg" (2.33)
The metric dynamical energy-momentum tensor T;; is defined as
T

Ve
2.3.2 Tetrad dynamical energy-momentum density

The variation of the matter action S,, with respect to the tetrad,
1 )
58 = - / T 25 dS), (2.3.5)
c

defines the tetrad dynamical energy-momentum density T,”. Equivalently

6%, = T,*5e!, (2.3.6)
o 53
T = R (2.3.7)

If ¥,, depends only on tensor matter fields expressed in terms of the coordinate
indices and it depends on neither derivatives of the metric tensor nor derivatives of
the tetrad then the tetrad enters Z,, only through the metric tensor, in a combination
g7 = neiel Thus

del, = §eajég”. (2.3.8)
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Substituting (23.8) to ([23.1) gives
1 .
55, = — / T,;:047dQ, (2.3.9)
2c
where
QEZ-j = 6@@2-&. (2310)

The tensor T;; is generally not symmetric. Comparing (Z3.9) with (231]) gives
the relation between the tetrad dynamical energy-momentum density and the metric
dynamical energy-momentum density for tensor matter fields:

Ty =Ty (2.3.11)

2.3.3 Canonical energy-momentum density

If we express the matter Lagrangian density Z,,, depending on matter fields ¢ and
their first derivatives ¢ ;, only in terms of Lorentz and spinor indices, then the tetrad
appears in Z,, only through a derivative of ¢, in a covariant combination e’ ¢|;. Since
7, =L, where L is a scalar, we obtain

oL , 0. .
6%, = 0L — el Lie! = e——a0e: — L etde = ("o — Let)del
06| (8¢|a ? )
aim a %
_ (%gbﬁ — L) de}, (2.3.12)
The last term in (2.3.12)),
I,
0, i — el 2.3.13
Y B0, =@l — € ( )
is referred to as the canonical energy-momentum density. Accordingly
;. 0L, i
0, = 96, —2 ¢ 5]1 (2.3.14)

Comparing (2.3.12) with (2.3.6]) shows that the canonical energy-momentum density
is identical with the dynamical tetrad energy-momentum density:

0" =T" (2.3.15)

2.3.4 Spin density

The variation of the matter action .S,, with respect to the spin connection,
1.
§Sm = 2—§ab25w“2d9, (2.3.16)
c

defines the dynamical spin density $,,":

oL,
5wab' ’

7

S, =2 (2.3.17)
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which is antisymmetric in the Lorentz indices:

S, =5, (2.3.18)
In the metric variational formulation of gravity, the variations dw®, = 5w{}abi are
functions of the variations de’ and their derivatives, so the spin density is a function of
the energy-momentum density. In the metric-affine variational formulation of gravity,
the variations dw®; are independent of e’ and their derivatives. The relation ([5.29)
indicates that the spin density is generated by the contortion tensor:

o
o =01 2.3.19
! 6CY, ( )
Accordingly, the variation of ¥, with respect to the torsion tensor,
; 0.
ik m
I — 9 2.3.20
T 05", ( )

is a homogeneous linear function of the spin connection because of (LZ29):

51771 51771 aClmn L cm cn m cn Sl n cm sl
Tijh = 2505k = 25 Gimn gk — Stmn (0077 0 + 0700 + 0707 0y)
= éijk — éjk,’ + ékij, (2.3.21)

Dijk = Tlijlks (2.3.22)

antisymmetric in the last two indices:
Tijk = —Tikj- (2.3.23)

The variation of #,, with respect to the metric-compatible affine connection in the
metric-affine variational formulation of gravity is equivalent to the variation with

respect to the torsion (or contortion) tensor. The spin connection w®, enters Z,,

only through derivatives of ¢, in a combination —%Fiqﬁ, where I'; is the covariant

derivative acting on ¢:
1

[ = —§wabiG“b. (2.3.24)
Consequently, the dynamical spin density $,," is identical with
- 0L
Yt = "G o, 2.3.25
ab 8¢7Z b¢ ( )

referred to as the canonical spin density. Spin tensor is defined as

A Sijk
1] \/_—g‘

(2.3.26)

62



2.3.5 Belinfante-Rosenfeld relation
The total variation of the matter action with respect to geometrical variables is either
1 . 1 .
5S,, = - / AOT0¢, + o / A0S, , 5", (2.3.27)
c c

or

1 L1 .
55m = o [ d¥Tadg™ + —_ [ dqur o5, (2.3.28)
Equation (L5.25]) gives
S / A, 087 = / A ™ (S(edeaw™,) + belred + e ol )

/ A (7,6 (e e )™, + 7 5™, + (1,0l 0e8) 1 — (7% ed) wdel + 7t e

/dQ wendel + 1, wel ey, + 7, 0w — (1,7l yoef + 7 me?mée{,)

+= /dSkT el et = /dQ TF b epelel ged + 75" TP eloed + 7, ow®,
—(r,* ke — S kTl = 28, + Wby ) ded — 1 lme?mebeflée?)
- = / A (7, 00, — 7,k e 5l + 25,7, 98¢t ), (2.3.29)
so comparing of (2.3.27) with (2.3.28)) leads to
/ dOT 26¢ + % / A0S, 6™, = % / d0T8g™ + % / 47, 6", — 7" el bet

+25j7'a”56§” = /dQ’Z}kekaéez%— §/dQ7‘ab7‘5wabi+ §/dQTijk;k€?5€Z

- / S, esebdel (2.3.30)
The terms with dw®, give ([2.3.22), while the terms with de! give
1 i
T = Tpe + 2@ b et — 8T (2.3.31)
or )
Ty, = Ty — §Vj (& — 8, +9,) + 58, -8, +&,). (2.3.32)

Equation (2.332) is referred to as the Belinfante-Rosenfeld relation between the dy-
namical metric and dynamical tetrad (canonical) energy-momentum densites. In the
absence of torsion, ([2.332)) is consistent with (2.3.11]). The Belinfante-Rosenfeld re-
lation can be written as
1 1., ; ;
Ek) = \/—__ngk - §V] (S’ik‘] - Sk‘]i + S]’ik‘)’ (2333)
where
Vi=V,-25 (2.3.34)

is the modified covariant derivative.
References: [2, 3], 5] @, [7].

63



2.4 Symmetries and conservation laws
2.4.1 Noether theorem

Consider a physical system in the galilean frame of reference, described by the La-
grangian density I that depends on matter fields ¢4, their first derivatives ¢ ;, and
the coordinates 2. The change of the Lagrangian density 6% under an infinitesimal
coordinate transformation (L254) is thus

oL ) 8

_ _5¢ 5(5) + 8:ci£i’ (2.4.1)

99 0
where the changes §¢ and 6(¢,) are brought by the transformation (L2.54) and O
denotes partial differentiation with respect to z* at constant ¢ and ¢ ;. The variation
0L under this transformation is also given by (LZ2.63)):

L=¢ 1. (2.4.2)

Using the Lagrange equations (Z1.7) and the identities

83[ 0L
1, = a¢¢ ’+ a%gbﬂ, (2.4.3)
5(%’) = (5¢),z‘ — &0 (2.4.4)
we bring (Z.4.7) to
0L =¢E9,; + ( ry (5¢ g, )) (2.4.5)
Combining (24.2)) and (2.4.5) gives the conservation law,
3.,=0, (2.4.6)
for the current
T =Lt (86— o) = €L+ 5o, (247
99, 99, o

Equations (2.4.6) and (2.4.7)) represent the Noether theorem, which states that to each
continuous symmetry of a Lagrangian density there corresponds a conservation law.
Generalizing (Z4.6) to an arbitrary coordinate frame gives

3, =0. (2.4.8)

2.4.2 Conservation of spin

The Lorentz group is the group of tetrad rotations. Since a physical matter La-
grangian density Z,,(¢, ¢ ;) is invariant under local, proper Lorentz transformations,
it is invariant under tetrad rotations:

oL, oL,

B = 500+ 5"

() +T"de, + §§’abl5wab,~ =0, (2.4.9)
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where the changes ¢ correspond to a tetrad rotation. Under integration of (2.4.9]) over
spacetime, the first two terms vanish because of the Lagrange equations for ¢ (2.1.7):

/ (T8¢l + %éabiéw“bi)d‘lx — 0. (2.4.10)
For an infinitesimal Lorentz transformation (L6.7), the tetrad e? changes by
bef = &7 —ef = A%l — e = €, (2.4.11)
and the tetrad e, because of the identity d(efe) = 0, according to
del = —¢'. (2.4.12)

The spin connection changes by

ab __ a Jby _ a  gb ajb _ a b a jb a be __ ab
ow®; = 0(ejw”;) ='W’ — efe; = €W —efe’ ) + et W = =) (2.4.13)

? ’

Substituting (2Z4.12)) and (2.4.13)) to ([2.4.10), together with partial integration ([.2.33)),

gives

— /(in“e + éable“bh) dir = — /(injeij + %éijkeijlk)d‘la:
= /(—Qt[m - Skg’zj + §§7ijk;k)€ijd4x- (2414>

Since the infinitesimal Lorentz rotation €% is arbitrary, we obtain the covariant con-
servation law for the spin density:

& " ~ Ty +25,:8, (2.4.15)

ij ok T

or
1

V=
The conservation law for the spin density (2.4.16]) also results from antisymmetrizing
the Belinfante-Rosenfeld relation (2.3.33]) with respect to the indices i, k. If we use

the metric-compatible affine connection I'; k , which is invariant under tetrad rotations,
instead of the spin connection w®; as a Varlable in ¥, then we must replace the term

with dw®; in (Z49) by a term with §(el ;).

Visi' = (T, —T,,). (2.4.16)

2.4.3 Conservation of metric energy-momentum

Consider the metric variational formulation of gravity. Under an infinitesimal co-
ordinate transformation (L.2.54), the matter Lagrangian density Z,,(¢, ¢ ;) changes
according to

P = O 0 00 8¢25<¢) Dgik 09 +8gik7 5(g™ ) (2.4.17)
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The matter action S, = % [ L (0, ¢,:)d is a scalar, so it does not change under this
transformation:

ox,,
o gik’l

1 /0L, 0, oL, .
08m = ¢ / ( 90 00t 95, 00+ e +

The first two terms in (Z4.I8)) vanish because of the Lagrange equations for ¢ (Z.1.7),
S0

5(gi’i,)>d9 =0. (24.18)

YT SR SN B S )
== M e ) sgtkdQ = = [ S ZQ:_/q; 40 — 0.
05 c/(@g“c al@glk,)ég d cJ dgik 09°7d 2c 1997 d 0
(2.4.19)

If the components of the metric tensor change because of an infinitesimal coordinate
transformation (.2.54]) then the corresponding variation of the metric tensor is given

by (L4.41]): )
0gij = 0gi5 = —2(i-9), (2.4.20)

SO
5y = 68, = _2ic /Tijggijdﬁ = —% /T”s(i;j)dﬂ = —% /T”&i;jdﬂ
1 y 1 i 1 i 1 ij
= /(ngi);jd(z +- /Tfjfid(l = /(Tﬂgi),jdﬁ + /Tfj&dﬂ
= —% / T¢dS; + % / TY.6d2 = 0. (2.4.21)

If the variation of the coordinates & vanishes on the boundary of the region of inte-
gration then

/ T 6dQ = 0, (2.4.22)

which, for arbitrary variations £’ gives the covariant conservation of the metric energy-
momentum density (4 equations):

T9. =0, (2.4.23)

2

Equivalently -
TV, =0. (2.4.24)

Note that vanishing of [7%4g;dQ in (Z42I) does not imply 7% = 0, because 10
variations dg;; are functions of 4 variations £’ and thus not independent.
2.4.4 Conservation of tetrad energy-momentum

The matter Lagrangian density Z,, is invariant under infinitesimal translations of
the coordinate system (LZ54). The corresponding changes of the tetrad and spin
connection are given by Lie derivatives

del, = —Leel, = &' el — &l (2.4.25)
Swabi _ _Eﬁwabi _ _gj’iwabj _ gjwabi7j. (2426)
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Equation (2.4.10) becomes now
/ (T 5], + %éabi5w“bi)d4x —0. (2.4.27)
Substituting (2.4.25]) and (2.4.26)) into (M) gives
/ (wsi T e I
/ — T+ %(éab”w“bi),j - —§>ab’ a. )g d'r =0. (2.4.28)

This equation holds for an arbitrary vector £!, so we obtain

éabj,jwabi—i-%?abj(w“b- — w*® ) 2?!‘5] —QTIjaefL,i

i,J
+§’abj(_Rabij + waciwaj — wiw’ ") =0, (2.4.29)

which reduces to

(g)abj\] - 25k§’abk) “ - Rabz’jg)abj — 2T/ + 45T — 2T’ + 457y,

+4Sﬂ’“ acjk = (2.4.30)
The conservation law for the spin density (24.I5) brings (2.4.30) to the covariant
conservation law for the energy-momentum density:

. ‘ . 1 .
T/, =25T/ +25,T\ + 5@53% (2.4.31)

or

g o 1 y
T, = jklw’wﬁku}zklﬂ. (2.4.32)

2.4.5 Conservation laws for Lorentz group

Consider a matter Lagrangian I, for a physical system in the galilean and geodesic
frame of reference, that depends on the coordinates only through a field ¢ and its
first derivatives ¢ ;. Therefore

1 oL i,

O =0+ o —¢ i = 0; ( 9, > 2.4.33

99 99,5 8% 99,5 ( )

where we use the Lagrange equations (2.1.7), from which we obtain the conservation
law,

8. ).+ 2

-5

6/ =0, (2.4.34)

for o1
0] = —"¢, — 6%, 2.4.35
90, oy ( )
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The conservation law (ZZ.34)) is a special case of (ZZ3T)) in the absence of torsion and
spin, expressed in the Galilean and geodesic frame. The quantity (Z4.35]) is a special
case of the canonical energy-momentum density (2.3.14)) in the absence of torsion and
spin, expressed in the galilean and geodesic frame.

If 2¢ are Cartesian coordinates then for translations, £ = € =const and d¢ = 0,

the current (2.4.7) is
ox,,

EZEIm a(b

TEmeig. (2.4.36)
The conservation law (2.4.0]) gives
€9, =0, (2.4.37)

which gives (2.4.34) because €' are arbitrary. For Lorentz rotations, £’ = €’;27 and
¢ = 36;;G" ¢, where G* are the generators of the Lorentz group, the current (2.4.7)
is

S o0L,, 0%, ; 10%,,
I = a;x,, + 90, ( M Grp—e* l’k]%) =€ (xk 90, ¢1— k0 L + 5 2 06, le¢>
(2.4.38)
The conservation law (ZZ.0]) gives
o - 10%,,
kl
€ (8@5, gb [ll'k 5[11%}1 2 (%251 le¢) . (2.4.39)
which, because €*! are arbitrary, gives
My, =0, (2.4.40)
where
i i iy Ly,
8¢z
The quantity #4,," is referred to as the angular momentum density, and is the sum,
M = Ay + 3, (2.4.42)

of two densities: the orbital angular momentum density,

and the canonical spin density (2.3.25).
The conservation law (2.4.40) for the angular momentum density is equivalent to

O — O — S/ = 0, (2.4.44)

which is a special case of the conservation law for the spin density (2.4.15)) in the ab-
sence of torsion, expressed in the galilean and geodesic frame. The canonical energy-
momentum density #;; is not symmetric. However, the quantity

1 . . .
Tik = Oir, — §8j(2i,j -3+, (2.4.45)
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is symmetric, which follows from (2.4.44)), and conserved:

Tik = Thi, (2.4.46)
7' =0. (2.4.47)

The symmetric energy-momentum density 7;, corresponds to the metric dynami-
cal energy-momentum density (2:3.3)), expressed in the galilean and geodesic frame.
Equation (24.47]) is a special case of the Belinfante-Rosenfeld relation (2.3:32) in the
absence of torsion, expressed in the Galilean and geodesic frame. The second term
on the right-hand side of (2.4.45]) has the form ;1% where ¢* = —¥*k Adding
such term to §°% preserves the conservation law (Z.4.34]) and brings 6% to a symmetric
form.

2.4.6 Components of energy-momentum tensor

Integrating the conservation law (Z4.34]), valid in the galilean and geodesic frame
of reference, over a hypersurface enclosing matter represented by 7% and using the
Gauf-Stokes theorem gives

jff“fdsk —0, (2.4.48)
which gives the conservation of the four-momentum vector
P = %/T““dSk = const. (2.4.49)
Choosing the volume hypersurface dV = d.S, gives
Pl = %/dev, (2.4.50)

so the components 277 form the four-momentum density. The component 7%, re-
ferred to as the energy density,

.04,
W=7"=¢p—" -1, (2.4.51)
o9
integrated over the volume gives the time component of the four-momentum, the
energy

E=cP, ¢P°= /Toodv - ég—g .y (2.4.52)

where

L= / ,,dV (2.4.53)

is the Lagrange function or Lagrangian. Hereinafter, a dot above any quantity ¢
denotes the partial derivative of ¢ with respect to time, qb = %, and two dots above
¢ denote the second derivative of ¢ with respect to time, gb = ‘2273’.
action of a physical system is the time integral of the Lagrangian,

Consequently, the

S = [ Ldt. (2.4.54)
9
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The components %7"’0, referred to as the momentum density, integrated over the

volume give the spatial components of the four-momentum, the momentum vector

1
PPt~ / R (2.4.55)

Adding a total divergence 9,47 to 7% does not alter the definition of the four-
momentum vector (2.4.49).
The symmetry of 7% can be written as

o (' — 2F 7y = 0, (2.4.56)

which upon the integration over a hypersurface enclosing matter represented by 7%
and using the Gauf3-Stokes theorem gives

j{ (wirkl — 2hr1)dS, = 0, (2.4.57)
which gives the conservation of the angular momentum tensor
M* = /(:cide —z*dP?) = %/(:ciTkl — 2*7")dS) = const. (2.4.58)
Choosing the volume hypersurface dV = d Sy gives
M* = %/(a:iTkO — 2"70)dV. (2.4.59)
The conservation of M,

1
MY = —(/ 2470V — ZEO/TQOdV)

Cc

1
= - /:EO‘TOOdV — ctP” = const,  (2.4.60)
c

divided by the conservation of P° ([24.50), P° = const, gives a uniform motion,

X% =V + const, (2.4.61)
with velocity
. cP®
of the center of inertia with the coordinates X,
[ x2790dV
X¢=—— 2.4.63
[ 700qy ( )

The coordinates of the center of inertia (2.4.63)) are not the spatial components of a
four-dimensional vector.
The conservation law (2.4.34]) can be written as

1079 970«
- = 2.4.64
c Ot * ox® 0 (2.4.64)
10720 9ros
St o =0, (2.4.65)
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Integrating these equations over the volume hypersurface and using the Gaufl-Stokes
theorem gives

a 00 _ O
% /r dV = —ch df s (2.4.66)
a 1 a0 _ af
a/ET AV = —7{7 dfs, (2.4.67)
where
df, = dfz, (2.4.68)

is the spatial surface element (LI30). The integral of a three-dimensional vector V¢
over the two-dimensional surface element df,, § V*df,, is referred to as the flux of
this vector. Therefore the components

S* = % (2.4.69)

of the energy current S form, upon integrating over df,, the energy flur. The compo-
nents 77 represent the momentum current and give, upon integrating over df,, the
momentum flurz. The stress tensor is defined as

Oap = —Tas- (2470)

The components of the energy-momentum tensor form the matrix

S
Tk = ( VS[,/ R , ) : (2.4.71)

[

Define the spatial surface force vector,
Fo = ]f 5B df . (2.4.72)

The relations (Z.4.55)), (2:4.67), 24.70) and (ZZ472) equal the time derivative of the

momentum P¢ to the surface force F'¢,

P = F. (2.4.73)

In an arbitrary frame of reference, the metric dynamical energy-momentum tensor

Tix describing isotropic matter (without a preferred direction in its rest frame) can be

decomposed into the part proportional to u;uy, the part proportional to the projection
tensor,

hik = ik — U;UE, (2474)

which is orthogonal to u?,
hikuk =0, (2.4.75)

and parts containing covariant derivatives of u’. The projection tensor satisfies
ik k
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Assume that 7;;, does not depend on derivatives of u’. Therefore
Tir, = eusuy, — phi, (2.4.77)

where a scalar € is equal to the energy density W in the locally Galilean rest frame
and a scalar p is the pressure. In this frame T = diag(e, p, p, p) and the stress tensor

Oap = —POag, giving

Fo— _p f df* = —p f nedf, (2.4.78)
which states that the force per unit surface df acting on a surface is parallel, with
the opposite sign, to the outward normal vector of this surface n®, dd% = —pn®, and

which is referred to as Pascal’s law. Matter described by the tensor (Z4.77) represents
an ideal fluid. The relation between € and p is referred to as the equation of state. In

the Galilean frame of reference, combining (L6.ITH), (Z.4.71)) and (2.4.77) gives

€ + pv?/c?
= — 2.4.
W 1—v?/c?’ (2:4.79)
(e+p)v
S = 7 2.4.80
1—w2/c? ( )
€+ p)ugv
2 —v
The relation (2.4.77) gives ‘
T=T =¢—3p. (2.4.82)

— 2 2 ; ; _ g00dz%+goadz®
The component Tyg = eud + p(ug — goo) is, using uy = 201N (TIOF) and
(L497), equal to

dlN\?
Too = eug +pgoo<£) , (2.4.83)

so it is positive under physical conditions € > 0, p > 0 and goo > 0. If 7 de-
pends also on derivatives of u' then matter described by the tensor (2.4.77) with the
corresponding additional terms represents a viscous fluid.

2.4.7 Mass and Papapetrou equations of motion

Consider matter which is distributed over a small region in space and consists of points
with the coordinates z¢, forming an extended body whose motion is represented by
a world tube in spacetime. The motion of the body as a whole is represented by an
arbitrary timelike world line 7 inside the world tube, which consists of points with
the coordinates X*(7), where 7 is the proper time on 7. Define

drt =" — X', 02° =0, u' = . (2.4.84)
ds
Also define the following integrals:
M* =f /atikdv, (2.4.85)
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MIF = 40 / S TIkAY, (2.4.86)
Nk — 4,0 / Sikqy, (2.4.87)
Jzk — /(5xz¢k0 o dka:z(] + ézk(])dv — E(_Mzko + MkzO + Nsz)(2488)
The quantity J* is equal to [(62'T — §52+T! + $*!)dS; taken for the volume hy-

persurface, so it is a tensor, which we call the total spin tensor. The quantity N“* is
also a tensor. The relation 62° = 0 gives

MYk = (. (2.4.89)

Assume that the dimensions of the body are small, so integrals with two or more
factors 0z’ multiplying @* and integrals with one or more factors dz' multiplying
£/* can be neglected.

The conservation law for the tetrad energy-momentum density (2.4.32]) is

T+ {T - O T - §Rz‘kl]§’ml =0. (2.4.90)

Integrating (2.4.90) over the volume hypersurface and using Gauf3-Stokes theorem to
eliminate surface integrals gives

[® v+ [Giyetav - [ o iTtav - 5 [ Ryfstav o (2491

E di
Panding i _ o) i(0)5 l
=T + 1,00, (2.4.92)

where the superscripts 0 denote the values at X*, and substituting these expressions
into (2.4.91]) gives (omitting the superscripts)

([Tlav) + {4} [Thav + {4} [erlTtav — ¢,/ [Thav

. , 1 .
—Cy, / srTEAY — o / R, 9™dV = 0 (2.4.93)

or, using the definitions (2.4.88]), (2Z.4.80]) and (2.4.87),

)+{ﬂk}M(““)—{ﬂk},lMl(”“)—Cik”MW“]JrCik{lM”“ﬂ—§Rikl’]\f”“l = 0. (2.4.94)

d ;M7
_( u9

ds
The conservation law (2.4.90) gives

(2T, = — LIV TR 4 Lle, TR 5:5132.%%“%, (2.4.95)
(xll,mwji)J _ xmm:jl + ljm:jm . xlxm{ijé}m:ik + xlxmcikjm:ik

1 .
+§x1meikn]§’k". (2.4.96)
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Integrating (2.4.95]) over the volume hypersurface and using GauB-Stokes theorem to
eliminate surface integrals gives

dT0) gav = [TV — [TV + [ 20 TRV + 1 [ R, S8y,
) ik ik 2 ikm
(2.4.97)
Substituting (2.4.84]) into (2.4.97) gives

l . ) ) . .
- / TV + X / T dV + / (62T ydV = / Ty — X' / (gitqy

u
- / sl { STy + X! / O, T AV + / 32l CLITh AV
1 o
+5X / Ry, '&*mdV, (2.4.98)
which reduces, due to (Z4.91]), to
> / Tay + ( / (Br'TaV) = / Ty — / el Ty + / Sl TR AV,

(2.4.99)
Substituting (2.4.92) into (2.4.99)), omitting the superscripts and using the definitions

(24.85), (24.80) and (2.4.87), turns (24.99) into
! A0 d (MUO

u? ds

Putting [ = 0 in (2.4.100) gives the identity because of (2.4.89).
Integrating (2.4.96) over the volume hypersurface and using Gaufi-Stokes theorem

to eliminate surface integrals gives

) = M7+ {zjk}Mllk -G

o S MUE, (2.4.100)

/ (2™ TI) (dV = / TV + / ATImgy — / dam{ IVTRqy

" 1 .
+ / DTV + / 2lam R, ISy, (2.4.101)

ikn
Substituting (2.4.84) into (Z.4.97) gives
Iym [ g0 U 0 u! magjo u™ 0
X [ av + Sxm [wtav 4+ 5 [eretay + Lot [wtay
u u u
+25 [or'Tlav + X! [oam e gav + x™ [ T av
» , ,
= -x'x™( / {F1Tkdy — / O TrAY — % / Ry /&™dV)
+X!([Trmav — [sm{gyTtav + [smc,/Ttay)
+x( / Ty — / el { Ty + / 52 C TRV

+ / STV + / LTIV, (2.4.102)
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which reduces, due to (24.91) and (24.99), to

l m
5 [orwtay + 25 [orwlav = [orwlav + [adwray (2.4108)
u u
or l

L VA Y L VL VL (2.4.104)
u u
The expressions analogous to (2.4.95) and (2.4.96) with higher multiples of z* do not
introduce new relations.
The conservation law for the angular momentum density (ZZI5) is

gk, —Te" + T8 — 2Tl — o, (2.4.105)

Integrating (2.4.108]) over the volume hypersurface and using Gauf-Stokes theorem
to eliminate surface integrals gives

/gf'jo,odv B /Flikg)jlkdv n /Fﬂébilkdv _ 2/¢[ij]dv —0. (2.4.106)

Substituting (2.4.92)) into (2.4.106]), omitting the superscripts and using the definitions

(2.485) and ([2.4.87), turns (2.4.106) into

d /N0 o . g
- <_> _ i Nk Nk ol — g (2.4.107)

u0
The conservation law (2.4.108) gives
(2'&%) ), = &7 + 2T & — 2T & + 22T, (2.4.108)

Integrating (2.4108)) over the volume hypersurface and using GaufB-Stokes theorem
to eliminate surface integrals gives

[@'s ) 0av = [ty + [oT) @ av — [T, emav 42 [ 2Ty,
(2.4.109)
Substituting (2.4.84) into (2.4.109) gives

= / S04y + X! / £ 4V = / $Ulav + X' / L ,&mkqy — / rJ,&mkqy

u
+2 / Tilay) +2 / sz Tiqy, (2.4.110)

which reduces, due to ([2.4.106)), to

1
= [sav = [stav +2 [sTilay (2.4.111)
or

l
Al _% <£0Nij0 _ Niﬂ), (24.112)
u
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Putting [ = 0 in (ZZIT2) gives the identity because of (2.489). The expressions
analogous to (2.4.J08) with higher multiples of z* do not introduce new relations.

Taking the cyclic permutations of the indices 4,1, m in (2.4.104)), adding the first
and second of these relations, and subtracting the third, gives

l i m
Y optmilo ¢ % ppmilo Yy ri0 g ptlim] o pilim] g pmil) (2.4.113)
u? u? u?
Substituting (24.88) and (Z4.112) into (2.4T113) gives
MmO = i gom Doy D), (2.4.114)
u
Putting m = 0 in (224114), substituting it into (ZZ£I14) and using (ZZ£I9) gives
M — g, om Z—O(UUJ”O + NO@Y 4 NmED), (2.4.115)

Combining (2.4.112) and ([2.4.115)) gives

Mmil — u(ZJl)m . g(u(ZJl)O + NO(zl)) + Nm(zl) . 1 ﬂNilO o Nilm ) (24116)
u? 2\l

Therefore , , .
MER0 — _(u(ZJk)O + NO(Zk))_ (2.4.117)

Combining the antisymmetric part of (ZZ4.I00) and (Z4I07) gives

. Y u? . . . ;

M MY = a0 — TN ({4} — O )M + ({1} - Oy
d Mle _ Mle

- ). 2.4.118
ds( u? > ( )

Using (2.4.87), [2.4112) and (2.4.1715]) brings (2.4.118) to
i nrlik 1 arjik u' i0 ! 10 j i Tkl lik u ) 0ik
DN L TNTE = G M — M — {3 (' JH 4 N — g (w0 N )

1 b . o g i .
—ici,j(%wko — N (w75 4 NI %(uu’fo + NO*))
[ ! ikO ikj d 1j
+5Ca (—UON — N 4 At (2.4.119)

which, using %—?JU = LJU 4 b LT 4wk {1 Y, turns into

D u u ) ) 1 W o . ]
EJl] — |:EMIO+${iIk}(uZJkO+NOZk)_§Cikl(ENZkO_NZk]) _'_ClikN]zk] . |:l PN ]]
(2.4.120)
or, using the four-momentum
1
Pl - / Tqv, (2.4.121)

76



into

DU . j ! i i 1 w i ikj i .
= = (o Pl S T NOE) = (SN - N ) 4 N ’f] - [z o ]}.
(2.4.122)
Therefore
D{}Jli l 1 l i 7kO 0ik 1 l 1 1k0 ikj l ik
= P (T N - S0y, (@N — N#iy;) + CL N,
. . . 1 T ,
—culujpj u u] {Zk}( ZJkO + NOzk) + §Czkj (%Nzko _ Nzkl>uj
u
—OjikN”’fuj, (2.4.123)

which gives with (2.4.122))
pi gl . pl it ; pi gl

ds + uu; F wu, ds — Clikszk + CklNzk] CjikNlik
. 1 )
__C k] Nzkl u? U, (ClikNmzk 4+ Z C klNzkm Cmiklek . 5 ikmNZkl)
‘l‘u U, (CjikNmzk + icik]lem . CmikNﬂk o 50 mNzk])
= 2(6,6%,) — W upmOly + ulug 6l (CTy N 4 Ck"lem) (2.4.124)

Multiplying (2.4.124) by u; gives the identity, so only 3 equations in (2.4.124) are
independent. Thus 3 components of J* are arbitrary and we can impose 3 constraints
on J*. A simple choice is

J*uy, =0, (2.4.125)

which means that in the local rest frame J° = 0, so the three independent com-
ponents of J* are the spatial J*?. Analogously to the Pauli-Lubanski pseudovector
(L6.70), define the four-spin pseudovector

J' = §e”“ujjkl, (2.4.126)
which is orthogonal to u?, '
Jhu; = 0, (2.4.127)
The condition ([2.4.127) gives the relation inverse to (Z.4126):
Jk = ekl J,. (2.4.128)

Differentiating (Z4.126) covariantly with respect to {;}} and using (2.4.124) gives
DUS 1D,

Chtmnt™ " + €56 67, (C7, NPT 4 2CpT"Nme)

ds 2 ds
D{}
Y du T+ ¢ nmu](cn N™P C anrm)
zD{}u D{}u k ij n mpr n m
= —ul ot =t e, u; (€™, N +2Cpr NPT (24.129)
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Thus the covariant (with respect to the Levi-Civita connection) change of the spin
pseudovector along the world line ~ is the sum of the corresponding Fermi-Walker
transport (with respect to the Levi-Civita connection) and a term which depends on
the torsion and spin density.

In ([Z.4123), the four-momentum P’ depends on terms proportional to the four-
velocity u! and terms in which the index [ appears in other quantities. Define the
mass of the system described by the energy-momentum density T* as the coefficient
m of u! in the expansion for PTL,

Pl

— =mu+ ..., (2.4.130)
C

SO

uj

m = %Pj + O{ij}c}(uiJkO + Noik) - LC'ijikO = %Hja (2.4.131)

c2u 2c2u0 !

where ] ]
IV = P7 + @{gg}(wko + Ny MCiiji’“o (2.4.132)

is the modified four-momentum. Substituting (2.4.131]) and (2.4.132)) into (24123

gives

Di}

7 JHu; = ' — mcu! + u; (C’lik]\”lk + §C’ikl]\”k’> — uj (C’]ikN”k + §C’ik’N1kl>,

(2.4.133)
so I — meu! = TV (6} — w'u;) is a vector. Thus the modified four-momentum IT is
a vector and the mass m is a scalar. Substituting (Z4.132) into (24.122) gives the
Papapetrou equation of motion for the spin:

DU , , o1 o N
- JY = /T — cul TV + O N7 4 §CiklNsz — C7 N — iCik]N’kl. (2.4.134)
s

Putting (Z4.100), (Z4.107), (24.112), (24.115), (24117) and (Z4.132) into (2.4.94)

gives

d N , 1 .y . 1
_ J_ [ i 7kO Oik J nrik0 J,,k i~ q7J 1 7m0
(eI — {0 4 NO¥) o 5 Oy N0 o (e (eIl = {0, ('

ds 0

1 M (k)0

+ Ny 4 > )
u

55 Cin N1™) = (43 (0} = Con )M — (212 (

20

! ik0

Y Gkl Wi 7k)0 0(ik) 1(ik) _1 ji N
[ha(uC = S0 4 N9 4 N1 - 2002 (2

1 U

] i m ilm 1 j l i i 1 iklj
"9 ik](—rlmel +Fl]:an ) — §Cik],z<@Nk0 - Nkl) - §R kl]Nikl

ds o {zjk}{lm}(ulj g + Nkl ) - {ijk},m(u Jk +N k)
1

_|_§{i3k}clmlemk + Cik]FlZmelm + §Cik],lekm o 5Rzkl]]\]ikl —0. (24135)

=C
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Using (L45]) turns (2.4135)) into the Papapetrou equation of motion for the momen-

tum: A
DUT 1 . . 1 el
ds _%P]imkuljmk - %Nikzclkl']- (2.4.136)

If the spin density vanishes then the Einstein-Cartan gravitational field equations
reduce to the Einstein-Hilbert gravitational field equations. The conservation law
for the spin density (ZZ15) with the condition $“* = 0 gives the symmetry of the

energy-momentum density, T* = T The relations (Z4.85), 2.4.86), (Z.4.87) and
(2:4.88) give then

M* = M, (2.4.137)

M* = M*T (2.4.138)

Niik =0, (2.4.139)
) ) . ) 1 ) )

JH = L = / (62T — 5 TV GV = — (— MO - AH0) (2.4.140)

u0

where L* is the angular momentum tensor, analogous to (ZZ458). The modified
four-momentum ([24I32) reduces to

. . 1 ) ;
IV — pi s @{ﬂk}u Lo (2.4.141)
and (Z.4.133) gives
' = meu! + s (2.4.142)
S

The relation (24.129) reduces to

DU i DUk Dy
= i ds“ uF gy, (2.4.143)

ds ds

so the covariant (with respect to the Levi-Civita connection) change of the spin pseu-
dovector along the world line 7 is equal to the corresponding Fermi-Walker transport.

Multiplying ([2.4£143) by J; and using (2.4127) gives
J'J; = const, (2.4.144)

so the change of the spin pseudovector along a world line is a rotation, called spin
precession. The Papapetrou equation of motion for the spin (ZZI34) reduces to
DUl
ds

= I — u'T, (2.4.145)
while the Papapetrou equation of motion for the momentum (2.4.13€]) reduces to

DU 1 . .
= =—§Pﬂimku’mk. (2.4.146)
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The change of the mass m along the world line 7 is, using (LA4S), (24125), (24131,
[24T142) and (24.140),

dm DUm 1 DUID 1DV DUy,

1HjD{}uj 1HjD{}uj

ds  ds Euj ds + c ds - c ds - c ds i ds
1 .. DUw DU
==t I 2.4.147
c ds ds ’ ( )
SO
m = const. (2.4.148)

In the absence of the external gravitational field and neglecting the gravitational
field of the body, the relation (ZZI4T]) gives

IV = P7, (2.4.149)
so (2.4.146)) reduces to

a (2.4.150)

ds o

whose integration gives the conservation of the four-momentum along a world line:
P" = const. (2.4.151)
The equation of motion for the spin (2.4.145) becomes

dLv
ds

=u/ P —u' P, (2.4.152)
whose integration gives the conservation of the angular momentum along a world line:
L* 4+ X'P¥ — X*¥P' = const. (2.4.153)

The tensor L* is the intrinsic angular momentum of the body, while the tensor (in
the absence of the gravitational field) X¢P* — X* P is the orbital angular momentum
associated with the motion of the body as a whole. If L** = 0 then (Z.4.153) gives
P! o v, so [ZAT5]) is equivalent to u’ = const and thus X? is a linear function of
the proper time 7. If L* # 0 then X* can be given by 3 arbitrary functions of 7 (since
u'u; = 1). In the momentum rest frame, in which P* = 0, u® # 0, so the body has
an arbitrary internal motion. The 3 constraints (2.4.125) eliminate this arbitrariness,
so the equations of motion entirely determine the motion of the body.

2.4.8 Energy-momentum tensor for particles

If the body is not spatially extended then it is referred to as a particle. The corre-
sponding condition dx® = 0 gives

M9% =0, L* =0. (2.4.154)
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Therefore (Z4I12) reduces to 45 N0 — Ni! = 0, which with (ZZ88) gives
Nk — ot Ji*, (2.4.155)
SO .. .. ..
J9 = 84 = N'iky,,, (2.4.156)

where S% is the intrinsic spin tensor. If the body is spatially extended then the
difference ' ' '
R* = it — gk (2.4.157)

is the rotational spin tensor. The difference between the rotational spin tensor and
angular momentum tensor is, due to (2.4.88) and (2.4.112),

) ) kO ) )
R* —cL* = 5 N#Fyy = —2 M1k, (2.4.158)
This expression vanishes, because of (2.4.89), in the wvelocity rest frame, in which
u® = 0, which is also locally Galilean, so u, = 0.
If a particle is spinless then its four-momentum is proportional to its four-velocity

due to (Z4.147)) and (2:4142):
P! = meul, (2.4.159)

which gives
P? = m?c, (2.4.160)

in agreement with (LG.80). Equations (2.4.100), (Z4121), (24.137), 2.4139) and
[24159) give

M* = Z—;Mko = %MOO = mc*u'uF, (2.4.161)
SO ,
/ TV = me? T“(fk (2.4.162)
or ¢ ,
T () = me6(x — x0) " (2.4.163)

wl

where §(x — xq) is the spatial Dirac delta representing a point mass located at xq.
Define the mass density pv such that

pV1dV = dm, (2.4.164)

where ( is given by (L.4105]). The mass density for a particle located at x, is

w(x) = %5(}( — Xg), (2.4.165)

so (24.I63) turns into
utu®
2

T = e )
1% \ﬁuo

(2.4.166)
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Thus the energy-momentum tensor for a spinless particle is given by

T — 12 utu® _he dz’ da* (2.4.167)
V900u®  \/goo ds dt o
or, for a system of particles,
ik 2 u'u®
T (X) = Zmac (5(X — Xa)m. (24168)

The Papapetrou equation of motion (2.4.140) for a spinless particle reduces to the
metric geodesic equation (LZI0),

DUt
ds

— 0. (2.4.169)

In the absence of torsion and in the locally Galilean frame of reference, the con-
servation law for the energy-momentum tensor is given by (Z434), so

T,'; =0. (2.4.170)

Consider a closed system of particles which carry out a finite motion, in which all
quantities vary over finite ranges. Define the average over a certain time interval 7
of a function f of these quantities as f = % Jo fdt. The average of the derivative of a

bounded quantity f = 1(f(7) — f(0)) — 0 as 7 — co. Thus averaging (Z.ZI70) over
the time gives B
T,”,=0. (2.4.171)

Multiplying (ZZ4ITT) by z* and integrating over the volume gives, omitting surface
integrals,

/ 20T, dV = — / T.odV =0, (2.4.172)

The average energy of the system (ZZ52) is thus
E= /TOOdV - /T/’dv. (2.4.173)

Substituting (LEI1H) into (24168 gives

: 2,172
Ti(x) = Y mac?8(x —x) (1 - =), (2.4.174)
a C
so T," > 0. Putting (2.4.174) into (Z.4IT3) gives
_ PN
E =3 mu*(1- g) , (2.4.175)

which is referred to as the virial theorem.
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Comparing (24.82) with (2Z4174) gives
2
_ ) v2\1/2
€e—3p= za:mac (1 — 0—2) : (2.4.176)

where the summation extends over all particles in unit volume, so p < ¢/3. In
the nonrelativistic limit p &~ 0, while in the ultrarelativistic limit (v ~ ¢) p ~ €/3.
Consider a system of noninteracting identical particles of mass m, which we call an
ideal gas, with the number of particles in unit volume (concentration) n, so

W= nm. (2.4.177)

Comparing (2.4.77) in the locally Galilean rest frame with (Z4.I67) gives the kinetic
formulae for ideal gases:

€ = nmc’7, (2.4.178)
p= %’yv?. (2.4.179)
In a locally inertial frame of reference, (LE.ITH) and (ZZ4.I59) give
Pi= mcy(l, X), (2.4.180)
c
so the energy and momentum of the particle are
E = mc*y, (2.4.181)
P = myv. (2.4.182)
Thus (Z4.160) gives
E? = (Pc)? + (mc®)%. (2.4.183)
We also obtain
v-dP = &d(mcu(x) = Cu—ﬁd(mcua)é"ﬁ = —Cu—ﬁd(mcua)go‘ﬁ
g gl Y
= T g (meug)g® = cdPy = dE. (2.4.184)
v

In the rest frame of the particle, P = 0, (2.4.183) reduces to Einstein’s formula for
the rest energy,

E =mc*. (2.4.185)
The formulae (24.181]) and ([2.4.182)) give
v = C—E2p. (2.4.186)
If a particle is massless, m = 0, then (Z4.I83) gives
E = Pe, (2.4.187)
which is consistent with (2.4.186]) only if
v=c. (2.4.188)

References: [2} 3], 5] 6, [7, 9.
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2.5 Gravitational field equations
2.5.1 Einstein-Hilbert action and Einstein equations

The FEinstein-Hilbert action for the gravitational field and matter is, due to (2.2.2)),

§— 1 /P\/_—ng + S, (2.5.1)
2KcC

where the metric tensor is regarded as a variational variable and the affine connec-
tion is the Levi-Civita connection. Varying (2.5.1]) with respect to the metric tensor

gives, using (2.3.1) and the identity §/—g = —%\/—ggik(Sgik (which results from
og = ag™*0gi = —agindg™),

1 . | ) | 1 |
5= [ (6Pag™ V4 Padg™ V=8~ 5 PV =Ggudg™ ) a2+ 5 [ Tuwn/aog™ a0
(2.5.2)

Partial integration of the first term on the right-hand side of (2:5.2)), using (L4.57),
brings this term to zero:

/MDz'kgide = / ((5{ilk}):l - (5{ill}):k)gikd9 == /(gik:ld{ilk} —g"0{iHd2 =0,
(2.5.3)

g’ = v—ag" (2.5.4)
is the contravariant metric density, whose covariant derivative with respect to the

Christoffel symbols vanishes, g, = 0. Equaling §S = 0 in (25.2) gives the Einstein
equations of the general theory of relativity:

08 =

where

G,’k = KT,'k (255)
or .
Py, = KJ(Tik - §Tgik>~ (2.5.6)

Because ¢ [ P\/—gdS) = ¢ | G/—adf2, where the noncovariant quantity G is given by
(22.3), the left-hand side of the Einstein equations is

1 a(/70)
G = o=—p (2.5.7)

The covariant conservation of the Einstein tensor (IL4.67]) imposes the conservation of
the metric dynamical energy-momentum tensor (2.4.23)). Therefore the gravitational

field equations contain the equations of motion of matter. In vacuum, where T}, = 0,
the Ricci tensor in (2.5.6) vanishes:

Py, = 0. (2.5.8)

Thus vanishing of P at a given point in spacetime is a covariant criterion of whether
matter is present or absent at this point.
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The Einstein equations (2Z5.0]) are 10 second-order partial differential equations
for: 10 — 4 = 6 independent components of the metric tensor g; (the factor 4 is the
number of the coordinates which can be chosen arbitrarily), 3 independent compo-
nents of the four-velocity u‘, and either € or p (which are related to each other by
the equation of state). The contracted Bianchi identity ([.4.67) gives the equations
of motion of matter. In vacuum, the Einstein equations are 10 — 4 = 6 indepen-
dent equations (the factor 4 is the number of constraints from the contracted Bianchi
identity) for 6 independent components of the metric tensor gg.

In the Einstein equations, the only second time-derivatives of g;; are the derivatives
of the spatial components of the metric tensor, g.3, and they appear only in the af3
components of the field equations ([2.5.5)). Therefore the initial values (at ¢t = 0) for
Jap and gop can be chosen arbitrarily. The first time-derivatives go, and goo appear
only in the a3 components of the field equations (2.5.5). The O and 00 components
of the field equations (Z.5.5]) give the initial values for gg, and ggo. The undetermined
initial values for go, and ggo correspond to 4 degrees of freedom for a free gravitational
field. A general gravitational field has 8 degrees of freedom: 4 degrees of freedom for
a free gravitational field, 3 related to the four-velocity, and 1 related to € (or p).

2.5.2 Einstein pseudotensor and principle of equivalence

Define
G=+v—9G, (2.5.9)

where G is the noncovariant quantity (2.2.5). The action for the gravitational field
and matter,

1 1 1
- _ 0 == [[-= Q 2.5.1
S=-5— [Gio+s, C/(%wam)d, (2.5.10)

produces the Einstein field equations by varying the metric tensor, because G differs
from /—gP by a total divergence:

)

1
(—%G+%Q_Q (2.5.11)

Construct a canonical energy-momentum density (2.4.35) corresponding to the gravi-
tational field, treating —iG (which depends only on ¢ and its first derivatives g”7 %)
like Z,, and g% like a matter field ¢:

; 1 ( 06

b= —o - 5,1@). (2.5.12)

3ng ‘g k

This quantity is not a tensor density since & is not a scalar density and its division

by /—8a, \;{_g’ is referred to as the Finstein energy-momentum pseudotensor for the
gravitational field. The four-momentum corresponding to the total energy-momentum
density for the gravitational field and matter (which is not a vector) is then

I Y P
P = C/(ti + TS, (2.5.13)
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where the sum t,* + 7; * is called the Einstein energy-momentum complez. The defi-

nition (Z.5.12) gives

,. o6 ., 06 o6 ., 06 , 06
2Kty = aiwg] kT ng kit Bk = @'WQJ kT ng ki T @93 h
0B, (06 06N\ . 06
+8gjl_,g ik = (@ - ZW)Q k= Wg = (2.5.14)
which, using (2.5.11]), gives
RS S P
i = 5g7! g’ k= 57;19] k- (2.5.15)
The covariant conservation (Z.4.23) gives
7 l ) 1 im ) 1 Im
ki = et D' = 29 JimxTy " = —59 & Tim; (2.5.16)

so the total energy-momentum density for the gravitational field and matter is ordi-
narily conserved:

6 '+ 7.9 =0. (2.5.17)

Integrating (2.5.17) over the four-dimensional volume and using the Gauf-Stokes
theorem gives

j{(t,j + 7, ")dS; = 0, (2.5.18)

so the four-momentum (235.13)) is conserved, P; = const. Because the quantity t; is
not symmetric in the indices 7, k, the total angular momentum constructed from P*

as in (Z4.58),
. ) ) 1 . ) )
Mzk — /(xzdpk . l,kdpz) — E /(xz(tkl + Tkl) o Ik(tzl + Tzl))dsl’ (2519)

is not conserved. The conservation law Z517) gives t,' + 7, ' = 1, ;, where n*" =
—nM so !l —t, = (n " —n'Y) ;. Analogously to (2.4.44) and (2.£45), we could bring
t,! + 7, ! to a symmetric form. However, using (1" — n',%) instead of ¥," in (Z4.45),
where 0,% is replaced by t* + 7T;*, gives 7.¥ = 0, so this symmetrization procedure
does not work for the Einstein pseudotensor.

The Einstein pseudotensor (2.5.12)) can be explicitly written as

i 1 7 m mi )
t, = %({lm}gl kT {\.)e &t 0:8), (2.5.20)

so it is a homogeneous quadratic function of the Christoffel symbols. Thus it vanishes
in the local Galilean frame of reference. It can also differ from zero in the Minkowski
spacetime (in the absence of the gravitational field) if we choose the coordinates such
that the Christoffel symbols do not vanish. Therefore the energy of the gravitational
field is not absolutely localized in spacetime; it depends on the choice of the coor-
dinates. The gravitational field can be always eliminated locally by transforming
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the coordinate system to the local Galilean frame of reference in which the Einstein
pseudotensor vanishes. This property of the gravitational field is referred to as the
principle of equivalence.

The construction of a conserved four-momentum for the gravitational field and
matter is possible because the Lagrangian density for the gravitational field Z, is
linear in the second derivatives of the metric tensor. The Lagrangian density ([2.2.2))
can be generalized to

1
L, =~ Vu(P+20), (2.5.21)

where A is referred to as the cosmological constant, without altering the Einstein
energy-momentum pseudotensor (Z.5.12). Another scalar density which is linear in
curvature is €* Py, but this parity-violating expression vanishes due to the cyclic
identity (L4.64)). Therefore the simplest choice for a gravitational Lagrangian density,
linear in P, is the only one that admits ordinary conservation laws for the gravitational
field and matter, and thus physical.

2.5.3 Landau-Lifshitz energy-momentum pseudotensor

The covariant conservation (2.4.23)) in the local Galilean frame of reference is

i =0, (2.5.22)
so T% can be expressed as T* = ™™ where n’*" = —n'*. The Einstein equations
(2.5.5) in the Galilean frame are

(—g)T™" = n'™ (2.5.23)

where
PR = N = itk (2.5.24)
N = L ()™ — g, (25.25)

In an arbitrary frame of reference, (2.5.23) is not valid. Define ¢* such that
(—g)(t* +T%) = h™ . (2.5.26)

Therefore . '
(—9) (™ + 1)), =0, (2.5.27)

so there is a conservation of the four-momentum of the gravitational field and matter,
i1 ik ik
Pz /(—g)(t +T)dS,. (2.5.28)
c
The quantity #** is not a tensor density, so the conserved four-momentum P (2.5.28)
is not a vector. The four-momentum P? is not a vector even for Lorentz transfor-

mations, because of the factor —g instead of the correct (weight 1) density /—g in
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([252]). Dividing P? by /=g at some fixed point (a natural choice is infinity) turns
it into a vector under Lorentz transformations. Using (2.5.26) turns (2.5.28)), for the
hypersurface dSy = dV, into

1 , 1 , 1 ;
Pz — E/hzlidSk — % %hzkldfl;kl — E %hloadfa. (2529)

The quantity t" is referred to as the Landau-Lifshitz energy-momentum pseudotensor
for the gravitational field, and the sum (—g)(t?* + T*) is called the Landau-Lifshitz
complex.

The explicit expression for the Landau-Lifshitz pseudotensor is

= o ("0 — gL — LH I — (AHED
g E LY + L HBY = () — LA
M (G H ) + L — L ) — (D

+g" gL = (D) (2.5.30)

tik

or

, 1/, . 1,
(_g)tzk — % <gzk7lglm7m o gzl’lgkmﬂn + §gzkglmgln7pgpm’n

~(9" gmn&"" 8" 1 + 9" g8 8" 1) + Gmg 8" 8",

1 7 m 7 m nr
+§(29 lgk —4g kgl )(29npgqr - gpqgnr)g ,lgpq7m>. (2.5.31)

This pseudotensor is symmetric in the indices ¢, k, so there is a conservation of the
total angular momentum constructed from P* as in (Z453),

1/(xi(tkl 4 Tkl) _ xk(tz‘l + T“))(—g)dSl. (2.5.32>

M* = [ (@dP* — tap) =
C

Dividing M®* by \/—g at infinity turns it into an antisymmetric tensor under Lorentz

transformations. Using (25.24) and (2.5.26) turns (2.5.28), for the hypersurface
dSp = dV, into

. : 1 : :
Mzk — E /(xZ)\klmn’nm o xk)\zlmn’nm)dsl — % %(xZ)\klmn’n o Zlﬁ'k)\llmnﬂ)dfl%

1 . . 1 . . .
_E %(}\klm _ )\Zlkn)mdSl — E %(xzhkOQ _ xkhwa 4 >\20ak>dfa. (2533>
Choosing the volume hypersurface dV = d S, gives
. 1 . ) )
M =~ / (2 ("0 + TH0) — 25 (4 4 T))(—g)dV. (2.5.34)

The conservation of M in (25.34) divided by the conservation of P? in ([2.5.28)
gives a uniform motion (2.4.61]) with velocity (2.4.62) of the center of inertia for the
gravitational field and matter, with the coordinates

B fxa(too +T°°)(—g)dv
EIGET T
The coordinates of the center of inertia (2.5.35]), like (2.4.63)), are not the spatial
components of a four-dimensional vector.

Xa

(2.5.35)
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2.5.4 Utiyama action

The Utiyama action for the gravitational field and matter is equal to (2.5.1]), where the
tetrad is regarded as a variational variable and the spin connection is the Levi-Civita

spin connection (L5.31)). Thus (2.3.5) gives

1 1 ag 1
08 = —5— [ o(eP)a+ - / T 266 dO. (2.5.36)

KC
The Lagrangian density for the gravitational field is given by (2.2.2), with the Rie-
mann scalar P given by (L.5.39) and (L5.41):
P = eeiejb(w“bj,i — @ + @@ — w“cjwcbi) = 223;(w“bj,i + w“ciwd’j), (2.5.37)
where
¢ = eeliel], (2.5.38)

Varying ¢P and omitting total derivatives gives in the absence of torsion, using de =
ee def and ey = e — @ @t = 0 (which results from (L.5.22)),

a]ecb
5(eP) = (2P° — Pef)edel, + 25,0(w™; ; + @’ w®)) = (2P% — Pel)edel,
+2(eq,; — @ a]ecb @, 00 ) 0w (2P“i — Pef)edel. (2.5.39)
Equaling 0.5 = 0 gives the tetrad Einstein equations:

1
P —gPei = f%“, (2.5.40)

equivalent to the metric Einstein equations ([2.5.5]) because of (Z34) and (2.3.32)) (in
the absence of torsion).

2.5.5 Mgller pseudotensor

The Riemann scalar P is linear in derivatives of w®;:

eP = (ee ebw“b )i — (eelel). iw®; - (eelelw™,) ; + (eekeld) ;oo + eeieiw“%wcbj
—ee! ebw ¢t = 2(ee’ ebw“b )i— 2(eeiei)ﬂ~w“bj + teie{w“ciwcbj
—eele]w jwcbi. (2.5.41)

Thus we can subtract from ¢P total derivatives without altering the field equations,
replacing P by a noncovariant quantity M:

eM = —2(celel]) ;o —I—ee Ll m b — ee ebw ¢l
i o i
= _22({kkz'}w]' + @’ e j - {Im}w Jj + @’ biw j - {m}w kj)
+e(wiciwcjj —w ]wcjl) = (W', — W), (2.5.42)
using (LZ435) and (L53T). Therefore
M = wi“iwjaj — wi“jwjai. (2.5.43)
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Because of (LEIH), the quantity ([25.43)) depends on the tetrad e’ and its first deriva-
tives €} ;. Therefore, analogously to ([Z5.12), we can construct a canonical energy-
momentum density corresponding to the gravitational field, treating —iz]\/[ :

, L /0(eM) ; -

f=—— R 5ZBM>. 2.5.44

¢ = a0 (2544
This quantity is not a tensor density since eM is not a scalar density and its division by

e, %, is referred to as the Myller energy-momentum pseudotensor for the gravitational
field. One can show, analogously to the steps leading to (2Z.5.17, that the total energy-
momentum density for the gravitational field and matter is ordinarily conserved:

(m,' + 7. =0. (2.5.45)

Thus the corresponding total four-momentum is conserved:
1
P =- /(m,k + 7, ¥)dS), = const, (2.5.46)
c

where the sum m* + 7, * is called the Mgller energy-momentum complez. The Mgller
pseudotensor depends on the choice of both the coordinates and the tetrad. To fix
the tetrad, one can impose on it 6 constraints which are covariant under constant
Lorentz transformations but not under general Lorentz transformations (otherwise
these constraints would not fix the tetrad since Lorentz transformations are tetrad
rotations). A natural choice is to constrain the 6 components of the spin connection
wijr in which the last index is contracted with a covariant derivative or the trace of
the spin connection.

2.5.6 Einstein-Cartan action

If we regard the torsion tensor as a variational variable (in addition to the metric
tensor) then the action for the gravitational field and matter is, due to (Z2.1]),

1
S=—_— /R\/_—ng + S, (2.5.47)
2KcC

and it is referred to as the Einstein-Cartan action. Using (L4.54) gives

S = _QLKC /(P — " (2C" 1 + Cjijclkl -, mkl))\/ —gd{2 + Sp,. (2.5.48)

Partial integration of the terms with covariant derivatives : and omitting total deriva-
tives (which do not contribute to the field equations) reduces (2.5.4%) to

1 i ] m
§=—5— /(P — 9N Cly — € O™ ) ) V8L + S (2.5.49)
Varying (2.5.49) with respect to the metric tensor and contortion tensor (which is
equivalent to varying with respect to the torsion tensor) gives, using (Z3.19), (2.3.26)
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and (Z5.3),
1 1 . 1 . .
05 =—5— /(Pz — 59k — C7C% + O O™ + 59k (CTCYy = Cl]mcmjl))

2kc 2
, 1 . . . 1 .
x /=809 dQ — — / (CV; = CY07)V/=a0C"4d2 + o / Tiv/—80g™ d)
KC c
1 . .
o / 5,/ =500, d. (2.5.50)
For variations g%, §S = 0 gives the first Finstein-Cartan equation
G = /~€(T,k + Uik), (2.5.51)
where
1/, A R .
Ui, = E(C]ijclkl — CC% — 592‘%:(0] iChu = C ﬂCljm)) (2.5.52)
or
1 o . 1 . ..
%(Stjm + 25 mn) — 2gi,€5j5j). (2.5.53)
For variations 6C”,,, §S = 0 gives the second Einstein-Cartan equation
k ket Rk
or _ .
Tl = —58a (2.5.55)
where . . . '
is the modified torsion tensor. The relation (2.5.55]) is equivalent to
Kok !

This relation between the torsion and spin tensors is algebraic: torsion at a given point
in spacetime does not vanish only if there is matter at this point, represented in the
Lagrangian density by a function which depends on torsion. Unlike the metric, which
is related to matter through a differential field equation, torsion does not propagate.

Combining (2.5.52) and (2.5.57)) gives

. 1 .. o 1 ) .

1 kl ijl k li k l m Im

Uy, = m(—s][ls - 553 s'+ 159 si + égik(—élsj[ms’ g+ sjlm)>. (2.5.58)

The tensor (Z5.58) represents a correction to the dynamical energy-momentum tensor
from the spin contributions to the geometry of spacetime, quadratic in the spin density
(so the sign of the spin density does not affect this correction) and corresponding to a
spin-spin contact interaction. If matter fields do not depend on torsion then U, = 0
and the first Einstein-Cartan equation (2Z5.51) reduces to the Einstein equations

[2.5.5).
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2.5.7 Kibble-Sciama action

The Kibble-Sciama action for the gravitational field and matter is equal to (2.5.47]),
where both the tetrad and spin connection are regarded as variational variables. Thus

2327) gives
1

— 1 as i i 15, ,ab
55 =~ [ d(eR)as + E/Qti 5el do + 2c/§ab 5w dS). (2.5.59)

The Lagrangian density for the gravitational field is given by (2.2.1), with the curva-

ture scalar R given by (L.5.36) and (L.5.38]):

_ i jb( a _.a a ¢ _ ,.a c _0Lt] ab a cb
eR = eeg e’ (W, — W + wiw — Wi w) = 20 (W W w ). (2.5.60)

C

Varylng eR and omitting total derivatives gives, using %b\ ;= =7 W ajzcb Wt +

Dfakl + T ek — Tk = 0 (which results from ([5.22)),

J

§(eR) = (2R%, — Rel)ede!, + 2¢5,5 (W™, + w'w®)

J

= (2R" — Re{)ede!, + 2( aby Wcajfcb W%t ¢9) 5w
= (2R, — Pef)edel, — 2(S' 2k + 28;65,)6w ;. (2.5.61)
For variations dw®,, 65 = 0 gives
Si— Suel 1+ Syel = —2%9&;, (2.5.62)

equivalent to the second Einstein-Cartan equation (2.5.55). For variations de’;, 65 = 0
gives

1 K
R* — —Re! = -T* 2.5.63
KA 2 6Z t K ( )
or
Rei — 2Ry — ", (2.5.64)
ki 2 Jik \/_—g ik - 0.

Substituting (2.5.55) and (2.5.64]) into the conservation law for the spin density
(Z4.10) gives

— Q(Sk”’k — Si;j + Sj;i) = Rji — Rij — 4Sk(SkZ] — SZ(Sf + Sjéf), (2565)

which is equivalent to the contracted cyclic identity (L4.61]). Thus the contracted
cyclic identity imposes the conservation law for the spin density in the Einstein-
Cartan gravity. Substituting (2.5.55) and (2.5.64)) into the conservation law for the
energy-momentum density (ZZ43T)) gives

; 1 . 1 . ‘ 1 . ‘ .
R — R, =25, <R]Z- - 5355) L2857, <R’3 - 5355) (S — Sub] + SO RM

(%) 2
(2.5.66)

which is equivalent to the contracted Bianchi identity (LZ.G2). Thus the contracted
Bianchi identity imposes the conservation law for the energy-momentum density in
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the Einstein-Cartan gravity. Substituting (2.5.55) and (2Z5.64) into the Belinfante-
Rosenfeld relation (2:3.33)) gives

1 . . . . 1
KT,'k = R}m - §Rg,k + Vj(szk + QSk(Sf — QS(ik)] — 25’gik) = R}m — §Rg,k
+V;‘(_Cjki + Cudl = C¥gur). (2.5.67)

Combining (L.4.52), (L4.54) and (2.5.67) gives

1 . . 1 y
wTip = P — §P9z’k + Cliy = Clg + OOl = O CY = igik(_QC L
_Cljlcmjm + C™'Cljm) — Ojki:j - lejclki + Clkjcjli + Clz’jcjkl + Cjkj:i

—ChC7 = gan(CYy + Gy O™, ) = Ci(=Cly + Clydl = Clgy),  (2.5.68)
which is equivalent to the first Einstein-Cartan equation (2.5.51]). Thus the rela-
tion between the Ricci tensor and the Riemannian Ricci tensor is equivalent to the

Belinfante-Rosenfeld relation in the Einstein-Cartan gravity, and (2.5.64)) is another
form of the first Einstein-Cartan equation.

2.5.8 Einstein-Cartan pseudotensor

Replacing the action for the gravitational field and matter (2.5.49) by

S = —i/(G (IOl — ™) )V =8dQ+ S, (2.5.69)

2KcC

produces the first Einstein-Cartan equation by varying the metric tensor, because
v/—gG differs from /—gP by a total divergence:

5 | i
s (—ﬂ(c g (7,0l — O, Cm) +9zm> 0. (2.5.70)

The canonical energy-momentum density for the gravitational field is also given by

(25.12). The relations (2.5.14) and (2.5.70) give

_ 30+ 208, Cly = O O)
ki 5gﬂ

(Tl+¢_Uﬂ) e (25.71)

The covariant conservation (2.£23)) gives

(T," +vV=8U,") = {Li} (1" +v=aU,") = _9 " Gimu(T, "+ /—8U,")
_ __g (T + v/ =8Ui), (2.5.72)

so the total energy-momentum density for the gravitational field and matter is ordi-
narily conserved:

' +7."++v—aU,"),; = 0. (2.5.73)
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Thus the corresponding four-momentum is conserved:

1
P = . /(tlk + 7, % + \/=gU,*)dS}, = const. (2.5.74)

k
The quantity \;ﬁ_fg + U,* is referred to as the Einstein-Cartan energy-momentum

pseudotensor for the gravitational field, and the sum t* + 7, ¥ +/=gU,* is called the
Einstein-Cartan energy-momentum complex.

2.5.9 Palatini variation

If the matter action S,,, does not depend o_n the affine connection, its variation with
respect to the metric and connection (4T, is a tensor) is referred to as the Palatini

variation. Varying (Z5.47) with respect to I'/% gives, due to (L3.39),

= g | 900 = 5 [(OT L) = (T dpe— 2500 g™y =g
(2.5.75)
Partial integration and omitting total derivatives in (2.5.70]) gives, using (L2.33)),
1 _ '
05 = ke /(5szg 1~ 25,01 8' —5F111g2kk+25k5rzlzg2k—I-QSJlkéFiljg’k)dQ. (2.5.76)

Since the affine connection is metric-compatible, g;;.x = 0, 05 = 0 turns the torsion
tensor into zero, so the connection is formed by the Christoffel symbols and the field
equations are the Einstein equations (2.5.5). Thus varying the action for matter
fields, which do not depend on the affine connection, with respect to the connection
is equivalent to varying it with respect to the torsion tensor. However, if the matter
action S,, depends on the affine connection then (2.5.76) becomes

1 | |
05 = 2kc /((leg — 2507 fyg" 5lelglk &+ 28,0T g™ 4 QS]lk(SFilngk)dQ
g foran, (255.77)

where the hypermomentum density is defined as

~ ox,,
mr=2_-" (2.5.78)
5T,
Since the connection is metric-compatible, 45 = 0 gives
ik k Qi kz _ ) k
g"S; —0;5" =S 2\/_1_[ (2.5.79)
Contracting the indices 4, j gives .
I'F =0, (2.5.80)
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which also results from the invariance of the Lagrangian density under a projective
transformation (.2.49) (the symmetric part of the Ricci tensor is invariant under this

transformation):
Loikens _ Lok

0L =04, = 51’[ ol = 51’[ ;0J0A, = 0. (2.5.81)
The relation (Z.5.80) constrains possible forms of matter Lagrangians algebraically,
so it is not a conservation law. Therefore varying the action with respect to the
affine connection, unlike that with respect to the torsion (or spin connection), does
not constitute a physical variational principle. Only the antisymmetric part of the
connection (torsion) can be regarded as a dynamical variable; its symmetric part can

always be brought locally to zero by a suitable transformation of the coordinates.

2.5.10 Gravitational potential

If the metric tensor g;; is approximately equal to the Minkowski metric tensor 7;;
then the corresponding gravitational field is weak. We can write

2
where ¢ is referred to as the gravitational potential. Thus nonrelativistic gravitational
fields, corresponding to the limit ¢ — oo, are weak. Also ©° ~ 1 and u® ~ 0. In this
limit, the leading component of the Levi-Civita connection is

L s _ 1 0¢

e = - 2.5.
o} = =595 5 = 25,0 (2.5.83)
so the metric geodesic equation (I.4.80) reduces to
dv
— = —-Vo. 2.5.84
v v (2589
The quantity G in (2.2.5]) reduces to
2
G = g(w)?. (2.5.85)
The leading component of the Riemannian Ricci tensor is
Hoey 1 0% 1
Py~ =222 = — = —N\¢. 2.5.
00 ox® 2 0x*? ¢ (2.5.86)
The leading component of the energy-momentum tensor (Z.4.167) is
Too = juc?. (2.5.87)

Therefore the Einstein equations in the nonrelativistic limit reduce to the Poisson
equation:

N = AnGp, (2.5.88)
where .
G=2" (2.5.89)
s

is Newton’s gravitational constant. In vacuum, where p = 0, the Poisson equation
reduces to the Laplace equation:
Ao = 0. (2.5.90)
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2.5.11 Hydrodynamics

The covariant conservation (ZZ24) of the metric energy-momentum tensor (Z.4.77)
gives

((e+p)uh)u’ + (e + p)utu’y, = prg™. (2.5.91)
Multiplying ([Z5.91]) by u, gives
((e +p)ub).,, = ppu®, (2.5.92)
which, upon substituting into (Z5.97]) yields the Euler equation:
Dyt .
(e+p) dsu = pih™. (2.5.93)

If p; o< u; (which includes the case p = const) then (2.5.93) reduces to the metric
geodesic equation (LZ80). Defining a quantity w such that
dw de

= (2.5.94)
w €E+Dp

brings (25.92) to '
(wu'),; = 0. (2.5.95)

o« . . . . @
In the nonrelativistic limit, ¢ — oo, u® ~ 1, u* & £, € = pc® and p < ¢, so

(2.5.92) reduces to the equation of continuity:
0
0_? +divs =0, (2.5.96)

where
S = uv (2.5.97)

is referred to as the mass current. Integrating (2.5.96]) over the volume gives

%/udv + ](s L df =0, (2.5.98)

which means that the change in time of the total mass inside a volume, m = [ udV/,
is balanced by the mass flux through the surface bounding this volume, representing
the conservation of the total mass of a fluid. The Euler equation (2Z.5.93)) reduces in
this limit to

ov®
a ( ot +Ua,ﬁ”6) = 1.5 +p.an™ (2.5.99)
or d 9
A% A%

Integrating (2.5.100) over the volume gives, using P = [ uvdV, the change in time of
the total momentum of a fluid:

P
- —/ngdm - j{pdf. (2.5.101)

Without pressure gradients, (Z5.100) reduces to (2.5.84).
References: [1, 2] 3], 4 [5 6, [7]
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2.6 Spinor fields

2.6.1 Dirac matrices

The Dirac matrices defined by (IL7.]) are complex. A particular solution of (L7.1]) is
given by the Dirac representation:

I 0 0 o°
0 __ o
Y _<0 —I)’ Y _<_O_a O )7 (261)

where [ is the unit 2x2 matrix and

01:((1)(1)>,02:<?6i>,03:((1) _01> (2.6.2)

are the Pauli matrices (all indices are coordinate invariant). The Pauli matrices are
traceless tr(c®) = 0 and Hermitian 0" = ¢® (the Hermitian conjugation of a matrix
A is the combination of the complex conjugation and transposition, AT = A*T), satisfy

0003 = 0ap + 1€080+, (2.6.3)

and their square is /. The identity (2Z6.3]) gives the anticommutation relation

Ja 981 _ o O

[ > 2} = i€apy (2.6.4)
so % form the lowest, two-dimensional representation of the angular momentum

operator M,, (LE.76). The properties of o® imply that the Dirac matrices are traceless
tr(y") = 0 and satisfy

YT =17 = =07 =109 (2.6.5)
Define _

7 = — e Vv = iy (2.6.6)
which is traceless tr(7°) = 0 and Hermitian 7" = +®, and satisfies

(V' =0, (V) =1. (2.6.7)

'ﬁz(? é>. (2.6.8)

The anticommutation relation (L7.1) gives

In the Dirac representation

Vi =4, (2.6.9)
Vv = =2, (2.6.10)
VA =t (2.6.11)
YAV s = =29/, (2.6.12)
ik = ik kg ik ekl 5 (2.6.13)
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The Dirac representation is not unique; the relation (L) is invariant under a sim-
ilarity transformation v — Sy?S~1, where S is a nondegenerate (det S # 0) matrix.

Accordingly, ¥ — Sv and ¥ — S~!. Taking S = % < j: _II ) turns the Dirac
repreentation into the Weyl representation, in which

0 _ OI a 0 g% 5 I 0
Y _<[ 0 V= e 0 y V= 0 —1 . (2614)

For an infinitesimal Lorentz transformation (I.6.7), the relations (L7.5]) and (I.7.6)
give L =1+ éeab(*y‘wb — 7447, so

1
L'=T1+ geab(fbefy“T — W“Tfbe) (2.6.15)

is equal to L™! (so L is unitary) for rotations and equal to L for boosts. The relation

([2.6.5)) gives then

a a 1 a a -
F b1 0 = 40— e 20(%0 — Aby) = AOL1. (2.6.16)

1
L'y ="+ cea(y"™y 2

8
Thus the quantity 7% transforms under (LZ.7) like an adjoint spinor:

PTAY — PTLTA0 = T4 L, (2.6.17)

The spinors ¢ and ¥T¢? can be used to construct tensors, as in (LZII): 7%y
transforms like a scalar, ¥Ty%y%) is a vector, ¥7y%v%) is a pseudoscalar, 1)yviy5)
is a pseudovector, and 1110947y is an antisymmetric tensor. Higher-rank tensors
constructed from ¢ and 177° reduce to the above 5 kinds of tensors because of (Z.6.13)).
Hereinafter, we will use ¢ to denote 110,

Define the chirality projection operators

I EE

Py=——, P+ P =1 P2=1, P,P.=P_P, =0. (2.6.18)

They project a spinor v into the right-handed spinor vz and left-handed spinor vy,
Yr =P, Y =P, =19+ (2.6.19)

2.6.2 Dirac equation

A Lagrangian density for dynamical spinor fields must contain first derivatives of
spinors. The simplest scalar containing derivatives of spinors is quadratic in v, ¥y,
where 1,; is the covariant derivative of ¢ (IL7.I4). This quantity is complex. In the
locally inertial frame of reference, its complex conjugate is

(W) = (W) = vl = 9% %% = by, (2.6.20)

so both ¥y ;4 17"1h and i(¢y'eh; —1p;7'1)) are real. The former is, however, equal
to a total divergence (¢y'1));, so a Lagrangian density proportional to such term
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does not contribute to field equations. Thus the simplest dynamical part of a spinor
Lagrangian density is proportional to z'(z/_widz,i — 1/_1,2-71'1/1). Another scalar that can be
used in a spinor Lagrangian is proportional to 11). Therefore the simplest Lagrangian
density for spinor fields, in the locally Galilean frame of reference, has the form

1,= %(¢7iw,i — ") — my, (2.6.21)

where m is a real scalar constant called the spinor mass, and it is referred to as the
Dirac Lagrangian density. For any frame of reference,

2, = Dy — ") - medt = e By~ Gy~ meby. (26.22)

Consider the metric formulation of gravity with the Einstein-Hilbert action (2.5.1]).
Therefore spacetime has the Riemannian geometry, so 1,; = 1,;. Varying [2.6.22)) with
respect to ¢ and omitting total derivatives gives

0xy = 0P(iv' by — mp), (2.6.23)
so the stationarity of the action §S = 0 under d1) gives the Dirac equation:
iy = my. (2.6.24)

Varying (2.6.22)) with respect to ¢ and omitting total derivatives gives the adjoint

conjugate of (2.6.24): ) )
— i)y =mab. (2.6.25)
The Dirac equation is linear in 1), so ¢ can be multiplied by an arbitrary constant

without altering (Z.6.24). Varying (2.6.22)) with respect to ¢!, gives the tetrad energy-
momentum density for the spinor field,

= %(@Vawzi — " — 6?@7’&/}4 + e?;ﬁ:jfij) + meeSPp, (2.6.26)
S0
T = (@/W k) — ey — ginthY Vg + gty ) + mgantih. (2.6.27)

The conservation law (Z.4.24)) applied to the energy-momentum tensor (2.6.27) gives

the Dirac equations (2.6.24]) and (2.6.25)). )
Subtracting (2.6.25) multiplied by ¢ from (2.6.24)) multiplied by 1 gives, using

m and wh = 1/122'7 o o
(') = (V') =0, (2.6.28)

so the vector density ' o
ji, = edyinp, (2.6.29)

called the vector Dirac current, is conserved: ji,, = 0 or

dp
5 TVi=0, (2.6.30)
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where B
cp=epT, j=ehyi). (2.6.31)

The spinor density p is real and positive. The conservation law (2.6.30) is referred to
as the equation of continuity, like (2.5.96)).
The Dirac equation (2.6.24]) gives

= (V) = iy (2.6.32)

or, due to (L.7.33), o )
— ¥y P = m*p. (2.6.33)

Using (L730) and (L7.39) turns (2.6.33) into the Klein-Gordon-Fock equation:
i 2 1 ki
Vi Y = SRy vy Y (2.6.34)

If a spinor is equal to its either left- or right-handed projection, ¥ = ¢, or ¥ = ¢y,
then it is called a Weyl spinor. Multiplying (2.6.24]) by Py gives

iPiy'th; = iy Ppipy = mPey) (2.6.35)

or
iy E B = RO, (2.6.36)

Thus if ¢ is a Weyl spinor then m = 0.

2.6.3 Spinors in Einstein-Cartan gravity

Consider the metric-affine formulation of gravity with the Einstein-Cartan action
(Z547), in which spacetime has the Riemann-Cartan geometry. Varying (2.6.22))
with respect to e’ gives the tetrad energy-momentum density for the spinor field,

¢ = g(%“dm — " — ey vy + ey Y) + meef v, (2.6.37)

Putting the definition of the covariant derivative of a spinor (L.7.I4)) into (2.6.22)
gives

£, = L~ D) - SO T - medy. (26.38)

Using the Fock-Ivanenko coefficients (L7.28)) as the spinor connection I'; turns (2.6.38)
into

1, = %(Ww,i —$') + %wabi@{% Y} = mep. (2.6.39)

The spin density (2.3.17) corresponding to the Lagrangian density (2.6.39) is, due to
the identity {7, 797%} = 2ylin77H,

. ST
giik _ va[ ikl (2.6.40)
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or ,
. 7 -
sk = 5@/}7[’7]7]“%. (2.6.41)
The spin density (Z.6.40) is independent of m and totally antisymmetric,
&k = gliik, (2.6.42)

The second Einstein-Cartan equation (Z5.57) for the spin tensor (Z.6.41]) gives a
totally antisymmetric torsion tensor,

1K -
Sigk = = YN MY; (2.6.43)

s0 S; = 0. Thus the contortion tensor is, using (2.6.13),
K

Cijr = 1

Gijkl@/_)’Yl’Ys@/)- (2.6.44)
The pseudovector density . o
Iy = ey’ (2.6.45)

is called the axial Dirac current. B
Varying (2.6.39) with respect to 1 gives, after omitting total divergences,

%(w%,k + (@) — T,y ") — emap = 0. (2.6.46)
Substituting
(") 5 = V" + e b — 2087 Y = ey, + [Ty, M0 (2.6.47)
into (2.6.40) gives
v g — iy TR — myp = iFaby, — map = 0. (2.6.48)

The relation (L5.33) gives
1 o
w;k = ¢:k + Zcijk'yl'yj"l), (2649)

from which we obtain, upon substituting (2.6.44)),

K - o 1K _ .
Ve = Youhy + Eeijkz(wvlv‘r’@/})v’vw’“@b =YY + Tﬁeijkz(wvlv5w)e’J’“mvmv5¢
3ik -
= 7" + - (V)Y (2.6.50)

Therefore (2.6.48) becomes the Heisenberg-Ivanenko equation:
k 3K 5\
Y — 5 (W)Y Y = map. (2.6.51)
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Varying ([2.6.39) with respect to ¢ gives the adjoint conjugate of (2.6.51]),
e 3K, — — _
— i — 5 (U )Py = m. (2.6.52)

The Heisenberg-Ivanenko equation (Z:6.51)) differs from the Dirac equation (2.6.24)
by a nonlinear term, cubic in the spinor field and representing a spinor self-interaction,
corresponding to a spin-spin interaction in the tensor (2.5.58). The conservation
law ([2.4.32) applied to the energy-momentum density (2.6.37) gives the Heisenberg-
Ivanenko equations (2.6.51) and (2.6.52). Subtracting (2.6.52) multiplied by ¢ from
(Z6.51) multiplied by 1 gives the conservation of the vector Dirac current (2.6.29).

The total antisymmetry of the spin density implies

Nk = Nkl (2.6.53)
where N¥* is given by (Z4.8T). Also
Nk — 38l k] (2.6.54)

where S is the intrinsic spin tensor (Z.Z4.I56). The covariant (with respect to the
Levi-Civita connection) change (2.4.129)) of the spin pseudovector along a world line
becomes

D T Dty 3 4 e o
T = Ut uka+§e]nmujS RN =350 W N*, (2.6.55)
where ]
Nt = 6eiﬂ"flzvjkl. (2.6.56)

If N\ o< J' then ([Z6.55) gives J'.J; = const. For a point particle, M¥* given by
(24.86) vanishes. Thus (2.4112) reduces to

!
ijl U arigo
Nt = LN, (2.6.57)
which for a spinor particle gives N0 = —Z—éN 00 and thus N¥* =0 or
b =0. (2.6.58)

Therefore a spinor field in the Einstein-Cartan gravity cannot be approximated as a
point particle.
References: [3] [ 5] @, [7].

2.7 Electromagnetic field
2.7.1 Gauge invariance and electromagnetic potential

The Lagrangian density (2.6.22)) is a real combination of the complex Dirac matrices
~* and spinors 1, 1. It is invariant under a gauge transformation of the first type of
the spinor fields,

Y — ) =N, P — Y = e oY), (2.7.1)

102



if eav is a real scalar constant, but it is not invariant for ea(z'), because

W, = € (y, + iea 1)) (2.7.2)

Introduce a compensating vector field A, called the electromagnetic potential, such
that the Weyl or electromagnetic covariant derivative

D,=V,—1ieA, (2.7.3)
of a spinor 1,
Dyip = tpy —ieA, (2.7.4)
transforms under ([2.7.0)) like ¢
D = €D, (2.7.5)
This requirement gives
W, —ieAL Y = e (ihy, —ieA), (2.7.6)

which, with (Z7.1) and (27.2)), yields the transformation law for the electromagnetic
potential,
A=A+ oy, (2.7.7)

called a gauge transformation of the second type. The real scalar constant e is called
the spinor electric charge. The adjoint conjugation of ([27.4) is

Dyip = 1y, + ie A, (2.7.8)
The scalar 1) is invariant under (Z7.)), so
D, () = 0,(4), (2.7.9)

which constraints the electromagnetic potential to be real:

Af = A, (2.7.10)

i

The time component of A*, ¢ = A, is called the electric potential and the spatial
components A form the magnetic potential A:

At = (¢, A). (2.7.11)
The gauge transformation (Z7.7) reads
Oa
;. s r_ .
¢ =+ T A'=A - Va. (2.7.12)

In the local Minkowski spacetime, A* transforms according to (LG.98),
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The gauge-invariant modification of the Dirac Lagrangian density (2.6.22) is

L, = 567" Db — Didin*) — e (2.7.14)

The electromagnetic potential corresponds, up to the multiplication by an arbitrary
constant, to the vector multiple of I in the formula for the spinor connection (L.7.20]).
The electromagnetic potential is analogous to the affine connection: it modifies a
derivative of a spinor so such derivative transforms like a spinor under unitary gauge
transformations of the first type, while the connection modifies a derivative of a tensor
so such derivative transforms like a tensor under coordinate transformations.

2.7.2 Electromagnetic field tensor

The commutator of total covariant derivatives of a spinor is given by (L7.30) with the
curvature spinor K;; given by (.7.36)), where the tensor B;; is related to the vector
A; in (L7.26) by (LT38). Therefore the commutator of the electromagnetic covariant
derivatives of a spinor, [D;, D;]1, is given by (I'Z30) with the curvature spinor

1
Kij = ZRMWW +ieFy;1, (2.7.15)
where the antisymmetric tensor

is referred to as the electromagnetic field tensor. The electromagnetic field tensor is
analogous to the curvature tensor: it appears in the expression for the commutator of
electromagnetic covariant derivatives of a spinor, while the curvature tensor appears
in the expression for the commutator of coordinate-covariant derivatives of a tensor.

Substituting (2.7.7) into ([277.10) gives
Fl = B, (2.7.17)

so the electromagnetic field tensor is gauge invariant. The definition (Z7.I6]) is equiv-
alent to the first Mazwell-Minkowski equation

Fijr + Figi + Frij = Fijp + Fjgi + Fij = 0 (2.7.18)
€M Py = M Fy, = 0. (2.7.19)
Define
Ea = FOa; (2720)
1
Bu.s = Fap, B®=——=c"""By,, Bay = —Vleas, B, (2.7.21)

2v/1

where ( is given by ([L4I05). The component of (2.7.18) with all spatial indices,
Bug~ + Baya + Byas = 0, gives, using (L4116,

divB = 0. (2.7.22)
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The components of (Z7.1I8) with one temporal index, Buso + Euphaps — Fsa = 0,
gives, using (LAI17),
1 9(V/IB)

curl E = ——

/i ot

The spatial vector E is called the electric field and the spatial pseudovector B is the
magnetic field.

In the locally geodesic and Galilean frame of reference, these fields depend on the
components of the electromagnetic potential (Z7.11]) according to (Z.7.16I):

(2.7.23)

HA
=5~ Vo. (2.7.24)
B=VxA, (2.7.25)

and they are invariant under (Z7.12). The tensor Fj; is given by

0 E, E, E.
~E, 0 -B. B,
~E, B. 0 -B, |’
~E. =B, B, 0

P = (2.7.26)

and transforms according to (L6.99). Thus the electric and magnetic fields transform
according to

1—
B =(B+6xB)+ — 1(3-E)B, (2.7.27)
/ 11— Y

B'=y(B-8xE)+ (8BS (2.7.28)

In this frame, (Z7.22)) and (2.7.23) become the first pair of the Mazwell equations:
divB = 0, (2.7.29)

0B
l1E=——. 2.7.

cur ot (2.7.30)

Applying the div operator to (Z7.20) gives (Z7.29) and applying the curl operator
to (277.24) gives (2.7.30). Applying the div operator to ([Z7.30) gives (Z7.29). In-
tegrating the first pair of the Maxwell equations over the volume and surface area,
respectively, gives

j!B Ldf =0, (2.7.31)
j{E~d1:—C%t(/B-df). (2.7.32)

The integral § A - df is the flux of a vector A through the surface f and the integral
$ A -dlis called the circulation of A along the contour 1. Thus the flux of the
magnetic field through a closed surface vanishes and the circulation of the electric
field along a contour, which is called the electromotive force, is equal to the minus
time derivative of the flux of the magnetic field through the surface enclosed by this
contour (Faraday’s law).
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2.7.3 Lagrangian density for electromagnetic field

The simplest gauge-invariant Lagrangian density representing the electromagnetic
field is a linear combination of terms quadratic in F;: /—gF,;F” and € F;Fy,.
The second term is a total divergence because of (Z7.19):

€M Fy = 2(6TM FL Ay 1, (2.7.33)

so it does not contribute to the field equations. Thus the Lagrangian density for the
electromagnetic field is given by

1 .
= \/—gF,;F" 2.7.34
IEM 167 a 1] ’ ( 7.3 )

where the Gauflian factor ﬁ sets the units of A;. In the locally geodesic and Galilean
frame of reference, (2.7.34]) becomes

Ly = i(E2 — BY). (2.7.35)
8

Therefore in order for the action S to have a minimum, there must be the minus sign
in front of the right-hand side of (Z77.34]). Otherwise an arbitrarily rapid change of A
in time would result in an arbitrarily large value of E, according to (Z7.24]), and thus
an arbitrarily low value of S, so the action would have no minimum. A generalization
of the tensor (2.7.16]) to a covariant derivative with respect to the affine connection
Fi'j-, Aji— Ay = Fij + 2SkijAk, is not gauge invariant, so the torsion tensor cannot
appear in a gauge-invariant Lagrangian density which is quadratic in Fj;. Thus the
electromagnetic field, unlike spinor fields, does not couple to torsion.

2.7.4 Electromagnetic current

Define the electromagnetic current density

- cod,,
[ 2.7.36
and the electromagnetic current vector
g
Jt= . (2.7.37)

The invariance of the action under an arbitrary infinitesimal gauge transformation
0A; = A} — A, = ¢, gives, upon partial integration and omitting a total divergence,

1 r. 1 r. 1 [
65 = - /J 6Ad92 =~ /J 0402 = — /J dQ =0, (2.7.38)
so the electromagnetic current is conserved,

ii=0, 4, =0. (2.7.39)



The gauge-invariant Lagrangian density (M) for spinor matter is

1 — - - -
Ly = S, (V7" Vit = Vihy"p) — medp)p = —6 (VY s — ") — meip — e Ay,
(2.7.40)
so the electromagnetic current for the spinor field is

it = ecepy), (2.7.41)

which is proportional to the conserved vector Dirac current (26.29). The electro-
magnetic current density (2.7.36]) corresponds to the current (2.4.7) with £=0 and
d¢ = iea¢ (which is equal to the infinitesimal ¢/ — ¢ due to 2.7.1))).

Consider matter which is distributed over a small region in space, as in section
(24). Integrating (Z739) over the volume hypersurface and using Gauf-Stokes
theorem to eliminate surface integrals gives

/ P 0dV = 0. (2.7.42)
The conservation law (2.7.39) also gives
(2"'),; = a* ji + 2bj = oFf =, (2.7.43)

which, upon integrating over the volume hypersurface and using Gauf3-Stokes theorem
to eliminate surface integrals, gives

( / xijdV) = [itav. (2.7.44)

Using (ZZ4.84) turns (277.44) into
o
L / 4V + ( / 5xkj0dV) _ / Fav. (2.7.45)
u ,0

For a particle located at x,, [ 02%j°dV = 0 and j’(x) is thus proportional to §(x —x,),

SO
k

& _ U
=0 (2.7.46)

Define the electric charge density p such that

0= Cgpoo. (2.7.47)

The electric charge density is not a tensor density. Define the electric charge e such
that
pVIdV = de. (2.7.48)

The electric charge density for particles with charges e, located at x, is

Z O(x — Xg), (2.7.49)
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and [j°%dV (which is equal to [ j'dS; for a volume hypersurface, so it is a scalar) is

/_]Odv Z/F

\/QT\/ d(x —x,)dV = c;ea, (2.7.50)

so the electric charge is a scalar. Thus the electromagnetic current vector for a system

of charged particles is
k

* cu® e,
_ —x,), 2.7.51
) = ¥ S —s(x = x, (2.7.51)
analogously to (2.4.168). The relation (2.7.42]) represents the conservation of the total
electric charge of a physical system. _
In the locally geodesic and Galilean frame of reference, % = (1,v/c), so

jt = (cp.d); (2.7.52)
where j is the spatial current vector,
j=pv. (2.7.53)

The conservation law (277.39) in this frame, j*; = 0, has the form of the equation of

continuity (Z.6.30). For one particle located at x¢(t), p(x) = ed(x — xq), (Z6.30) is
explicitly satisfied since

dp 0 0 B
5 = 6§5(X Xg) = ev - 0—x06(X Xg) = —ev - 8_x5(x Xp)
= _a% (evo(x = %)) = =V -}, (2.7.54)

where v = %. For a system of charged particles, we also have
[iav =3 eava. (2.7.55)

The equation of continuity (2.6.30) represents, upon integrating over the volume, the
conservation of the total electric charge:

%(/mv) +7fj Ldf = 0. (2.7.56)

2.7.5 Maxwell equations

The total Lagrangian density for the electromagnetic field and matter is the sum of

(2.7.34) and the term —/—gA;j" due to (Z.7.36):

1 , 1 :
Lpm = —16—7T\/—_QFz‘kF2k Y —gAkj", (2.7.57)
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where we omit the terms corresponding to the gravitational field and matter which
does not depend on Aj. Varying (277.57) with respect to Ay, integrating partially
and omitting total divergences gives

k "
gy = _i\/_gFikéFik - J—5Ak = —i\/—gF““(éAM —0Aig) — J—éAk
87T C 871' ’ ’ c

1 , i 1 - 1 ,
— E\/—_QF’kéAk,i — %5/11@ = E(\/—_QFZk),i(SAk - E\/—_Q]kfmk, (2.7.58)

so the principle of least action 05 = 0 for arbitrary variations d A, yields the second
Mazwell-Minkowski equation

(V=aF"™); = —] (2.7.59)

or A
Fik = 2T gk (2.7.60)
&

The electromagnetic field equation (27.59) implies that j* is conserved, jﬂi = 0, which

corresponds to the conservation of the total electric charge, but does not constrain

the motion of particles. Therefore a configuration of charged particles producing the

electromagnetic field can be arbitrary, subject only to the condition that the total

charge be conserved, unlike a configuration of particles producing the gravitational

field which is not arbitrary but constrained by the gravitational field equations.
Define

D* = —\/goo F", (2.7.61)

1 1
H = /goo F*° Ho =3 teap H, H = _%eame. (2.7.62)

The relations Fyo = goiga; F'7 and F*° = g* g% F;; give then

E

D, =—"+¢°H,3, 2.7.63
N 9" Hop ( )
HoB

B = — ¢°E" + ¢°E°, (2.7.64)

or, in the spatial-vector notation,

E

D= —gxH, 2.7.65
78 ( )
H

B = +gxE. (2.7.66)

v/ 900
Using (L.Z102) brings the temporal component of (Z.7.59) to
1
—(VID®) , = 47 2.7.67
\/i( ), p ( )
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or

divD = 47p. (2.7.68)
The spatial components of (2.7.59)) read

1 1 dz®
— (VIH?) 5+ —(VID") g = —dmp—— 2.7.69
\/E( )ﬂ \/E( ),0 pdl’o ( )
or i
1 o(vID) A4m,
I1H=— —J. 2.7.
cur i o + . (2.7.70)
The conservation law (2.7.39) reads
1 oVt
—-“0”+&w:o. (2.7.71)

N

In the locally geodesic and Galilean frame of reference, (2.7.65)) and (2.7.66)) reduce
to

D=E, (2.7.72)
B =H. (2.7.73)

In this frame, (2.7.68) and (2.7.70) become the second pair of the Mazwell equations:

divE = 4mp,) (2.7.74)
OE Arm
1B=—+ —j. 2.7.
cur "y + o (2.7.75)

Applying the div operator to (2.7.75)) and using (2.7.74]) gives (2.6.30). Integrating the
second pair of the Maxwell equations over the volume and surface area, respectively,

gives

waH:M% (2.7.76)

%mezgx/EdQ+é§/jﬁ. (2.7.77)

Thus the flux of the electric field through a closed surface is proportional to the total
charge inside the volume enclosed by the surface f (Gauf’ law) and the circulation
of the magnetic field along a contour is equal to the time derivative of the flux of the
electric field through the surface enclosed by this contour, called the displacement
current, plus the surface integral of the current vector (Ampére’s law).

The two pairs of the Maxwell equations are linear in the fields E and B. The sum
of any two solutions of the Maxwell equations is also a solution of these equations.
Thus the electromagnetic field of a system of sources (particles) is the sum of the
fields from each source. The additivity of the electromagnetic field is referred to as
the principle of superposition.
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2.7.6 Energy-momentum tensor for electromagnetic field

The metric energy-momentum tensor ([2.3.3) for the electromagnetic field TEM is
given by the Lagrangian density (2.7.34):

1 . 1 .
gy = N —8Gm Fin F*0g"™ — —/—8F Fimg™ g™
327 8T

1 1 , ,
= V(e — By ) o™, (2.7.78)
SO 1 1
M = = (ZgikFlmFlm — Fiijg)- (2.7.79)

The corresponding energy density W, energy current S called the Poynting vector,
and stress tensor 0,4 called the Mazwell stress tensor, are given in the locally geodesic
and Galilean frame of reference, due to (2.4.71]), by

1

= —(E?4+ B2 2.7.
W= (E*+ B, (2.7.80)
C
S=—ExB 2.7.81
47 e (2.7.81)
1 1

Multiplying (2.7.30) by B and [27.79) by E and adding these scalar products gives

1., 0E 1 0B 4r,
EE-§+EB~W——?J-E—(B~curlE—E~curlB), (2.7.83)

from which we obtain

10 4
sog (B B = _%Tj .E — div(E x B) (2.7.84)

or aW
— i E+divs =0. (2.7.85)

The energy-momentum tensor for the electromagnetic field is traceless,
TMg™ =0, (2.7.86)

so (2.4.174)) and the virial theorem (2Z.4.175)) remain unchanged if the particles interact
electromagnetically. The condition (2Z7.80) also gives, using (2.4.82)),

€em = 3PEM, (2.7.87)

so (24.170) implies that the free electromagnetic field is ultrarelativistic.
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2.7.7 Lorentz force

Consider a charge particle interacting with the electromagnetic field. The total
energy-momentum tensor for the particle and electromagnetic field is covariantly con-
served, which gives the motion of the particle. The electromagnetic part yields, using

R.7I8) and [2.7.60),

1 /1 1 1 1
Tk — _<_Fm-iFlm _E Fkl —EFkl ) — _<__Fm7, Flm - i'mFlm
Pk g\t i k) T g 2 "
1 1
— Py FM — Elelk> = EleFklk = g (2.7.88)
The particle part gives, using (Z.4.167),
uiuk
Th = <u02 i) (2.7.89)
:k
so we obtain i X
2 U;u .1
c ——Fy"=0. 2.7.90
(lu \/«%u(]):k ¢ ( )
Multiplying (2.7.90) by u' and using (Z.7.46) gives
o
(ucQ —) (2.7.91)
\% :k
which turns (2.7.90) into
k I
9 U 1 U
Uy, = —Fyyp——— 2.7.92
: V/900u’ e lp\/goou0 ( )
or Ny
Duy’ o
me du = EF”uj, (2.7.93)
s c

which is the equation of motion of a particle of mass m and charge e in the elec-
tromagnetic field F;;. Multiplying ([2.7.93)) by u; gives the identity, so (2.7.93)) has 3
independent components. The right-hand side of (Z7.93)) is referred to as the Lorentz

force.
D} d w0 d

In the locally geodesic and Galilean frame of reference, 2= = & = L% and v’ =

(7,vv/c), so (Z7.93) reads (we choose the spatial components as the 3 independent
ones)

mcddit = eF™ + ZF“ﬁvﬁ (2.7.94)
or, using (ZZ.159),
dpP e
Fr eE + v X B. (2.7.95)
The temporal component of (2.7.93)) is
mc% - EFMO‘ (2.7.96)



o iE
= E, (2.7.97)

which also results from multiplying ([2.7.95) by v and using (ZZ4.I84). Integrating
([2Z7.85) over the volume gives

%/WdV+/j-EdV+7§S~df:0, (2.7.98)

which, with (2.7.55) and ([2.7.97)), yields the conservation of the total energy (2.4.66))
of the electromagnetic field and particles:

%(/WdVJrzaan) +7§S~df:o. (2.7.99)

References: [2, [3].

113



References

[1] E. Schrodinger, Space-Time Structure (Cambridge Univ. Press, 1950).

2] L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Pergamon,
1975).

[3] E. A. Lord, Tensors, Relativity and Cosmology (McGraw-Hill, 1976).

[4] V. de Sabbata and M. Gasperini, Introduction to Gravitation (World Scientific,
1986).

[5] F. W. Hehl, P. von der Heyde, G. D. Kerlick, and J. M. Nester, Rev. Mod. Phys.
48, 393 (1976).

6] F. W. Hehl, J. D. McCrea, E. W. Mielke, and Y. Ne’eman, Phys. Rep. 258, 1
(1995).

[7] R. T. Hammond, Rep. Prog. Phys. 65, 599 (2002).
[8] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, 1973).
9] K. Nomura, T. Shirafuji, and K. Hayashi, Prog. Theor. Phys. 86, 1239 (1991).

114



	Spacetime
	Tensors
	Vectors
	Tensors
	Densities
	Contraction
	Kronecker and Levi-Civita symbols
	Dual densities
	Covariant integrals
	Derivatives

	Affine connection
	Covariant differentiation of tensors
	Parallel transport
	Torsion tensor
	Covariant differentiation of densities
	Covariant derivatives
	Partial integration
	Geodesic frame of reference
	Affine geodesics and four-velocity
	Infinitesimal coordinate transformations
	Killing vectors

	Curvature
	Curvature tensor
	Integrability of connection
	Parallel transport along closed curve
	Bianchi identities
	Ricci tensor
	Geodesic deviation

	Metric
	Metric tensor
	Christoffel symbols
	Riemann curvature tensor
	Properties of Riemann tensor
	Weyl tensor
	Metric geodesics
	Galilean frame of reference and Minkowski tensor
	Intervals, proper time and distances
	Spatial vectors

	Tetrad and spin connection
	Tetrad
	Lorentz transformation
	Tetrad transport
	Spin connection
	Tetrad representation of curvature tensor

	Lorentz group
	Subgroups of Lorentz group and principle of relativity
	Infinitesimal Lorentz transformations
	Generators and Lie algebra of Lorentz group
	Rotations and boosts
	Poincaré group
	Casimir operators of Lorentz and Poincaré group
	Relativistic kinematics
	Four-acceleration

	Spinors
	Spinor representation of Lorentz group
	Spinor connection
	Curvature spinor


	Fields
	Principle of least action
	Action for gravitational field
	Matter
	Metric dynamical energy-momentum density
	Tetrad dynamical energy-momentum density
	Canonical energy-momentum density
	Spin density
	Belinfante-Rosenfeld relation

	Symmetries and conservation laws
	Noether theorem
	Conservation of spin
	Conservation of metric energy-momentum
	Conservation of tetrad energy-momentum
	Conservation laws for Lorentz group
	Components of energy-momentum tensor
	Mass and Papapetrou equations of motion
	Energy-momentum tensor for particles

	Gravitational field equations
	Einstein-Hilbert action and Einstein equations
	Einstein pseudotensor and principle of equivalence
	Landau-Lifshitz energy-momentum pseudotensor
	Utiyama action
	Møller pseudotensor
	Einstein-Cartan action
	Kibble-Sciama action
	Einstein-Cartan pseudotensor
	Palatini variation
	Gravitational potential
	Hydrodynamics

	Spinor fields
	Dirac matrices
	Dirac equation
	Spinors in Einstein-Cartan gravity

	Electromagnetic field
	Gauge invariance and electromagnetic potential
	Electromagnetic field tensor
	Lagrangian density for electromagnetic field
	Electromagnetic current
	Maxwell equations
	Energy-momentum tensor for electromagnetic field
	Lorentz force



