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Abstract

We propose a definition for background (in)/dependence in dynamical theories of the evolution

of configurations that have a continuous symmetry and test this definition on particle models

and on gravity. Our definition draws from Barbour’s best–matching framework developed for the

purpose of implementing spatial and temporal relationalism. Among other interesting theories,

general relativity can be derived within this framework in novel ways. We study the detailed

canonical structure of a wide range of best matching theories and show that their actions must

have a local gauge symmetry. When gauge theory is derived in this way, we obtain at the same

time a conceptual framework for distinguishing between background dependent and independent

theories. Gauge invariant observables satisfying Kuchař’s criterion are identified and, in simple

cases, explicitly computed. We propose a procedure for inserting a global background time into

temporally relational theories. Interestingly, using this procedure in general relativity leads to

unimodular gravity.
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I. INTRODUCTION

“Background independence” is a term so often used (and misused) in the quantum grav-

ity literature that I won’t even begin to attempt to give a comprehensive list of citations to

support this claim. The statements made on this subject are as extensive as they are subtle

and tend to vary significantly between fields and individuals. For this reason, I will not

attempt to consolidate these statements into one coherent picture. Rather, I will provide

a concrete proposal that, in a specific context, is successful at distinguishing particular ex-

amples of theories generally understood to be either background dependent or independent.

To accomplish this, I will study the best–matching framework, developed by Barbour and

collaborators in [1–9], by performing a detailed canonical analysis of a general class of mod-

els. Examples of models treated in the cited papers using best matching include Newtonian

particle mechanics, Maxwell theory, and general relativity.

In best matching, the variational principle used is non–standard in its use of certain

auxiliary fields (to be defined later) used to make the theory satisfy Poincaré’s principle –

a principle proposed by Barbour to implement Mach’s principle. We will discuss Poincaré’s

principle and its relation to Mach’s principle later in more detail later. Then, we shall show

how best matching leads to an alternative approach to the local gauge principle. From the

point of view of this paper, one advantage of this approach is that it automatically provides

a framework for distinguishing between background dependence and independence.

So far, the framework – including the definition of the Machian variational principle used

– has been developed almost entirely in the Lagragian picture with only a cursory mention of

the canonical formalism. In this paper, we develop a detailed canonical analysis of the best–

matching framework and propose a canonical version of the Machian variational principle

used for the auxiliary fields. There are several benefits to working out the details of the

canonical framework. It allows us to deduce all of the gauge transformations of the theory,

gives us a formal definition for the gauge–independent observables, and paves the way for the

canonical quantization. When best matching is applied to Newtonian particle mechanics,

the gauge–independent observables can be explicitly computed. For these reasons, I believe

that the canonical formalism helps provide a solid structural backbone to a framework that
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has been built on an exceptional conceptual foundation.

One important issue that the best–matching framework can shed light on is that of back-

ground independence.1 We will show that best matching suggests a natural and precise

definition of a background. By this definition, background independent and dependent the-

ories are differentiated by the rules of variation of the auxiliary fields. Specifically, we find

it convenient to associate a background to a particular continuous symmetry of the configu-

rations. Then, our definition implies the following: if the theory places “physical meaning”

(defined more precisely later) on the location of a system along a symmetry direction then

it has a background with respect to this symmetry. If it does not, then it is background

independent with respect to this symmetry. Under this definition, Newtonian particle me-

chanics is background dependent with respect to rotations (it places absolute meaning to the

absolute orientation of the system) while general relativity is background independent with

respect to diffeomorphisms. This definition both allows us to distinguish between theories

that are simply “covariantized” and those that are truly background independent and to

take a background independent theory and make it background dependent (or vice-versa).

When applying this rationale to theories invariant under time reparameterizations, it is

convenient to distinguish between two geodesic principles. The first: Jacobi’s, is a square

root action that is manifestly time independent. The second is a parametrized version of

Hamilton’s principle. It can be made either background dependent, in which case it expresses

a Newtonian absolute time, or background independent, in which case it is equivalent to

Jacobi’s principle. As we will see, testing this procedure in geometrodynamics leads either

to general relativity, when the theory is kept independent of a background time, or to

unimodular gravity, when a background time is introduced.

A. Structure of the Paper

In this paper, I try to treat the widest class of models possible. For this reason, I con-

sider arbitrary configuration spaces and symmetry groups and work out several concrete

examples. However, there exists a natural division between finite–dimensional and infinite–

dimensional models that is reflected in the structure of the paper. The simplicity of the

1 For a discussion of these issues in the spirit presented here, see [10].
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finite–dimensional case allows for explicit solutions that lead to concrete statements about

the structure of the theory. In particular, gauge–independent observables can be identified.

With these concrete results, I motivate my definition of background independence. Despite

the simplicity of the finite–dimensional case, many useful models can be treated within this

framework. These include non–relativistic and relativistic particle models and cosmologi-

cal models like mini–superspace. More interesting still are the infinite–dimensional models,

which include geometrodynamics, even though less can be done in terms of explicit calcu-

lations. Nevertheless, the definition of background independence we are led to can be used

to insert a background time into general relativity and leads to unimodular gravity.

The logic of the paper is as follows: the detailed structure of the finite–dimensional

models is worked out and these results are used to motivate a definition of background

independence. Then, the basic canonical structure of the infinite–dimensional models is

given and it is shown how this definition can be used in a simple case.

II. FINITE DIMENSIONAL RELATIONAL MODELS

In this section we develop the canonical structure of best matching and use it to study

finite–dimensional models whose configurations have continuous symmetries. We first de-

scirbe a generalized formulation of Jacobi’s principle, which implements temporal relation-

alism, then best matching, which implements spatial relationalism.

A. Relational Mechanics Using Jacobi’s Principle and Best Matching

1. Jacobi’s Principle

Jacobi’s principle is a geodesic principle on a configuration space, A. It is expressed by

the action

SJ =

∫ qfin

qin

dλ
√

gab(q)q̇a(λ)q̇b(λ). (1)

The q’s are the configuration space variables and gab is a metric that is a function only of q

(and not of its λ-derivatives). A dot represents differentiation with respect to λ. Given that

SJ is invariant under reparametrizations of λ, the parameter λ is completely arbitrary. It

has been written explicitly so that we can use it as an independent variable in the canonical
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analysis.

We will find it convenient to decompose the metric in terms of the conformal metric

γab = gab/g, where g = det gab, and a conformal factor eφ = g such that

gab = eφ(q)γab. (2)

In many applications, the conformal factor of the metric on A is defined as the negative

of twice the potential energy. When considering the dynamics of non–relativistic particles,

the configuration space is just the space of particle positions qi. The metric gab leading to

Newton’s theory happens to be conformally flat so that

γab = ηab, (3)

where η is the flat metric with Euclidean signature.2 In general, the metric gab is a specified

(ie, non–dynamical) function on A.

For a more familiar form of Jacobi’s principle, define eφ ≡ −2V and 2T ≡ ηabq̇
aq̇b, where

V ≡ V ′ − E, V ′ is the standard potential energy, T is the kinetic energy, and E is the

total energy of the system (which has been absorbed into the definition of V ). This leads

to Jacobi’s action for a non–relativistic system of particles3

SJ =

∫ qfin

qin

dλ 2
√
T
√
−V . (4)

From now on, we will use the action (1), making use of the decomposition (2) only when

necessary. This allows us to work directly with geometric quantities on A.

Because the Jacobi action (1) is the length of a path on configuration space, its variation

will lead to the geodesic equation

q̈a + Γa
bcq̇

bq̇c = κ(λ)q̇a, (5)

where κ ≡ d ln
√

gabq̇aq̇b/dλ and Γa
bc =

1
2
gad(gdb,c+ gdc,b − gbc,d) is the Levi-Civita connection

on A.

The choice of the parameter λ is important. Normally, one would like to set κ = 0 with

an affine parameter. However, for metrics of the form (2) with γ = const, there is another

2 The units can be chosen so that all of elements of η are 1. Particles with different masses can be considered

by replacing η with the suitable mass matrix for the system.
3 For an introductory treatement of Jacobi’s principle see section V.6-7 of Lanczos’s book [11].
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special choice of λ that simplifies the geodesic equation. If we choose the parameter τ such

that
dτ

dλ
=

√

gabq̇aq̇b

eφ
, (6)

the geodesic equation becomes

γab
d2qb

dτ 2
=

1

2
∂ae

φ. (7)

In the case of non–relativistic particles, eφ = −2V and γ = η so that the geodesic equation

is Newton’s 2nd law. With these choices, τ =
√

− T
V

is Barbour and Bertotti’s (BB’s)

ephemeris time. On top of simplifying the equations of motion, the parameter τ has the

amazing property that its projection onto isolated subsystems is equal to its definition on

that subsystem if one were to ignore the rest of the system. I take this as the mathematical

statement of Barbour’s marching in step criterion [12]. Because of this property, τ can be

used to construct useful clocks that approximate the Newtonian time.

2. Best Matching (Canonical Constraints)

Best matching is a procedure first developed in [3] for implementing Mach’s principle. In

order to be able to use the procedure, one must first notice a continuous symmetry in the

configurations of a physical system. There must exist a continuous group whose action on

the configurations produces new configurations that are physically indistinguishable from

the originals. In this paper, we will only consider the case where this symmetry is further

reflected as a symmetry in the metric on A, although the more general case can also be

treated (see [1, 2]). Once this symmetry is noticed, one introduces auxiliary fields whose

role is to parametrize the symmetry. We will show that the presence of these auxiliary

fields leads to primary first class constraints restricting the number of independent degrees

of freedom of the system. The constrained system lives on a reduced configuration space R,

which is equal to A modded out by the symmetry group.

This reduction is crucial for implementing what Barbour calls [3] Poincaré’s principle.

This principle is based on the observation that, in the presence of a symmetry in the config-

urations, only independent data specifiable on the reduced configuration space should affect

the physical predictions of the theory. Thus, specifying initial conditions on A gives more

information than is necessary to evolve the system. As we will see, there is one extra piece of

information for each symmetry. In the case where this symmetry is reflected in the metric,
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the extra information appears as a constant of motion. For a theory to be relational with

respect to the symmetries, the physical predictions of the theory must not depend on such

extra information. Poincaré’s principle is then stated as follows: a relational theory must

be determined uniquely by an initial point and direction4 in R. Later, this will be a guiding

principle for my definition of background independence.

We will now perform the canonical analysis of the best–matching procedure presented in

[4]. The idea is to introduce the corrected coordinates

q̄a = Ga
b (ω)q

b, (8)

where Ga
b (ω) = exp {ωα(λ) tα

a
b} is an element of the group G generating the symmetries of

the configurations (and, in our case, the metric g) and α ranges from 1 to the dimension

of the group. The group parameters, ωα’s, are the auxiliary fields of best matching and

the tα
a
b ’s are generators of the local algebra. After defining the corrected coordinates, one

replaces q everywhere in the action with q̄ then varies ω with a Mach variation.5

Take, for example, the case of non–relativistic particles. One might notice that all config-

urations of particles are symmetric under translations, rotations, and scale transformations.

None of these operations will change anything that can be measured by an observer inside

the system. We could then use best matching to require that the dynamics reflect this

symmetry. Choosing the generators

Translations: tα
i
j → δij∂k (α → k = 1 . . . 3) (9)

Rotations: tα
i
j → ǫijlq

l∂k (α → k = 1 . . . 3) (10)

Dilatations: tα
i
j → δijq

l∂l (α → 0) (11)

we can best match each of these symmetries.

In general, q̄ is inserted into (1). Rearranging,

SJ(q̄) =

∫

γ

dλ
√

gab(q̄)Ga
cG

b
dDωqcDωqd, (12)

where Dωq
a = q̇a + ω̇α tα

a
b q

b is the covariant derivative of q with connection ω̇ along a trial

curve γ in A. Indeed, it can be thought of as the pullback onto γ of a connection on the

principal G-bundle A over R.

4 Only a direction is needed if Jacobi’s principle is used to implement temporal relationalism.
5 This variation will be decribed in detail in Sec. (II A 3).
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The action (12) can be written in an illuminating form using the fact that our metric is

symmetric under G. The existence of global Killing vectors is expressed by the fact that the

Lie derivative in the direction of the symmetry generators Ltαqg = 0 is zero. Explicitly,

tα
c
(a g b)c + ∂cgab tα

c
d q

d = 0. (13)

where the rounded brackets indicate symmetrization of the indices. This expression can be

exponentiated to prove the following relation

gab(q̄)G
a
cG

b
d = gcd(q) (14)

between the metric evaluated at the barred coordinates and the unbarred coordinates. In-

serting this into (12) gives

SJ(q̄) =

∫ qfin

qin

dλ
√

gab(q)DωqaDωqb. (15)

The ω’s are varied using the Mach variation, discussed in Sec. (IIA 3), which brings

them to their best–matched values. The action (15) is that used in [13] to motivate the

correspondence between best matching and gauge theory. These approaches are identical

provided (14), which is an expression of the global gauge invariance of the original action,

is satisfied. Because we are dealing with gauge theories over configuration space and not

the usual case over spacetime, global gauge invariance refers to the invariance of the action

under λ-independent group transformations of the coordinates. Best matching makes this

global symmetry local in λ. Thus, it motivates the gauge principle. More generally, best

matching can be extended to include actions that do not start out globally gauge invariant

(see [1, 2]). The correspondence between these theories and standard gauge theories is still

under investigation.

We can now proceed with the canonical analysis of the gauged Jacobi action (15). The

momenta pa, conjugate to qa, and πα, conjugate to ωα, are

pa ≡
∂L

∂q̇a
=

gab Dωq
b

√

gcdDωqcDωqd
, and (16)

πα ≡ ∂L

∂ω̇α
=

gab Dωq
b

√

gcdDωqcDωqd
tα

a
e q

e. (17)

It is easy to verify that these momenta obey the following primary constraints

H = gab papb − 1 = 0, and (18)

Hα = πα − pa tα
a
b q

b = 0, (19)
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where gab is the inverse of gab. The quadratic scalar constraint H arises from the fact that

pa, according to (16), is a unit vector on configuration space. As a result, it gives a direction

in A only. H reflects the irrelevance of the length of q̇. The linear vector constraints Hα

reflect the continuous symmetries of the configurations. They indicate that the phase space

associated to A contains equivalence classes of states generated by Hα. Later we will see

that they are related to Noether’s theorems. Note that H and Hα arise in very different

ways. This seems to be reflected in the roles they play in the theory.

Using the fundamental Poisson Brackets (PBs)

{qa, pb} = δab , and {ωα, πβ} = δαβ , (20)

we find that there are two sets of non–trivial PBs between the constraints. They are

{Hα,Hβ} = cγαβHγ , and (21)

{H,Hα} = ∂cg
ab papb tα

c
d q

d − gabpcp(a tα
c
b) ., (22)

where cγαβ are the structure constants of the group. From (21), we see that the closure of

the vector constraints on themselves is guaranteed provided G is a Lie algebra. The PB’s

(22) vanish provided (13) is satisfied. Thus, the closure of the constraints is guaranteed by

the global gauge invariance of the action.6

Because of the important role played by (13), it is illuminating to see the conditions under

which (13) is satisfied for particular models. In translationally invariant non–relativistic

particle models the generators (9) are used in (13). Being careful about particle and spatial

indices (particle indices are labeled by I and spatial indices are indicated by arrows) leads

to the following condition on the potential

∑

I

~∇IV = 0, (23)

where ~∇I =
∂
∂~qI

. This requires that the potential be translationally invariant. It is satisfied

by potentials that are functions of the differences between the coordinates. The same argu-

ment applied to the rotations leads to a similar result: the potential must be rotationally

invariant. The dilatations are different. They imply the following condition on the potential

∂cV qc = −2V. (24)

6 In the more general context, the RHS of (22) could be treated as a secondary constraint introducing new

auxiliary fields.
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By Euler’s theorem, this implies that the potential should be homogeneous of order −2 in

qc.

While the gauge invariance of the action is guaranteed for the rotations and translations

by the gauge invariance of the potential, it is not for the dilatations. This is because the

kinetic term has conformal weight +2 under global scale transformations of the q’s. Thus,

the potential must have conformal weight −2 if the action is to be scale invariant. This is

just the requirement (24) and is equivalent to the consistency conditions obtained in [4] but

derived from different motivations and in the canonical formalism.

Finally, it is possible to work out the gauge transformations generated by the linear

constraints Hα. Computing the PBs {q,Hα} and {ωα,Hβ} we find q and ω transform as

qa → e−ζα tα a

b qb

ωα → ωα + ζα (25)

under large gauge transformations parameterized by ζα. This is the banal invariance noticed

by Barbour in [4]. From the canonical analysis, this is a genuine gauge invariance of the

theory. In standard gauge theory language, this corresponds to local gauge invariance.

However, because of the different nature of the connections used in this approach compared

with Yang-Mills theory, local in this context means local in λ not local in spacetime. From

the point of view of best matching, this local gauge invariance arises from the best matching

procedure itself. It is not just the ad hoc result of gauging a global symmetry.

3. Mach Variation

Before computing the classical equations of motion and solving the constraints, we will

describe the canonical Mach variation used for the auxiliary fields ωα. This non–standard

variation plays a key role in our definition of background independence. For more details on

the Lagrangian formulation of this variational principle, see [4] or [2].

The idea is that the auxiliary fields should be varied freely on the endpoints of any interval

along the trajectory. The implication of this free variation is that initial and final data cannot

be specified for these variables. In this way, best matching implements Poincaré’s principle.

To see how this works, we start with the canonical action:

S[q, p, ω, π] =

∫

dλ [p · q̇ + ω̇ · π − h(q, p, ω, π)] . (26)
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We are concerned only with variations of the ω’s and π’s since the p’s and q’s are treated

as standard phase space variables. We need to determine the conditions under which the

action will vanish if the ω’s and the π’s are varied freely at the endpoints. The variation

with respect to the π’s vanishes provided ω̇ = ∂h
∂p

= {q, h} regardless of the conditions on

the endpoints. Thus, Hamilton’s first equation is unchanged by the free endpoint condition.

However, the procedure leading to Hamilton’s second equation is modified.

After integration by parts, the variation of (26) with respect to ω is

δωS[q, p, ω, π] = −
∫

dλ

[

∂h

∂ω
+ π̇

]

δω + π δω|λfin

λin
= 0. (27)

The first term implies Hamilton’s second equation

π̇ = −∂h

∂ω
= {π, h} . (28)

However, because δω is not equal to zero on the endpoints, the second term will only vanish

if π(λin) = π(λfin) = 0. This single free endpoint condition, however, is not enough. In order

for the ω fields to be completely arbitrary, the solutions should be independent of where

the endpoints are taken along the trajectory. This implies the Mach condition, π(λ) =

0, everywhere. The Mach condition ensures that the auxiliary fields are truly unphysical

everywhere along the trajectory. It is an additional equation of motion. In Dirac’s language,

it is a weak equation to be applied only after taking Poisson brackets.

For metrics satisfying (14), ω is a cyclic variable. This means that it enters the action

only through its dependence on ω̇. In this case, {π, h} = 0 identically so that, by Hamilton’s

second equation, π is a constant of motion. Normally, this constant of motion would be set

by the initial and final data. The main effect of applying the Mach condition is to set this

constant equal to zero, implementing Poincaré’s principle.

4. Classical Equations of Motion

We are now in a position to compute the classical equations of motion of our theory. The

definitions of the momenta, (16) and (17), imply that the canonical Hamiltonian vanishes,

as it must for a reparametrization invariant theory. Thus, the total Hamiltonian HT is

proportional to the constraints

HT = NH +NαHα (29)
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where the lapse, N , and shift, Nα, are just Lagrange multipliers enforcing the scalar and

vector constraints respectively. We use this terminology to emphasize that these Lagrange

multipliers play the same role as the lapse and shift in general relativity.

The Mach variation implies

ω̇α = {ωα, HT} = Nα, (30)

π̇α = {π,HT} = 0, and (31)

πα = 0. (32)

The ωα’s are seen to be genuinely arbitrary given that their derivatives are equal to the

shift vectors. As expected, the πα’s are found to be constants of motion set to zero by

the Mach condition. Combining these results with the vector constraints (19) requires that

the generalized momenta associated to each symmetry vanish. In non–relativistic particle

dynamics best matched under spatial translations, (19) takes the form
∑

I ~pI = 0. This is

the vanishing of the total linear momentum of the system. In the case of rotations, (19)

is the vanishing of total angular momentum of the system. Later, we will see that (19)

generalizes to the diffeomorphism constraint of general relativity.

There is an obvious connection to Noether’s theorem. For actions invariant under the

global symmetry condition (14), the πα’s are constants of motion and the linear constraints

become a dynamically derived statement of the conservation of the Noether currents as

obtained in Noether’s first theorem. This is a result of parametrizing the symmetry using

the corrected coordinates and making the ωα fields dynamical. The Mach condition requires,

in addition, that the Noether charges vanish.

We now perform a standard variation of the q’s and p’s. A short calculation shows that

Hamilton’s first equation q̇a = {qa, HT}, can be re-written as

pa =
1

2N
gab G−1 b

c

∂

∂λ

(

Gc
dq

d
)

, (33)

where we have made use of the definition G−1 a
b = exp {−ωα tα

a
b}. Note that G can be

rewritten in terms of the shift vectors using the equation of motion ω̇α = Nα. By (14), we

find that, in terms of barred quantities, (33) becomes

p̄a =
1

2N
gab(q̄) ˙̄q

b, (34)

where p̄a = G−1 b
a pb.
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Hamilton’s second equation gives

ṗa = −N(∂ag
bc)pbpc +Nαpb tα

b
a , (35)

which, upon repeated use of (14), leads to

˙̄pa = −N(∂̄ag
bc(q̄))p̄bp̄c. (36)

Thus, the equations of motion can now be written purely in terms of the barred quantities:

1

2N

∂

∂λ

(

1

2N
gab(q̄) ˙̄q

b

)

= −1

2
p̄bp̄c∂̄ag

bc(q̄). (37)

We can now use the conformal flatness of the metric gab = eφηab = (−2V )ηab and the

scalar constraint gab papb = 1 → ηabpapb = −2V to write (37) in a more recognizable form.

Identifying τ̇ ≡ −N
V
, (37) reduces to

∂2q̄a

∂τ 2
= −∂̄aV (q̄). (38)

This is Newton’s 2nd law with τ playing the role of Newtonian time and with the q’s replaced

by q̄’s. Note that we did not use the conformal flatness of the metric until the last step and

then only to write our results in a more recognizable form. We note in passing that Newton’s

laws are just (38) written in the proper time gauge, analogous to the similar gauge condition

used in general relativity, where N = 1 and Nα = 0. This special gauge also corresponds to

Barbour’s distinguished representation [4].

5. Solving the Constraints

It is now possible to use Hamilton’s first equation to invert the scalar and vector con-

straints and solve explicitly for the lapse and shift. This will allow us to write the equations

of motion in terms of gauge invariant quantities having eliminated all auxiliary fields ω.

Solving for the lapse and shift tells what gauge should be used in order to satisfy both the

equations of motion and the initial and final conditions imposed on the q’s.

The shift can be solved for by inserting Hamilton’s first equation

q̇a = 2Npbg
ab −Nα tα

a
b q

b (39)
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into the vector constraint Hα = πα−pa tα
a
b q

b = 0 after applying the Mach condition πα = 0.

Inverting the result for Nα gives

NαMαβ = ηabq̇
a tβ

b
c q

c, (40)

where

Mαβ = ηab tα
a
c tβ

b
d qcqd. (41)

In the above, we have used gab = eφηab and removed as factors eφ and N . The fact that N

drops out is what allows the scalar and vector constraints to decouple allowing the system

to be easily solved. The field theories are typically more sophisticated, and this is no longer

possible. Being symmetric, Mαβ is invertible. Thus, Nα is given formally using the inverse

Mαβ of Mαβ . In Sec. (II B) we shall give simple closed–form expressions for Nα for non–

relativistic particle models invariant under translations and dilitations. The inversion of

Mαβ for non–Abelian groups, such as the rotations in 3 dimensions, is formally possible but

illuminating, closed–form expressions are difficult to produce.

The lapse can be solved for using (14) and inserting Hamilton’s first equation (34) into

the scalar constraint H = gabpapb − 1 = 0. This gives

N =
1

2

√

gab(q̄) ˙̄qa ˙̄qb. (42)

Having already solved for the shift we can use it to compute Ga
b(ω

α) in the above expression

using the equation of motion ω̇α = Nα. We can now express all equations of motion without

reference to auxiliary quantities.

B. Gauge–Independent Observables

The simple form of (37) and (38) suggests there might be something fundamental about

the corrected coordinates q̄a = Ga
bq

b. In fact, as can be easily checked, they commute with

the primary, first class vector constraints Hα. The q̄’s are then invariant under the gauge

transformations (25) generated by Hα. They do not, however, commute with the quadratic

scalar constraint. For this reason, they are non–perennial observables in the language of

Kuchař [14, 15] who argues that such quantities are the physically meaningful observables

of reparameterization invariant theories. Barbour and Foster take this argument further in

[16] showing how Dirac’s theorem fails for finite–dimensional reparameterization invariant
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theories. The reason for ignoring the non–commutativity of the observables with the scalar

constraint is that the scalar constraint generates physically distinguishable configurations.

This is in contrast to the linear vector constraints, which generate physically indistinguishable

states. In this work, we will use Kuchař’s language to describe these observables and see that,

in all cases where the constraints can be solved explicitly, the q̄a are manifestly relational

observables.

The form of q̄a and Hα is critical for their commutativity: the qb part of q̄a fails to

commute with the pa tα
a
b q

b piece of Hα by exactly the amount required to cancel the non–

commutativity of the Ga
b piece with πα. If we were to incorrectly apply the Mach condition

πα = 0 before computing the PBs, we would obtain the false conclusion that the q̄a are not

observables in the sense defined above. This highlights an important advantage of treating

the auxiliary fields ωα as cyclic variables7 with a Mach variation rather than treating them

as Lagrange multipliers, as is done, for example, in the ADM theory. Treating the ω’s as

Lagrange multipliers produces equivalent classical equations of motion but hides the fact

that the q̄a’s are genuine observables. Thus, best matching establishes what are the true

degrees of freedom.

The corrected coordinates, q̄a, have a nice geometric interpretation. Using Hamilton’s

first equation for ω̇α, the corrected coordinates can be written in terms of the shift as

q̄a = exp {ωα tα
a
b} qb = P exp

{
∫

Nα tα
a
b dλ

}

qb, (43)

where P implies path–ordered integration. Thus, the corrected coordinates are obtained by

subtracting the action of the open–path holonomy of the lapse (thought of as the pullback

of the connection over A onto the classical path) on the qb’s. This subtracts all vertical

motion of the q’s along the fiber bundle.

1. Special Cases

The significance of the q̄’s is more clearly seen by solving the constraints for specific sym-

metry groups. First, consider non–relativistic particle models invariant under translations.

The q’s represent particle positions in 3 dimensional space. The a indices can be split into

7 This situation is slightly more complicated when the action is not initially globally gauge invariant.
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a vector index, i, ranging from 1 to 3, and a particle index, I, ranging from 1 to the total

number of particles in the system. Then, a = iI. For ηab we use the diagonal mass matrix

attributing a mass mI to each particle. With the generators of translations, (9), (40) takes

the form

~N =

∑

I mI~qI
∑

I mI

≡ ~̇qcm. (44)

The shift is the velocity of the center of mass ~qcm. Aside from an irrelevant integration

constant, which can be taken to be zero, the auxiliary fields ωα represent the position of the

center of mass. Inserting this result into (43), the corrected coordinates are

q̄a = qa − qacm. (45)

They represent the difference between the particles’ positions and the center of mass of the

system. This is clearly a relational observable. Furthermore, the non–physical quantity is

the position of the center of mass since the theory is independent of its motion.

We can also treat models invariant under dilatations.8 In this case, (40) is easily invertible

since there is only a single shift function, which we will call s. Using the same index

conventions as before and the generators (11) we find

s =
∂

∂λ

(

−1

2
ln I

)

, (46)

where I =
∑

I mI(~qI)
2 is the moment of inertia of the system. Aside from an overall

integration constant, which can be set to zero, the auxiliary field is −1/2 times the log of

the moment of inertia. Using (43), the corrected coordinates are the original coordinates

normalized by the square root of the moment of inertia

q̄a =
qa√
I
. (47)

Because I contains two factors of q, q̄ will be invariant under rescalings of the coordinates.

Thus, the corrected coordinates are independent of an absolute scale.

The quantity τ , which plays the role of the Newtonian time, can now be computed. It

is a function of the lapse and the potential. Since the lapse is an explicit function of the

corrected coordinates, it will be observable. Using the definition τ̇ ≡ −N
V

and (42), τ is

8 See [4] for more details on these models.

17



simply

τ =

∫

dλ

√

−T (q̄)

V (q̄)
, (48)

where T = 1
2
mab ˙̄q

a ˙̄qb is the relational kinetic energy of the system. τ is independent of λ and

observable within the system. Thus, once the constraints have been solved for, the equations

of motion (38) are in a particularly convenient gauge–independent form. This definition of

τ corresponds to BB’s ephemeris time [3, 5].

C. Background Dependence and Independence

The presence of a symmetry of the configurations of A allows for a distinction between

two types of theories:9

• those that attribute physical significance to the exact location of the configuration

variables along the fiber generated by the symmetry. We will call these theories Back-

ground Dependent (BD).

• those that do not attribute any physical significance to the exact location of the config-

uration variables along the fiber. These theories will be called Background Independent

(BI).

Based on these definitions, it would seem odd even to consider BD theories as they dis-

tinguish between members of an equivalence class. These theories are useful nevertheless

whenever there is an emergent background that breaks the symmetry in question at an

effective level.

For a historically relevant example of why BD theories are important, consider Newton’s

well known bucket argument. In his Principia, Newton argues that the relative motion

between a spinning bucket and the water that it holds cannot explain the precise way in

which the water creeps up the walls of the bucket. He concludes that only the bucket and

water’s motion through absolute space can explain the behavior. This serves as justification

9 When there is a symmetry of the configurations which is not reflected in a global symmetry of the metric

on A, one can construct a gauge invariant metric using additional auxiliary fields. This situation, which is

considered in [1, 2], is more complicated than that of this paper. Nevertheless, I believe these definitions

are sufficiently general to hold in this case as well.
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for the background dependence of Newton’s theory with respect to rotations. No one would

argue that Newton’s mechanics is not useful, at least at an effective level. Nevertheless, in

a modernized version of Mach’s well known rebuttal, one could argue that this BD theory

should be emergent out of a fundamentally BI theory that takes into account the relative

motion of the water and bucket with the rest of the universe. From the perspective of best

matching, since the moment of inertia of the water–bucket system is so small compared to

that of the fixed stars, the water and bucket could have any reasonable value of angular

momentum without disturbing the total angular momentum of the universe, which, as we

have seen, is constrained to be zero. This example illustrates why, although it makes sense to

treat only BI theories as fundamental, BD theories are, nevertheless, very useful in practice.

Best matching provides a framework for making our definitions of BD and BI more

precise. Whenever there are symmetries in the configurations it is possible to introduce

auxiliary fields ωα whose role is nothing more than to parametrize the symmetry. Indeed,

making the ω’s dynamical can be very useful since, as we have seen, the full power of Dirac’s

formalism [17] can be used to study the dynamical effects of the symmetry. In addition,

introducing the ωα fields gives us the freedom to distinguish between BD and BI theories as

follows:

• BD theories are those that vary the ωα fields in the standard way using fixed endpoints.

This requires the specification of appropriate initial and final data, which is considered

to be physically meaningful.10

• BI theories are those that vary the ωα fields using a Mach variation.

Given these definitions, we can understand the physical difference between BD and BI

theories by considering the form of the vector constraints (19). In the BD case, the πα’s are

constants of motion. These constants are determined uniquely by the initial conditions on

the q’s. However, in the BI theory, the constants of motion are irrelevant and are seen as

unphysical. The initial data cannot affect their value. As a result, the BD theory requires

more inputs in order to give a well defined evolution. The difference is given exactly by the

dimension of the symmetry group. This is precisely in accordance with Poincaré’s principle.

10 So as not to add redundancy to the boundary conditions, we can set ωα(λin) = ωα(λfin) = 0 without loss

of generality. The boundary conditions on the q’s will then contain all the information about the absolute

position of the q’s along the fiber.
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D. Time and Parametrized Hamilton’s Principle

Parametrized Hamilton’s Principle (PHP) is an alternative to Jacobi’s principle for de-

termining the dynamics of a system. It is still a geodesic principle on configuration space

but the square root is disposed of in place of a mathematically simpler action. The cost of

having this simpler action is the introduction of an auxiliary field whose role is to restore

the reparameterization invariance. PHP has the advantage over Jacobi’s principle that it

singles out a preferred parametrization of the geodesics through a choice of normalization

of the scalar constraint. For a standard normalization, the preferred parameter is just BB’s

ephemeris time. In geometrodynamics, this quantity will be related to the proper time of a

freely falling observer. In the case of the particle models, PHP is just the standard model

of parameterized particle dynamics treated, for example, in [11].

Because time is now dynamical, we can use the definitions of BI and BD from Sec. (IIC) to

distinguish between theories that have a background time and those that are timeless. As we

would expect, Newton’s theory, which contains explicitly an absolute time, can be obtained

from PHP with a background time. Alternatively, Jacobi’s timeless theory is obtained from

PHP by keeping the time background independent.

1. Action and Hamiltonian

To simplify the discussion, we will ignore for the moment the spatial symmetries. This

will avoid having to deal with the linear constraints. Comparison to the equations of previous

sections can either be made by setting the shift, Nα, equal to zero or by unbarring quantities.

It can be verified that neglecting the spatial symmetries does not affect the discussions

regarding time [18].

PHP is defined by the action

SH =

∫ qfin

qin

dλ
1

2

[

1

τ̇
γabq̇

aq̇b + τ̇ eφ
]

. (49)

The Lagrangian has the form of Hamilton’s principle T − V (recall that eφ = −2V ) but

the absolute time τ has been promoted to a dynamical variable by parameterizing it with

the auxiliary variable λ. This explains the name: Parametrized Hamilton’s Principle. The

particular normalization used takes advange of the conformal split of the metric and singles
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out BB’s ephemeris time as a preferred parameter for the geodesics.11 For simplicity, we

restrict ourselves to metrics of the form: γab = ηab.

We can perform a Legendre transform to find the Hamiltonian of the system. Defining

the momenta

pa =
δSH

δq̇a
=

1

τ̇
ηabq̇

b, and (50)

p0 =
δSH

δτ̇
= −1

2

[

ηabq̇
aq̇b

τ̇ 2
− eφ

]

(51)

we note that they obey the scalar constraint

HHam ≡ 1

2

(

ηabpapb − eφ
)

+ p0 =
eφ

2
HJacobi + p0 = 0. (52)

The appearance of the p0 term is the only difference, other than the factor eφ, between

Jacobi’s principle and PHP (the factor 2 is purely conventional). The factor eφ can be

absorbed by a field redefinition of the lapse and has no bearing on physical observables. It

is a relic of our choice of ephemeris time to parametrize geodesics. Using the definitions

(50) and (51), we find that the canonical Hamiltonian is identically zero, as it must be for

a reparameterization invariant theory. Thus, the total Hamiltonian is

HT = NH = N

(

1

2
ηabpapb −

1

2
eφ + p0

)

. (53)

2. BI Theory

In PHP, time is promoted to a configuration space variable. The symmetry associated

with translating the origin of time is reflected in the invariance of the action under time

translations τ → τ + a, where a is a constant. In [18], it is shown that applying the best–

matching procedure to this symmetry is equivalent to treating τ itself as an auxiliary field.

To make the theory background independent with respect to the temporal symmetries, we

follow the procedure outlined in Sec. (IIC) and impose the Mach condition after evaluating

the Poisson brackets. In this case, the Mach condition takes the form p0 = 0.

11 Alternatively, one could split the action as SH =
∫

dλ
[

1

τ̇
eφγabq̇

aq̇b − τ̇
]

without changing the equations of

motion. This action would single out an affine parameter for the geodesics. It corresponds to multiplying

the scalar constraint by e−φ.

21



We pause for a brief observation. Since the Mach variation of a cyclic variable is equiva-

lent to the standard variation of a Lagrange multiplier, we can replace τ̇ with N when doing

a background independent formulation of PHP. Then, the action (49) bears a striking resem-

blance to the ADM action. This illustrates why the ADM action is background independent

as far as time is concerned. However, the ADM action hides the possibility of introducing

a background time (following the procedure given in the next section). Considering this,

it might be more enlightening to think of the lapse as a cyclic variable subject to Mach

variation as is done in [4] and [19].

In order to compare this to the Jacobi theory, it is instructive to work out the classical

equations of motion

q̇a = {qa, HT} = Nηabpb, (54)

ṗa = {pa, HT} = N∂a

(

eφ

2

)

= −N∂aV (55)

τ̇ = {τ,HT} = N, and (56)

ṗ0 = {p0, HT} = 0. (57)

(56) reinforces the fact that τ is an auxiliary. It is straightforward to show that the above

system of equations implies
∂2qa

∂τ 2
= −∂aV (q). (58)

This is Newton’s 2nd law. Solving the scalar constraint gives an explicit equation for τ ,

τ̇ =
√

ηabq̇aq̇be−φ =

√

T

−V
, (59)

using the definitions for V and T given in Sec. (IIA 1). This is precisely the expression

for the ephemeris time τ defined in the Jacobi theory. It should be noted that the Mach

condition implies that the integration constant of (57) is zero. Use was made of this to

deduce (59). From this it is clear that the BI theory is classically equivalent to Jacobi’s

theory.

One can take this further and compare the two theories quantum mechanically. Noticing

that the canonical action is linear in τ̇ and p0, we can integrate out τ without affecting the

quantum theory and use the Mach condition p0 = 0 to reduce the scalar constraint to

H = gabpapb − 1 = 0 (60)
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(after factoring eφ). This is the scalar constraint (18) of Jacobi theory. With τ now defined

by (59), the canonical theories are identical. Thus, their canonical quantizations should also

match. For more details on the equivalence of these theories quantum mechanically, see [18],

where the path integrals for these theories are worked out in detail.

3. BD Theory

For the BD theory, we do not impose the Mach condition. Integration of (57) implies

p0 ≡ −E. The only effect that this has on the classical theory is to alter the formula for τ

to

τ̇ =

√

T

E − V
. (61)

Now an initial condition is imposed on τ that fixes the value of E and violates Poincaré’s

principle. Thus, τ is equivalent to a Newtonian absolute time. Note that inserting a back-

ground time would have been impossible if we started with the ADM form of PHP.

Strictly speaking, there is a difference between E, defined as the negative of the momen-

tum canonically conjugate to time, and E ′, which is just the constant part of V = −E ′+V ′.

Together they form what we would normally think of as the total energy Etot = E + E ′ of

the system. E ′ is freely specifiable and plays the role of a fundamental constant of nature

while Etot is fixed by the initial conditions on τ . In the classical theory, it is unnecessary to

make a distinction between Etot and E. However, in the quantum theory, this distinction is

important because of the possible running of constants of nature like E ′. In general relativ-

ity, the role of E ′ is played by the cosmological constant. As a result, this distinction may

be relevant to the cosmological constant problem [20].

4. A Problem of Time

In the classical theory, it seems that there is only a very subtle difference between the BI

and BD theories. The difference amounts to the ability to impose boundary conditions on

τ that constrain the total energy. However, the quantum theories are drastically different.

Using Dirac’s procedure, we promote the scalar constraint to an operator constraint on the

wavefunction Ψ. In the BD theory, Dirac’s procedure applied to the Hamiltonian (53) gives
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the time dependent Schrödinger equation

ĤΨ =

[

1

2
ηabp̂ap̂b + V (q̂) + p̂0

]

Ψ = 0. (62)

In a configuration basis, p0 = −i ∂
∂τ
. Thus, the above is indeed the standard Schrödinger

equation. However, in the BD theory, the Mach condition requires p0 = 0 leaving instead

the time independent Schrödinger equation

ĤΨ =

[

1

2
ηabp̂ap̂b + V (q̂)− E ′

]

Ψ = 0, (63)

where we have explicitly removed the constant part of the potential. While it is easy to

define an inner product in the BD theory under which evolution will be unitary this is not

the case in the BI theory. This makes it difficult to define a Hilbert space for the BI theory

(at least at the level of the entire universe). The difficulties associated with this can be

called a problem of time similar to what happens in quantum geometrodynamics.12 It is

interesting to note that, in finite–dimensional models, one can eliminate this problem of

time by artificially introducing a background time. In Sec. (III B 2), we study the effects

of applying the same procedure to geometrodynamics and are led to unimodular gravity.

Clearly the issue of background independence is of vital importance in the quantum theory.

This will have important implications in any quantum theory of gravity.

III. INFINITE DIMENSIONAL RELATIONAL MODELS

We will now consider field theories over a spatial manifold Σ. It will be sufficient for Σ

to be an n–dimensional manifold with Euclidean signature. For simplicity, we will assume

that Σ is closed with no boundary. The spatial dependence of the configurations leads to

an ambiguity in how to take the square root in Jacobi’s principle. There are two choices: 1)

integrate over space first then take the square root at every λ or 2) take the square root first

then integrate over space and repeat this for every λ. The first option is highly non–local

and leads to theories with a preferred time foliation. It is particularly adapted to theories

with a projectable lapse such as the theory proposed by Hořava [21, 22]. The second option

is a local action principle and leads to local theories such as general relativity. We will briefly

consider the global square root theories below then treat the local theories in more detail.

12 In geometrodynamics, there are additional complications associated with foliation invariance or many-

fingered time. As far as I know, these have no analogues in the finite–dimensional models.
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A. Global Square Root Theories

1. Global Jacobi Action

Instead of considering the most general case of arbitrary fields defined over a manifold

Σ, we will treat the specific case of dynamical geometries. The configurations are the

symmetric 2–forms, gab, defining a metric on Σ. This allows us to consider a general class

of geometrodynamic theories. The configuration space is Riem: the space of all possible

metrics on Σ.

Metrics on Riem should be functionals of the spatial metric, g, and should feed on two

symmetric 2–forms, u and v. For an up to date account of how to define metrics on Riem,

see [23]. We will only consider those metrics G that split into an ultra–local piece

G[u, v, g] ≡
∫

Σ

dnx
√
g Gabcd(x)uab(x)vab(x) ≡

∫

Σ

dnx
√
g (gacgbd − αgabgcd)uabvcd, (64)

and a conformal piece V[g,∇g, . . .] =
∫

dnx
√
gV such that G[u, v, g,∇g, . . .] = V[g,∇g, . . .] ·

G[u, v, g]. Note that Gabcd is the most general ultra–local rank–4 tensor that can be formed

from the metric. It represents a one parameter family of supermetrics labeled by α. For

α = 1, we recover the usual DeWitt supermetric. Gabcd plays a similar role to the flat metric

ηab in the finite–dimensional theories. The scalar function V (g(x),∇g(x), . . .) is analogous

to the conformal factor of the finite–dimensional theories and, for this reason, is often called

the potential. However, it differs from the potential of the finite–dimensional models in that

it can depend on the spatial derivatives of the metric.

The symmetry of the configurations is with respect to spatial diffeomorphisms. This

can be reflected in the action by requiring it be a spatial scalar. We can best match this

symmetry by introducing the corrected coordinates

ḡab = exp {Lξ} gab (65)

and doing a Mach variation with respect to the auxiliary fields ξ. As was shown in general for

the finite–dimensional models, this is equivalent to introducing the gauge covariant derivative

Dξgab = ġab + Lξ̇gab = ġab + ξ̇(a;,b), (66)

which replaces all occurrences of d
dλ

in the action. In the above, semi–colons represent

covariant differentiation on the tangent bundle of Σ using a metric compatible connection.
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We can now write down a Jacobi–type action for this theory. A direct analogy with the

finite–dimensional models gives

Sglobal =

∫

dλ
√

G[Dξg,Dξg, g,∇g, . . .]

=

∫

dλ

√

∫

Σ

dnx
√
g GabcdDξgabDξgcd·

√

∫

Σ

dnx′
√
g V (g,∇g, . . .). (67)

Clearly, (67) is a non–local action as it couples all points in Σ at a given instant.

2. Projectable–Lapse Theories

The momenta obtained from the action (67) are

πab =
δS

δġab
=

√

V
T
√
gGabcdDξgcd (68)

ζa =
δS

δξ̇a
= −2∇b

(

√

V
T
√
gGabcdDξgcd

)

, (69)

where T = G[Dξg,Dξg, g] =
∫

dnx
√
gGabcdDξgab Dξgcd is the kinetic term. This leads to the

primary constraint

Ha(x) = ζa(x) + 2∇bπ
ab(x) = 0, (70)

which, combined with the Mach condition ζa = 0, is just the standard diffeomorphism

constraint of general relativity. Although this constraint is clearly local, there is a second

primary constraint that is only true when integrated over all of space. This constraint is the

zero mode of the usual Hamiltonian constraint

H(0) =

∫

dnx

[

1√
g
Gabcdπ

abπcd −√
gV

]

≡
∫

dnxH. (71)

It guarantees that the metric on Riem G[Dξg,Dξg, g,∇g, . . .] is non–negative.

The total Hamiltonian is

Htot = N(λ)H(0) +

∫

dnxNa(λ, x)Ha. (72)

The lapse function is only λ, and not x, dependent. It is said to be projectable. Because

of this, the theory does not obey the full Dirac–Teitelboim algebra [24] and is invariant

only under foliation preserving diffeomorphism and not the full n+1 diffeomorphism group.

Despite this, these theories can still be very useful and, depending on the choice of potential,

can represent either symmetry reduced versions of general relativity or Lorentz invariance

violating theories like those considered by Hořava [21, 22].
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B. Local Square Root Theories

In this section we explore theories that take the square root before integrating over all of

space. Physically, this seems like the more natural choice because the action principle is now

local. On the other hand, the mathematical structure is less appealing because we no longer

have a proper metric on Riem and we loose a direct analogy with the finite–dimensional

models. We can no longer write the action in terms of a quantity that gives the “distance”

between two infinitesimally separated geometries. Furthermore, using a local square root

produces a local scalar constraint that restricts one degree of freedom at every point. With

the right choice of potential, this extra gauge freedom manifests itself as foliation invariance

and leads to many technical and conceptual issues, particularly in the quantization. For

a review of the difficulties associated with foliation invariance and other issues associated

to time, see [14, 25]. Despite these complications, examples of local square root theories

include general relativity. Thus, it seems Nature has forced them upon us.13

1. Geometrodynamics from Jacobi’s Principle

Bringing the square root inside the spatial integration while keeping a structure analogous

to Jacobi’s principle for the finite–dimensional models gives

Slocal =

∫

dλ dnx
√

g GabcdDξgabDξgcd· V (g,∇g), (73)

where Gabcd = gacgbd−αgabgcd. The quantity V ·Gabcd is the infinitesimal “distance” between

two points of two infinitesimally separated geometries. It is a kind of pointwise metric on

Riem. Thus, there is no clean geodesic principle on the reduced configuration space in

contrast to either the finite–dimensional case or the global square root theories.

The action (73) has been analysed in detail in [1–3]. For the special choices α = 1 and

V (g,∇g,∇2g) = 2Λ− R(g,∇g,∇2g), (74)

where R is the scalar curvature of Σ and Λ is a constant, the constraint algebra is known

to close. With these choices, (73) is the Baierlein–Sharp–Wheeler (BSW) action of GR [26],

13 Provided GR is the correct theory of spacetime at all energies.
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whose Hamiltonian equations of motion are equivalent to those of ADM [27]. Thus, Jacobi’s

principle with local square root naturally recovers GR.14

2. Geometrodynamics with Parametrized Hamilton’s Principle

While Jacobi’s principle combined with the best matching of the n-diffeomorphism invari-

ance leads to the BSW action of GR, it would be nice if there was a natural way to obtain

the usual ADM formulation of GR from relational principles. This is provided by PHP (for

a demonstration of this following a Ruthian reduction see [19]). Furthermore, since it ex-

plicitly includes an auxiliary time and singles out the ephemeris time as a preferred geodesic

parameter, PHP provides a natural framework for introducing a notion of background time

in GR. Interestingly, this procedure leads directly to unimodular gravity.

To implement PHP, we use the kinetic term and potential outlined in Sec. (III B 1). Using

a local action principle and introducing the auxiliary field τ 0(λ, x), the analogue of (49) is

SH =

∫

dλ dnx
√
g
1

2

[

1

τ̇ 0
GabcdDξgabDξgcd − τ̇ 0(2Λ′ − R)

]

, (75)

where we have used a prime to distinguish Λ′ from another Λ that we will consider later.

This is completely analogous to E versus E ′ encountered in the particle models. It can be

verified that using a local function, τ 0, of x is equivalent to taking a local square root in the

Jacobi action. Similarly, a global τ 0 is equivalent to a global square root.

The ADM theory can be obtained by doing a short canonical analysis of the action (75).

The momenta are:

πab =
∂L

∂ġab
=

√
g

τ̇ 0
Gabcd(ġcd + ξ̇(c,d)), (76)

ζa =
∂L

∂ξ̇a
= −∇b

(√
g

τ̇ 0
G(ab)cd(ġcd + ξ̇(c,d))

)

, and (77)

p0 =
∂L

∂τ̇ 0
= −

√
g

2

(

1

(τ̇ 0)2
GabcdDξgabDξgcd + (2Λ′ − R)

)

. (78)

The scalar constraint is

H =
1√
g
Gabcdπ

abπcd +
√
g(2Λ′ −R) + 2p0 = HADM + 2p0 = 0, (79)

14 Equivalence is achieved because the Mach variation of ξ̇ is equivalent to the usual variation of the shift

vector N i. See, for example, [19].
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whereHADM is just the scalar constraint of the ADM theory. There is also a vector constraint

associated with ζa. It is

Ha = ∇bπ
(ab) + ζa = Ha

ADM + ζa = 0. (80)

Ha
ADM is ADM’s usual vector constraint.

The canonical Hamiltonian is zero as it should be in a reparameterization invariant theory.

Thus, the Hamiltonian is

H = NH +NaHa = HADM + 2Np0 +Naζ
a. (81)

HADM is the ADM Hamiltonian. However, this may not be the full Hamiltonian since we

need to check for secondary constraints. To do this, we introduce the fundamental equal–λ

PB’s

{

gab(λ, x), π
cd(λ, y)

}

= δcaδ
d
b δ(x, y), (82)

{

ξa((λ, x), ζ
b(λ, y)

}

= δba δ(x, y), and (83)
{

τ 0(λ, x), p0(λ, y)
}

= δ(x, y). (84)

Then, the constraint algebra reduces to

{

g−1/2H(x),H(y)
}

=
[

(g−1/2Ha
ADM)(x) + (g−1/2Ha

ADM)(y)
]

δ(x, y);a (85)
{

g−1/2H(x),Ha
ADM(y)

}

= g−1/2HADM(x)
;aδ(x, y) (86)

{

g−1/2Ha(x),Hb(y)
}

= (g−1/2Ha
ADM)(x)δ(x, y)

;b + (g−1/2HADM
b)(y)δ(x, y);a. (87)

At this point, the discussions for standard and Mach variations diverge.

3. Mach Variation: Time–Independent Theory

After taking PB’s we can apply the Mach conditions for p0 and ζa

p0 ≈0 (88)

ζa ≈0. (89)

Then, the vector and scalar constraints imply

HADM ≈0 (90)

Ha
ADM ≈0. (91)
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Thus, the constraint algebra is first class and the total Hamiltonian is given by (81).

At this point, we can’t use the Mach conditions to recover the ADM theory because they

are only weak equations. To see that the ADM theory is indeed recovered, we work out

the classical equations of motion. The terms in (81) that are new compared with the ADM

theory commute with gab and πab. Thus, they do not affect the equations of motion for gab

or for πab other than replacing the lapse N with τ̇ 0 and the shift Na with ξ̇a. Since the

remaining equations of motion just identify

τ̇ 0 =
{

τ 0, HT

}

= 2N, and (92)

ξ̇a = {ξa, HT} = Na, (93)

the theories are classically equivalent. It is now easy to see that the quantum theories will

also be equivalent since the quantization of the Mach conditions imply that the quantum

constraints are identical to those of the ADM theory.

4. Fixed Endpoints: Unimodular Theory

In this section we consider the effect of fixing the endpoints of τ 0. According to the

definition of background dependence from Sec. (IIC), this will introduce a background time.

We will, however, not fix a background for the diffeomorphism invariance. Thus, we still

have the Mach condition ζa ≈ 0 for the Mach variation of ξa.

The constraint algebra is no longer first class after the lifting Mach condition p0 ≈ 0

because the scalar constraints no longer close on the vector constraints. From (86) and (79),

{

g−1/2H(x),Ha
ADM(y)

}

= −(g−1/2p0)
;aδ(x, y), (94)

which implies the secondary constraint

−∇aΛ = 0, (95)

where Λ = −g−1/2p0 is the undensitized momentum conjugate to τ 0. The constraint algebra

is now first class. Using the Lagrange multipliers τa, the total Hamiltonian is

HT = HADM + 2Np0 +Naζ
a − τa∇aΛ. (96)

The secondary constraint (95) assures that Λ is a spatial constant. Given the equations

of motion τ̇ 0 = N and Λ̇ = 0, one might expect that the τ̇ 0Λ term in the action is analogous
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to adding a cosmological constant term to the potential. Indeed this is what happens. Since

the action is linear in ζa, we can integrate out ζa by inserting the equation of motion ξ̇a = Na

and the Mach condition ζa = 0. This leads to

Suni =

∫

dλ dnx
[

ġabπ
ab + τ̇ p0 +

√
gτa∇aΛ−

Na

(

∇bπ
(ab)
)

−N

(

1√
g
Gabcdπ

abπcd −√
g(R− 2Λtot)

)]

, (97)

which is identical to the action of unimodular gravity considered by Henneaux and Teitle-

boim [28]. Unimodular gravity was originally proposed as a possible solution to the problem

of time and was developed extensively in [29–31].

Note that Λtot = Λ + Λ′. It is the observable value of the cosmological constant. In this

context, it will depend on the boundary conditions imposed on the cosmological time

T =

∫ λfin

λin

dλ

∫

Σ

dnx
√
g τ̇ 0. (98)

In [20], it is shown that the fact that Λtot is an integration constant protects its value against

renormalization arguments that predict large values of Λ′. This provides a possible solution

to the cosmological constant problem.

These results show that unimodular gravity is obtained by inserting a background time,

according to the definition of background dependence given in this paper, into general rela-

tivity. The quantization of this theory is known to lead to a time dependent Wheeler-DeWitt

equation [29]. This supports the claim that we have inserted a genuine background time.

Although there are some hints that unimodular gravity contains unitary cosmological solu-

tions (see [32, 33]), it is clear that unimodular gravity will not be able to solve all problems

of time in quantum gravity. As was pointed out by Kuchař in [34], the background time in

unimodular gravity is global whereas foliation invariance in general relativity presents sev-

eral additional challenges. These complications are introduced by the local square root and,

therefore, would not have analogues in the finite–dimensional models and the projectable–

lapse theories. Furthermore, simply inserting a background should not be thought of as

a genuine solution to the problem of time because background dependent theories violate

Mach’s principle and, I would argue, should not be thought of as fundamental (unless one

has other good reasons for believing in an absolute time). Instead, one should think of back-

ground dependent theories as having emerged, under special conditions, out of a fundamental

background–independent theory.
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IV. OUTLOOK

As has been pointed out throughout this text, in this paper we only consider how to

apply best matching to theories where the action is globally gauge invariant. However, in

the case where the action has no global symmetries, the best–matching procedure can still be

applied. As described in [2], the ω’s appear explicitly in the action as well as the ω̇’s but the

generalized rules for Mach variation essentially require that these be treated as independent

parameters. Though the ω̇’s still behave like connections, the ω’s combine with the metric

and seem to behave in a way similar to that of Goldstone bosons.15 Exploring a possible

connection between this more general case of best matching and spontaneous symmetry

breaking would be an interesting extension of this work.

After establishing a distinction between BD and BI theories, a natural question to ask

is: when do the different theories become important? It may be possible to use effective

field theory techniques to determine precisely how BD theories can emerge out of BI ones.

Understanding the exact mechanisms for this emergence and the conditions under which it

could happen would be vital, for instance, in determining the circumstances under which

space and time could emerge out of quantum gravity.

Acknowledgments

I would like to sincerely thank Julian Barbour whose best–matching framework and

clear thinking on relational ideas have made this work possible. I would also like to thank

him for valuable input on the presentation of the text, Fotini Markopoulou for helping to

organize sessions on Mach’s principle at the Perimeter Institute, and Lee Smolin for having

the patience and understanding to give me the freedom to stumble through my own ideas.

Research at the Perimeter Institute is supported in part by the Government of Canada

through NSERC and by the Province of Ontario through MEDT. I also acknowledge support

from an NSERC Postgraduate Scholarship, Mini-Grant MGA-08-008 from the Foundational

15 For a modern review of Goldstone bosons and symmetry breaking, see [35].

32



Questions Institute (fqxi.org), and from the University of Waterloo.

[1] E. Anderson, J. Barbour, B. Z. Foster, B. Kelleher, and N. O. Murchadha, “The physical

gravitational degrees of freedom,” Class. Quant. Grav. 22 (2005) 1795–1802,

arXiv:gr-qc/0407104.

[2] E. Anderson, J. Barbour, B. Foster, and N. O’Murchadha, “Scale-invariant gravity:

Geometrodynamics,” Class. Quant. Grav. 20 (2003) 1571, arXiv:gr-qc/0211022.

[3] J. B. Barbour and B. Bertotti, “Mach’s Principle and the Structure of Dynamical Theories,”

Proc. R. Soc. A 382 (1982) no. 1783, 295–306.

[4] J. Barbour, “Scale-Invariant Gravity: Particle Dynamics,”

Class. Quant. Grav. 20 (2003) 1543–1570, arXiv:gr-qc/0211021.

[5] J. B. Barbour, “Relative-distance Machian theories,” Nature 249 (1974) 328–329.

[6] J. Barbour, B. Z. Foster, and N. O’Murchadha, “Relativity without relativity,”

Class. Quant. Grav. 19 (2002) 3217–3248, arXiv:gr-qc/0012089.

[7] J. Barbour, “The end of time: The next revolution in physics,”. Oxford, UK: Univ. Pr.

(2000) 371 p.

[8] E. Anderson and J. Barbour, “Interacting vector fields in relativity without relativity,”

Class. Quant. Grav. 19 (2002) 3249–3262, arXiv:gr-qc/0201092.

[9] E. Anderson, “On the recovery of geometrodynamics from two different sets of first

principles,” Stud. Hist. Philos. Mod. Phys. 38 (2007) 15, arXiv:gr-qc/0511070.

[10] J. Barbour, “On general covariance and best matching,”. in Physics Meets Philosophy at the

Planck Scale, eds. Callender, C. and Huggett, N.

[11] C. Lanczos, The Variational Principles of Mechanics. University of Toronto Press, Toronto,

1949.

[12] J. Barbour, “The Nature of Time,” arXiv:0903.3489 [gr-qc].

[13] S. B. Gryb, “Implementing Mach’s Principle Using Gauge Theory,”

Physical Review D 80 (2009) 024018, arXiv:0901.2362 [gr-qc].
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