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Abstract

We present a definite formulation of the Principle of General Covariance (GCP) as a

Principle of General Relativity with physical content and thus susceptible of verification or

contradiction. To that end it is useful to introduce a kind of coordinates, that we call quasi-

Minkowskian coordinates (QMC), as an empirical extension of the Minkowskian coordinates

employed by the inertial observers in flat space-time to general observers in the curved

situations in presence of gravitation. The QMC are operationally defined by some of the

operational protocols through which the inertial observers determine their Minkowskian

coordinates and may be mathematically characterized in a neighbourhood of the world-line

of the corresponding observer. It is taken care of the fact that the set of all the operational

protocols which are equivalent to measure a quantity in flat space-time split into inequivalent

subsets of operational prescriptions under the presence of a gravitational field or when the

observer is not inertial. We deal with the Hole Argument by resorting to de idea of the

QMC and show how it is the metric field that supplies the physical meaning of coordinates

and individuates point-events in regions of space-time where no other fields exist. Because

of that the GCP has also value as a guiding principle supporting Einstein’s appreciation of

its heuristic worth in his reply to Kretschmann in 1918.

I. INTRODUCTION

Since first formulated nine decades ago the question of the meaning of the GCP has

been a subject of polemic and confusion. Thus Kretschmann [1] in 1917 claimed the

GCP to be devoid of physical content and that given enough mathematical ingenuity any
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theory could be set in a general covariant form. Einstein [2] begrudgingly accepted the

objection stating however the heuristic value the GCP had in searching for a good theory

and that that was a reason to prefer General Relativity to Newtonian gravitation which

-in his opinion- would only be awkwardly casted into generally covariant form. Einstein

was soon proved wrong as Cartan [3] in 1923 and Friedrichs [4] in 1927 found serviceable

generally covariant formulations of Newtonian gravitation theory. See also Misner et

al(1973, ch 12) [5]. In his excellent book Fock [6] makes interesting and critical remarks

about the term “general relativity” adopted by Einstein to name his theory of gravitation

and the connection of the term with general covariance that, in his view, is merely a logical

requirement that is always satisfiable. Fock rightly points out that though Einstein had

agreed with Kretschman objection as to the physical vacuity of the GCP his agreement was

rather formal, because actually to the end of his life Einstein related the requirement of

general covariance to the idea of some kind of “general relativity” and with the equivalence

of all frames of reference. The subject has subsequently been addressed in several ways,

for example, by Anderson [7](1967), Stachel [8](1980, 1986, 2002), Norton [9](1993) and

Ellis and Matravers [10](1995). All these works while attemting to clarify the formulation

and meaning of the GCP in our opinion fail to give it a specific expression susceptible of

physical verification or contradiction. And certainly whatever the claim about the physical

content of the GCP might be that should be subject to experimental test to be confirmed

or refuted. In fact, though not directly dealing with the GCP but acknowledging that it has

a conceptual content far more deeper than the simple invariance under arbitrary changes of

coordinates, Lusanna and Pauri [13] (2006) go a significant step beyond previous authors

considering the physical individuation of space-time points by experimental procedures

and revise the Hole Argument. We fully subscribe to their contention that “the gauge

freedom of general relativity is unavoidably entangled with the definition-constitution of

the very stage, space-time, where the play of physics is enacted” and lend further support

to that idea by discussing the Hole Argument using operationally defined coordinates

introduced in our formulation of the GCP. Ellis and Matravers [10] point out how physicists

and astrophysicists in fact almost always use preferred coordinate systems not merely to

simplify the calculations but also to help define quantities of physical interest, and that this

suggests that we should reconsider and perhaps refine the dogma od general covariance. In

that spirit we present in this contribution a proposal for the GCP and show that it has
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two meanings: a predictive one as a principle of general relativity, that in principle may be

falsifiable by resorting to experience, and a heuristic one as a guiding principle to extend

the theory and probe the nature of space-time.

The plan of the paper is as follows:

• In Section II we define a principle of general relativity and take it as the GCP.

• In Section III we construct a family of coordinates which are useful to endow with

physical meaning the GCP.

• Section IV presents a treatment of the Hole Argument with the help of the mentioned

family of coordinates and considers the implications of the GCP on the meaning of

coordinates and point-events in space-time.

• In Section V some other consequences of our formulation of the GCP are indicated

and finally our conclusions regarding the meaning of the GCP are stated.

II. THE GCP AS A PRINCIPLE OF GENERAL RELATIVITY

A. Principles of Restricted Relativity (RRP) and the Principle of Special

Relativity (SRP)

We will first formulate a principle of restricted relativity (RRP) with respect to a group of

isometric diffeomorphisms of space-time: Let us have a generic space-time (M, g), M and g

respectively denoting the manifold and the metric. Let xλ, λ = 0, 1, 2, 3, be the coordinates

corresponding to some neighbourhood N of an arbitrary point P of M and let F (P ) be a

physical quantity defined at P and possibly on N . Let Q[F (P, x)] denote the set of all the

different operational protocols -but equivalent in the sense that they yield the same values-

that may be used to measure F (P ) when working in the said coordinates xλ. The physical

meaning of F (P ) is given by Q[F (P, x)]. If there is a group L of isometries of g we shall say

that a RRP with respect to L exists if the following two conditions hold:

(a) The equations describing the behaviour of the physical quantities are form-invariant

under all the transformations induced by the elements of L.
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(b) One has that if Λ ∈ L and Λ : x −→ x′, Λ : F (P, x) −→ F ′(P, x′), then Q[F (P, x)] =

Q[F ′(P, x′)] ∀ Λ ∈ L and ∀ F (P ). Note in particular that Q[xλ] = Q[x′λ] 1.

A RRP is a symmetry principle with a clear physical meaning contained in the above two

conditions. If g has no isometry there is no RRP in the defined sense. The principle of

special relativity is a RRP with respect to the proper Poincaré group of transformations2.

Let (M, η) be flat space-time of special relativity and let I stand for the set of all the inertial

observers in it. Each of these observers is supposed to be located at the origin of a non-

rotating Cartesian frame at rest in his or her proper reference frame with the help of which he

or she assigns the spatial coordinates to events. The time coordinate of any event is assigned

by each observer by the standard criteria of special relativity. The resulting coordinates are

the Minkowskian coordinates in which the metric tensor is ηµν = diag(+1,+1,+1,−1). Let

O and O′ be any two observers of I and x and x′ their respective Minkowskian coordinate

systems. Then the SRP may be defined more specifically as follows:

(a) The equations describing the behaviour of the physical quantities have the same form

for O and O′ when expressed in terms of x and x′.

(b) If F (P, x) and F ′(P ′, x′) stand for the same physical quantity respectively measured

by O and O′ at points P and P ′ using Minkowskian coordinates x and x′, Q[F (P, x)] =

Q[F ′(P ′, x′)] ∀ F and ∀ P and P ′ where F might be defined.

B. Principle of General Relativity (GRP)

We will introduce the GRP as a generalization in two directions of the SRP as previ-

ously defined. Both restrictions that of the existence of an isometry and that of refering to

measurements performed only by inertial observers will be relinquished. The set I will be

enlarged to the class of observers, K, having world-lines as differentiable as it may be needed

for the subsequent developments. The Minkowskian coordinates employed by the inertial

observers of I will be generalized to coordinates used by the observers of K operationally de-

fined by some of the operational protocols through which the observers of I determine their

1 Wald calls principle of special covariance to a RRP [11].
2 The improper elements of the full Poincaré group should be excluded on account of the existence of

phenomena that violate parity and or time reversal symmetry.
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Minkowskian coordinates. These more general coordinates will be called quasi-Minkowskian

(QMC). In other words, if x̃λ and xλ respectively are quasi-Minkowskian and Minkowskian,

it should hold that Q̃[x̃λ] ⊆ Q[xλ], where the left-hand term denotes the different procedures

of measurement of x̃λ by the observer of K in question. The latter relation follows from the

expectation that the set Q[xλ] should split into inequivalent subsets of operational prescrip-

tions under the presence of a gravitational field or when the observer is not inertial [14]. Let

us then first characterize mathematically the QMC:

Let O be an observer in a generic space-time (M, g) following a world-line C given by its

equations xλ = fλ(τ), where τ is O’s proper time. O’s four-velocity is uλ =
dxλ

dτ
= ḟλ(τ),

uλuλ = −c2. O transports an orthonormal tetrad e(ν) along his world-line whose components

verify

eλ(ν)e(µ)λ = ηνµ , e
µ
(0) =

uµ

c
. (1)

The most general transportation law of the tetrad that conserves these conditions is given

by
De

µ
(σ)

dτ
=

1

c2
(uµaν − uνaµ)e(σ)ν +

1

c
ωαuβǫ

αβµνe(σ)ν , (2)

where

aν =
Duν

dτ
, ǫαβγδ = (−g)

1

2 [αβγδ] , ǫαβγδ = −(−g)−
1

2 [αβγδ] ,

[αβγδ] =























+1 if αβγδ is an even permutation of 0123

−1 if αβγδ is an odd permutation of 0123

0 if αβγδ are not all different

g = det ||gαβ|| ,

and the ωα
′s are the covariant components of a rotation vector such that uαωα = 0.

As an example, the observer O could choose a set of QMC, x̃λ = (ct̃, x̃i), i = 1, 2, 3, in the

following way: He manages to send a radar signal at his proper time τe such that it arrives at

the point-event whose QMC coordinates are to be determined just as it happens. The signal

is inmediately reflected back reaching O at his proper time τr. O defines x̃0 ≡ 1
2
c(τr+τe). He

also sets d ≡ 1
2
c(τr − τe) for his ”distance” to the point-event and has previously noted the

direction of the emitted radar signal by recording the cosines, cosφi, i = 1, 2, 3 of the angles,

φi, i = 1, 2, 3, that the signal ray respectively makes with each of the directions of the spatial
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triad e(i), i = 1, 2, 3. Then O defines the remaining QMC as x̃i ≡ d cosφi, i = 1, 2, 3. Let

vλ the components of a 4-vector along the emitted electromagnetic signal such that v0 = 1.

Then cosφi = vλe(i)λ, i = 1, 2, 3, and since only two of the three cos φi are independent

it turns out that the four x̃λ can be expressed in terms of four independent invariants,

τe, τr, v
λe(i)λ, i = 1, 2, for instance3. These invariants are directly associated to the tools

used by O to label the events but, since any other set of coordinates in a small enough

neighborhood of his world-line will be functionally related to the x̃λ, any coordinates will

also be so functions of the said four invariants albeit different ones.

More generally, we will impose the following mathematical conditions to characterize the

QMC coordinates, x̃λ = (cτ, x̃i) = (ct̃, x̃i), i = 1, 2, 3:

1. C is described in the x̃λ coordinates by: x̃i = 0 , t̃ = τ .

2. The restriction of the metric in the x̃λ coordinates on C is: g̃µν |C= ηµν , and
∂g̃µν

∂x̃λ
|C= 0, when the four-acceleration of O and the four-rotation of the tetrad vanish:

a = ω = 0.

3. e(α) =
∂

∂x̃α
|C ⇐⇒ eλ(α)(τ) =

∂xλ

∂x̃α
|C .

4. The x̃λ’s become the usual Minkowskian coordinates in a neighborhood of C when

a = ω = 0 and the curvature tensor vanishes, Rαβµν = 0, whithin that neighborhood.

The x̃λ’s are QMC and since they are so with respect to a world-line C and depend on

the choice of the space triad, e(i), they will be denoted henceforth by QMCCω (quasi-

Minkowskian coordinates relative to the world-line C and to the tetrad e(α) subject to the

rotation ω). Fermi coordinates and the coordinates introduced by Lachièze-Rey [12]4 are

other particular instances of QMCCω’s.

1. Principle of General Relativity (GRP)

Let us have a generic smooth enough space-time (M, g), M and g respectively denoting

the manifold and the metric. Let O be any observer in that space-time belonging to the

3 τe and τr are invariants once the origin for the proper time has been set which amounts to setting the

origin of the time t̃ ≡ 1

c
x̃0.

4 I am indebted to Llúıs Bel for bringing to my attention this reference.
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class K that uses any type of QMCCω′s. If F is any -generally multicomponent- physical

quantity let us denote by F̃ the same quantity -or its components- in the QMCCω, x̃λ’s, as

determined by O. Let us denote by Q̃[F̃ ] the set of operational protocols that may be used

by O to measure F̃ .

We shall say that the Principle of General relativity (GRP) is verified when the following

two conditions hold:

(a) The equations describing the behaviour of the physical quantities have the same form

in all sufficiently regular coordinate systems with the metric g being the only quantity

pertaining to space-time that can appear in those equations; moreover, the latter

become on C their corresponding ones in Minkowskian coordinates in flat space-time

(M, η) when they are expressed in terms of the x̃λ’s if a = ω = 0. (This implies the

Equivalence Principle in general, but curvature dependent terms may still appear if

there is no minimal coupling or higher order derivatives are involved in the equations.)

(b) One has Q̃[F̃ ] ⊆ Q[F ], ∀ F and ∀ QMCCω.

Note that if x̃λ and x̃′λ are two different systems of QMCCω’s for O -with common a, ω and

e(α)- in (M, g), one has in general that Q̃[x̃λ] 6= Q̃′[x̃′λ], and if xλ are Minkowskian coor-

dinates in flat space-time (M, η) and q[xλ] ∈ Q[xλ], there will be QMCCω’s, x̃λ, ∀O(C, ω),

such that q[xλ] ∈ Q̃[x̃λ] ⊆ Q[xλ].

2. Principle of General Covariance (GCP)

The GCP is the above GRP.

- It implies the Equivalence Principle.

- The physical content of the GCP is thus that one given in the previous definition of

the GRP.

What is called for now is to verify that this interpretation of the GCP is coherent with the

theory and agrees with experience. That is therefore tantamount to testing the validity of

the stated GRP. To that end we proceed to construct the QMCCω′s in the next Section.
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III. CONSTRUCTION OF THE QMCCω’S

The x̃λ’s will be constructed under the assumption that the xλ’s can be expressed as

power series of the x̃i’s with coefficients depending on τ about C. The transportation law

(2) sets the following constraints on C upon the Christoffel symbols Γ̃ρ
µν(τ) and Γ̃µνρ(τ):

Γ̃0
00 = Γ̃000 = 0, Γ̃0

k0 = −Γ̃0k0 = Γ̃k00 = Γ̃k
00 =

1

c2
ãk, Γ̃j

k0 = Γ̃jk0 = −
1

c
ω̃iǫ̃0ijk, (3)

where the tildes always indicate that the components of the quantities are in the QMCCω

coordinates.

Noting that ã0 = ω̃0 = 0 and assuming that the remaining Christoffel symbols on C may

be expressed as power series of the components of the 4-acceleration and rotation, condition

2 of subsection IIB allows us to put for them

Γ̃α
jk(τ) = pαjki(τ)ã

i + qαjki(τ)ω̃
i +Oα

jk(2), (4)

with pαjki(τ) and qαjki(τ) being smooth enough but otherwise arbitrary functions of the proper

time along C, τ , and Oα
jk(2) similarly standing for a second order term in the ãi’s and ω̃i’s.

Obviously all these functions are symmetric in the indices j and k. Eq. (4) may be rewritten

in terms of the components of a and ω in the given coordinates x as

Γ̃α
ik(τ) = Aα

ikν(τ)a
ν +Bα

ikν(τ)ω
ν +Oα

ik(2) , (5)

where the Aα
ikν and Bα

ikν are arbitrary save by being sufficiently smooth and the constraints

Aα
ikν = Aα

kiν , Bα
ikν = Bα

kiν , Aα
ikνe

ν
(0) = Bα

ikνe
ν
(0) = 0 ; (6)

and Oα
ik(2) = Oα

ki(2) is of second order in the aν ’s and ων ’s, otherwise Oα
ik(2) is a function

of τ as so is Γλ
ρσ(τ), as both are defined on C.

Taking into account condition 3 of subsection IIB and using the transformation law for

the metric connection on C we get

xλ = fλ(τ) + eλ(k)x̃
k +

1

2
(eλ(α)Γ̃

α
ik(τ)− e

ρ
(i)e

σ
(k)Γ

λ
ρσ(τ))x̃

ix̃k + Φλ(x̃) , (7)

with Φλ(x̃) being of third order in the x̃i’s. In order to ensure the fulfilment of condition 4

of subsection IIB we split Φλ(x̃) into two terms as follows:

Φλ(x̃) = Ψλ(x̃) + Φλ
(0)(x̃) , (8)
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with Ψλ(x̃) verifying

Ψλ |C=
∂Ψλ

∂x̃i
|C=

∂2Ψλ

∂x̃i∂x̃j
|C= 0 , (9)

and vanishing whenever a, ω and the curvature tensor, R, in a finite neighborhood of C, all

vanish; the latter is equivalent to the vanishing of the Γ̃λ
µν ’s in that neighborhood; otherwise

the Ψλ’s apart from being sufficiently smooth are arbitrary; it is Φλ
(0)(x̃) that should be

determined to assure that the coordinates x̃ have the property specified in condition 4 of

subsection IIB. To that end we put

Φλ
(0)(x̃) =

∑

l,m,n

1

l!m!n!
Cλ

lmn(τ)(x̃
1)l(x̃2)m(x̃3)n , (10)

with

l ≥ 0, m ≥ 0, n ≥ 0, l +m+ n ≥ 3, and l, m, n all being integers,

and the Cλ
lmn(τ)’s are systematically calculated by the following algorithm: Consider the

equation
∂2Φλ

(0)

∂x̃i∂x̃k
= −

∂xρ

∂x̃i

∂xσ

∂x̃k
Γλ
ρσ(x(x̃

µ)) + e
β
(i)e

γ
(k)Γ

λ
βγ(τ) , (11)

where the first term on the rhs is taken as dependent, in general, on the x̃µ’s, while the second

term only depends on τ as is evaluated on C. Eq. (11) is a consequence of considering the

equation for the transformation of the Christoffel symbols on C and using eqs. (7) and (8)

besides setting Γ̃α
µν = Ψλ = 0. The Cλ

lmn(τ)’s are found by using the power series for Φλ
(0)

given in eq. (10) and taking successive derivatives of eq. (11) with respect to the x̃j ’s, taking

the result on C, and doing it all along as if Γ̃α
µν = Ψλ = 0 at all points.

So we get, for instance,

Cλ
300(τ) = −

∂

∂x̃1

(

∂xρ

∂x̃1

∂xσ

∂x̃1
Γλ
ρσ(x)

)

|C = −4eσ(1)A
ρ
11Γ

λ
ρσ − e

ρ
(1)e

σ
(1)Γ

λ
ρσ,γe

γ
(1),

with Aλ
ik = −1

2
e
ρ
(i)e

σ
(k)Γ

λ
ρσ(τ), all evaluated on C at the point corresponding to τ . That

way any Cλ
lmn(τ) may be expressed in terms of the Cλ

l′m′n′’s of lower order: l′ + m′ + n′ <

l +m + n, l′ ≤ l, m′ ≤ m, n′ ≤ n; the eλ(k)(τ), the Γα
µν(τ)’s, and the partial derivatives of

the Γα
µν ’s with respect to the xλ’s up to order ≤ l +m+ n− 2.

Fixing the Ψλ’s, Aα
ikν ’s, B

α
ikν ’s and the Oα

ik(2)’s uniquely determines a set of corresponding

QMCCω. If space-time is flat and also a = ω = 0, it follows that Ψλ = Γ̃α
µν(x̃) = 0, and

the entire family of the QMCCω’s collapses to the unique usual Lorentzian coordinates

corresponding to the chosen tetrad eλ(ν). This does not mean that if space-time is not flat
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and/or if a 6= 0, or ω 6= 0, by taking Ψλ = Aα
ikν = Bα

ikν = Oα
ik(2) = 0, the resulting QMCCω

would be Lorentzian, as these do not symply exist for non-flat space-times or in non-inertial

reference frames.

IV. THE HOLE ARGUMENT

The Hole Argument (HA) is a consideration that was first raised by Einstein in a letter

of November 2, 1913, to Ludwig Hopf. He was then struggling to find the gravitational field

equations and intended to prove with the HA, whose final Einsteinian version was published

in 1914 [15], that the theory could not be generally covariant. Obviously Einstein had

discarded that implication of the HA by November, 1915, with his settling upon the correct

generally covariant field equations. The HA has been widely discussed in the literature

(see, for instance, Stachel [8](1980, 2002), Rovelli [16] (1991, 2008), Norton [9] (1993) and

Lusanna and Pauri [13] (2006)). Here we present a treatment of the HA by resorting to

the idea of the QMCCω’s introduced in subsection IIB that we believe further clarifies the

whole issue, specially by showing how it is the metric field that supplies the physical meaning

of coordinates and individuates point-events in regions of space-time where no other fields

exist.

Essentially the HA goes as follows: Let us assume there is an region H (the hole) where

all the nongravitational fields are null. Let that region be covered by coordinates xλ that

extend to a larger coordinate patch U : H ⊂ U . Let us consider a coordinate transformation

φ : x → x′, x′λ = φλ(x), (12)

that smoothly becomes the identity transformation outside H and on its boundary. Under

the transformation the components of the metric tensor change according to

gµν(x) → g′µν(x
′) =

∂xα

∂x′µ

∂xβ

∂x′ν
gαβ(x(x

′)) (13)

Let σ be the map of U into ℜ4 that assigns the x coordinates to the point events in U and

let us suppose that φ ◦ σ(H) = σ(H) ⊂ ℜ4 and also that all the coordinates involved, x as

well as x′, are homogeneous quantities, say everyone of them is a length value. Then the GC

of the Einstein equations assures that the metric g′µν(x) ∀ x ∈ σ(U) provides a new solution

to those equations if the argument coordinates in g′µν and gµν are interpreted as designating
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the same events whenever they take the same values. This is the HA that leads to different

solutions for a single mass-energy distribution and hence to a supposed inadequacy of GR

as a consequence of its GC. It would violate causality in an obvious sense.

We shall see now how the introduction of QMCCω’s dispels the difficulty posed by the

HA. Let us have a set of QMCCω’s, x̃, covering H or part of it. Let the given coordinates,

x, be related to the x̃ by

xλ = χλ(x̃) (14)

that under suitable conditions might be expressed as in eq. (7) A concrete event in H may

be labelled by its coordinates x̃ as these are uniquely assigned to that event by a specific

operational protocol. The particular physical process that the measurement act entails

individuates the corresponding event. Eqs. (12) and (14) give

x′λ = φλ(x) = φλ(χ(x̃)) ≡ ρλ(x̃) (15)

In the preceding exposition of the HA the x′ in the functions g′µν were called x to get the

new metric g′µν(x). Coherently with that we should rewrite the above equation as

xλ = ρλ(x̃) (16)

and since the functions χλ and ρλ are different on H , unless (12) is the identity transforma-

tion, one may not have in general the same values for the x̃α on the rhs’s of eqs. (14) and

(16) if one insists on having identical values for the xλ on the lhs’s of those equations. Thus

we will have in general

xλ = χλ(x̃1) = ρλ(x̃2), (17)

with x̃1 6= x̃2, indicating that we are dealing in general with distinct events when they are

labeled by the same values in the coordinates x and x′. Since the xλ and the x′λ are different

functions of the x̃α which have been given a precise operational meaning, the xλ and the x′λ

have a distinct physical interpretation. The relationships of x and x′ to x̃ clearly respectively

depend on the functional forms of the metric tensor gµν(x) and g′µν(x
′) in terms of those

coordinates as explicitly follows from our construction in eq. (7) and implicitly and more

generally from eqs. (12), (13), (14) and (15). Therefore one has to conclude that it is the

functional form of the metric that determines the physical meaning of its coordinate argu-

ments. Thus in GR coordinates in space-time are physically meaningless before specifying
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the metric tensor though they designate a particular point of the underlying mathematical

manifold M, as has been pointed out differently by Stachel [8] and Norton [17](2002). This

way one clearly sees that the HA is no objection to the requirement of GC for a metric the-

ory such as GR. The preceding conclusion has an interesting corollary: Let us ask ourselves

if it would be possible, in a metric theory such as GR, to have two different space-times

of respective metrics gµν(x) and g′µν(x
′) functionally related by eq. (13) and such that the

physical (operational) meanings of the coordinates x and x′ were the same. The answer

should be in the negative!

There is an alternative coordinate-independent way of presenting the HA that was first

pointed out by Stachel in 1980 [8]. It is essentially equivalent to the one just given, but it has

customarily become the modern account of the HA and provides other insights regarding

the conclusions reached at the end of the preceding paragraph, particularly concerning the

physical individuation of point-events in space-time as a consequence of the metric field.

We will sketch it here for completeness and to find that both descriptions complement each

other illuminating part of the deep significance of the GCP.

Let φ : M → M be a sufficietly differentiable diffeomorphic map that becomes the identity

map outside H and on its boundary so that also φ : H → H . Let p be an arbitrary point

belonging to H , and x its given coordinates in a certain chart containing p. Likewise let

x′ be the coordinates of the diffeomorphic image of p, φ(p), in another chart covering this

last point that may coincide or not with the former chart. We shall also denote by eq. (12)

the functional correspondence induced by the diffeomorphism between the coordinates in the

two charts associated to some neighbourhoods of p and φ(p). It is well known that the active

diffeomorphism φ also generates a drag-along φ∗ from tensors at p to φ(p). In particular the

drag-along metric tensor at φ(p), φ∗g, has components g′µν(x
′) in the x′ coordinates verifying

eq. (13) above, with the terms gαβ(x) entering its rhs being now the components of g at p

in the x coordinates. The GC of GR again implies that the new metric φ∗g satisfies as well

the Einstein equations. It is true that the tensors g and φ∗g would be the same were they

attached at the same point and the different coordinates x and x′ corresponded to that point,

but that is not the case. One has now a relocation of the metric field over the points of H in

which φ∗g is at φ(p), whereas g, its geometrical equivalent, was at p before the drag-along.

The answer to this version of the HA has been to assert that a unique physical solution

of the Einsten equations is given by the class of equivalence, {(M,φ∗g), ∀φ}, obtained by
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considering the action of all possible diffeomorphisms of the previous kind in the way just

explained. That equivalence has been called Leibniz equivalence in the literature. Along

with this emerges the idea that the point-events of space-time are only individuated by

the physical entities present at them, in our case by only the metric field that is the only

physical field existing in the hole. In the language of the QMCCω coordinates, x̃: the two

manifold points p and φ(p), with the respectively attached metrics, g and φ∗g, correspond to

the same event in space-time as their coordinates, xλ and x′λ, are related to the same values

of the individuating x̃′s by the functions χλ(x̃) and ρλ(x̃) whose forms -as was pointed out

above- are precisely determined by the components of mentioned two geometrically equivalent

metrics.

V. REMARKS AND CONCLUSIONS

Consider a specific but generic observer O of world-line C who uses a chosen set of

QMCCω, x̃λ’s. Let P be the space-time position of O at its proper time τP and let δxα the

components of an infinitesimal 4-vector with origin at P in the given coordinates xλ. One

may put

δxα = δxα
‖ + δxα

⊥ ,

where the last two terms respectively stand for the the parallel and perpedicular parts of

δxα to e0. The proyector on the hyperplane normal to e0 is

gαβ +
1

c2
uαuβ .

Then the quantity

dl2 ≡ (gαβ +
1

c2
uαuβ)δx

αδxβ = δxα
⊥δxα⊥

, (18)

certainly is δx̃iδx̃i and should therefore be interpreted as the spatial distance squared mea-

sured by O at time τP between P and the point-event Q at the tip of the vector δxα. This

is consistent with what follows from inverting eq. (7) neglecting higher order terms in the

infinitesimals.

If the observer O happens to be in free fall, momentarily at rest at τP and his reference

tetrad does not rotate he would then measure the proper distance between P and Q, and

eq. (18) above yields for the square of that

dl2 = δikδx̃
iδx̃k = (gαβ −

g0αg0β

g00
)δxαδxβ , (19)
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that is the usually accepted result [18].

The relationships of the generic given coordinates xλ and two different sets of QMCCω,

x̃λ and x̃′λ, may differ at most by terms of second order in the x̃i’s and x̃′i’s if the observer

is not in free fall (C is not a geodesic) and/or his/her choiced transported tetrad rotates,

which corresponds to the freedom allowed to choose the Γ̃α
ik(τ)’s via eq. (5), or by terms

of third order in the same variables if the observer is in free fall and its reference tetrad is

paralell transported, corresponding to the freedom allowed to choose the function Φλ when

the space-time is not flat.

It follows from eq. (7) that the values of tensor quantities measured on the world-line

C corresponding to two different sets of QMCCω’s, x̃ and x̃′, -but with the same choice

of reference tetrad- should be identical. However if these quantities are measured by the

observer at small δx̃k, equivalently δx̃′k, off his world-line C one has, for instance and with

no loss of generality, for the components of the electromagnetic field tensor, F λµ, in the two

sets of coordinates:

F̃ λµ = F̃ ′λµ + (Cλ
ikνF̃

′iµ + C
µ
ikνF̃

′λi)aνδx̃′k + (Dλ
ikνF̃

′iµ +D
µ
ikνF̃

′λi)ωνδx̃′k + h.o.t.,

where eqs. (7) and (5) have been used and we have put Cλ
ikν ≡ A′λ

ikν − Aλ
ikν and Dλ

ikν ≡

B′λ
ikν − Bλ

ikν , A
′λ
ikν and B′λ

ikν being the coefficients that correspond to Γ̃′α
ik(τ) in its expression

analogous to eq. (5) for Γ̃α
ik(τ); h.o.t. stands for a series of first or higher order terms in

the spatial displacements δx̃′k and higher order terms in the aν and/or ων when the δx̃′k

occur only to first order. That means that in general, in the vicinity of the observer, the

discrepancies between the outcomes of the different standard measurement methods of the

same physical quantity are more sensitive to local inertial effects, when they exist, than to

gravitational fields.

After all the foregoing considerations we can say that the meaning of the GCP is, at

least, two-fold: On the one side, as a GRP such as we defined it in Section II, it is a

really predictive physical principle like the SRP, but with the generalizations and conditions

specified thereby, namely replacement of inertial observers by general ones, of Minkowskian

coordinates by quasi- Minkowskian ones, the appearance of the space-time metric as a new

physical tensor quantity and the splitting induced in the results of the measurements of

the same physical quantities when different measurement protocols are used though they be

equivalent in the absence of gravitation or inertial effects. On the other side, as has been
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shown in Section IV with our discussion of the HA, it provides deep insights on how the

nature of coordinates depends on the form of the gravitational fields that, consistently with

that, are the entities that individuate -or, together with other physical entities that might

be present, contribute to individuate- the point-events of space-time. Because of that the

GCP has also value as a guiding principle supporting Einstein’s appreciation of its heuristic

worth in his reply to Kretschmann [2] (1918). So it would seem to favor quantum theories

of gravitation without a priori background space-time againts those theories that assume

such background structure ab initio as has also been pointed out by Lusanna and Pauri [13]

(2006).
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