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Intrinsic spin requires gravity with torsion and curvature

Nikodem Pop lawski
Department of Physics, Indiana University, Bloomington, Indiana, USA

We show that the intrinsic angular momentum of matter in curved spacetime requires the metric-
affine formulation of gravity, in which the antisymmetric part of the affine connection (the torsion
tensor) is not constrained to be zero but is a variable in the principle of stationary action. Regarding
the tetrad and spin connection (or the metric and torsion tensors) as independent variables gives the
correct generalization of the conservation law for the total (orbital plus intrinsic) angular momentum
to the presence of the gravitational field. The metric-affine formulation extends general relativity
to the simplest theory of gravity with intrinsic spin: the Einstein-Cartan-Sciama-Kibble theory. We
also show that teleparallel gravity, which constrains the connection by setting the curvature tensor
to zero, is inconsistent with the conservation of the total angular momentum.

Angular momentum without gravitational field. We consider a physical system in the absence of the gravitational
field, described by a matter Lagrangian density L which depends on matter fields φ, their first partial derivatives φ,i
with respect to the coordinates xi, and xi [1, 2]. Under an infinitesimal coordinate transformation xi → x

′i = xi + ξi,
where ξi = δxi is a variation of xi, the Lagrangian density L transforms like a scalar density: δL = (|∂xi/∂x′i|−1)L =
−ξi,iL. The variation δL is also equal to δL = (∂L/∂φ)δφ+

(

∂L/∂(φ,i)
)

δ(φ,i) + (∂̄L/∂xi)ξi, where ∂̄ denotes partial

differentiation with respect to xi at constant φ and φ,i. Using the Lagrange equations ∂L/∂φ − ∂i
(

∂L/∂(φ,i)
)

= 0,

and the identities L,i = ∂̄L/∂xi + (∂L/∂φ)φ,i +
(

∂L/∂(φ,j)
)

φ,ji and δ(φ,i) = (δφ),i− ξj,iφ,j , leads to the conservation
law:

J
i
,i = 0, (1)

for the current vector density

Ji = ξiL +
∂L

∂(φ,i)
(δφ − ξjφ,j). (2)

The existence of a conservation law for each continuous symmetry of a Lagrangian density formulates the Noether
theorem.

For Lorentz rotations, we have ξi = ǫijx
j and δφ = (1/2)ǫijG

ijφ, where ǫij = −ǫji are infinitesimal quantities and

Gij are the generators of the Lorentz group. The corresponding current (2) is

Ji = ǫkl
(

∂L

∂(φ,i)
φ,[lxk] − δi[lxk]L +

1

2

∂L

∂(φ,i)
Gklφ

)

, (3)

where [ ] denotes antisymmetrization. Because ǫkl are arbitrary, (1) gives the conservation law:

M i
kl ,i = 0, (4)

for the angular momentum density

M i
kl = xkθ

i
l − xlθ

i
k +

∂L

∂(φ,i)
Gklφ, (5)

where

θ k
i =

∂L

∂(φ,k)
φ,i − δki L (6)

is the canonical energy-momentum density. The first two terms on the right-hand side of (5) form the orbital angular
momentum density, and the last term is the canonical spin density Σ i

kl .
For translations, where xi are Cartesian coordinates, we have ξi = ǫi = const and δφ = 0. The current (2) is

Ji = ǫiL − (∂L/∂φ,i)ǫ
jφ,j , so the conservation law (1) gives ǫjθ i

j ,i = 0. Because ǫi are arbitrary, this relation gives
the conservation law for the canonical energy-momentum density (6):

θ j
i ,j = 0. (7)
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This law also results from differentiating L over xi and using the Lagrange equations. The conservation law (4) for
the total angular momentum density can be written, using (7), as the conservation law for the canonical spin density
in the special theory of relativity [1, 2]:

Σ i
kl ,i = θkl − θlk. (8)

Angular momentum with gravitational field. In the metric-affine formulation of gravity, the tetrad eia and the spin
connection

ωa
bk = eaje

j
b;k = eaj (ejb,k + Γ j

i ke
i
b) (9)

are dynamical variables describing the geometry of spacetime [1–4]. Semicolon denotes the covariant derivative with
respect to the affine connection Γ i

j k. The affine connection is asymmetric in the lower indices and its antisymmetric
part is the torsion tensor [1–4]:

Si
jk = Γ i

[j k]. (10)

The spin connection appears in the covariant derivative of a Lorentz vector: V a
|i = V a

,i+ω
a
biV

b and Va|i = Va,i−ωb
aiVb,

analogously to Γ i
j k in the covariant derivative of a vector, V k

;i = V k
,i + Γ k

l iV
l and Vk;i = Vk,i − Γ l

k iVl. The tetrad

relates spacetime coordinates i, j, ... to local Lorentz coordinates a, b, ...: V a = V ieai . Its covariant derivative vanishes

by means of (9): eai|k = eai,k − Γ j
i ke

a
j + ωa

bke
b
i = 0, where vertical bar denotes the covariant derivative acting on both

spacetime and Lorentz coordinates. Lorentz coordinates are thus lowered or raised by the Minkowski metric tensor
ηab of a flat spacetime, analogously to the metric tensor gik lowering or raising spacetime coordinates. The metricity
condition gij;k = 0 gives the affine connection Γ k

i j = { k
i j}+Ck

ij , where { k
i j} = (1/2)gkm(gmi,j + gmj,i− gij,m) are the

Christoffel symbols, Ci
jk = Si

jk + 2S
i

(jk) is the contortion tensor, and ( ) denotes symmetrization. It also constrains

the spin connection to be antisymmetric in its Lorentz indices: ωab
i = −ωba

i. Instead of eia and ωab
i, the metric tensor

gik = ηabe
a
i e

b
k and the torsion tensor Sj

ik = ωj

[ik] + ea[i,k]e
j
a can be taken as the dynamical variables.

We consider a physical system in the presence of the gravitational field. The variation of Lm with respect to the
spin connection defines the dynamical spin density [1–4]

S i
ab = 2

δLm

δωab
i

= 2
∂Lm

∂ωab
i

, (11)

which is antisymmetric in the Lorentz indices: S i
ab = −S i

ba . The spin tensor is defined as sijk = 1
e
Sijk, where

e = det eai =
√
−det gik. The second equality in (11) is satisfied because a matter Lagrangian density may depend

on the spin connection but not on its derivatives; a scalar density depending on derivatives of ωab
i is a Lagrangian

density for the gravitational field. The spin density is also given by

S
k

ij = 2
δLm

δCij
k

= 2
∂Lm

∂Cij
k

. (12)

The variation of the Lagrangian density for matter Lm with respect to the tetrad defines the dynamical energy-
momentum density [1–4]

T
a
i =

δLm

δeia
=
∂Lm

∂eia
− ∂j

(

∂Lm

∂(eia,j)

)

. (13)

The metric energy-momentum tensor Tij = (2/e)(δLm/δg
ij) = (2/e)[∂Lm/∂g

ij − ∂k
(

∂Lm/∂(gij,k)
)

] is symmetric,
Tij = Tji. It is related to the dynamical energy-momentum density and the spin tensor by the Belinfante-Rosenfeld

relation: Tik = Tik/e− (1/2)(s j
ik − s j

k i + sjik);j + Sj(s
j

ik − s j
k i + sjik), where Si = Sk

ik is the torsion vector. Since

the variations δωab
i are independent of δeia, the spin density is independent of the energy-momentum density.

The Lorentz group is the group of tetrad rotations, eai = Λa
be

b
i , where Λa

b is a Lorentz matrix. Since a matter
Lagrangian density Lm(φ, φ,i) is invariant under local, proper Lorentz transformations, it is invariant under tetrad
rotations: δLm = (∂Lm/∂φ)δφ+

(

∂Lm/∂(φ,i)
)

δ(φ,i)+T a
i δe

i
a+(1/2)S i

ab δω
ab

i = 0, where the changes δ are caused by
a tetrad rotation. Upon integration of δLm over spacetime, the terms with φ and φ,i vanish because of the Lagrange
equations:

∫

(

T
a
i δe

i
a +

1

2
S

i
ab δω

ab
i

)

dΩ = 0. (14)
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For an infinitesimal Lorentz transformation, Λa
b = δab + ǫab, where ǫab = −ǫ a

b are infinitesimal quantities, the tetrad

eai changes by δeai = Λa
be

b
i −eai = ǫai, and the tetrad eia changes by δeia = −ǫia because of eai e

j
a = δji . Accordingly, the

spin connection changes by δωab
i = δ(eajω

jb
i) = ǫajω

jb
i − eaj ǫ

jb
;i = ǫacω

cb
i − eaj ǫ

jb

|i + ǫacω
bc
i = −ǫab|i. Substituting

these variations into (14) and using partial integration
∫

Vi
;idΩ = 2

∫

SiV
idΩ, where V is any contravariant vector

density, leads to −
∫

(

T a
i ǫ

i
a + 1

2S
i

ab ǫ
ab

|i

)

dΩ = −
∫

(

Tijǫ
ij + 1

2S
k

ij ǫ
ij

|k

)

dΩ =
∫

(

−T[ij]−SkS
k

ij + 1
2S

k
ij ;k

)

ǫijdΩ = 0.

Since the infinitesimal Lorentz rotation ǫij is arbitrary, we obtain the conservation law for the spin density [1–4]:

S
k

ij ;k − 2SkS
k

ij = Tij − Tji. (15)

This law can be written as S
ijk

,k − Γ i
l kS

jlk + Γ j
l kS

ilk − 2T[ij] = 0. The conservation law (15) also results from
antisymmetrizing the Belinfante-Rosenfeld relation with respect to the indices i, k.

A matter Lagrangian density Lm can be written as Lm = eL, where L is a scalar. If Lm depends on matter
fields φ (minimally coupled to the affine connection) and their first derivatives φ,i, and the fields φ do not contain
vector indices, then the tetrad appears in L only through derivatives of φ, in a covariant combination eiaφ|i. Such
fields can be, for example, spinor fields. Varying Lm with respect to the tetrad gives δLm = eδL − eeaiLδe

i
a =

e
(

∂L/∂(φ|a)
)

φ|iδe
i
a − Lme

a
i δe

i
a =

(

(

∂Lm/∂(φ|a)
)

φ|i − eaiLm

)

δeia. The dynamical energy-momentum density (13) is

therefore T a
i =

(

∂Lm/∂(φ|a)
)

φ|i − eaiLm. The corresponding tensor with two coordinate indices,

T
k
i =

∂Lm

∂(φ|k)
φ|i − δki Lm =

∂Lm

∂(φ,k)
φ|i − δki Lm, (16)

generalizes the canonical energy-momentum density (6) to the presence of the gravitational field [1, 4]. The
spin connection ωab

i appears in Lm only through derivatives of φ, in a combination −
(

∂Lm/∂(φ,i)
)

Γiφ, where
Γi = −(1/2)ωabiG

ab is the connection in the covariant derivative of φ: φ|i = φ,i − Γiφ. The dynamical spin

density (11) is therefore S i
ab =

(

∂Lm/∂(φ,i)
)

Gabφ. The corresponding tensor with two coordinate indices,

S i
kl =

(

∂Lm/∂(φ,i)
)

Gklφ, coincides with the canonical spin density Σ i
kl in (5). Consequently, the conservation

law (15) for the spin density generalizes (8) to the presence of the gravitational field [1, 2].
In the metric formulation of gravity, the tetrad (or the metric tensor) is the only dynamical variable representing

the gravitational field [5]. In that formulation, the torsion tensor is constrained to be zero, so the affine connection is
equal to the Levi-Civita connection given by the Christoffel symbols: Γ k

i j = { k
i j}. Accordingly, the spin connection is

a function of the tetrad and its first derivatives, so the variations δωab
i are functions of δeia and their derivatives. The

spin density (11) is thus a function of the energy-momentum density, forming a part of the orbital angular momentum
density, whereas (12) is no longer valid. The relation (14) reduces to

∫

T a
i δe

i
adΩ = 0 and (15) reduces to Tij = Tji,

which is not a generalization of (8) unless the intrinsic spin vanishes. The metric formulation therefore excludes the
intrinsic spin. Consequently, the observed existence of matter with intrinsic spin requires the metric-affine formulation
and a nonzero torsion tensor. For example, metric and torsionless f(R) gravity theories [6] are ruled out.
Metric-affine gravity: Einstein-Cartan-Sciama-Kibble theory. The Lagrangian density for the gravitational field

contains the first derivatives of the spin or affine connection, which appear through the curvature tensor, Ra
bij =

ωa
bj,i − ωa

bi,j + ωa
ciω

c
bj − ωa

cjω
c
bi or Ri

mjk = ∂jΓ
i
mk − ∂kΓ i

m j + Γ i
l jΓ

l
m k − Γ i

l kΓ l
m j [1, 2, 4]. This tensor satisfies

the Bianchi identity, Ri
n[jk;l] = 2Ri

nm[jS
m
kl], and the cyclic identity, Rm

[jkl] = −2Sm
[jk;l] + 4Sm

n[jS
n
kl] [1, 4, 7].

The curvature tensor can be decomposed as Ri
klm = P i

klm + Ci
km:l − Ci

kl:m + Cj
kmC

i
jl − Cj

klC
i
jm, where P i

klm is
the Riemann tensor and colon denotes the covariant derivative with respect to the Levi-Civita connection. The Ricci
tensor is given by Ra

i = Rab
ije

j
b or Rik = Rj

ijk .
The simplest and most natural gravitational Lagrangian density is linear in the curvature tensor:

Lg = − 1

2κ
eR, (17)

where R = Rb
je

j
b = Ri

i is the Ricci scalar and κ = 8πG/c4 is Einstein’s gravitational constant (which sets the units
of mass). Such a function has no free parameters. Varying the total action for the gravitational field and matter,
S = (1/c)

∫

(Lg + Lm)dΩ, with respect to the torsion tensor (or the spin connection) and equaling this variation to
zero gives the Cartan field equations [1–4]

Sj
ik − Siδ

j
k + Skδ

j
i = − κ

2e
S

j
ik . (18)
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These equations are linear and algebraic: torsion is proportional to the intrinsic spin density of matter and thus
vanishes outside material bodies. Varying the total action S with respect to the tetrad and equaling this variation to
zero gives the Einstein field equations [1–4]

Rki −
1

2
Rgik =

κ

e
Tik. (19)

Substituting the field equations (18) and (19) into the contracted Bianchi identity gives the conservation law for the

dynamical energy-momentum density: T
ij
:j = C i

jk Tjk + (1/2)SkljR
klji, which generalizes (7). Substituting (18) and

(19) into the contracted cyclic identity leads to the conservation law (15) for the spin density. A more complicated
Lagrangian density for the gravitational field would give more complicated field equations. Those equations, however,
upon substituting into the contracted Bianchi and cyclic identities would still give the same conservation laws. The
conservation law for the spin density is therefore contained in the cyclic identity for the curvature tensor. In the
metric formulation of gravity, the cyclic identity reduces to Pm

[jkl] = 0, which leads to Tij = Tji. This symmetry

relation is consistent with (4) only if the intrinsic spin is absent. The Bianchi and cyclic identities in the metric
formulation therefore contain only one independent conservation law, for the energy-momentum density, from which
the conservation law for the orbital angular momentum density follows.

Varying the total action S with respect to the metric tensor and equaling this variation to zero gives the Riemannian
form of the Einstein equations, Gik = κ(Tik + Uik), where Gik = P j

ijk − (1/2)P lm
lmgik is the Einstein tensor and

U ik = κ
(

−sij[lsklj] − (1/2)sijlskjl + (1/4)sjlis k
jl + (1/8)gik(−4sl

j[ms
jm

l] + sjlmsjlm)
)

is a contribution to the energy-

momentum tensor from torsion, which is quadratic in the spin tensor [4]. The spin tensor also appears in Tik because
Lm depends on torsion. The metric-affine formulation of gravity, based on the Lagrangian density (17), constitutes
the Einstein-Cartan-Sciama-Kibble (ECSK) theory [1–4], and the corresponding metric formulation is the standard,
Einstein-Hilbert form of the general theory of relativity (GR) [5]. Since the metric-affine formulation of gravity is
required by the existence of intrinsic spin, the ECSK theory is a more complete form of GR. The quantity Uik is
significant only at extremely high densities, for which the square of the density of spin is on the order of the energy
density multiplied by κ [8]. In vacuum, where torsion and Uik vanish, both theories have the same field equations,
Gik = κTik, and thus give the same predictions. The ECSK theory of gravity therefore passes all observational and
experimental tests of GR [9].
Dirac spinors in spacetime with torsion. Elementary particles, that are fermions, are described by Dirac spinor

fields (wave functions). In the metric-affine formulation of gravity, the Dirac Lagrangian density for a free spinor ψ with
mass m, minimally coupled to the gravitational field, is given by Lm = (i/2)~ce(ψ̄γkψ;k − ψ̄;kγ

kψ) −mc2eψ̄ψ, where
ψ̄ = ψ†γ0 is the adjoint spinor corresponding to ψ [1, 4]. The covariant derivative of ψ, ψ;k = ψ,k − Γkψ, gives ψ̄;k =
ψ̄,k+ ψ̄Γk. The Dirac matrices γa obey γ(aγb) = ηabI and transform under local Lorentz transformations like ψψ̄. The
last relation yields γa|k = ωa

bkγ
b − [Γk, γ

a], which gives the Fock-Ivanenko spinor connection Γk = −(1/4)ωabkγ
aγb,

in accordance with the generators of the Lorentz group in the spinor representation, Gab = (1/2)γ[aγb]. Varying the
total action for the gravitational field and fermionic matter with respect to the adjoint spinor ψ̄ and equaling this
variation to zero gives the Dirac equation i~γkψ;k = mcψ.

The energy-momentum tensor for a Dirac field is Tik = (i/2)~c(ψ̄δj(iγk)ψ;j − ψ̄;jδ
j

(iγk)ψ) − (i/2)~c(ψ̄γjψ;j −
ψ̄;jγ

jψ)gik + mc2ψ̄ψgik. The covariant derivative of a spinor can be decomposed into the Riemannian covariant
derivative and a term containing Cijk : ψ;k = ψ:k + (1/4)Cijkγ

[iγj]ψ, ψ̄;k = ψ̄:k − (1/4)Cijkψ̄γ
[iγj]. The contortion

tensor therefore appears in the Dirac Lagrangian density in a term (i/8)~cψ̄(γkγ[iγj] + γ[iγj]γk)ψCijk . Consequently,
the spin tensor for a Dirac field is completely antisymmetric: sijk = −(1/e)ǫijklsl, where ǫijkl is the Levi-Civita
permutation symbol, si = (1/2)~cψ̄γiγ5ψ is the Dirac spin pseudovector, and γ5 = iγ0γ1γ2γ3 [1–4]. This spin tensor
does not depend on m and remains the same if we include the electromagnetic, weak or strong interactions of fermions.
Since Cijk appears only in the additive, kinetic term in the Lagrangian density, (i/2)~ce(ψ̄γkψ;k − ψ̄;kγ

kψ), the spin
density is also additive. Accordingly, the spin tensor for a system of fermions is also completely antisymmetric.

Substituting the spin tensor for a Dirac field into the Cartan equations (18) gives the completely antisymmetric
torsion tensor: Sijk = Cijk = (1/2)κeijkls

l, and the Dirac equation turns out to be nonlinear (cubic) in ψ: i~γkψ:k =
mcψ− (3/8)~2cκ(ψ̄γkγ5ψ)γkγ

5ψ [10]. The corresponding combined energy-momentum tensor is given by Tik +Uik =
(i/2)~c(ψ̄δj(iγk)ψ:j − ψ̄:jδ

j

(iγk)ψ) + (3/4)κslslgik. The second term in this tensor removes the unphysical big-bang

singularity, which appears in the metric GR, by a cusp-like bounce at a finite minimum scale factor, before which
the Universe was contracting [11] (a similar nonsingularity is shown in [12]). The dynamics of the Universe after the
bounce also explains why the observable Universe at largest scales appears spatially flat, homogeneous and isotropic,
without needing cosmic inflation [11].
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Teleparallel gravity. The teleparallel formulation of gravity constrains the curvature tensor Ri
mjk to be zero, which

is satisfied if the affine connection is equal to the Weitzenböck connection, Γ j
i k = eai,ke

j
a [13]. In this formulation, as

in GR, only the tetrad is a dynamical variable in varying the action. The corresponding spin connection (9) vanishes,
so another expression for the teleparallel spin connection is needed to couple spinors and the gravitational field. Such
a coupling is thus nonminimal. The expression ωa

bk = −Ca
bk is consistent with GR; it satisfies δωab

i = −ǫab|i for

infinitesimal Lorentz transformations [14]. Since the teleparallel contortion tensor is a function of the tetrad and its
first derivatives, the spin density (12) is thus a function of the energy-momentum density, forming a part of the orbital
angular momentum density, whereas (11) is no longer valid.

A teleparallel gravitational Lagrangian density, which gives the same field equations as GR, is given by Lg =
(1/2)(e/κ)T , where T = SijkSijk + 2SijkSjik − 4SiSi [13]. The teleparallel formulation of gravity, based on this
Lagrangian density, constitutes the teleparallel equivalent of general relativity (TEGR). This expression is less fun-
damental than the simple Lagrangian density (17) of the ECSK theory; it has two free parameters that were chosen
to give the desired field equations. The contracted cyclic identity leads to the conservation law for the dynamical
energy-momentum density, Tij

:j = 0, whereas the contracted Bianchi identity is satisfied by construction. The field
equations impose the symmetry condition on (13), Tij = Tji [15], which is not a generalization of (8) unless the in-
trinsic spin vanishes. The symmetry condition arises also in other teleparallel theories of gravity, such as f(T ) gravity
[16]. Absolute parallelism therefore excludes the intrinsic spin. Consequently, the observed existence of matter with
intrinsic spin requires a nonzero curvature tensor, ruling out the teleparallel formulation of gravity.
Summary. The observed existence of matter with intrinsic spin requires spacetime to be equipped with both cur-

vature and torsion. Regarding the tetrad and spin connection as independent variables gives the correct conservation
law for the total (orbital plus intrinsic) angular momentum in the presence of the gravitational field. Extending GR
into the simplest theory of gravity with curvature and torsion, the ECSK theory, not only includes the intrinsic spin
but also avoids the big-bang singularity. Torsionless theories, such as metric f(R) gravity [6], and teleparallel theories,
such as TEGR [13] and f(T ) gravity, are structurally inconsistent with the presence of intrinsic spin and thus are
unphysical. Cosmologies based on those theories [16] cannot be used, especially in the very early Universe where
intrinsic spin is significant.
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