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The present paper continues the work of the authors [J. Math. Phys. 54, 062504 (2013)] where manifestly co-
variant differential identities and conserved quantities in generally covariant metric-torsion theories of gravity
of the most general type have been constructed. Here, we study these theories presented more concretely, set-
ting that their Lagrangians . are manifestly generally covariant scalars: algebraic functions of contractions
of tensor functions and their covariant derivatives. It is assumed that Lagrangians depend on metric tensor
g, curvature tensor R, torsion tensor T and its first VT and second VVT covariant derivatives, besides,
on an arbitrary set of other tensor (matter) fields ¢ and their first V¢ and second V'V ¢ covariant deriva-
tives: £ = Z(g,R; T,VT,VVT; ¢, Vi, VVp). Thus, both the standard minimal coupling with the
Riemann-Cartan geometry and non-minimal coupling with the curvature and torsion tensors are considered.

The studies and results are as follow. (a) A physical interpretation of the Noether and Klein identities is
examined. It was found that they are the basis for constructing equations of balance of energy-momentum
tensors of various types (canonical, metrical and Belinfante symmetrized). The equations of balance are
presented. (b) Using the generalized equations of balance, new (generalized) manifestly generally covariant
expressions for canonical energy-momentum and spin tensors of the matter fields are constructed. In the
cases, when the matter Lagrangian contains both the higher derivatives and non-minimal coupling with
curvature and torsion, such generalizations are non-trivial. (¢) The Belinfante procedure is generalized for
an arbitrary Riemann-Cartan space. (d) A more convenient in applications generalized expression for the
canonical superpotential is obtained. (e) A total system of equations for the gravitational fields and matter
sources are presented in the form more naturally generalizing the Einstein-Cartan equations with matter.
This result, being a one of more important results itself, is to be also a basis for constructing physically
sensible conservation laws and their applications.
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Keywords: diffeomorphic invariance, manifest covariance, differential identities, conservation laws, stress-
energy-momentum tensors, spin tensors, metric-torsion theories, gravity, Riemann-Cartan geometry

For the sake of a definiteness, let us repeat the def-
initions, which we use. A theory is called as generally

The present work is the second one of the series of
works related to constructing manifestly covariant differ-
ential identities and conserved quantities, and their study
in generally covariant metric-torsion theories of gravity.
In the first work of the series! (we will call it as the
Paper I), in an arbitrary Riemann-Cartan space C(1, D)
the next manifestly covariant expressions and relations
have been obtained: (a) the generalized Noether current
J[0€]; (b) the system of differential Klein and Noether
identities; (c¢) the generalized superpotential 0[6€], with
the use of which the generalized Noether current is pre-
sented; (d) the generalized symmetrized Noether current

sym
J [0€] as a result of an application of the generalized
Belinfante procedure to the generalized Noether current.
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covariant if it is invariant with respect to general diffeo-
morphisms. At the same time, a form of its presenta-
tion can be arbitrary. Because gauge covariant theories
that are invariant with respect to internal gauge transfor-
mations are very similar to the generally covariant ones
(have the same structure of currents, etc), for the sake of
an universality we call theories of both these types as a
gauge-invariant theories. On the other hand, the usual
gauge theories with an internal gauge group we call sepa-
rately as the gauge theories of Utiyama-Yang-Mills type.

Thus, in the Paper I, the quantities and relations in the
theories of the most general type have been constructed.
In the present work, we concretize them. We apply the
developed formalism for the study of manifestly gener-
ally covariant theories, which are a more interesting and
important example of diffeomorphically invariant theo-
ries. We call a theory as manifestly generally covari-
ant if its Lagrangian £ is a generally covariant scalar
constructed as algebraic scalar function of manifestly co-
variant objects that are transformed following the lin-
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ear homogeneous representations of the diffeomorphism
group. This means that .Z is an algebraic function of
scalar contractions of tensor (and/or spinor) field func-
tions and their covariant derivatives; besides manifest de-
pendence on field variables, . can also depend on curva-
ture and torsion tensors independently. It seems that al-
most all the physically interesting theories are manifestly
generally covariant or can be presented in such a form.
Exceptions are, e.g., topological theories of the Chern-
Simons type (see reviews? 19 and references therein), La-
grangians of which are presented by a secondary char-
acteristic class of a topological invariant (Chern-Simons
form). Such Lagrangians explicitly contain connections
that are transformed following a linear non-homogeneous
representation. At the same time, under gauge trans-
formations the Lagrangians themselves change to a to-
tal divergence. In the Chern-Simons theories, conserved
quantities were constructed in the works!! 8. Notice
also that Lagrangians in such theories can be presented
in the exactly gauge invariant form by expanding the
Chern-Simons form to the transgression form!318-27,

Earlier, manifestly generally covariant theories both
in Riemannian spacetime (see, for example, Refs.28759),
and in the Riemann-Cartan space (see, for example,
Refs.5157) were studied already. In particular, in the
works by Trautman®'>* and by Hehl at al®® 57 the sim-
plest theory of gravity with torsion, the Einstein-Cartan
theory (ECT), with matter, presented by the Lagrangian
L =L M = —%R—i—fM(g; @, Vi) is examined.
Their main results are: (a) clarification of the role of the
canonical energy-momentum tensor (EMT) of matter as
a source of the metric field; (b) determination of the con-
nection between the variation derivative AI™ /AT with
respect to the torsion field T and the Belinfante tensor
B, induced by the spin tensor (ST) S in the matter sec-
tor of the system related to the action functional IM; (c)
clarification of the role of the canonical ST of matter as
a source of the torsion field; (d) in the Riemann-Cartan
space, construction of the universal balance equation for
the canonical EMT of matter.

In the present work, we consider significantly more
general manifestly generally covariant theories, the to-
tal Lagrangians of which .Z = Z% + .M have the form:
¥ =%(g,R; T,VT,VVT; ¢,V , VVp) that, be-
sides of the second derivatives of matter fields ¢, in-
cludes a dependence on non-minimal coupling both with
the curvature R and with the torsion T. By this, we
significantly generalize the results of earlier works. At
first, following the recommendations of the Paper I, we
recalculate the elements necessary for constructing cur-
rents and superpotentials of various types. Basing on
this, generalized covariant dynamical quantities are con-
structed. They are total canonical both ST s and EMT
t, so-called modified canonical both ST "s ¢ and EMT

mod . sym .
t , at last, symmetrized EMT t and metric EMT

met
t . Connections between these quantities are clarified,

besides, for each of the types of the dynamic character-

istics equations of balance are presented. Next, the cor-
respondent currents and superpotentials are constructed.
The generalized equations of balance are also the basis
for constructing the total system of the equations of the
aforementioned theories generalizing the equations of the
ECT with matter.

The main original results of the present work related to
the manifestly generally covariant metric-torsion theories
of gravity are:

e a physical interpretation of the Klein and Noether
identities, which are a basis for constructing equa-
tions of balance for EMTs of various types;

e a construction of manifestly generally covariant ex-
pressions for canonical EMT and ST of matter
fields. In the more complicated cases, when .ZM
has a generalized dependence as remarked above,
canonical EMT and ST of matter fields cannot be
obtained with the use of the standard procedure,
namely, applying the 1-st Noether theorem in the
Minkowski space and covariantization of the ex-
pressions. In the complicated cases, the general-
ized equations of balance are crucial for construct-
ing canonical EMT and ST;

e a nontrivial generalization of the Belinfante pro-
cedure applied to the canonical EMT t for con-

sym
structing symmetrized EMT t n an arbitrary
Riemann-Cartan space;

e a construction of a more simple and convenient in
applications generalized expression for the canoni-
cal superpotential;

e a presentation of a total system of equations for the
gravitational fields and matter sources in the form,
which more naturally generalizes the FEinstein-
Cartan equations with matter. This result is to be
a basis for constructing physically sensible conser-
vation laws and their applications in the Paper III
of the series.

The most of the calculations are very cumbersome and
intricate. Therefore, to give a possibility to a reader to
repeat them, many steps are presented in the main text.
Besides, the more important formulae are given in boxes.
It is important also that initial identities are analyzed
under different assumptions, when either the total set of
field equations hold, or a part of field equations (say, the
gravitational ones only, or the matter ones only) hold. In
future, this will be useful for studying both gravitational
theories with sources of the general type and field theo-
ries on a given geometrical background. At last, one has
to note that, in spite of the present work (Paper II) is
the second work of the series, developing the Paper I, it
presents a quite independent research.

The paper is organized as follows. In Sec. II, neces-
sary formulae for the current and superpotentials, and
the Klein-Noether identities obtained in the Paper I are
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given. In the present work, namely for all of them con-
crete expressions in the framework of the manifestly gen-
erally covariant theories are constructed. Also problems,
which are elaborated in the present work are formulated.

All the next studies are related to the theories with
the generalized manifestly covariant Lagrangians .£ of
the described above type. In Sec. III, corresponding
to the formulae (3) - (5), the covariant tensors K and
L are constructed. They are necessary to construct the
tensors U, M and N determining the generalized Noether
current J[6&].

In Sec. IV, the manifestly covariant expressions for the
tensors U, M and N themselves are carried out. The
generalized covariant expressions for the total canonical
EMT t and ST s are found. A contribution initiated
both by the curvature tensor R and by the non-minimal
coupling with the torsion tensor T is taken into account.
It is shown that in the manifestly covariant theories the
tensor N does not vanish only, when the Lagrangian &
contains the curvature tensor R explicitly. Also addi-
tional (with respect to the standard ones) symmetries of
N are clarified.

In Sec. V, a structure of variational derivatives
AI/AT and AI/Ag of the action functional I is ana-
lyzed. This gives a basis to clarify a physical sense both
of the Noether identity and of all the Klein identities. It
is shown that the results by Trautman and by Hehl at al:
(27) and (28) are held in a more general case, when the
Lagrangian has the form: . = Z(g,R; ¢, Ve, VV ).
However, in a case of the next generalization, when the
Lagrangian contains a non-minimal coupling with the
torsion, the results become more complicated: additional
terms appear. Therefore, one needs to modify the basic
dynamical characteristics. We introduce such a modi-
fication in an explicit form and construct modified total

mod mod
canonical ST 's and EMT t . The use of these quanti-
ties permits to conserve a connection between ATM /AT
and B, and the equations of balance in the standard form.
Besides, in this section, manifestly covariant equations of

balance for both the total symmetrized EMT Sytm and the
total canonical EMT t are carried out. It is shown also

¢
that symmetrized EMT Sytm and the metrical EMT mte
are equivalent if the matter equations hold. In the general
case we prove that the generalized symmetrized Noether

current S?.J]m [0€] is determined by the symmetrized EMT

Sytm only. Then, it turns out that surface terms in the
functional action do not influence to constructing both
sym sym

t and J [0€] (see the Paper I, Sec. V).

Sec. VI is devoted to calculating the superpotential
0[6€] (21) and clarifying the role of the dynamical charac-
teristics EMT and ST in the structure of the generalized
current J[0€] (2). The obtained manifestly covariant for-
mula for the superpotential is quite simple, it is expressed
only through the Belinfante tensor b and a tensor G, the
last exists only if the Lagrangian . depends on the cur-
vature tensor R explicitly.

In Sec. VII, the general structure of the equations of
motion of the gravitational fields is examined. The point
of view, which is beginning from Lorentz is discussed.
Following it, in the background independent field the-
ories, the total EMT and ST are equal to zero identi-
cally. The Einstein arguments against are given. We
show that the equations of balance for the pure gravita-
tional part hold identically and have a clear geometrical
sense: they generalize twice contracted the Bianchi iden-
tities onto the case of an arbitrary metric-torsion theory
of gravity in the Riemann-Cartan space. Basing on this
result, we suggest a more preferable (decomposed) form
for the equations of the gravitational fields, where the
pure gravitational part is placed on the left hand side of
the equations, whereas the other (matter) part is trans-
formed to the right hand side. This generalizes the form
of the equations in the ECT with matter as well as the
Einstein equations themselves. Their structure is more

d
natural: the modified canonical EMT of matter m’f‘ is a
source of the metric field g, whereas the modified canon-

ical ST of matter mSOd is a source of the torsion field T.
Such a presentation of the equations is interesting and
important itself. However, besides of that, it is the basis
for constructing physically sensible conservation laws in
the next Paper III of the series. By this, one concludes
also that the total dynamical characteristics of the phys-
ical system are not equal to zero identically, adding the
Einstein arguments.

A calculation of auxiliary quantities is presented in

Appendixes. In Appendix A, universal tensors {A‘;‘Lﬂg}

and {Afﬁg }, and various related identities are carried
out. The use of them permits significantly to simplify a
presentation of many formulae. In Appendix B, mani-
festly covariant expressions for general variations of var-
ious quantities, which appear under calculation of the
functional variation of the action functional, are found.
In Appendix C, the general theory of the Belinfante-
Rosenfeld symbols, which permits to present the main re-
lations of the Riemann-Cartan geometry more generally
and economically, is developed. At last, in Appendix D,
the general identity, which is a central one in constructing

mod mo
modified canonical EMT t and ST sd, is proved.

Il. PRELIMINARY FORMULAE AND A STATEMENT
OF TASKS

In this Section, we present the main results of the Pa-
per I, which are necessary below. Also, here, we formu-
late the goals of the present paper. In the Paper I, an
arbitrary generally covariant theory of tensor fields ®,
including both gravitational and matter ones, with the
action functional

I[®: 514 :j‘% V9L, (1)
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is studied. In (1), the integration is provided over an arbi-
trary (D+1)-dimensional volume in the Riemann-Cartan
space C(1, D), restricted by two spacelike D-dimensional
hypersurfaces ¥; and X,; the Lagrangian . is a local
function of the field variables ® = {®4(z); A = 1,N}
and their derivatives up to a second order. One of the
main results of the Paper I is a construction of the man-
ifestly covariant expression for the generalized Noether
current:

JH[6€]) = UahS€™ + MoP1V 506™ + NP1V (V5567

The displacement vectors d€ are induced by diffeomor-

phisms; the tensors U, M and N are presented by ex-
pressions:

U g5+ kv 0, |4
+ L") 4 <VK‘I)Q|A + §REMA‘I’E)‘|A) ; (3)
M, P et KM 40, P[4 + LP| 40, |A
+ L4 <vﬁq>a5|f‘ - %Tﬁmcbaw‘) ;o (4)
N, B def L(V|M|A(I)a\3)|f4. (5)
Important definitions and relations in the Riemann-
Cartan geometry are given in the Paper I. Now, recall

necessary notations only. The torsion tensor T and the
curvature tensor R are presented as

T = =20 s (6)

R\ = 0,2\ =0T 5 + 1700 T =T 0, I (7)

Here, the connection r % {F)‘W} is defined by a metric

compatlble condition

V)\g,uv = 8)\9;“/ - Fa,u)\gav - Fav)\g,ua = 07 (8)
where the standard covariant derivative V {V A} is
used. The modified covariant derivative V is

Va=Va+T%q. 9)

Quantities presented by the notations {®,|%} and
{®_P|4} are defined by the transformation properties of
the fields ® under diffeomorphisms:

0e0% (z) = @, | 1067 (2) + @, 7| 1Vp0E (). (10)

The tensors K and L are defined as a result of a compar-
ison of the variation of the action functional (1):

def

5@][@ 21 2] = I[‘I’—F(S‘I’,ELQ] —I[‘I’;ELQ]
11
= fd:v& (V=9%) (1)
with the formula
5o I1[®; % fd:v AL 54
o 1,2) ACIJA
(12)

+ f d.CL'\/—gVH {K”|A5(I)A +LB“|AV,65‘I>A}.
P

Hereinafter, instead of the usual variational derivative we
use a quantity proportional it

AT 1 Gl
APA /=g 6DA

— covariant variational derivative.

The tensors U, M and N are not independent, they
satisfy the system of the Klein-Noether differential iden-
tities:

(13)

v = Iy (14)
8 1 Bpo P * Byl 2 ABul 1 (Blpoplu]

Ua — gN)\ R apo + VH Ma - §v>\Na + gNOt T po ( )
15

1 2 * 1

= <Ma[pd] 29N 4 gNa[p'“T"’]m> T8, = _I.5

M, B 4 %HNQB’YH + Na(BW’JTW)HV =0; (16)
N =0, (17)
where .7 def AI plA 19
def AI A(DA | 1

I, = o, 1% (18)

APA
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are equal to zero if the equations of motion AI/A®4 = 0
hold.

The analysis of the identities (14) — (17) lead to the
boundary Klein theorem (the 3-rd Noether theorem),

TH5E] = — 1,156 + (%UW 9€] + 567 [6£]T“pa) ,

which states that the current (2) can be presented in (20)
the form: where the generalized canonical superpotential is
v ] 2 (= Alpv] 1 [ v]po o 4 Bluv] a
0" [0€) = { ~ Mol 4 5 (VAN 4 ST o No 07 ) 6067 4 4 =3 NP0 6 V50€7, (21)

With the use of the generalized Belinfante procedure the
generalized symmetrized Noether current

sym

5" eioe) S g ise] — (Vo (5€] + 15001061 T o

_ s[y]m a#(sé'a

(22)
has been constructed. It turns out that the generalized
Belinfante tensor Z[6€], determining the procedure, coin-
cides with the generalized canonical superpotential 0[0€]

(21). Thus the current Sme [0€] (22), by (20), is propor-
tional to the operators of the equations of motion, that is
proportional to the variational derivatives of the action.
This means that it does not depend on divergences in the
Lagrangian (in the other words, it does not depend on
surface terms in the action functional (1)) and is equal
to zero on the equations of motion.

In the present paper, we consider more concrete theo-
ries presented by the action (1), examining Lagrangians
in a manifestly covariant form:

Z = Z(g,R; T,VI,VVT; ¢, Vo, VVyp). (23)

Here, the total set of the fields ® is presented by the met-
ric tensor g, by the torsion tensor T and by a set of the

matter fields ¢ = {¢*(x); a = 1,n}, which are consid-
ered as tensorial ones also. Lagrangians of the type (23)
include, together with the minimal coupling, the non-
minimal coupling related both to the curvature and to the
torsion. The main task of the present paper is to present
relations and conserved quantities (currents and super-
potentials) constructed in the Paper I in a maximally
concrete form that follows from the concrete structure of
the Lagrangian (23).

Recall, see formulae (2) and (21), that for construct-
ing the generalized current J[0€] and superpotential O[0€]
one needs the tensors U (3), M (4) and N (5). For con-
structing the last the other tensors, K and L, defined in
(12) have to be calculated. To do this one has to compare
(12) with (11), for which one has to know the variation
dp(v/—92). Because the fields T and ¢ are included in
the Lagrangian in a similar way, for simplification of the
calculations we unite them into the unique set ¢:

T, — ¢ {3} Y (T ¢} (24)

If necessary one can decompose the set ¢ again. Now,
the Lagrangian (23) is presented as

Z=2(gR; Vo, VV0). (25)

One has to keep in mind that the torsion T is included
in the Lagrangian (23) not only ezplicitly as arguments
T, VT and VV'T, but not explicitly also over the con-
nection I', which is used for constructing the covariant
derivative V and the curvature tensor R.

As it was remarked in Introduction, already in the
works by Trautman®!'>* and by Hehl at al®® 7 the con-
struction of the conservation laws and conserved quanti-
ties in the framework of the manifestly covariant theories
has been carried out. Theories with the Lagrangians of
the type

Z=2(g ¢, V) (26)
were considered. It was shown that the general relations
AT 1
=P, 27
Aoy = 30" (27)
Tty = —t4\ T, + 257 PR
nt v A n% 9 poTy (28)

(on the @-equations)

take a place. The first of them shows that the variational
derivative of the action functional I with respect to the
torsion T is equal to the half of the Belinfante tensor
b {b7P} induced by the canonical ST s e {87 po }

The second one is the equation of balance for the canoni-

cal EMT t </ {t",}. Of course, the study of the theories

with the Lagrangians of the type (23), generalizing (27)
and (28), has not to lead to contradictions with them.

11l. CALCULATION OF THE TENSORS K AND L

Variate the lagrangian (25):
6 (V=92) = (6v/=9) L+ =g L. (29)

The variation of the first term is defined by the well
known relation d,/—g = «/—996759[%/2. The second
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one, taking into account the above, can be presented in Hereinafter, 0*.% /0gg means explicit derivative with re-
the form: spect to gg,, that is the differentiation is provided only
with respect to gg, which do not included into R and V;
analogously, 0*.Z/0¢" means differentiation only with

5.9 — L 9oy + 0L SRy + 8*$5¢a respec.t tq ¢“, which do n.ot included. in.to V¢ and VVo.
098~ OR" ol Substituting the expressions for variations 0R* ., (B7),

9 a a 5(V,6%) (B10) and 6(V,V,¢?) (B11) into (30), pro-
+8(Vﬂ¢“)5(vﬂ¢ )+ G(V#Vygba)a(v“vygb ) viding the differentiation by parts and grouping similar

(30)  terms, obtain
|

o4 AT A*T
0. =<4 — 136 ) R —— 3 0?
{agm} gﬂ“{Arm} k +{A¢a} ¢

31)
. 0. AT 0. (
+Vu [ G+ e (A © b}&l"“ ,,—i—{i}é a+{7}va5 “},
o s Ll LT Prero LR Pl A
where the notations
AT e (& ooame Lo pogr AT aes 02 & (ﬂ)ﬁ@ (i)
AT%, <V”GF~ TG e At~ agr M AV, )V )
(34)
Al
+W(A%)“Ib¢b (32) Al 4y 02 - ( 3% ) 35)
A(Vup?) — 9(Vug®) "7 \O(VuVuoe)
8"% A)\ a b A al .
+W [(A%) 1, Vud” = 6, Vo] ; are used, and {(A*,) ?|,} are the Belinfante-Rosenfeld

symbols (see Appendix C1). Next, substituting the ex-

pression {6I'"».} (B6) into (31), providing in the term

{AI/AT*),} 6"y, differentiation by parts and again
(33)  grouping similar terms, one obtains

0L

def
Gy :
" 8R“)\#y

rL AT\ . AT . i AT .,
53_{ v (APNAT>9 Aﬁfj}ziggmt {AP%TQ Aﬁflg#s}ﬂ gy + {—A(ba}&b

agﬂk; ) 0.2
= KT A KBY Apv A ya b K A By
+90 [ apee 2?7}593”{@” M ADI ImA)g S A
I
K)\,uu AAK a b m‘rAaﬁ’Y e TE a o al
PN gmmgn &) b )T Bnastes 0T\ Ky 0 M\ 0w, S V0

(36)

At last, substituting (36) into (29) and recalling that due  torsion field T and a set of matter fields ¢, one obtains
to the convention (24) the set of fields ¢ consists of the  the search expression for the functional variation of the
action:
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3o
= - 5 al — KT A MBY
o0l /dl’ V=g |:{2$g + 6967 Vu <Al—‘ﬁ)\7—) g Am} 695’7
3
- 0L .o 0. N
+ —Vulsges—— ] V.V 4 K AMBY a} §T®
{az—:;é"y ! (agYéLTEBW)> . <%(;NVVTEBW)> Al—w)ﬂ_g A Iu By
_ * oz * ) * oz s
;{ 1o (o) + 90 (5w ) 90
’ * Al
+/d$ vV—9Vyu |:{ AT, gHﬂ'AZ"i} 695’7

3

0L 0L
Gﬁkuu A)\m T pow A)\m a b HT(AO‘B'Y )
+{( +a(wvyT79¢)( ) Tosl., p +78(VNM)< )%, ¢ ) gAY 69,

GK)\,uu A)\n T po pw . A)\n a b ,{ﬂ—Aaﬁ'y e
{60+ G e (O 0l T+ gy (A0 o) A

AT } 0L } { AT } { 0L } ]
e 0Ty +{ s ¢ Va0l 8y + { —=— 1 6¢° + § === ¢ Vab?|,
A(V,T%py) . O(VuVaT?py) o A(V,ue?) IV Vap?)
where
AT
AFK}\T
AT
AA& £ po W -
+A(V~,-T5[5»y)( ) ﬂV'w P +
0%

AT
6(V‘FVUQPG)

o (%UGW” + %GJPUTT,,O)

0.7
3(VTVVTE/5'Y)
[(A*) 1, Vo’ — 83V ;

[(A%%) “6a 1, 77 VT 0 = 6,V kT35 (38)

4y AXK a b+
A(VTQDU’)( ) |b</7

AT def 0L * ( 0L ) '

= ~Vvlage o 7
A(VuTepy) O(VuT=gy) AV, Te3y)

Al def 0L ( 0L )
A(VMPG) 8(Vu%0a) ! 8(V1,V#<pa) '

On the other hand, for the Lagrangian (23) the formula (12) acquires the form:

Yo
AT AT Al
) Iz/dx\/—g [—69 + ——0T%3, + 1) “}
’ > Aggr " T AT, " T A
%, ) (41)
+ / dz =gV [(Ku|6759ﬂv + La”|ﬂvva59ﬂv) + (KH|E'6W6TE[3V + Lau|8ﬂvva5Taﬁw)
3
+ (KHadp® + Lo Vadp®)] .-

Comparing (37) with the last expression, one can recognize expressions and quantities interesting in our study:

AT 1 oL = AT
— P = _ 922 kw A#(ﬁ'v). 49
Agsy 2 9 99~y Ve (AFKM’g ) AT 42)

AT A*T AT
_ KT AM[B’Y] . 4
AT%5,  ATe5, <Arfmg > mxr Juei (43)

Ma*z_%< 0. )+%%< 05 > )
Ap? D PNO(V,9%) POV V) )]

Al
T A (45)

0¥ 0¥
Lor|BY — KAHV Y= A)\n T poqw 4 9L
| (G " a(vaVTTth)( ) 7ol oo IV, Vue?)

TV )

(AXK) a|b (pb) gnﬂ'Aa(:@V). (46)
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0% 0L
KH E,@V — GNMUJ A)\H T po e AXH a b nTrA alB] e
27 = (6 & s (%) el T + gy (W) )
Al
— 4
AN, T (47)
0L
LO‘:U' 557 — . 48
= T (19)
[
¥, = A (49) quantities {L*|%7} and {LY*|.A7}, {Lo#|,}
T AV
0 LM = (G 4 L] 05 (A0) oy, 77 T
ar e ——— 14 a KT
L |a = a(vuva(pa). (50) 4L #|G(A>\K) |b‘p ) A B’Y) (52)

de
ef (GKMV+LV#|G(A>‘,{)“|b¢b) A

Analogously, comparing the formulae (48) and (50)
Here, with the formula (47), one finds the connection between
the quantities { K*|.#7} and {L**|.P7}, {LY%|,}:

AT gy L < 0L > Kn)0 = 5 Al )
AT, T "\ o(V,T= Vil
EV . B’Yag ( 1% ﬂV) (51) (G Auv + Luu' gga(A)\ ) T <P|w po Twpa
+Vu pryr——— v a KT
A AN TS FLH] (DY) 2L, 0") " AT g
de «
:f *K“|557 + (GKA,uu Lv,u|a( K) a|b ¢b) mrAF[/J;V Gac,
(53)
and AT/AT% ., AT/A(V,T5,) and AIJA(V,0%) are "o
defined by the formulae (38), (39) and (40), respectively. « jon| B def AT 4
Thus, calculating the tensors K and L is finalized. B AV, Teg,)’ (54)

To simplify calculations remark the following. Com-  compare with (49). Using the formulae (48) — (50), (54)
paring the formulae (48) and (50) with the formula (46),  in the expression (38), one can present it in a more com-
it is easily to find that there is a connection between the pact form:

Al * 1
= _ UGN)\TV —GHAPUTT .
ATy, v + 2 P
+*KT|557(A>‘,{) Eﬁ'y|w i Twpd + LUT|sﬁ’Y [(AAK) Eﬁ'y|w e VVTWPU - 51)/\VKT657} (55)
FET]o(A) “Ibw + L] [(A%) “y Vie® = 63V "]
dej (VUG ATV 4= G >\PO’TT + *KT|a(A>\H) a|b¢b +Lu7—|a [(AAH) alb Vy¢b _ 61>/\vm¢a} .
IV. THE CALCULATION OF THE TENSORS U, M Go|® = = {Vad® + T75a(A%) %], 05 (57)
AND N
Next, we calculate the tensors U, M and N following Ta|8578: _YaTgﬁ'ya . B . (58)
the formulae (3), (4) and (5) in the manifestly covariant (T xaT" 8y + T%wpT" o + Ty T ap);

theories with the Lagrangians of the type (23). As we

think, we have found the most economical scheme of cal- 8 5

culations. Now, we follow it in details. For this we need ga" lrx = _29a(~5>\)§ (59)
the formulae

ga'ﬂv = 2T(ﬁ,'y)a; (56) (baﬁla = (ABQ) a|b ¢b; (60)
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To " 3y = 05T 5y + 2T 01502, (61)

] ] Naﬁ)\u = (GQ.mv 4 [vk “ A7) @ b aﬂ'AgT)“lEﬁ’Y) a|n)
proved in Appendix C 3. +L(A#|((I¢Z|n)|a' (A7) “1, 6") g 9o |y
3. Substitute here the expressions (59) and (60).
Then, with using the identity (A10), the tensor N

A. Th lculati f the t N .
¢ calculation of the tensor is transformed to the form:

For the Lagrangian (23) the formula (5) transforms to NoM = — (G + LF|o (A7) |, ¢°) 5555
+L(X|“|Q(A‘“>Q) e, d" = Go(FIm,

ZV()[HAH déf L(A‘H|Aq)a‘ﬁ) |A

Thus, the expression for the tensor N gets the form:
= L(Mu|ﬂvga|f€)|67 4 L(’\|“|567Ta|”)|557 4 L(/\|M|a¢a\ﬁ)|a,

‘Naﬁw =G, Bn, ‘ (62)

Let us present the calculation in the next steps.
It is important to note that the tensor N is not equal to

1. Return to the united field ¢ = {T, ¢} (24). Then zero only if the Lagrangian contains explicitly the curva-
’ ture tensor R (see the definition (33)).

N, = L(A‘“|ﬂvga|”)|ﬁ,¥ + L(/\|M|a¢alﬁ)|a.

B. The calculation of the tensor M

2. Take into account the connection (52) and obtain For the Lagrangian (23) the formula (4) transforms to

e 1
MM K q @M A 4 L0 |4 4 L7 <VK<I>JIA - gT*m%”lA)

= {K#|ﬁ’yga)\|5'y + K#|657Ta>\|557 + K#|a<Pa)\|a}

1 , 63
TP gl + DT, oy + Dl + {2990 (9,000, = 5700l )
1 1
o (9,0~ K0 ) 1 (8 - ) )
[
Provide the calculation of (63) step by step also. 3. In {... }2, take into account the expression (52) and

return to the united field ¢ again. Then
1. Denote the first, second and third braces on the
right hand side of (63) as {...}1, {... }2and {... }3,

— Ny Iam n a b r ANBY)
respectively. Then {h (G“ + Lo (A7) ] )g Ay’ galsy

FLM 0|
M TUUNS SR R VAV S Y 4. To provide {...}3 apply the similar steps and ob-
tain

2. In{... }1, take into account the expression (53) and — (G 1 LrH| (AN ) ], $b) gFT

return to the united field ¢ = {T, ¢}. Then ks =( ('; ) ol Ki |§ ok

XAﬁﬂ’y (vpgaklﬁ’y - §T pagozalﬁ’Y
[ b = K9P7g0 y + K Pug, o -

4 (Gﬁnuu 4 Luula(Anﬁ) a|b¢b) QMTA@]Q;)& TOZ)\'EB’Y? +LPM|a (vp(ba)\la _ 5T p0'¢agla) )

where

def 5. Combining the results of the points 2 — 4 and col-
KM M E KT py + K e N (64) lecting the similar terms, find
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1 a
Ma)\# = Kﬂ|5’yga)\|ﬁ’)’ + *K'u'|a¢a>\|a + LU'U‘|a |:51)/\¢o¢|a + vl/(ba)\|a - gTAVﬁ¢a5| :|

65)
1 ) (
+ (GKUMV + Lyu|a(Ann) a|b ¢b) NWAEI-?;Z |:gpsTa>\|aﬁ'y + 5;>;\ga|ﬁ’y + VpgacA|ﬁ’y - §T)\pdga |5’Y] :
[
6. Corresponding to the formulae (45), (55) and (59) 7. Taking into account (57) and (60), and
one has adding  with  subtracting the expression

A * 1 (%UGQ’\“” + %Ga’\”‘TT“pg), one obtains for
K7ga? gy = =2 [_ VLG 4 §GWWTTW) the sum of *K*|,¢,*|* and the next item on the
+* K| (AT) 9|, ¢° right hand side of (65):

FLV [0 (A7) ], Vo = 63776")] AR gsa.
(66)

= (DG 4 OMPTI ) KA (AY) 4 L (89) |, Vi~ 829°6) g

* v 1 o 1 14 a
= (96 4 JGNT T | = S (20T 0+ T3] (A%) 1,0

8. For the expression inside brackets of the last item and (61), and the identities (A12) and (A13), pro-
n (65), taking into account the formulae (56), (59) vide simple identical transformations and obtain

AR [gpa 35T gy + 2T5a[553}) +20,T(p, )0 + T poga(s93 }
= Aﬁgw (ga(p Aayy 25(>\pTB) w) (ga[pIT Bl T 25,) 1, ﬂa)}
= A,(,’;ﬁ, (gapT)\Bv + 26>\TB Va) + Agﬁlﬂ‘éw (gapT)\BW + 26/7 T%,@a)
- _5155)53 (90T 5 + 20, T, 1) = 50,0,0) (90T 57 + 20, T, )

t

)\ A A A
3 [ (5 Ty, na +5[uTﬂ,na) = (9a T 1) + oim T n\V])}
(26>\ ™, na gONTTA’I]V) .

le H

Thus, the last item in (65) is equal to
L6uP TN g, — (G 50) + SL 2800 + T8 (AP, 7, 6
9. Combining the results of the points 6 — 8, one finds
MM = —2 {— (%VGWV + %G”“”"TTW) + KT [o (A7) 4y @ + LYT]o [(ATT) ¢, Vig® — 61V 9" ]
<Aﬁn¥3 5,;5355) G — {QUGQAW N %GaxpoTupg} n %GaﬂwTﬁw (G 5)

10. At last, using the identity (A11) and formulae (48)—(50), (54), and denoting

e * 1
FLI = ) <anpg’”7 T 5G,JC,CW’T’TW)

AT 0L
+2 (W(A[pa]) “p 0"+ VAV ad®) [(Ago)) 1y Vad” - ga[pvd]¢a]) ’
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one obtains the finalized expression for the tensor M:

== * 1 1
MM = — (Aﬁ;\gésw,po) G — (VVG,.@)‘“V + 5GKApaT,upU) + EGﬁaﬁuTAaﬁ _ (GaﬁA#Taﬁn) . (68)

Remark that the tensor s </ {s"po} (67) is just the

generalized canonical spin tensor, corresponding to the
Lagrangian (23). This statement follows from the results
of Sec. VII. Namely, basing on the above definition of
the ST, one obtains the standard equations of balance for
the EMT. Besides, the gravitational field equations ac-
quire the form, naturally generalizing the ECT equations.
Remark that the items in the first parentheses on the

right hand side of (67) are induced by the non-minimal
coupling with the metric field. These items in principal
cannot be obtained with the use of the 1-st Noether the-
orem in the Minkowski space and covariantization of the
expressions.

C. The calculation of the tensor U

For the Lagrangian (23) the formula (3) has the form:

ef L
Ua“ d:f fé‘g +KN|A(I)Q|A +LNH|A <VK,¢0(|A + QREOM)\(I)sMA

1
= 28+ (K gal sy + KT+ Ko} {29097 (Tl + 57 gl ) (69

1 1
+LK“|657 <VKT0¢|€L‘3’Y + gRaaﬁATd)\Fﬁ’Y) + L™, <VK‘Pa|a + 5RUQKA<PU>\|G> } .

Transform it. The main steps are as follows.

1. The first and second braces on the right hand side
of (69) denote as {...}4 and {...}s, respectively.
Thus,

U™ 25t + {1+ 1{.. }s

2. In{... }4, take into account the expression (53) and
return to the united field ¢ = {T, ¢}. Then

(b = K9P alsy + K¥adal*
(G 4 L (A7) 2], 6) AR gy Tl

where
* a def 4 a
KH'|aga|" = KH|5'8VTa|€ﬁ'y + K apa]® (70)

3. In{...}s, take into account the expression (52) and
return to the united field ¢ = {T, ¢}. Then

(o do = (@4 Lvjo(am) o, o)

XA:"E]E}/’Y) (ng(I'ﬂ’Y —+ QREQHA98A|B'Y

1
+L’i'u|a <Vﬁc¢a|a + gREanA¢aA|a> .

4. Combining the results of the points 2 — 3 and col-
lecting the similar terms, find

Uak = L84 + K7 galgy +*KFlagy|* + (G + Lo (A7) |, 6°) AT

1 1
X gnsTaFﬁW + Vﬁga|ﬁ’y + EREaﬁAgsA|ﬁ’y] + LK#|¢1 <Vﬁ¢a|a + EREOHM(ba)\P) .

5. Remark that, corresponding to the formulae (45),
(55) and (56),

g4

(71)

K“|679a|ﬂv

* 1 TPOo T * T us a
=2 {— (V,,G"’””—i- EG" per pg) + K7, (A"™) 9, @°
+L]a (A7) @), V0" — 57976%) ] AR Ty e
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6. Turn to the right hand side of (71). Substitute
the expression (57) into the third item, and substi-
tute the expressions (57) and (60) into the last one. L, (V,Ab |+ ER’YWB(b 5|a>
After that commutate the second covariant deriva- ¢ 2 K

tives V,Vo¢® by the rule (C32). In the result one = —LV”|avaVﬂu¢a b s
obtains — LMo [(APY) ], V, " — 65V ¢%| Ty, pa

1
+LVM|G(A'8V) alb (bb (R’Yﬂau - VUT’Y,Ba + QRVOWB> .

7. Combining the results of the points 5 and 6, one
can see that the sum of the first, second, third and
fifth items, after adding and subtracting the combi-

nation (%UGM‘“’ + %Gﬁ’yp"TﬂpU) T, B, becomes

* 1
[355 _ *K#|ava¢a _ Lvu|avavy¢a] +2 |:_ <VVG777r~ru + §G777erT7—pg>
1
SR 0 4 L7 (A7) 1, Tt = 0 on)] x (A~ 3686757 ) T,
- <V”Gﬁw * EGWUT#’“’> Ty, po+ L71a(A75) 7], ¢° (R”ﬁcw ~ VT ga + §R”ay5) (72)
= [L6h — *K"oVad® — L[ Va V0] + (Aﬁﬁ;sf nﬂ) Ty g

* 1 1
- <V1/Gﬁ’”“j + EGﬁ’ngTﬂpa'> T’y,ﬁa + Ly'u|a(Aﬁ’y) a|b be (R’Yﬁav - VVT’Yﬁa + ngavﬁ) )

where the identity (A11l) and the definition (67) and adding with subtracting the expression
have been taken into account.

- . G%@wam _ %G%@WRMBU
8. After substituting the equality - G,Yﬁ‘“’ (R'vﬁw + %R'vm,ﬁ) ,
—%UGM‘”’TV,;}Q = %,, (Gﬁ'““’Tﬁym) - G.Yﬁ‘“’V,,T'Yﬁa, in the right hand side of (72), it acquires the form:
|

[L88 —* KM,V ad® — L™, VaV,¢® — GPHR 5,0] + (A%Tgsf, nﬂ) T, a
* 1 >
+ Vo (GM1#Tp 50) + ) (G777 T 5a) T#PU:| (73)

1
+ (G’Yﬁ,uv + Ly'u|a(Aﬁ’y) a|b be) |:R'Yﬁocu - VVT’Yﬁa + ER’YQUL‘K] .

9. At last, turn to the fourth item in the formula (58) into the brackets
(71). Substituting the expressions (56), (59) and

def 1
o1 (0TulFi 4 Vol + 5 arsg |

one presents it as

[. . ] = —Oke {VQTEQ»Y + (TE)\QT)‘L-;»Y + TEAQT)‘»YQ + TEA,YT)‘QQ)} + 2VI€T(ﬂ)’Y)a — REQ,{)\QE(,@(%‘)

= ~Yke {_VBTEW - vaaaB + Raaﬁv + REB’YQ + Ravaﬁ} + vﬁTﬁwa + V,.;T%,@a - §Rﬂam - §Rva~[3=
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where the Ricci identity R® (g, =

] =VaTh e —

= (2V(&T3), o + Ra(xp)y) + (2Vis

’Y] Ba

=V Ty +T° A[QT 5~ has been used. Regrouping terms one obtains

1 1
v'yTn, Ba + Romﬁ'y + Rﬁnfya + Rn'yﬁa + VKTB,'ya + VKT'V,BQ + §Ra[5n'y + iRa'yRB
= Rajey)p + Rixy)pa)

- Rﬁﬂva'

10. From the last, using the identities (A12) and (A13), and the definition (A1), one gets

ANB’Y[ .

Ty

= 5“ 8% 67 (2VuTp o + Ranpy) —

(m v)'n
1
_5 (an/a + Ruﬂ'na - Rﬂnua) =

11. Taking into account the result of the previous point,
one concludes that the fourth item in the formula
(71) is equal to

= (G 4+ Lo (A7) ), 67)

= Aﬂnv (2ViTp,ya + Rarpy) + Amlfw (2ViTy, o — Raryp + Reypa) —

_Rﬂ"I]OUJ + vuTﬂ',na -

AL gy

555 w00 2ViTy pa — Ranys + Ruvypa)

1
§R7rozl/n-

Notice that this expression exactly equal (up to a
sign) to the last term in the formula (73).

12. Summing (73) and (74), keeping in mind (48) —
(50), (54) and denoting

ﬁ ™ Lo 74
X {R nav — VT ™o + §R avn ( )I
def AT 0% 5
thy = Lo — —— V9" — ———VoV,,0" — G"7**Rg. 00, 75
R A A0 D e =
one obtains the finalized expression for the tensor U:
1 * 1

Uat =t + (ARETS™ 7 ) T, g + 5GP Rapoe + |V (GO T 0) + 5 (GT T 00) TV o (76)

Notice also that the tensor t {t“l,} (75) is just the gen-
eralized canonical energy—momentum tensor, correspond-
ing to the Lagrangian (23). This statement follows also
from the results of Sec. VII. Namely, basing on the
above definition of the EMT, one obtains the standard
equations of balance for itself. Besides, the gravitational
field equations acquire the form, naturally generalizing
the ECT equations. It is worse to note that the sequence
of the second derivative in the multiplier {V,V, ¢} in
(75) is reverse to the sequence that follows from the con-
struction of the canonical EMT by the direct application
of the 1-st Noether theorem. The last term in (75) has
appeared due to the non-minimal coupling with the met-
ric field, and also cannot be obtained in principal by the
application of the 1-st Noether theorem in the Minkowski
space and covariantization of the expressions.

V. A PHYSICAL SENSE OF THE KLEIN AND
NOETHER IDENTITIES

A. Structure of the variational derivatives

In the following subsections of the present section, we
discuss the physical sense of the Klein and Noether iden-
tities in the manifestly generally covariant theories. The
identities include various combinations of the variational
derivatives of the action functional I with respect to fields
g, T and ¢ as ingredients. By this, it is useful to analyze
in more details the structure of such derivatives. At first,
define the tensors:

Oy (22) (460 4 3G T )5 (77)
de AT a
20 L Lf 2= (8p0) I, ¢
22— [(A,y) ¢, V — Voo,
a(vﬂ_vn(ba) [( P ) |b ¢ Inp ¢ }

which are determined by the dependence of the La-
grangian .Z on the curvature tensor R and on the fields
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@, respectively. It is worse to note that the sum of the
tensor (77) and the antisymmetrical part of the tensor

(78): ()s™ = (#) f™ 5] Presents the canonical ST (67):
5" pe = B 0 + D™ . (79)

Now, let us discuss the structure of the variational
derivative with respect to the torsion tensor. In the terms
of the quantities (77) and (78) the derivative (32) can be
rewritten as

A1
_ L L@ pra
AT*,, 2( STt *‘)' (80)

Then, due to the identity (A7), the variational derivative
(43) is equal to

AT<5, AT, 2

Tpo

AT AT 1 ( NTasmpa) Goes (81)

where the first term on the right hand side is defined by
the formula (51). Denote the quantity

pre e AyBagmpe, DBl —pvse(g9)

and call it as the Belinfante tensor: b def {b”ﬁo‘}, mn-
duced by the ST s. Then

Al AT 1
= P 83
ATeg,  ATeg, e (83)

This means that in the case of only minimal T -coupling
(when the Lagrangian £ does not contain the torsion
tensor T explicitly) one has

AT 1
ATeg, §b’ms' (84)

Earlier, the same result (27) has been proved only for
the Lagrangians of the type . = Z(g;¢, V) (26)
with a more simple presentations both of the ST and
of the Belinfante tensor (see Refs.’1®7). We have
proved a more general claim: the formula (27) is left
valid for the Lagrangians of a more general type .Z =
Z(g,R;p, Vi, VV ), as this follows from (84) .

The formula (83) shows that the presence of a non-
minimal coupling with torsion changes (84). The require-
ment (the desire) to conserve a sense of the variational
derivative (84) even at the presence of a non-minimal 7'-
coupling leads to a necessity to modify both the initial
Belinfante tensor and the initial ST. Let us demonstrate
the modification step by step. Rewrite the formula (83)
in form of (84):

AT . 1 ml;’d ~B

m - 5 %) (85)

mod mod
where the modified Belinfante tensor b = { b 77} is
defined analogously to the initial one (that is with the
use of any ST):

mod def \SBa mod

p P AP TG mpe (86)
The modified Belinfante tensor and canonical ST can be
represented as initial ones and correspondent additions:

" ase del yypa “ptaga (87)
and
mod def add
ST e Tt T, (88)

Finally, combining (83) - (86), one obtains the definitions
for the additional Belinfante tensor and ST

add’yﬁ 9 A*T

= ; (89)
€ ATgﬂV
add 1 pg _ 4 lole AT
s g ATa‘p]ﬂ.. (90)

Now, let us turn to the variational derivative with re-
spect to the metric tensor g. By the formulae (42) and
(80),

Al 1, 0%

Agr, 279 7%
9[31 . 98~ (91)
_iv,u ((R)ST A + (qb)fT, )\Tr) Aﬁgf—’”

Using the identity (A11l) and the formula (79), rewrite
the last as

Al 1, 5 0%

I — g Y +

Agﬁ{ o2 995+ L. (92)
—1Vu ((R)Sm By 4 (¢)fu,,3v) _ 5%’?*‘67-

Substituting this expression into the standard definition
. metdef —met 8
of the metric EMT t = {t "7}

mtet By def AT

1
- = , 93
2 Agpy (93)

one obtains
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mtet B — pgb 4 23*$ B 16# ((R)Su.ﬂ'v + (¢)fu-,5'v) _ %#buﬁ'ﬁ (94)
99py 2

B. The physical sense of the Noether identity

V#I F=1,. (95)
Turn to the Noether identity (14) Here, corresponding to the identities (19) and (18),
|

def Al 4 Al Al Al def Al Al
IVM = o H v V# € # a U I a; 96
A‘I)A v | Ag g |B’Y ATEﬁ,Y | By + <= A a | Ag ~. g |,8V A(ba (bl/ | ( )

def AT A AT AT AT def AT AT

I, = ® = —0v ——1T° —p,|° v . 97
A(I)A l/| Agﬁfyg |5'Y + ATEB’)/ | By + (pu| Ag ~ 9 |f5'Y A¢a ¢V| ( )

Ap®

Taking into account the formulae (93), (56), (57), (59)

and (60), we rewrite these expressions as AT

met
I =1t M)\TXNV - [vy(ba + (AMX) a|b ¢b T)\;LV} .

Age
(99)
et A Using the formulae (85) and (C17), we present the above
ILVr=—"¢", A(ba (A",) @], ¢ (98)  tensors in the expanded form:
|
met 1 mod mod AT
IL/N = - |: t Hl/ + (5 b B’YUTuﬁ’Y_'— b M'@’YTVﬁV)] + A(pa (AMV) a|b </7b; (100)
met L 1 mod By " mod 1B y A\ 1 mod +B .
Lo=11t ¥ x+ {5 0 75TVt b 5T || T — 5 b 77Vl sy
Al a a b A (101)
_A—cpa [VusD + (A#A) |b90 T ;w} .
Substituting the expressions (98) and (99) into (95), we obtain the explicit form of the Noether identity:
*  met met * AT AT
Vit Mu=—t T+ Ve (A7) ] ¢"| + [Vug® + (A"5) “ly &" Tw] ¢ (102)
Ag? A
[
After  simplifying  the  Lagrangian % = Noether identity transforms to the equations of balance
Z(g,R; T,VT,VVT; ¢,V , VVp) to the form (o the metric EMT mte’e:
Z = Z(g; ¢, V) the identity (102) degenerates to
the identity obtained in Refs.?' 7 and, thus, generalizes
the result of these works. £ omet met -y .
The formula (102) shows that, when the equations of Vi t My ==t NI, (on the ¢-equations).
motion for fields {T, ¢} = ¢ hold (on ¢-equations), the (103)

If one substitutes the expressions (100) and (101) into (95), then, after taking into account the identity (D2), one
obtains the Noether identity in the expanded form:

* t * mod mod 1 d
Vo <mt PR v ST ( £ HA Yy b %) T +5"5 "o R
_l’_

{9 [ Smam) e ]

(104)
[VusD“ + (A%3) 4y " T ] } .
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It is clearly that on the equations of motion of {T, ¢} =
¢-fields this equation turns again to (103). However, on

the equations of motion of only ¢-fields the expanded
equations of balance acquire the form:

* mod

* met met *  mod
Vu<t MV+V7] b n“u>:_<t M)\"i_v'n b nu)\)TkMy'i__ S

1 mod .

po R (on the g-equations).| (105)

2

Thus, the Noether identity is the basis for defining the
equations of balance for the metric EMT.

C. The 4-th and 3-rd Klein identities

Notice that, by the definition (33), the tensor G def
{G, M} has the same symmetries, like the curvature
tensor. Using the definition of the tensor N (62) and
the antisymmetry of G in the second pare of indexes,
G,P9 = —G,P7, we are convinced that the 4-th Klein
identity (17):

Ny P79 = % (NP7 + NP + NP =0 (106)
is satisfied automatically. By the antisymmetry of G in
the first pare of indexes, G#*7° = —G*P79 the tensor N
satisfies also the new identity:

1
N@B 5 — 3 (NoBYs + NPYes + NTPs) =0.  (107)

In the case of a pure metric theory another logic leads also
to this conclusion. In the Riemannian geometry #(1, D)
(but not in the Riemann-Cartan geometry € (1, D)!) the
tensor {G*#7%} is symmetrical with respect to the per-
mutation of the first and the second pairs of indexes:
{GroeB = GoP9Y ] like the curvature tensor {Ragys}-
Then, the tensor N becomes also symmetrical in external
indexes, N*#7® = N9#7« Namely this property together
with (106) gives (107).

In arbitrary generally covariant theories with the La-
grangians ., containing derivatives of the metric up to
a second order, see Refs. 44495859 the quantity n
{n®#B} is defined as nvHv# e 0% [09yv,ap- The same
as the tensor N, it satisfies the identity of the type (106).
Then, because n is symmetrical both in inner and in ex-
ternal indexes, it satisfies also the identity of the type
(107). Thus, our conclusions related to the properties of
N in the manifestly generally covariant theories general-
ize the results of the aforementioned works.

Now, let us turn to the 3-rd Klein identity (16)

MO 47, N 4 N, Qoo = g, (108)

Taking into account (82), and (62), calculate the sym-
metrical in the upper indexes part of the tensor M (68):

MN()\H) _ _%VNH)\HV . NH(MPUTW)pa- (109)

From here it follows that the 3-rd Klein identity is sat-
isfied automatically also. Thus, the concrete form of the
Lagrangian (23) is enough to be convinced in the identi-

ties (16) - (17).

D. The physical sense of the 2-nd Klein identity

It is convenient to represent the 2-nd Klein identity
(15) in the form:

(110)

(see the Paper I, Sec. V, formulae (83) and (84)), where

sym 1

[y] M= (Uyu _ gNauB'vRayﬁ'O
. ) (111)

- (V)\HUM)\ + §9uaﬂTMO¢ﬂ) 5

6, = N ; (%WNV"W] + %T[HPUN,,Alf’”) .

(112)
Let us calculate the expression (111).
1. At first, notice that, by (62), the relation
N, MeAl — 1 (GUW/\ — GU[M]n) (113)
2

takes a place. From the last the formulae

Gy[ux\]n + 2]\]1]7[#/\]
;3 (114)
- - (GUMH + GU)\WL + GUWM) — GU[uAn].
3 b

1 1
hl upo lpolp) _ = a7 wulpo] — [upo]
5 (Gl, + G, ) 3Nl, G, (115)

follow. It is useful also the formula, which follows
after contracting (114) with the Riemannian tensor:

5G Bmeﬁ’Y _ ENQ“MR By = _gga[up IR Vo
(116)

2. Substituting into the right hand side of (112) the
expressions of the tensors M and N, (68) and (62),
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and using the definition (82) and the relations (114)
and (115), one finds
0,1 = [—b“’\,j 4 GQB“ATQBU}
4 {%HGU[MAW] 4 % (Gu [npo] T’\pa — G, o] Tupa'):| .
(117)

* 1
Vb + 50, T o8

3. Substituting (117) into the expression in the second
parentheses in (111), one gets

* 1 * 1
=- [vw% + gpryT“pg} + {VA (GYPHAT, 5,) + 5 (GPP° T, 3,) Tﬂpg] (118)
1 o (o7 uydea
—5Gal PRy + (G (R o) = ViaT" p) = TV (T )] -

Here, the use of the identity

* * ~ 1 ~ ~ ~

Va |:V779uu>\n + EQVHPUTXPU:| = (_Rkupaekupa + RM}\paeu)\pU) (119)

[

has been essential (see the Paper I, Appendix C.1, 4. By the Ricci identity: RY|zps) = VipTHp0 —

formula (C3)), with the exchange:

éyuAn =G, [An]

* 1
V)\euuk + EeuaﬁTﬂa,@

* 1 * 1 1
- — V)\b‘u)‘,/ + 5prUTALpU} + {V)\ (GaﬁuATmﬁy) + 5 (GaﬁpaTmﬁy) T“pg] _ iGa[#pU]ROLVpU'

5. Substituting into the first parentheses in (111) the
expression for the tensor U (76) and using (116),
one obtains

1
Ut = SN R gy
1 log (o3
= th, + BT 5, — §Ga[“” IR Voo
* 1
+ [Vn (G'BW"TB,W) 4 5 (G'@W"Tg,w) T“pa] 7
(121)

6. Finally, substituting (120) and (121) into the right
hand side of (111), one finds the search expression:

sym * 1

U lIH = tuv + |:V)\bu)\u + EprVTHPG’ + bHB’YT’Y-,ﬁV:| '
(122)

At the absence of the torsion, the right hand side of this

expression presents the known expression for the Belin-

fante symmetrized EMT?%29, Therefore, when the tor-

sion presents it is naturally to define the right hand side

TH xT€ 0], the last item on the right hand side
of the formula (118) disappears and it acquires the
form:

(120)

Symdef sym “

of (122) as symmetrized EMT t = {t ", }:

, . 1
i, g, {wb% + ST 0 + b“%T“ﬁy]

* 1
= tuu - |:V)\b>\“,/ + EbV'Ba(AMV) a5’7|0 e T0¢E:| ’

(123)
and, in the result one obtains
U=, (124)

Substituting (124) and (98) into the 2-nd Klein identity
(110), one has

sytm u met AT

v~ Aga (A) 1y 8"

(125)

From the identity (125) it follows that on the ¢-equations
symmetrized EMT t (123) is equal to the metric EMT
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met

t (93):

Fo=1¢ 1 (on the ¢-equations). (126)

On the other hand, if on the right hand side of (110) in-
stead of (98) one uses (100) then, keeping in mind (124),

(123) and (86), the 2-nd Klein identity can be presented
in the other form:

In particular, on ¢-equations one has

(see (126)).

mula (38)).
manifestly generally covariant theories.

* met 1 add add AT
t'uu - V)\b)\'ul/ =1 'ul/ + o b pgl/T'upa"i' b 'uﬁocTaBl/ - (A#U) a|b </7b' (127)
2 Ap?®
L W met " 1 add P add B o .
th, — Vb, =t M, + 3 b PP T o+ b HPT%, (on the @-equations). (128)
[
Finalizing, one can conclude that the 2-nd Klein iden- E. The physical sense of the 1-st Klein identity
tity permits to define the Belinfante symmetrized EMT
1 (see (123)), and to prove an equivalence of the sym-
sym met
metrized 11; and metric t FEMTs on ¢-fields equations
We call the identity
* 1 o 1 Apo K 1 K €
VMUUH - §Mup Ruupo' - gNﬁ s VAR vpo + §R el po | = -1, (129)
[
as the 1-st Klein identity (see the Paper I, Sec. III, for- inition (82), the identity
Calculate the left hand side of this for the
 [x = 1~ 1 ~
VH |:Vn9u'm7 + §9upgT'up(r:| = _§R>\Up09>\p0” (130)

1. Using the expression for the tensor U (76), the def-
|

Gl = Tty + T (0aT) — 3 (96204 B

2. The expression for the second item in (129) can be
obtained after using the formulae for M (68) and

o 1 o
vpo — §Ga5'w (VHR VB’Y) -

(see the Paper I, Appendix C.1, formula (C2)) and
9,41 = G"‘B“”Ta_’ 8v, one obtains the expression for
the first item in (129):

(GPP° Ty 53) R por

N~

the definition (82):

1 lod
_ 5]\4#9 R\ e

1 o pT 1 * loa
=507 Ruﬂ'pa + 5 (anup 77) R'ul,pg
4= (GM”[O‘B] + Gu[aﬂ]p) [R”upaTUaB]
+3 (G2 T ) Ry
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3. Combining the results of the points 1 and 2, taking identity:
into account (114) and (115), and using the Bianchi

identity V7| R!) 0] = =R e[z T° o1, One gets %utuv = _ (mtet my o+ %nbwk) T/\W
1
+§bUpFRu7er - bnu}xvnT)\;,w (132)

AT
+A—¢a (V6% + (AF)) ), ¢" T, ]

%HUVM _ % MR, Transform this identity as follows.
1y 1 1. Using the 2-nd Klein identity (125) and the formula
—=N, pa (VXRKVPU + —RKV)\ETEPU> (131) . . met *
3 2 ) (123), transform the combination ( t +WVb):
= Vaths =V (07aT%5,) = 3577 Rumpo- et
oM+ anmtA = th, — %bwa(A“A) a67|9w£ Tewg

I
+A¢u’ (AMA) a|b d)b'

2. Substitute the above expression into (132) and col-

lect the similar terms, then the terms containing

Substituting the expressions (131) and (99) into the Belinfante tensor b are presented by the com-
(129), one finds the explicit form of the 1-st Klein bination

1
5177504 [(VBTa'yv + V'yTauﬁ) + (Tasstﬁ'v + TasﬁTE'yv + Tas'vTEuﬁ) - Ral/ﬁ'y]

1 1 1 1
- §b760¢ [_VVTQ,@V + Raﬁw + Rawﬂ] = §b760‘v”Ta/3V + bv['@a]Raﬂv” = Qb%@av”TQBv + §S7TPURPUTW7

where at the first equality the Ricci identity has account.
been used, whereas at the third equality the defi-

nition (82) and identity (A9) have been taken into After all the above steps the 1-st Klein identity (132)
acquires the form:

* 1 1 AT
— A T o « a
Vut'uu = —t“)\T Nz + 53 paRp T ib’Yﬁava By + A—(bavy(b (133)
or, in the decomposed form:
. 1 1 add AT
— A ™ o a a
Vit = U5\ 4 55T o R+ 5 b PaV T + Al (134)
From (133) and (134) the equations of balance for the canonical EMT t follow
i A 1 ™ o 1 B « .
Vuth, = —t"\T%,, + 3% po R ) — 51)V VT3 (on the ¢-equations); (135)
and
% A 1 1 add 8 .
Vuth, = —th\T%,, + is”pngUm, + 3 b "MV, T%s, (on the ¢-equations). (136)
[
In Refs.’'®7  for the Lagrangian of the type . =  cal EMT (28) has been obtained. The result (28) is left

Z(g; ¢, V) the equation of balance for the canoni-
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valid in a more general case also, when the Lagrangian
has a form: ¥ = Z(g,R; ¢, Ve, VV ) because the
last term in (136) does not appear. In the case of non-
minimal T-coupling the right hand side of (136) contains

2
* add 1
=S|V b Pt g

* * add 1 add add
Vu [t“u— (w b M= b TR+ b “%T%)]

Here, the expression in the brackets we denote as the
. . moddef ~mod
modified canonical EMT t = { t *,}:
mod

d dd
m, g, (138)

add d * add 1
ir, if—(w b+

Note that this modification is analogous to the modifica-
tion of the canonical ST in (88) and (90). It is evidently

mod
that the canonical EMT t (138) in the case of minimal
T'-coupling only transforms to (usual) canonical EMT t.
By the definition (139), The Belinfante symmetrization

sym mod *  mod A\
t # v = 1 " v+ V2 b m v+
mod *  mod

=1t P, —|Va b M, +

exactly coincides with the (usual) symmetrized EMT it
(123).

mod
In the terms of the modified canonical EMT t the
identities (133) and (134) can be rewritten as

*  mod mod 1 mod
VH t t=—t M)\Tkuu'i_ 5 s TrpO'RpG-TFV
1 mod AT
_Z VB T = a
2 b avu By + A¢a vu¢

(141)

add /»c add /»c N
b n)\T#nn‘i‘ b l“?ﬁT nA T ,u,l/+ a5

add add add
b A TH A+ b “%T“Ay) =V, b ”‘u+§ b 7Pa(A) ST e

add
additional term % b 'YﬁaVVTo‘g.y . However, the new

equation (136) can be also transformed to the form (28).
For this, using the identity (D2) in the last term in (134),
one obtains

137)
1 mod AT (
5 TR, + —— V0%
P + A(pa ¥
[
adddef _add

where the additional EMT t = {t *,} is defined as

* add 1
(139)

add
of the type (123) applied to t leads to zero identically.
Therefore, the symmetrized EMT S%gm constructed by the

. . mod | mod
symmetrization of t with the use of b by the rule

1 mod mod
5 b NXUTMN)\'F b HXRTH)\U
1 mod 5 . o (140)
) b 7 a(AHU) 67|9¢ T ¢
[
and
*  mod mod 1 mod
v,u t 'ul/ =—t #AT)\;Lv+§ S 71'pa']:'zpofru
4 AL g o
Age V7
(142)

They are the basis for the equations of balance for the
mod
modified canonical EMT t :

*  mod mod 1 mod
VM t Hl/ =— 1 M)\Tkuu + 5 S ﬂ-paRPUﬂ'V
1 mod

(on the ¢-equations)
(143)

_5 b ’YBQVVTO[,BV
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and

*  mod mod 1 mod -

VM t H1/ =—t MXTXMU + 5 S pO’RPUﬂ'V
(on the p-equations).

(144)
Now, the equation (144) has the same structure as the
equation (28). Also notice that, when the equations for
the torsion field AI/AT = 0 hold, then

mod sym

t M= ¥ ", (on the T-equations), (145)
as it follows from (140) and (85).

At last, let us find the identities and the equations of
balance for the symmetrized EMT T Use (123) for

rewriting t as a function of S%gm and b, substitute the
result into (133) and (134) and find, respectively,

*  sym sym AT
V# Ut 'U‘l/ = - yt #)\TA,u.l/‘i' A—(bavu(ba; (146)
and
%# sytm #U - sym F‘)\T)\,uu ( )
1 mod AT 147
~p 75QVVT0‘[57 + A—wvlﬂﬂa.

The same identities can be obtained by another way.
Namely, express the metric EMT n;;et through the sym-
metrized EMT "t from the 2-nd Klein identity (125)
and substitute the result into the Noether identity (102).

Next, the equations of balance for the symmetrized

EMT "%, which follow from the identities (146) and
(147) are

and
*  sym sym
Ve t Pu=— 1t MTA,
1 mod ]
+= b PV, T, (on the p-equations).

(149)

Finalizing subsection, one concludes that the 1-st Klein
identity is the basis for constructing the equations of bal-
ance for the canonical EMT t. These relations coincide
with the known (standard) ones, when a non-minimal
coupling with torsion is absent. When a non-minimal
coupling with torsion presents the canonical EMT ¢t is

mod
changed by t with the use of the modified Belinfante
tensor, and then the equations of balance for the modified

d
EMT m1§) acquire the standard form again. Also, the 1-st
Klein identity, as well as the 2-nd one, are the basis for
constructing the equations of balance for the symmetrized

sym
EMT t .

VI. THE GENERALIZED SUPERPOTENTIAL AND
NOETHER CURRENT

A. The calculation of the superpotential

At first, let us calculate the generalized superpoten-
tial O[0¢] = {0*1[6¢] = 6#¥[5€]} in the explicit form.
Corresponding the formula (21), one has

0" [0€] = 0ot 66> + 00"V 567, (150)

where

o — g w4 2 <%>\NQ>\[#V] N lT[upgNawpa) .
3 2 ’
(151)

4
0,51 — —gNaB[W]- (152)

In fact, we have calculated the tensor {6,""} already.
It is defined by the expression (117). For the tensor
{6,°"v}, using (113), one finds

0,Pm = —%Gaﬁ“” + %Ga[ul’]ﬁ

= =GP + L (G + GoaP + G (153)
*  sym sym = — Buv [Buv]
Vou t —— % AT (on the ¢-equations) Ga™ + Ga ’
(148)  Finally one obtains
|
* 1
2% — ) [_pw Buvpry 12 lwpolpv [vpolpp a
9 [65] [ b « + G'y T ﬂa] + VXGoz + 2 (Ga T po Ga T pG’):| } 55 (154)
+ {Gaﬁuv 4 Ga[ﬂuv]} V50Ee.

B. Dynamical quantities in the structure of the
generalized currents

More useful and interesting, however, to construct the
superpotential starting from the generalized canonical

[
Noether current J[6€] (2)

JH[6E] = Ua0E™ + MoPPV 6™ + N7V (,V 5y 0€°.
(155)
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Such a construction lets us understand bet;“g}; the con- the one hand, with the dynamical characteristics t, S%;m
nections of the generalized currents J[0€], J [0€], on s, ..., on the other hand.

Substituting (76), (68) and (62) into the formula (155),
one finds the explicit presentation for the current J[0&]:

)

JH [65] = {tua + bMAnTﬁka + %GwpauRompa + |:%V (GHXMUTHXOZ) + % (GHXPUTN)\Q) TMP(T:| } 5501

* 1 1
+< =B, — | V,G. P + iGaﬁp"T“pa] + §Ga”‘”‘TﬁpU _ (GNW“T",\Q)} P (156)
+{Go P}V (V)66
[
As is seen, the canonical current J[0€] essentially is con- 1. For a first part of items in (156), differentiating
structed by the canonical dynamic quantities t, s and the by parts, adding and subtracting the combination
tensor G. (%b"’\aT”m\éﬁo‘), one finds
Now, apply the identical transformations to the terms
at the right hand side of (156) as follows.
* 1
(tﬂa + bMANTN)\Ot) 65(1 - buﬂavﬁéga = t“a + <V)\bu>\o¢ + QbHAaTHR)\ + bHXNTH)\a) } 550[
(157)

1

(—b%* o 56) T“M} =" faee + {%U [—bh” o 56°] + % [—b# 4 5€°] Tﬂpg} ,

where, at the second equality, the definition (123) obtains

has been taken into account. ]
Vv (GNAHVTN)\Q) + 5 (GmApdTﬁka) Tﬂp0:| 65(1

— (G PrTR ) Vade™

=V, [G TR a66%] + % (G P T 5086 T o

(158)

3. For the last part of items in (156), again differenti-

2. For a second part of items in (156), differentiat- ating by parts and collecting the similar terms, one
ing by parts and collecting the similar terms, one finds

1 * 1 1
iGwpauRaﬂpg) s — {VUGQL"#V + EGaﬁpoT,upg} VpoE™ + EGapauTﬁpgvﬁ(;ga + Ga(ﬁw)#v’yvﬁ(%a

1 * 1 * 1
— 5 (GA[PU]H5§a) Roxpo + |:V’yGOL[B’Y]M + 5GO([P(T]MT,SPU} Vﬁéga +V, [Ga(ﬂu)uvﬁigga} + 5 [—GaﬂpaVQCS{a} T“pcr-

(159)
[
4. Differentiating by parts the second term on the ing the similar terms, one gets
right hand side of (159), subsequently using the
identities (119) and (130) with 6,#% = G {%VGQWW + lc:oﬂfwlﬂzﬂ’p(,} V506”
and 07" = G Frlgee respectively, and collect- 2

= %u |:%m (GQ[VN]M(Sga) —+ % (GQ[P‘T]Mé{a) TVpO’:|
—?U (G P11V gog]
2 (Go‘[pg]AR#APU - GA[pU]“RAapd) 3

* 1
=V, [Ga[ﬁu]uvﬁgga] -3 (G)\[PU]#(%O&) Ropo-
(10
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5. Substituting this result into (159) one obtains

R.H.S. of the eq. (159)
=V, [~GaPV 566°] + L [~GaPPoV 56€0] TH,,,.
(161)

Combining the points 1 — 5, one finds that the formula
(156) is presented equivalently as

THSE] =" M[5€] + {%ye’wwg] + %9’#0 [55]T#,M} ,
(162)
where
s;:/]m “[65] déj’sytm Maéé-oz (163)

is the generalized symmetrized Noether current (see the
Paper I, Sec. V), and

H/HV[(SS] déj' [—buya 4 GmXMUTﬁ)\a] 5501

+ [—Go/j‘m/} Vﬂéga. (164)

The formula (163) shows that the symmetrized current
sym

J [0€] is expressed thorough only the symmetrized EMT

Sytm even in the case of the Lagrangian of the most general

type (23). Analogously, the formula (164) shows that
the superpotential 6'[d€] is expressed through only the
Belinfante tensor b induced by the canonical ST s and
the tensor G.

Combining the 2-nd Klein identity (125) and (98), one
finds

e, =1 (165)
that is the symmetrized EMT S%gm depends on only the
Lagrangian derivatives (see definition (19)), and, conse-
quently, does not depend on divergences in Lagrangian
Z. By (125) and (98) also, the formula (163), can be
represented as

syj]m i met AT

[65]: t #Q_A(ba

(166)
Comparing (162) and (166) with the boundary Klein-
Noether theorem (20), one concludes that the superpo-
tential 0'[0€] (164) has to be equivalent to the canonical
superpotential (21). Nevertheless, comparing the right
hand sides of (164) and (154) directly, we do not see this!
However, the difference is not essential. Recall the re-
mark in the Paper I (Sec. IV, formulae (55)—(69)) that is
related to arbitrary two superpotentials, O[0€] and 6'[6€],
which differ in a term of the type

Ao [5€] 6 se] — omv[se]

— [FACa 4 Calilrov | G 4 [Cu] 060,
(167)

(A#a) a|b ¢b 5504 = —Io/u(séa-

where an arbitrary tensor {C, "} is totally antisymmet-
ric in contravariant indexes:

Colh = c M. (168)
Then, such superpotentials, 8[6&] and 6'[6€], are related
to the same Noether current! One can see easily that
the difference of 6'[d€] (164) and @[5€] (154) has just the
above form with C, M = —G, ],

Rather, by a simplicity, the superpotential 8'[6€] (164)
could be more preferable in applications.

VIl. STRUCTURE AND INTERPRETATION OF THE
EQUATIONS OF GRAVITATIONAL FIELDS

A. The field equations with the total EMT and ST

The system of the equations of motion of all the fields
g, T and ¢, as usual, is obtained by variation of the
action functional, thus

AI/Agy, = 0; (169)
AIJAT*,, =0; (170)
AT/A@® = 0. (171)

Combining (93), (125), (140) and (85), it is not difficult
to obtain

AT __mod " * mod A AT uy a b
2Agﬂu_t Vi b +A<pa(A ) Yl
(172)
Then, again turning to (85), one finds that the system
(169) - (171) is equivalent to

mod

P =0 (173)
mod
b PN =0; (174)
AI/Ag = 0. (175)
Remark that, by the identity (A9), the equation (174)

induces the equation

mod .

5 Tpe =0, (176)

and conversely. Recall also that the dynamic characteris-

mod mod
tics of the physical system t and s are total because
are related to the total action of the system.

A direct interpretation of the equations of the gravi-
tational fields that follows from the visible presentations
of (173) and (176) is evident: In an arbitrary metric-
torsion theory of gravity without background structures,

mod
both the total modified EMT t and the total modified

d
canonical 'S are equal to nil. The claim that the total
dynamic characteristics in a gravitational theory have to
be equal to zero is not new. In GR, it has being defended

by Lorentz®%%! and Levi-Civita6%53, later by Soriau®.
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Comparatively recent, Szabados3>%° has approved this
result, examining the Belinfante procedure. In the works
by Logunov and Folomeshkin3®3® this claim is treated as
unavoidable conclusion in a pure metric theory of gravity.

However, under a more detailed consideration such an
interpretation meets serious objections, which lead to
a necessity to reject it. The first who was against is
Einstein65. Replying the Lorentz work%:61, he noted
that there is no a logic argument against the Lorentz
interpretation. But, basing on the equation (173), one
cannot to obtain conclusions that usually follow from the
conservation laws. Indeed, due to (173), the components
of the total energy tensor everywhere during all the time
are equal to zero, that is the total energy of the system
from the beginning is equal to zero. However, the con-
servation of “zero” does not require the next existence of
the system: one “permits” a disappearance of the physi-
cal system at all. Such a conclusion looks at as extremely
non-physical. Of course, the Einstein arguments can be

d
applied to discuss the total ST "se.

B. Pure gravitational and matter parts of the physical
system

Recall the basis of constructing the GR and other met-
ric theories. One of the main requirements is that the dy-
namic physical picture is postulated as follows. A bend
of a curved space-time, in which the matter propagate, is
provided by the matter itself. Then, by a natural way it
turns out that the physical system is presented as a union
of divided the pure gravitational part and the matter
part. As it will be shown in the Paper III, in the last one
of the series of the works, the problem of defining phys-
ically sensible conserved quantities can be solved just in
the framework of such a presentation. Below, in sub-
section VIID, we give the other arguments supporting
the split presentation of the equations and against the
nil interpretation of the total dynamic characteristics of
the system. Now, we give and discuss the main formulae
and relations for the split presentation in the framework
of the manifestly generally covariant metric-torsion the-
ories given in the Riemann-Cartan space.

Keeping in mind the above, represent the Lagrangian
(23) as a sum of the pure gravitational .Z% and matter
LM parts:

Z = Z(gR; T,VT,VVT; ¢, Ve, VVe)

< 177

def Z(g,R; ¢, Vo, VV@) = LC + LM (177)
where

29— 2%eR) Y 2(g,R:0,0,0); (178)

LM = M (g R; ¢, Vo, VVe)E 2 — 2% (179)

Remark that in the definition (178), of course, the con-
nection I' (with the use of that the curvature tensor R is

constructed) continues to depend on the torsion T. Thus,
the gravitational Lagrangian 2% not explicitly (through
R) depends on T also.

However, in all the cases, it is not possible to de-
fine £% as in (178), for example, in the scalar-tensor
Jordan-Brans-Dicke theories®”%8, or, in more general the-
ories gravity with dilaton®® ", in “sting” presentation
(see Refs.”72). At the same time, in the “Einstein” pre-
sentation such a splitting can be provided easily. Then it
is necessary to define clearly what unusual fields (except
of metric and torsion ones) are related to gravitational
fields.

It is evidently that the splitting of the Lagrangian
(177) leads to a correspondent splitting of the action
functional:

pI 3o Yo
I = [doy/—9% = [dey—9L% + [ dx/—g<LM
Y Y 1

Lre

Of course, the Lagrangian of the vacuum system .£¢
has to be generally covariant scalar, and then the matter
Lagrangian .ZM is, like this, also. Therefore all the above
results and conclusions related to the total Lagrangian .#
are left valid for each of the Lagrangians #“ and .M
themselves.

Define next matter tensors.

x  def x
S po = 8§ po’|_g:$M (180)
(the canonical ST of matter);
add ef a
S ﬂ-pa d:j gd 71'pa' (181)
L=LM
(the additional ST of matter);
mod ef mo
7Tpo’ d:j Sd 7Tpo’ (182)
L=LM
(the modified canonical ST of matter).
B 0, (183)
(the Belinfante tensor for ST S);
add ef add
B 8o "y s (184)
P M
add
(the Belinfante tensor for ST S );
mod ef mod
B b L T e (185)
L=LM

mod
(the Belinfante tensor for ST S ).
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def

T, = t')| p_gu (186)
(the canonical EMT of matter);
add ef add
T #, % (187)
L=FLM
(the additional EMT of matter);
mod ef mod
T r, (188)
F=M
(the modified canonical EMT of matter);
B 159
P=pM
the symmetrized EMT of matter);
(the sy ;
met ef met
o 4t T (190)
L=gM

(the metrical EMT of matter).

For the above defined matter tensors, relations analogous
to those between the total tensors take a place. In par-
ticular, analogously to (85) and (172), one has

ATM 1 mod
== B P, 191
ATeg, 2 B . (191)
AIM met
2A =T M
Guv
_:jwd uw *  mod A AIJW ARV @ b (192)
=T -V B + A—Sﬁa( ) ‘e

Now, define the Cartan tensor € def {‘to”['VMQ =%"8,}
and the (generalized) Einstein tensor & = {&m) £
EF Y

_1rgvﬂ def AIC 1

— = e
20T Arey 3l ol gege  (193)
(the Cartan tensor);
-1 * ef AIG 1 me
L A ==l (194)
2k Agy‘y 2 P—PG

(symmetric part of the generalized Einstein tensor);

—1 def 1

_g’#y = t#y| _

2k 2 (; (195)

=3 (g gt — (@ GaﬂwRaﬂw)

(the generalized Einstein tensor).

Here,
\ G

@ B8 el o pyé — 2783 : 196
a S P DR 5" (196)
kY (D= 1)y 5, (197)

Q(p—1) is an area of (D —1)-dimensional unit sphere, and
s is the Newtonian gravitational constant in (D + 1)-
dimensional space-time.

A restriction of the 2-nd Klein identity (125) and the
definition (123) to the case of the Lagrangian . = £¢
gives, with taking into account the definitions (193) -
(195), the identity

* 1
—E&H + {v)\(g/\uv + 5(576a(Aw) “Blg P ewﬁ}
* 1
= _ (Cg"(#u) _ VA%A(#U)) + Ecg’yﬁa(A,uu) aﬁ’y|9 213 Te@g,

or

gl = g, @l (198)

Thus, the antisymmetric part of the generalized Einstein
tensor is the divergence of the antisymmetric part of the
Cartan tensor. Using the identity (198), one can repre-
sent (194) in the form:

AIC -1
2 — (&
Agu k (

C. The gravitational field equations in the split form

By the equations (199) and (190), the equations of mo-
tion of the metric field, A(I¢ + I*)/Ag,, = 0, can be
rewritten as

* met
W) _ g\ ) = | (200)

or, using the formulae (191) - (193), (199), one can rep-
resent them in the equivalent form:

mod * mod
e — L T ;LV_FV)\ (cg)\,uu_k B )\,uu>

ATM

Ap?®

(201)

+k (A7) 2|, .

If here one takes into account the equations of motion for
the torsion field

A(IG —+ IM) mod
——— =0 & M=k B M (202
ATUHA B ( )
and the equations of motion for the ¢o-fields:

AIM/Ap® = 0, one obtains the equation for the
metric field only:
mod

EW = T W

(on the ¢-equations). (203)

Now, turn to (202). After antisymmetrization in indexes
w and v, using the definitions (185), (86) and (182), and
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the identity (A9), the equation (202) acquires an equiv-
alent form:

od

_og@Am] — | G A

(204)

Thus, the total system of the field equations acquires
the form:

mod
EW =k T M (the g-equations); | (205)

mod
—2¢ =k S Y (the T-equations); | (206)
ATM /Ap® =0 (the @-equations). | (207)

The interpretation of the gravitational equations of the
system is as follows. The source of the metric field g is

mod
the modified canonical EMT of matter T , whereas the
source of the torsion field T is the modified canonical ST

mod
of matter S .

D. Geometrical identities and the equations of balance for
the matter sources

In the present subsection, we show why the total sys-
tem of the equations is more preferable just in the form
(205) - (207). At first, let us discuss the matter part.
The identity (142) for the Lagrangian .M with taking
into account the definitions (188) and (182) leads to the
identity

*  mod mod N 1 modﬂ_ o
VpT'uu E_T'LLATW/‘Fg S pa’Rpﬁu
LATG
Ap® e

(208)
From here the equations of balance for the matter mod-

mod
ified canonical EMT T follows

*  mod mod 1 mod

v;,e T H1/:_ T MXTX;,W"’_Q S ﬂ—pURpaTrV
(on the p-equations).

(209)
It is important to note: in order the equation (209) to
take a place it is mecessary only that the -equations
hold, it is not necessary to take into account the g- and
T-equations. Besides, the equation (209) is related only
to .M it does not relate to .. If, analogously to (188)

one defines the pure “gravitational EMT” as mtf,) ! ,
L=¥C
then (in the covariant sense) both the matter and gravi-
tational EMTs, each itself will satisfy its own equation of
balance. By the Teitelboim terminology™, they are dy-
namically independent. Moreover, the restriction of the

identity (142) to the Lagrangian .#¢ leads to the identity

*  mod mod A
V# t Hy =— t Py T I
L=LG L=LG (210)
mod . o
+- s po Rp TV
L=LG

that holds without any equations of motion. The identity
(210) reflects the fact only that the Lagrangian ¢ is a
generally covariant scalar.

In order to fill the real sense of the identity (210), one
has to find concrete expressions, to which the quantities

mod mod

and s correspond. After using the
L=2G L=2G
definition (138) for the Lagrangian .Z¢, the definitions
(195) and (193), and the formula

2] — "N

)

L=2G

which is carried out from (193), the identity (210) is
rewritten in the form:

6#6#1/ = g#)\T)\,U.I/ - %ﬂ-pa’Rpgﬂ-y- (211)

As is seen, it is the pure geometrical differential identity,
which connects the divergence of the Einstein tensor &
with the Cartan tensor €.

So, the fact that the “equation of balance” for the

d
“gravitational EMT” m€ is satisfied identically

— G

is the direct consequent of f%e_ Dcsﬂffeomorphism invariance
of the pure geometrical action. Therefore, one has to
conclude that in background independent metric-torsion
theories of gravity, there are no generally covariant ex-
pressions for EMTs and STs defined classically for the
properly gravitational fields. This claim can be stated
not only for the gravitational fields, but it has an uni-
versal character. The claim takes a place in an arbitrary
gauge invariant (in the sense of the definition in Intro-
duction) theory: There is no a gauge invariant expression
for a current namely of the gauge field because the theory
18 gauge invariant.

At the end, let us discuss the role of the identity (211).
Namely its existence defines the fact that the form of the
gravitational equations (205) - (206) is more preferable.
Indeed, substituting the Einstein & and Cartan € ten-
sors with the use of the g- and T-equations (205) and
(206), respectively, into the identity (211), one obtains
the equation of balance for the matter modified EMT

mod

T:
*  mod mod N 1 modﬂ_ oo
V;LT'LLU:_T#)\T;LV‘F_S pa’R 9%

(212)
(on the g- and T-equations).

Recall that the copy of this equation, namely (209), con-
versely, has been carried out without using the grav-
itational equations, but only with the use of the ¢-
equations. Therefore, one concludes that the role of the
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identity (211) is to state the self-consistence of the total
system of the field equations (205) - (207). Just in this
sense we generalize the interpretation of the gravitational
equations in ECT®157:74-77.

EW = kTH, (213)
{z*“*w = kS, (214)

where
prv e puv %QWR; jt)‘m, def ™, + 5;}Tl, — 50T,

Here, twice contracted the Bianchi identity

* 1 *
V}LE#I/ = _E#)\T)\,uv + _Tﬂpa'Rpgﬁu

; (215)

is treated as a dynamic conservation of the source. Re-
call the Wheeler words™ related to GR: the “gravita-
tional field watch for the conservation of its sources”.
We see that the same can be repeated also for the general
metric-torsion theories of gravity. Moreover, this state-
ment is not related to gravitational theories only, but
has an universal character and is related to an arbitrary
gauge invariant theory. Namely, the gauge field watch for
the conservation of its matter sources. Returning to the
identity (211), one sees that it is, thus, the generalization
of twice contracted the Bianchi identity (215).

At last, notice that in the case of the Lagrangians con-
sidered in the works®®7, the general system of the grav-
itational equations (205) and (206) exactly is simplified
to the equations (213) and (214) obtained in these works.
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Appendix A: The tensors {A‘j\‘fjj}, {Ai‘ﬂTZ} and their
properties -

In the main text, for a significant simplification of ex-
pressions we use the tensor:

A % (0307 + dzo36y — 039767

(A1)

It is obtained by differentiating the connection I'y .., =
grel'® with respect to derivatives of metric Jngg-.
Thus, the use of (Al) leads to the compact presentation:

Ly = Aﬂ(aagﬁ'y + Ta,,@v)' (A2)
The tensor
NV % (F0007 + 830007 — 039087) | (A3)

with the converse symmetry of the co- and contravariant
indexes is also useful. It is easily to obtain that

« 1 « o
AL = 5 {5k 5087 — 5080) } : (A4)
where
aB def <o a a (e
o0 = ool —6lloy = 660 — 876, (A5)

is the generalized Kronecker symbol. As a consequence of
(A4) one has

a(By) _ _Lstvspra
AN = =500 0 (A6)
The next formulae are also valid:
a[By] _ AVBa .
Ai; B A}\I[#V]’ (A7)
Al Lsassa  Lsagey, (A8)
Apy 2 Ap v 4 AV
AYBel _ 15V56a. A9
Apv _Z AV pyo ( )
AL 4 AleDB = 557 6%; (A10)
1 -
a(p a B _ afy .
Agim — 5070500 = AZ{L; (A11)
1
af _ a B .
Agﬂh = 55(05@537 (A12)
1
[e115] _ B sa
ALt — — 5050007 (A13)
Appendix B: The general variations of fields functions
1. The functional and total variations
Let a set of variables, tensor fields, ®(x) =

{®4(x); A =1, N}, be given in a spacetime. Let a result
of an infinitesimal transformations be as

r —

{ B(z) — (). (B1)
The transformation (B1) we will call as the active trans-
formation. Then under its action a spacetime point with
coordinates = transforms into a new point with coordi-
nates 2/, and a function (physical field) ®(z) transforms
to a new function ®’(z’). At the same time. the coordi-
nate system is fized/the same.

The total variation §®(x) of field functions ®(z) ap-
pears as a result of a comparison of a new function ®’ (),
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calculated in a new point 2/, with the initial function
®(z), calculated in the initial point :

50(x) < @' (2) — B(a). (B2)
Unlike this, comparing the new and the old functions
calculated in the same (initial) point x, one obtains the
perturbation defined as
def -,

0®(z) = ®'(z) — 2(x). (B3)
This perturbation, in fact, is the functional variation
d®(z) of a field function ®(z). Unlike the total vari-
ation, it commutes with partial derivatives, and up to
a sign coincides with the Lie derivative, which appears

under an infinitesimal mapping a spacetime onto itself.

2. The variation of the connection

To obtain an explicitly covariant variation of the con-
nection {6T*,,} by a more economical way one has to
use the metric compatible condition (8). One obtains

V)\((sgm,) = ngSF“l,,\ + gm(SFaM = 29(M|Q5Fa‘l,),\.
Now, using (A1) and the formula (6) after variating

1

O ) = = 50T (B4)
one has
A;YEZV (698+) = 90T (1) = 9(u|aOT Al
This gives
0T ) = 9" ATV (0985) + 8 9(u1a0T *xjs). (BS)

Substltutmg the last formula and (B4) into the evident
equality 6T, = 5F () T 5F , one obtains finally

6T, = g“Agﬁg (Vab9sy + 9ac0T 5y) - (B6)

3. The variation of the curvature tensor
Varying the relation (7)
RK)\,LLV = 8,urn)\u - 81/1—%)\# + Fﬁa,ura)\u - Fﬁal/ra)\u;

keeping in mind that {6T*,,} is a tensor and taking into
account (6), one finds

5RN)\H,, = QV[M(SIWMU] + TTm,él—W)\T

or

SR\ = (T7 1w + 03y V) 01" 57 (B7)

4. The variation of the 1-st covariant derivative

Varying the definition of the covariant derivative
Vug® = 0,0" + FK}\M(A)\N) “I ¢ba (B8)

where {(A*) ¢|,} are the Belinfante-Rosenfeld symbols
(see Appendix C1), one gets

5(V#¢a) = 8#(5¢a)+rmku(A)\n) a|b (‘M’b)"‘(A)\n) a|b((]§b5)rmku-
9
From here one has
(Vo) =V, (69" + (A)‘,i) 1y gbb oI\ (B10)

5. The variation of the 2-nd covariant derivative

Let us calculate 6(V,,V,¢®). For the sake of simplicity,

temporarily denote ¢%, =4 V,¢® Then, taking into
account the fact that the tensor {¢%,} has for a one index
more than the tensor {¢*} and using (B10), one obtains

§(Vud®)) = V,u09%, + (Ar) @], P00\, — ¢220TH,,
=V, [Vo0¢® + (A%) “l, 8" 0T x, ] + [(A%y) “l, Voo = (Veg®)d)] 01"y,
Consequently,
5(V, V9™ =V, V00 + [(A*:) ], Vod” — (Vied®)5)] 0T 5, + Vo, [(AY,) @], ¢ 0T 5] -

(B11)

Appendix C: The Belinfante-Rosenfeld symbols
1. The definition and properties

Let the field functions ®(z) = {®4(z)} =
{pravztir . (x)} present generally covariant tensor

of the rank (g) Then under a diffeomorphism
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its components are transformed by the known rule:

prakzbie () — Plulmmwvwz---us(xl)? (C2)
ot = =2 (x) (C1)

Ox't Hy'H2 ox'Hr 9xPr P2 OxPs
L2 e N\ — . . . . . Q1a2...Qp
P viv2...Vs (‘T ) 83:0‘1 81:0‘2 tte aIQT 83:”’1 8I/V2 tee 81:’”5 6162~~~Bs (JI) (03)
[
For the infinitesimal diffeomorphism Thus, one has
o = =k + 5 (), (C4) 7
‘?f = 0 + 9,06 (2); (C6)
h
induced by the vector field 6&(x) = {6&#(x)}, up to the
first order in §&*, the converse diffeomorphism has the P
form: o 0L = 03¢ (@) = 8 = 0,067 (@).  (CT)
2 2Pl —5ef (). (C5)  Then
|
P/#1#2---#7'U1U2.“Vs 'I)
= (61 + 6%65”12 (612 + 0q, 0612) + ...+ (817 + Oa, 0EHT)
x (681 — 8,,66%) (082 — 9,,66P2) - ... - (80 — 0,,06P) Poaoz-arg g 5 (x)
~ P#1#2.“#TV1U2...I/S($)
+ (Do, 6EH) GH26Hs L Ok 50§82 (565) parazarg o s (x)
- (Dagd€2) (6016055 - st 5P oBr 60 Peaomee g ()
+
(00, ) (D0t LI BL ) P (2)
— (8,,0¢5 GRagh2 . L Gk 882683 . . .5/3 paiazarg o 5 (2)
aw(sgﬁz SELGHS g a0 . §0) Pereaen o ()
(00.06) (Bprdtz .. Gl 002002+ oL 0L ) POz (a)
— P#1#2---#ryly2mys($)
+0568% [(61165 JORZORS - ... - GhT - 50158z . - 55
o (5#2(56 )oHS - . .6#7‘ 553115%. _ 55
_|_
+6g;5gg- o OBTTY (8Kl ) 8PP 8
(C8)
—Oragkz gt (88 6P )6P280 . L 6B
—ohokz . L. -5*“ A 5ﬁ2)5ﬁ3 555
— 55;5@ R AL Iy -555:3(655553)} paozearg o 5 (2).

Consequently, the total variation (B2) for the tensor of rank () has the form

gpuluzmlhmuz...w (CL‘) = (A'ga) MluzmuTmuz...Vs|a1a2...aT Pifa e Palazmowﬂlﬂz ( ) 6,365(1( ) (CQ)
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where
(AB ) M2 o | B1B2...Bs
@ vive...Vslajag...ap
I [(6m 68 )otagha . .t 4 511 (51208 )5« LGB e 6GN2 SR (508 )] 55;655;- . -8B
—SRIGH2 L GHr [(551651)65;5533 OB £ 6868 652)00 - L 00 4 8602 8 (88 88|
(C10)
[
The functional variation §¢® of the field function ®  the total variation 6@ by the evident relation:
induced by the diffeomorphism (C4) is connected with _
604 (2) = (0a®? () 6™ + 54 (2). (C11)
|
Then, using (C9), one obtains for the tensor of rank (7):
6£PH1H2-~HTV1V2WUS (:C) (012)
= = Prkztiry, . (T) 06 + (Aﬁa) prhizetie, o, »Vs|o¢1a2...ozr Prpa-.Be poazQrg 5 B, (z) 3ﬁ5§“($),

Returning to the collective indexes A = HiH2br .
and B = *192% 3 g g, the last formula is rewritten
in the compact form:

5e @ = —0, D45 + (A%5) 4|, ®POgoE".

(C13)

The formulae of the type (C13) can be used also both
for the tensor densities of an arbitrary weight and for the

spinors of an arbitrary rank (Ilc | 7?). As we know, firstly
n

the symbols (A%,) A| p Where introduced in the works

by Belinfante?® and by Rosenfeld3:31. Therefore we call
them as the Belinfante-Rosenfeld symbols.
In our consideration, the tensors of the ranks (g) and

(;) are more important, for them one has to use

(A%0) ™ = —(558,)87 — 87,(0687); (C14)

(AP ) M| 77 = (6267) 6565 —62 [(60.85)85 + 86,(5268)] -
C1

]
5)

VAPHIMZ“MTUU/Q...US - 8)\PH1H2.“HT1/11/2...1/S

+1—‘”1,3,\ P'B”z”s"'”"uluz...us + 1"“25)\ pmﬂm...url[luz“% 4+t I‘MT,B/\ Pm”z'““"*lﬂuluz...us

2.

Thus, for the metric tensor g = {g,,, } and for the torsion
tensor T = {T?,,} one finds, respectively,

(Aﬁa) ,ul/|&W Jer = _2904(H55) (016)

and

(A%0) | 77 T po = GATP 4 2T%01,00. | (C17)

2. The covariant derivative

With the use of the Belinfante-Rosenfeld symbols
(C10) the covariant derivative of the tensor of the rank

(¥)

(C18)

« o o
- VA PH1H2 'uraz/zz/g...us - T Vo PH1p2 #Tvlau3...l/s —..—-T Ve PHikz #qul/zml/sful

can be presented in the form:

VAPMM"'”"VIUZ...VS — (i)kpmuzmmuwzmys + l—‘o‘@\ (A'Ba) mm...url[lu

or, returning to the collective indexes A and B, as

Va®? = 030" + T4, (A7) 4|, @7 (C20)

0162...05 PY1Y2--Yr
2. Vs lypya...yp 172 P e 75152“657 (019)

3. The covariant form of the variation §;®

In the Paper I, Sec. I, for the functional variation
J¢® the generalized formula (15) has been stated, due to
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which the formula (C13) has to acquire the form:

5:@4 = @, |46 + @ P1Avgoee. (C21)

Define the explicit expressions for the coefficients in this
formula. Using (C20), find the quantity {9\®4}, and
using

Vgd€* = 0g0&~ + 1“1 50€" (C22)

find the quantity {930*}. Next, substitute the results
into (C13) and obtain

55@14 = {—VOJI)A + 2F’Y[,8a](A5'Y) A|B (I)B} 08"
F{(5,) 4], 85 Ve

Substituting here 2175, = =717 ga, obtain finally

5@ = — {Va® +T75,(A",) 4|, &P} 6¢
+{(A%,) 4|, @B} Vgoe~.
(C23)
Comparing this formula with (C21) one finds
O, = = {Vo®d + T75(A°,) 4|, @F )| (C24)
3,04 = (AP,) 4|, @P. (C25)

In particular, for the metric tensor g, using the metric
compatible condition V,gg, = 0 and the formula (C16),
one gets

‘ga|57 =2T(5,7)a; (C26)

(C27)

gﬂcﬁ |l€>\ = _2901(/165) .

Analogously, using the formula (C17), one has for the
torsion tensor T:

Ta|6[3v =—VaT%g,
_(TEHOZTHB’Y + TEH,BTK'ya + TE'WTRQIB); (028)
ToP[Fon = 0517 o + 277 o0y (C29)

4. Commutator of the covariant derivatives

With the use of the Belinfante-Rosenfeld symbols
(C10) the commutator of the covariant derivatives of the
tensor of the rank (1)

T _ A
(vaa — Vavp)pumz Mo Ve e = -T pav)\pmm MTUIWWUS

can be presented in the form:
(VoVo =V V) Prrb2clin o,

Returning to the collective indexes A, B, ..., it is presented as

A oy AUS el ” el —1 A
+R#1>\pap H2is.-p ViV3...Vg +R'u2)\pa'P'u1 H3 -t ViV2...UVg + - +R'u kpoP'Ud'u2 S ViV2...UVg (030)
_Rﬁl/lpa'P'ul'LQm'uT/-cl/21/3...1/5 - RKngch'ul'LQm'uT1/1111/3...1/3 - RKUSpa'P'u”Qm'urull/g...us,ln
A o
=-T p(Tv)\‘P'ul'u2 a ViV...Vg
(C31)
A 8162...0 Y
+R“>\pa (A N) H1p2 MTV1U2...US|»YW2___% 102...05 PY17Y2 T 516 b
A A A A A B
(VoVe = VoV, @4 = =T, VA4 + R\ 0 (A,) 4|, @F. (C32)

Appendix D: The transformation of the expression
(FH7a VT 55)

P —
Let {p792} e/ {A)Des™ P} where {smlpol = gmipo}
be an arbitrary tensor with such a symmetry. Then
|

plrBle — pyfe Basing on this, transform the expression
(0724 V, T%s,) as follows.

1. Substituting the Ricci identity in the form

ViT%y = R%py + Ry + R%0p = (VT + VaT%p + TO‘AVATAM + T + T2 T05)
= R%,3y + QRO‘[[},Y]U — 2V[[5Ta,y]l, =TT gy — 2Ta)\[5T A

one obtains
1 (e} 1 (e} «
—5WQVUT gy = —§WQR vy — PR,

1
‘HﬂﬂanTaw + 5b%@OéToz)\l/TAﬁ’Y _i_b%@aTawTAw'
(D1)

2. Turn to the first term on the right hand side of
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(D1). Then, recall the identity (C2) in the Paper I,
Appendix C.1:

Vy Vney'un + geypgT'upcr:| = _§R>\Vp00)\PU7

change here 6,47 = b#*",, and obtain for this term:
1 pB R _ - pHn 1 peN TH
_5 aR vBy — _v,u Vn v+ 5 lIT en

3. The second term on the right hand side of (D1) is
equal to

_bvﬂa}faﬁw = —b"PRopy, = =A™ P Ragry
— -5 (Sﬂ,va + g B _ S%Ba) Raﬁw

f(S(a,B)'v ée%aﬁ\p _ Lrop

] Trapyr 2“ *‘/pUTFV;

4. Using the differentiation by part in the third term
on the right hand side of (D1), one finds

bVﬂavﬁTa'yv = _V,u (buBaTaﬁu) - (anmz)\) T)\,uu;

5. At last, one rewrites fourth and fifth terms on the
right hand side of (D1), respectively, as

1 1

5WQT“ wTs, = -5 (VT ) T .
and

b%@aTa)\BT)\'yV = - (buBaTaB)\) T)\uu;

Combining the results of the points 2 — 5 in the formula
(D1), one obtains the search identity:

1 o * * 1 o
—ibWBaV,,T gy =—V, [an’"’u + §b8nuTH€7] + b“BaT Bu}

* 1 1
- |:an#77)\ + Ebsn)\Tﬂsn + buﬁaTaﬁ)\:| T)\,uu - gsﬂpaRpgwu-

(D2)
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