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The present paper continues the work of the authors [J. Math. Phys. 54, 062504 (2013)] where manifestly co-
variant differential identities and conserved quantities in generally covariant metric-torsion theories of gravity
of the most general type have been constructed. Here, we study these theories presented more concretely, set-
ting that their Lagrangians L are manifestly generally covariant scalars: algebraic functions of contractions
of tensor functions and their covariant derivatives. It is assumed that Lagrangians depend on metric tensor
g, curvature tensor R, torsion tensor T and its first ∇T and second ∇∇T covariant derivatives, besides,
on an arbitrary set of other tensor (matter) fields ϕ and their first ∇ϕ and second ∇∇ϕ covariant deriva-
tives: L = L (g,R; T,∇T,∇∇T; ϕ,∇ϕ,∇∇ϕ). Thus, both the standard minimal coupling with the
Riemann-Cartan geometry and non-minimal coupling with the curvature and torsion tensors are considered.
The studies and results are as follow. (a) A physical interpretation of the Noether and Klein identities is

examined. It was found that they are the basis for constructing equations of balance of energy-momentum
tensors of various types (canonical, metrical and Belinfante symmetrized). The equations of balance are
presented. (b) Using the generalized equations of balance, new (generalized) manifestly generally covariant
expressions for canonical energy-momentum and spin tensors of the matter fields are constructed. In the
cases, when the matter Lagrangian contains both the higher derivatives and non-minimal coupling with
curvature and torsion, such generalizations are non-trivial. (c) The Belinfante procedure is generalized for
an arbitrary Riemann-Cartan space. (d) A more convenient in applications generalized expression for the
canonical superpotential is obtained. (e) A total system of equations for the gravitational fields and matter
sources are presented in the form more naturally generalizing the Einstein-Cartan equations with matter.
This result, being a one of more important results itself, is to be also a basis for constructing physically
sensible conservation laws and their applications.
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Keywords: diffeomorphic invariance, manifest covariance, differential identities, conservation laws, stress-
energy-momentum tensors, spin tensors, metric-torsion theories, gravity, Riemann-Cartan geometry

I. INTRODUCTION

The present work is the second one of the series of
works related to constructing manifestly covariant differ-
ential identities and conserved quantities, and their study
in generally covariant metric-torsion theories of gravity.
In the first work of the series1 (we will call it as the
Paper I), in an arbitrary Riemann-Cartan space C(1, D)
the next manifestly covariant expressions and relations
have been obtained: (a) the generalized Noether current
J[δξ]; (b) the system of differential Klein and Noether
identities; (c) the generalized superpotential θ[δξ], with
the use of which the generalized Noether current is pre-
sented; (d) the generalized symmetrized Noether current
sym

J [δξ] as a result of an application of the generalized
Belinfante procedure to the generalized Noether current.

a)Submitted to Journal of Mathematical Physics.
b)Electronic mail: rlompay@gmail.com
c)Electronic mail: alex.petrov55@gmail.com

For the sake of a definiteness, let us repeat the def-
initions, which we use. A theory is called as generally
covariant if it is invariant with respect to general diffeo-
morphisms. At the same time, a form of its presenta-
tion can be arbitrary. Because gauge covariant theories
that are invariant with respect to internal gauge transfor-
mations are very similar to the generally covariant ones
(have the same structure of currents, etc), for the sake of
an universality we call theories of both these types as a
gauge-invariant theories. On the other hand, the usual
gauge theories with an internal gauge group we call sepa-
rately as the gauge theories of Utiyama-Yang-Mills type.

Thus, in the Paper I, the quantities and relations in the
theories of the most general type have been constructed.
In the present work, we concretize them. We apply the
developed formalism for the study of manifestly gener-
ally covariant theories, which are a more interesting and
important example of diffeomorphically invariant theo-
ries. We call a theory as manifestly generally covari-
ant if its Lagrangian L is a generally covariant scalar
constructed as algebraic scalar function of manifestly co-
variant objects that are transformed following the lin-
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ear homogeneous representations of the diffeomorphism
group. This means that L is an algebraic function of
scalar contractions of tensor (and/or spinor) field func-
tions and their covariant derivatives; besides manifest de-
pendence on field variables, L can also depend on curva-
ture and torsion tensors independently. It seems that al-
most all the physically interesting theories are manifestly
generally covariant or can be presented in such a form.
Exceptions are, e.g., topological theories of the Chern-
Simons type (see reviews2–10 and references therein), La-
grangians of which are presented by a secondary char-
acteristic class of a topological invariant (Chern-Simons
form). Such Lagrangians explicitly contain connections
that are transformed following a linear non-homogeneous
representation. At the same time, under gauge trans-
formations the Lagrangians themselves change to a to-
tal divergence. In the Chern-Simons theories, conserved
quantities were constructed in the works11–18. Notice
also that Lagrangians in such theories can be presented
in the exactly gauge invariant form by expanding the
Chern-Simons form to the transgression form13,18–27.

Earlier, manifestly generally covariant theories both
in Riemannian spacetime (see, for example, Refs.28–50),
and in the Riemann-Cartan space (see, for example,
Refs.51–57) were studied already. In particular, in the
works by Trautman51–54 and by Hehl at al55–57 the sim-
plest theory of gravity with torsion, the Einstein-Cartan
theory (ECT), with matter, presented by the Lagrangian
L = L G+L M = − 1

2kR+L M (g; ϕ,∇ϕ) is examined.
Their main results are: (a) clarification of the role of the
canonical energy-momentum tensor (EMT) of matter as
a source of the metric field; (b) determination of the con-
nection between the variation derivative ∆IM/∆T with
respect to the torsion field T and the Belinfante tensor
B, induced by the spin tensor (ST) S in the matter sec-
tor of the system related to the action functional IM ; (c)
clarification of the role of the canonical ST of matter as
a source of the torsion field; (d) in the Riemann-Cartan
space, construction of the universal balance equation for
the canonical EMT of matter.

In the present work, we consider significantly more
general manifestly generally covariant theories, the to-
tal Lagrangians of which L = L G+L M have the form:
L = L (g,R; T,∇T,∇∇T; ϕ,∇ϕ,∇∇ϕ) that, be-
sides of the second derivatives of matter fields ϕ, in-
cludes a dependence on non-minimal coupling both with
the curvature R and with the torsion T. By this, we
significantly generalize the results of earlier works. At
first, following the recommendations of the Paper I, we
recalculate the elements necessary for constructing cur-
rents and superpotentials of various types. Basing on
this, generalized covariant dynamical quantities are con-
structed. They are total canonical both ST s and EMT

t, so-called modified canonical both ST
mod
s and EMT

mod

t , at last, symmetrized EMT
sym

t and metric EMT
met

t . Connections between these quantities are clarified,
besides, for each of the types of the dynamic character-

istics equations of balance are presented. Next, the cor-
respondent currents and superpotentials are constructed.
The generalized equations of balance are also the basis
for constructing the total system of the equations of the
aforementioned theories generalizing the equations of the
ECT with matter.
The main original results of the present work related to

the manifestly generally covariant metric-torsion theories
of gravity are:

• a physical interpretation of the Klein and Noether
identities, which are a basis for constructing equa-
tions of balance for EMTs of various types;

• a construction of manifestly generally covariant ex-
pressions for canonical EMT and ST of matter
fields. In the more complicated cases, when L M

has a generalized dependence as remarked above,
canonical EMT and ST of matter fields cannot be
obtained with the use of the standard procedure,
namely, applying the 1-st Noether theorem in the
Minkowski space and covariantization of the ex-
pressions. In the complicated cases, the general-
ized equations of balance are crucial for construct-
ing canonical EMT and ST;

• a nontrivial generalization of the Belinfante pro-
cedure applied to the canonical EMT t for con-

structing symmetrized EMT
sym

t in an arbitrary
Riemann-Cartan space;

• a construction of a more simple and convenient in
applications generalized expression for the canoni-
cal superpotential;

• a presentation of a total system of equations for the
gravitational fields and matter sources in the form,
which more naturally generalizes the Einstein-
Cartan equations with matter. This result is to be
a basis for constructing physically sensible conser-
vation laws and their applications in the Paper III
of the series.

The most of the calculations are very cumbersome and
intricate. Therefore, to give a possibility to a reader to
repeat them, many steps are presented in the main text.
Besides, the more important formulae are given in boxes.
It is important also that initial identities are analyzed
under different assumptions, when either the total set of
field equations hold, or a part of field equations (say, the
gravitational ones only, or the matter ones only) hold. In
future, this will be useful for studying both gravitational
theories with sources of the general type and field theo-
ries on a given geometrical background. At last, one has
to note that, in spite of the present work (Paper II) is
the second work of the series, developing the Paper I, it
presents a quite independent research.
The paper is organized as follows. In Sec. II, neces-

sary formulae for the current and superpotentials, and
the Klein-Noether identities obtained in the Paper I are
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given. In the present work, namely for all of them con-
crete expressions in the framework of the manifestly gen-
erally covariant theories are constructed. Also problems,
which are elaborated in the present work are formulated.

All the next studies are related to the theories with
the generalized manifestly covariant Lagrangians L of
the described above type. In Sec. III, corresponding
to the formulae (3) - (5), the covariant tensors K and
L are constructed. They are necessary to construct the
tensorsU, M andN determining the generalized Noether
current J[δξ].

In Sec. IV, the manifestly covariant expressions for the
tensors U, M and N themselves are carried out. The
generalized covariant expressions for the total canonical
EMT t and ST s are found. A contribution initiated
both by the curvature tensor R and by the non-minimal
coupling with the torsion tensor T is taken into account.
It is shown that in the manifestly covariant theories the
tensor N does not vanish only, when the Lagrangian L

contains the curvature tensor R explicitly. Also addi-
tional (with respect to the standard ones) symmetries of
N are clarified.

In Sec. V, a structure of variational derivatives
∆I/∆T and ∆I/∆g of the action functional I is ana-
lyzed. This gives a basis to clarify a physical sense both
of the Noether identity and of all the Klein identities. It
is shown that the results by Trautman and by Hehl at al:
(27) and (28) are held in a more general case, when the
Lagrangian has the form: L = L (g,R; ϕ,∇ϕ,∇∇ϕ).
However, in a case of the next generalization, when the
Lagrangian contains a non-minimal coupling with the
torsion, the results become more complicated: additional
terms appear. Therefore, one needs to modify the basic
dynamical characteristics. We introduce such a modi-
fication in an explicit form and construct modified total

canonical ST
mod
s and EMT

mod

t . The use of these quanti-
ties permits to conserve a connection between ∆IM/∆T

andB, and the equations of balance in the standard form.
Besides, in this section, manifestly covariant equations of

balance for both the total symmetrized EMT
sym

t and the
total canonical EMT t are carried out. It is shown also

that symmetrized EMT
sym

t and the metrical EMT
met

t
are equivalent if the matter equations hold. In the general
case we prove that the generalized symmetrized Noether

current
sym

J [δξ] is determined by the symmetrized EMT
sym

t only. Then, it turns out that surface terms in the
functional action do not influence to constructing both
sym

t and
sym

J [δξ] (see the Paper I, Sec. V).

Sec. VI is devoted to calculating the superpotential
θ[δξ] (21) and clarifying the role of the dynamical charac-
teristics EMT and ST in the structure of the generalized
current J[δξ] (2). The obtained manifestly covariant for-
mula for the superpotential is quite simple, it is expressed
only through the Belinfante tensor b and a tensor G, the
last exists only if the Lagrangian L depends on the cur-
vature tensor R explicitly.

In Sec. VII, the general structure of the equations of
motion of the gravitational fields is examined. The point
of view, which is beginning from Lorentz is discussed.
Following it, in the background independent field the-
ories, the total EMT and ST are equal to zero identi-
cally. The Einstein arguments against are given. We
show that the equations of balance for the pure gravita-
tional part hold identically and have a clear geometrical
sense: they generalize twice contracted the Bianchi iden-
tities onto the case of an arbitrary metric-torsion theory
of gravity in the Riemann-Cartan space. Basing on this
result, we suggest a more preferable (decomposed) form
for the equations of the gravitational fields, where the
pure gravitational part is placed on the left hand side of
the equations, whereas the other (matter) part is trans-
formed to the right hand side. This generalizes the form
of the equations in the ECT with matter as well as the
Einstein equations themselves. Their structure is more

natural: the modified canonical EMT of matter
mod

T is a
source of the metric field g, whereas the modified canon-

ical ST of matter
mod

S is a source of the torsion field T.
Such a presentation of the equations is interesting and
important itself. However, besides of that, it is the basis
for constructing physically sensible conservation laws in
the next Paper III of the series. By this, one concludes
also that the total dynamical characteristics of the phys-
ical system are not equal to zero identically, adding the
Einstein arguments.
A calculation of auxiliary quantities is presented in

Appendixes. In Appendix A, universal tensors {∆αβγ
λµν }

and {∆αβγ
λµν }, and various related identities are carried

out. The use of them permits significantly to simplify a
presentation of many formulae. In Appendix B, mani-
festly covariant expressions for general variations of var-
ious quantities, which appear under calculation of the
functional variation of the action functional, are found.
In Appendix C, the general theory of the Belinfante-
Rosenfeld symbols, which permits to present the main re-
lations of the Riemann-Cartan geometry more generally
and economically, is developed. At last, in Appendix D,
the general identity, which is a central one in constructing

modified canonical EMT
mod

t and ST
mod
s , is proved.

II. PRELIMINARY FORMULAE AND A STATEMENT

OF TASKS

In this Section, we present the main results of the Pa-
per I, which are necessary below. Also, here, we formu-
late the goals of the present paper. In the Paper I, an
arbitrary generally covariant theory of tensor fields Φ,
including both gravitational and matter ones, with the
action functional

I[Φ; Σ1,2] =
Σ2
∫

Σ1

dx
√−gL , (1)
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is studied. In (1), the integration is provided over an arbi-
trary (D+1)-dimensional volume in the Riemann-Cartan
space C(1, D), restricted by two spacelike D-dimensional
hypersurfaces Σ1 and Σ2; the Lagrangian L is a local
function of the field variables Φ = {ΦA(x);A = 1, N}
and their derivatives up to a second order. One of the
main results of the Paper I is a construction of the man-
ifestly covariant expression for the generalized Noether
current:

Jµ[δξ] = Uα
µδξα +Mα

βµ∇βδξ
α +Nα

βγµ∇(γ∇β)δξ
α.
(2)

The displacement vectors δξ are induced by diffeomor-
phisms; the tensors U, M and N are presented by ex-
pressions:

Uα
µ def

= L δµα +Kµ|AΦα|A

+ Lκµ|A
(

∇κΦα|A +
1

2
Rε

ακλΦε
λ|A

)

;

Mα
βµ def

= Kµ|AΦα
β |A + Lβµ|AΦα|A

+ Lκµ|A
(

∇κΦα
β|A − 1

2
T β

κλΦα
λ|A

)

;

Nα
βγµ def

= L(γ|µ|AΦα
|β)|A.

(3)

(4)

(5)

Important definitions and relations in the Riemann-
Cartan geometry are given in the Paper I. Now, recall
necessary notations only. The torsion tensor T and the
curvature tensor R are presented as

T λ
µν = −2Γλ

[µν]; (6)

Rκ
λµν = ∂µΓ

κ
λν−∂νΓ

κ
λµ+Γκ

αµΓ
α
λν−Γκ

ανΓ
α
λµ. (7)

Here, the connection Γ
def
= {Γλ

µν} is defined by a metric
compatible condition

∇λgµν = ∂λgµν − Γα
µλgαν − Γα

νλgµα = 0, (8)

where the standard covariant derivative ∇
def
= {∇λ} is

used. The modified covariant derivative
∗

∇ is

∗

∇λ = ∇λ + Tα
λα. (9)

Quantities presented by the notations {Φα|A} and
{Φα

β|A} are defined by the transformation properties of
the fields Φ under diffeomorphisms:

δξΦ
A(x) = Φα|Aδξα(x) + Φα

β |A∇βδξ
α(x). (10)

The tensors K and L are defined as a result of a compar-
ison of the variation of the action functional (1):

δΦI[Φ; Σ1,2]
def
= I[Φ+ δΦ; Σ1,2]− I[Φ; Σ1,2]

=
Σ2
∫

Σ1

dx δΦ (
√−gL )

(11)

with the formula

δΦI[Φ; Σ1,2] =
Σ2
∫

Σ1

dx
√−g

∆I

∆ΦA
δΦA

+
Σ2
∫

Σ1

dx
√−g

∗

∇µ

{

Kµ|AδΦA + Lβµ|A∇βδΦ
A
}

.

(12)

Hereinafter, instead of the usual variational derivative we
use a quantity proportional it

∆I

∆ΦA
=

1√−g

δI

δΦA
(13)

— covariant variational derivative.
The tensors U, M and N are not independent, they

satisfy the system of the Klein-Noether differential iden-
tities:



















































∗

∇µIα
µ ≡ Iα;

(

Uα
β − 1

3
Nλ

βρσRλ
αρσ

)

+
∗

∇µ

(

Mα
[βµ] − 2

3

∗

∇λNα
λ[βµ] +

1

3
Nα

[β|ρσT |µ]
ρσ

)

+
1

2

(

Mα
[ρσ] − 2

3

∗

∇λNα
λ[ρσ] +

1

3
Nα

[ρ|κλT |σ]
κλ

)

T β
ρσ ≡ −Iα

β ;

Mα
(βγ) +

∗

∇µNα
βγµ +Nα

(β|µνT |γ)
µν ≡ 0;

Nα
(βγδ) ≡ 0,

(14)

(15)

(16)

(17)

where

Iα
def
=

∆I

∆ΦA
Φα|A; (18)

Iα
β def

=
∆I

∆ΦA
Φα

β |A (19)
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are equal to zero if the equations of motion ∆I/∆ΦA = 0
hold.
The analysis of the identities (14) – (17) lead to the

boundary Klein theorem (the 3-rd Noether theorem),
which states that the current (2) can be presented in
the form:

Jµ[δξ] = −Iα
µδξα +

(

∗

∇νθ
µν [δξ] +

1

2
θρσ[δξ]T µ

ρσ

)

,

(20)
where the generalized canonical superpotential is

θµν [δξ] =

{

−Mα
[µν] +

2

3

(

∗

∇λNα
λ[µν] +

1

2
T [µ

ρσNα
ν]ρσ

)}

δξα +

{

−4

3
Nα

β[µν]

}

∇βδξ
α. (21)

With the use of the generalized Belinfante procedure the
generalized symmetrized Noether current

sym

J µ[δξ]
def
= Jµ[δξ]−

( ∗

∇νB
µν [δξ] + 1

2Bρσ [δξ]T µ
ρσ

)

=
sym

U α
µδξα

(22)
has been constructed. It turns out that the generalized
Belinfante tensor B[δξ], determining the procedure, coin-
cides with the generalized canonical superpotential θ[δξ]

(21). Thus the current
sym

J [δξ] (22), by (20), is propor-
tional to the operators of the equations of motion, that is
proportional to the variational derivatives of the action.
This means that it does not depend on divergences in the
Lagrangian (in the other words, it does not depend on
surface terms in the action functional (1)) and is equal
to zero on the equations of motion.
In the present paper, we consider more concrete theo-

ries presented by the action (1), examining Lagrangians
in a manifestly covariant form:

L = L (g,R; T,∇T,∇∇T; ϕ,∇ϕ,∇∇ϕ). (23)

Here, the total set of the fields Φ is presented by the met-
ric tensor g, by the torsion tensor T and by a set of the

matter fields ϕ
def
= {ϕa(x); a = 1, n}, which are consid-

ered as tensorial ones also. Lagrangians of the type (23)
include, together with the minimal coupling, the non-
minimal coupling related both to the curvature and to the
torsion. The main task of the present paper is to present
relations and conserved quantities (currents and super-
potentials) constructed in the Paper I in a maximally
concrete form that follows from the concrete structure of
the Lagrangian (23).
Recall, see formulae (2) and (21), that for construct-

ing the generalized current J[δξ] and superpotential θ[δξ]
one needs the tensors U (3), M (4) and N (5). For con-
structing the last the other tensors, K and L, defined in
(12) have to be calculated. To do this one has to compare
(12) with (11), for which one has to know the variation
δΦ(

√−gL ). Because the fields T and ϕ are included in
the Lagrangian in a similar way, for simplification of the
calculations we unite them into the unique set φ:

T,ϕ → φ
def
= {φa} def

= {T,ϕ}. (24)

If necessary one can decompose the set φ again. Now,
the Lagrangian (23) is presented as

L = L (g,R; φ,∇φ,∇∇φ). (25)

One has to keep in mind that the torsion T is included
in the Lagrangian (23) not only explicitly as arguments
T, ∇T and ∇∇T, but not explicitly also over the con-
nection Γ, which is used for constructing the covariant
derivative ∇ and the curvature tensor R.
As it was remarked in Introduction, already in the

works by Trautman51–54 and by Hehl at al55–57 the con-
struction of the conservation laws and conserved quanti-
ties in the framework of the manifestly covariant theories
has been carried out. Theories with the Lagrangians of
the type

L = L (g; ϕ,∇ϕ). (26)

were considered. It was shown that the general relations

∆I

∆Tα
βγ

=
1

2
bγβα; (27)

∗

∇µt
µ
ν = −tµλT

λ
µν +

1

2
sπ, ρσRρσπν

(on the ϕ-equations)
(28)

take a place. The first of them shows that the variational
derivative of the action functional I with respect to the
torsion T is equal to the half of the Belinfante tensor

b
def
= {bγβα} induced by the canonical ST s

def
= {sπρσ}.

The second one is the equation of balance for the canoni-

cal EMT t
def
= {tµν}. Of course, the study of the theories

with the Lagrangians of the type (23), generalizing (27)
and (28), has not to lead to contradictions with them.

III. CALCULATION OF THE TENSORS K AND L

Variate the lagrangian (25):

δ
(√−gL

)

=
(

δ
√−g

)

L +
√−g δL . (29)

The variation of the first term is defined by the well
known relation δ

√−g =
√−ggβγδgβγ/2. The second
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one, taking into account the above, can be presented in
the form:

δL =
∂∗L

∂gβγ
δgβγ +

∂L

∂Rκ
λµν

δRκ
λµν +

∂∗L

∂φa
δφa

+
∂L

∂(∇µφa)
δ(∇µφ

a) +
∂L

∂(∇µ∇νφa)
δ(∇µ∇νφ

a).

(30)

Hereinafter, ∂∗L /∂gβγ means explicit derivative with re-
spect to gβγ , that is the differentiation is provided only
with respect to gβγ , which do not included into R and∇;
analogously, ∂∗L /∂φa means differentiation only with
respect to φa, which do not included into ∇φ and ∇∇φ.
Substituting the expressions for variations δRκ

λµν (B7),
δ(∇µφ

a) (B10) and δ(∇µ∇νφ
a) (B11) into (30), pro-

viding the differentiation by parts and grouping similar
terms, obtain

δL =

{

∂∗L

∂gβγ

}

δgβγ +

{

∆I

∆Γκ
λτ

}

δΓκ
λτ +

{

∆∗I

∆φa

}

δφa

+
∗

∇µ

[{

Gκ
λµν +

∂L

∂(∇µ∇νφa)
(∆λ

κ)
a|b φb

}

δΓκ
λν +

{

∆I

∆(∇µφa)

}

δφa +

{

∂L

∂(∇µ∇αφa)

}

∇αδφ
a

]

,
(31)

where the notations

∆I

∆Γκ
λτ

def
=

(

∗

∇νGκ
λτν +

1

2
Gκ

λρσT τ
ρσ

)

+
∆I

∆(∇τφa)
(∆λ

κ)
a|b φb

+
∂L

∂(∇τ∇νφa)

[

(∆λ
κ)

a|b ∇νφ
b − δλν∇κφ

a
]

;

(32)

Gκ
λµν def

= 2
∂L

∂Rκ
λµν

; (33)

∆∗I

∆φa

def
=

∂∗L

∂φa
−

∗

∇µ

(

∂L

∂(∇µφa)

)

+
∗

∇ν

∗

∇µ

(

∂L

∂(∇µ∇νφa)

)

;

(34)

∆I

∆(∇µφa)

def
=

∂L

∂(∇µφa)
−

∗

∇ν

(

∂L

∂(∇ν∇µφa)

)

(35)

are used, and {(∆λ
κ)

a|b} are the Belinfante-Rosenfeld
symbols (see Appendix C 1). Next, substituting the ex-
pression {δΓκ

λτ} (B6) into (31), providing in the term
{∆I/∆Γκ

λτ} δΓκ
λτ differentiation by parts and again

grouping similar terms, one obtains

δL =

{

∂∗L

∂gβγ
−

∗

∇µ

(

∆I

∆Γκ
λτ

)

gκπ∆µβγ
πλτ

}

δgβγ +

{

∆I

∆Γκ
λτ

gκπ∆µβγ
πλτ gµε

}

δT ε
βγ +

{

∆I

∆φa

}

δφa

+
∗

∇µ

[{

∆I

∆Γκ
λτ

gκπ∆µβγ
πλτ

}

δgβγ +

{(

Gκ
λµν +

∂L

∂(∇µ∇νφa)
(∆λ

κ)
a|b φb

)

gκπ∆αβγ
πλν

}

∇αδgβγ

+

{(

Gκ
λµν +

∂L

∂(∇µ∇νφa)
(∆λ

κ)
a|b φb

)

gκπ∆αβγ
πλν gαε

}

δT ε
βγ +

{

∆I

∆(∇µφa)

}

δφa +

{

∂L

∂(∇µ∇αφa)

}

∇αδφ
a

]

.

(36)

At last, substituting (36) into (29) and recalling that due
to the convention (24) the set of fields φ consists of the

torsion field T and a set of matter fields ϕ, one obtains
the search expression for the functional variation of the
action:
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δΦI =

Σ2
∫

Σ1

dx
√
−g

[{

1

2
L gβγ +

∂∗L

∂gβγ
−

∗

∇µ

(

∆I

∆Γκ
λτ

)

gκπ∆µβγ
πλτ

}

δgβγ

+

{

∂∗L

∂T ε
βγ

−
∗

∇µ

(

∂L

∂(∇µT ε
βγ)

)

+
∗

∇ν

∗

∇µ

(

∂L

∂(∇µ∇νT ε
βγ)

)

+
∆I

∆Γκ
λτ

gκπ∆µβγ
πλτ gµε

}

δT ε
βγ

+

{

∂∗L

∂ϕa
−

∗

∇µ

(

∂L

∂(∇µϕa)

)

+
∗

∇ν

∗

∇µ

(

∂L

∂(∇µ∇νϕa)

)}

δϕa

]

+

Σ2
∫

Σ1

dx
√−g

∗

∇µ

[{

∆I

∆Γκ
λτ

gκπ∆µβγ
πλτ

}

δgβγ

+

{(

Gκ
λµν +

∂L

∂(∇µ∇νT τ
θφ)

(∆λ
κ)

τ
θφ|ω ρσ Tω

ρσ +
∂L

∂(∇µ∇νϕa)
(∆λ

κ)
a|b ϕb

)

gκπ∆αβγ
πλν

}

∇αδgβγ

+

{(

Gκ
λµν +

∂L

∂(∇µ∇νT τ
θφ)

(∆λ
κ)

τ
θφ|ω ρσ Tω

ρσ +
∂L

∂(∇µ∇νϕa)
(∆λ

κ)
a|b ϕb

)

gκπ∆αβγ
πλν gαε

+
∆I

∆(∇µT ε
βγ)

}

δT ε
βγ +

{

∂L

∂(∇µ∇αT ε
βγ)

}

∇αδT
ε
βγ +

{

∆I

∆(∇µϕa)

}

δϕa +

{

∂L

∂(∇µ∇αϕa)

}

∇αδϕ
a

]

,

(37)

where

∆I

∆Γκ
λτ

def
=

(

∗

∇νGκ
λτν +

1

2
Gκ

λρσT τ
ρσ

)

+
∆I

∆(∇τT ε
βγ)

(∆λ
κ)

ε
βγ |ω ρσ Tω

ρσ +
∂L

∂(∇τ∇νT ε
βγ)

[

(∆λ
κ)

ε
βγ |ω ρσ ∇νT

ω
ρσ − δλν∇κT

ε
βγ

]

+
∆I

∆(∇τϕa)
(∆λ

κ)
a|b ϕb +

∂L

∂(∇τ∇νϕa)

[

(∆λ
κ)

a|b ∇νϕ
b − δλν∇κϕ

a
]

;

(38)

∆I

∆(∇µT ε
βγ)

def
=

∂L

∂(∇µT ε
βγ)

−
∗

∇ν

(

∂L

∂(∇ν∇µT ε
βγ)

)

; (39)

∆I

∆(∇µϕa)

def
=

∂L

∂(∇µϕa)
−

∗

∇ν

(

∂L

∂(∇ν∇µϕa)

)

. (40)

On the other hand, for the Lagrangian (23) the formula (12) acquires the form:

δΦI =

Σ2
∫

Σ1

dx
√−g

[

∆I

∆gβγ
δgβγ +

∆I

∆T ε
βγ

δT ε
βγ +

∆I

∆ϕa
δϕa

]

+

Σ2
∫

Σ1

dx
√−g

∗

∇µ

[(

Kµ|βγδgβγ + Lαµ|βγ∇αδgβγ
)

+
(

Kµ|εβγδT ε
βγ + Lαµ|εβγ∇αδT

ε
βγ

)

+(Kµ|aδϕa + Lαµ|a∇αδϕ
a)] .

(41)

Comparing (37) with the last expression, one can recognize expressions and quantities interesting in our study:






































∆I

∆gβγ
=

1

2
L gβγ +

∂∗L

∂gβγ
−

∗

∇µ

(

∆I

∆Γκ
λτ

gκπ
)

∆
µ(βγ)
πλτ ;

∆I

∆T ε
βγ

=
∆∗I

∆T ε
βγ

+

(

∆I

∆Γκ
λτ

gκπ
)

∆
µ[βγ]
πλτ gµε;

∆I

∆ϕa
=

∂∗L

∂ϕa
−

∗

∇µ

(

∂L

∂(∇µϕa)

)

+
∗

∇ν

∗

∇µ

(

∂L

∂(∇µ∇νϕa)

)

;

(42)

(43)

(44)



















Kµ|βγ =
∆I

∆Γκ
λτ

gκπ∆
µ(βγ)
πλτ ;

Lαµ|βγ =

(

Gκ
λµν +

∂L

∂(∇µ∇νT τ
θφ)

(∆λ
κ)

τ
θφ|ω

ρσ Tω
ρσ +

∂L

∂(∇µ∇νϕa)
(∆λ

κ)
a|b ϕb

)

gκπ∆
α(βγ)
πλν ;

(45)

(46)
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





































Kµ|εβγ =

(

Gκ
λµν +

∂L

∂(∇µ∇νT τ
θφ)

(∆λ
κ)

τ
θφ|ω ρσ Tω

ρσ +
∂L

∂(∇µ∇νϕa)
(∆λ

κ)
a|b ϕb

)

gκπ∆
α[βγ]
πλν gαε

+
∆I

∆(∇µT ε
βγ)

;

Lαµ|εβγ =
∂L

∂(∇µ∇αT ε
βγ)

;

(47)

(48)



















Kµ|a =
∆I

∆(∇µϕa)
;

Lαµ|a =
∂L

∂(∇µ∇αϕa)
.

(49)

(50)

Here,

∆∗I

∆T ε
βγ

def
=

∂∗L

∂T ε
βγ

−
∗

∇µ

(

∂L

∂(∇µT ε
βγ)

)

+
∗

∇ν

∗

∇µ

(

∂L

∂(∇µ∇νT ε
βγ)

)

,
(51)

and ∆I/∆Γκ
λτ , ∆I/∆(∇µT

ε
βγ) and ∆I/∆(∇µϕ

a) are
defined by the formulae (38), (39) and (40), respectively.
Thus, calculating the tensors K and L is finalized.

To simplify calculations remark the following. Com-
paring the formulae (48) and (50) with the formula (46),
it is easily to find that there is a connection between the

quantities {Lαµ|βγ} and {Lαµ|εβγ}, {Lαµ|a}

Lαµ|βγ =
(

Gκ
λµν + Lνµ|τ θϕ(∆λ

κ)
τ
θϕ|ω ρσ Tω

ρσ

+Lνµ|a(∆λ
κ)

a|b ϕb
)

gκπ∆
α(βγ)
πλν

def
=

(

Gκ
λµν + Lνµ|a(∆λ

κ)
a|b φb

)

gκπ∆
α(βγ)
πλν .

(52)

Analogously, comparing the formulae (48) and (50)
with the formula (47), one finds the connection between
the quantities {Kµ|εβγ} and {Lαµ|εβγ}, {Lαµ|a}:

Kµ|εβγ =
∆I

∆(∇µT ε
βγ)

+
(

Gκ
λµν + Lνµ|τ θϕ(∆λ

κ)
τ
θϕ|ω ρσ Tω

ρσ

+Lνµ|a(∆λ
κ)

a|b ϕb
)

gκπ∆
α[βγ]
πλν gαε

def
= ∗Kµ|εβγ +

(

Gκ
λµν + Lνµ|a(∆λ

κ)
a|b φb

)

gκπ∆
α[βγ]
πλν gαε,

(53)
where

∗Kµ|εβγ
def
=

∆I

∆(∇µT ε
βγ)

, (54)

compare with (49). Using the formulae (48) – (50), (54)
in the expression (38), one can present it in a more com-
pact form:

∆I

∆Γκ
λτ

=

(

∗

∇νGκ
λτν +

1

2
Gκ

λρσT τ
ρσ

)

+∗Kτ |εβγ(∆λ
κ)

ε
βγ |ω ρσ Tω

ρσ + Lντ |εβγ
[

(∆λ
κ)

ε
βγ |ω ρσ ∇νT

ω
ρσ − δλν∇κT

ε
βγ

]

+Kτ |a(∆λ
κ)

a|b ϕb + Lντ |a
[

(∆λ
κ)

a|b ∇νϕ
b − δλν∇κϕ

a
]

def
=

(

∗

∇νGκ
λτν +

1

2
Gκ

λρσT τ
ρσ

)

+ ∗Kτ |a(∆λ
κ)

a|b φb + Lντ |a
[

(∆λ
κ)

a|b ∇νφ
b − δλν∇κφ

a
]

.

(55)

IV. THE CALCULATION OF THE TENSORS U, M

AND N

Next, we calculate the tensors U, M and N following
the formulae (3), (4) and (5) in the manifestly covariant
theories with the Lagrangians of the type (23). As we
think, we have found the most economical scheme of cal-
culations. Now, we follow it in details. For this we need
the formulae

gα|βγ = 2T(β, γ)α; (56)

φα|a = −
{

∇αφ
a + T γ

βα(∆
β
γ)

a|b φb
}

; (57)

Tα|εβγ = −∇αT
ε
βγ

−(T ε
καT

κ
βγ + T ε

κβT
κ
γα + T ε

κγT
κ
αβ);

(58)

gα
β |κλ = −2gα(κδ

β

λ); (59)

φα
β |a = (∆β

α)
a|b φb; (60)
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Tα
λ|εβγ = δεαT

λ
βγ + 2T ε

α[βδ
λ
γ], (61)

proved in Appendix C 3.

A. The calculation of the tensor N

For the Lagrangian (23) the formula (5) transforms to

Nα
κλµ def

= L(λ|µ|AΦα
|κ)|A

= L(λ|µ|βγgα|κ)|βγ + L(λ|µ|εβγTα
|κ)|εβγ + L(λ|µ|aϕα

|κ)|a.

Let us present the calculation in the next steps.

1. Return to the united field φ = {T,ϕ} (24). Then

Nα
κλµ = L(λ|µ|βγgα|κ)|βγ + L(λ|µ|aφα

|κ)|a.

2. Take into account the connection (52) and obtain

Nα
κλµ =

(

Gε
ηµν + Lνµ|a(∆η

ε)
a|b φb

)

gεπ∆
(λ|(βγ)
πην gα

|κ)|βγ
+L(λ|µ|aφα

|κ)|a.

3. Substitute here the expressions (59) and (60).
Then, with using the identity (A10), the tensor N
is transformed to the form:

Nα
κλµ = −

(

Gε
ηµν + Lνµ|a(∆η

ε)
a|b φb

)

δεαδ
(κ
η δ

λ)
ν

+L(λ|µ|a(∆|κ)
α)

a|b φb = Gα
(κλ)µ.

Thus, the expression for the tensor N gets the form:

Nα
βγµ = Gα

(βγ)µ. (62)

It is important to note that the tensor N is not equal to
zero only if the Lagrangian contains explicitly the curva-
ture tensor R (see the definition (33)).

B. The calculation of the tensor M

For the Lagrangian (23) the formula (4) transforms to

Mα
λµ def

= Kµ|AΦα
λ|A + Lλµ|AΦα|A + Lκµ|A

(

∇κΦα
λ|A − 1

2
T λ

κηΦα
η|A

)

=
{

Kµ|βγgαλ|βγ +Kµ|εβγTα
λ|εβγ +Kµ|aϕα

λ|a
}

+
{

Lλµ|βγgα|βγ + Lλµ|εβγTα|εβγ + Lλµ|aϕα|a
}

+

{

Lρµ|βγ
(

∇ρgα
λ|βγ − 1

2
T λ

ρσgα
σ|βγ

)

+Lρµ|εβγ
(

∇ρTα
λ|εβγ − 1

2
T λ

ρσTα
σ|εβγ

)

+ Lρµ|a
(

∇ρϕα
λ|a − 1

2
T λ

ρσϕα
σ|a

)}

.

(63)

Provide the calculation of (63) step by step also.

1. Denote the first, second and third braces on the
right hand side of (63) as {. . . }1, {. . . }2 and {. . . }3,
respectively. Then

Mα
λµ def

= {. . . }1 + {. . . }2 + {. . . }3.

2. In {. . . }1, take into account the expression (53) and
return to the united field φ = {T,ϕ}. Then

{. . . }1 = Kµ|βγgαλ|βγ + ∗Kµ|aφα
λ|a

+
(

Gκ
ηµν + Lνµ|a(∆η

κ)
a|b φb

)

gκπ∆
ρ[βγ]
πην gρε Tα

λ|εβγ ,

where

∗Kµ|aφα
λ|a def

= ∗Kµ|εβγTα
λ|εβγ +Kµ|aϕα

λ|a. (64)

3. In {. . . }2, take into account the expression (52) and
return to the united field φ again. Then

{. . . }2 =
(

Gκ
ηµν + Lνµ|a(∆η

κ)
a|b φb

)

gκπ∆
λ(βγ)
πην gα|βγ

+Lλµ|aφα|a.
4. To provide {. . . }3 apply the similar steps and ob-

tain

{. . . }3 =
(

Gκ
ηµν + Lνµ|a(∆η

κ)
a|b φb

)

gκπ

×∆
ρ(βγ)
πην

(

∇ρgα
λ|βγ − 1

2
T λ

ρσgα
σ|βγ

)

+Lρµ|a
(

∇ρφα
λ|a − 1

2
T λ

ρσφα
σ|a

)

.

5. Combining the results of the points 2 – 4 and col-
lecting the similar terms, find
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Mα
λµ = Kµ|βγgαλ|βγ + ∗Kµ|aφα

λ|a + Lνµ|a
[

δλνφα|a +∇νφα
λ|a − 1

2
T λ

νβφα
β |a

]

+
(

Gκ
ηµν + Lνµ|a(∆η

κ)
a|b φb

)

gκπ∆ρβγ
πην

[

gρεTα
λ|εβγ + δλρ gα|βγ +∇ρgα

λ|βγ − 1

2
T λ

ρσgα
σ|βγ

]

.
(65)

6. Corresponding to the formulae (45), (55) and (59)
one has

Kµ|βγgαλ|βγ = −2

[

−
(

∗

∇νG
ηπτν +

1

2
GηπρσT τ

ρσ

)

+∗Kτ |a(∆ηπ) a|b φb

+Lντ |a
(

(∆ηπ) a|b ∇νφ
b − δην∇πφa

)]

∆
µ(λβ)
πητ gβα.

(66)

7. Taking into account (57) and (60), and
adding with subtracting the expression
( ∗

∇νGα
λµν + 1

2Gα
λρσT µ

ρσ

)

, one obtains for

the sum of ∗Kµ|aφα
λ|a and the next item on the

right hand side of (65):

[

−
(

∗

∇νG
λβµν +

1

2
GλβρσT µ

ρσ

)

+ ∗Kµ|a(∆λβ) a|b φb + Lνµ|a
(

(∆λβ) a|b ∇νφ
b − δλν∇βφa

)

]

gβα

−
[

∗

∇νGα
λµν +

1

2
Gα

λρσT µ
ρσ

]

− 1

2
Lνµ|a

[

2δλνT
γ
βα + T λ

νβδ
γ
α

]

(∆β
γ)

a|b φb.

8. For the expression inside brackets of the last item
in (65), taking into account the formulae (56), (59)

and (61), and the identities (A12) and (A13), pro-
vide simple identical transformations and obtain

∆ρβγ
πην

[

gρε

(

δεαT
λ
βγ + 2T ε

α[βδ
λ
γ]

)

+ 2δλρT(β, γ)α + T λ
ρσgα(βδ

σ
γ)

]

= ∆ρβγ
πην

[(

gα(ρT
λ
β)γ + 2δλ(ρTβ), γα

)

+
(

gα[ρ|T
λ
β|γ] + 2δλ[ρTγ], βα

)]

= ∆
(ρβ)γ
πην

(

gαρT
λ
βγ + 2δλρTβ, γα

)

+∆
[ρ|β|γ]
πην

(

gαρT
λ
βγ + 2δλρTγ, βα

)

=
1

2
δρ(πδ

β

ν)δ
γ
η

(

gαρT
λ
βγ + 2δλρTβ, γα

)

− 1

2
δβη δ

ρ

[πδ
γ

ν]

(

gαρT
λ
βγ + 2δλρTγ, βα

)

=
1

2

[

2
(

δλ(νTπ), ηα + δλ[νTπ], ηα

)

−
(

gα(π|T
λ
η|ν) + gα[π|T

λ
η|ν]

)

]

=
1

2

(

2δλνTπ, ηα − gαπT
λ
ην

)

.

Thus, the last item in (65) is equal to

1

2
Gα

βγµT λ
βγ −

(

Gγ
βλµT γ

βα

)

+
1

2
Lνµ|a

[

2δλνT
γ
βα + T λ

νβδ
γ
α

]

(∆β
γ)

a|b φb.

9. Combining the results of the points 6 – 8, one finds

Mα
λµ = −2

[

−
(

∗

∇νG
ηπτν +

1

2
GηπρσT τ

ρσ

)

+ ∗Kτ |a(∆ηπ) a|b φb + Lντ |a
[

(∆ηπ) a|b ∇νφ
b − δην∇πφa

]

]

×
(

∆
µ(λβ)
πητ − 1

2
δµτ δ

λ
η δ

β
π

)

gβα −
[

∗

∇νGα
λµν +

1

2
Gα

λρσT µ
ρσ

]

+
1

2
Gα

βγµT λ
βγ −

(

Gγ
βλµT γ

βα

)

.

10. At last, using the identity (A11) and formulae (48)–(50), (54), and denoting

sπρσ
def
= −2

(

∗

∇ηGρσ
πη +

1

2
Gρσ

αβT π
αβ

)

+2

(

∆I

∆(∇πφa)
(∆[ρσ])

a|b φb +
∂L

∂(∇π∇αφa)

[

(∆[ρσ])
a|b ∇αφ

b − gα[ρ∇σ]φ
a
]

)

,
(67)
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one obtains the finalized expression for the tensor M:

Mκ
λµ = −

(

∆µλα
πρσ s

π, ρσ
)

gακ −
(

∗

∇νGκ
λµν +

1

2
Gκ

λρσT µ
ρσ

)

+
1

2
Gκ

αβµT λ
αβ −

(

Gα
βλµTα

βκ

)

. (68)

Remark that the tensor s
def
= {sπρσ} (67) is just the

generalized canonical spin tensor, corresponding to the
Lagrangian (23). This statement follows from the results
of Sec. VII. Namely, basing on the above definition of
the ST, one obtains the standard equations of balance for
the EMT. Besides, the gravitational field equations ac-
quire the form, naturally generalizing the ECT equations.
Remark that the items in the first parentheses on the

right hand side of (67) are induced by the non-minimal
coupling with the metric field. These items in principal
cannot be obtained with the use of the 1-st Noether the-
orem in the Minkowski space and covariantization of the
expressions.

C. The calculation of the tensor U

For the Lagrangian (23) the formula (3) has the form:

Uα
µ def

= L δµα +Kµ|AΦα|A + Lκµ|A
(

∇κΦα|A +
1

2
Rε

ακλΦε
λ|A

)

= L δµα +
{

Kµ|βγgα|βγ +Kµ|εβγTα|εβγ +Kµ|aϕα|a
}

+

{

Lκµ|βγ
(

∇κgα|βγ +
1

2
Rσ

ακλgσ
λ|βγ

)

+Lκµ|εβγ
(

∇κTα|εβγ +
1

2
Rσ

ακλTσ
λ|εβγ

)

+ Lκµ|a
(

∇κϕα|a +
1

2
Rσ

ακλϕσ
λ|a

)}

.

(69)

Transform it. The main steps are as follows.

1. The first and second braces on the right hand side
of (69) denote as {. . . }4 and {. . . }5, respectively.
Thus,

Uα
µ def

= L δµα + {. . . }4 + {. . . }5.

2. In {. . . }4, take into account the expression (53) and
return to the united field φ = {T,ϕ}. Then

{. . . }4 = Kµ|βγgα|βγ + ∗Kµ|aφα|a
+
(

Gπηµν + Lνµ|a(∆ηπ) a|b φb
)

∆
ρ[βγ]
πην gρε Tα|εβγ ,

where

∗Kµ|aφα|a
def
= ∗Kµ|εβγTα|εβγ +Kµ|aϕα|a. (70)

3. In {. . . }5, take into account the expression (52) and
return to the united field φ = {T,ϕ}. Then

{. . . }5 =
(

Gπηµν + Lνµ|a(∆ηπ) a|b φb
)

×∆
κ(βγ)
πην

(

∇κgα|βγ +
1

2
Rε

ακλgε
λ|βγ

)

+Lκµ|a
(

∇κφα|a +
1

2
Rε

ακλφε
λ|a

)

.

4. Combining the results of the points 2 – 3 and col-
lecting the similar terms, find

Uα
µ = L δµα +Kµ|βγgα|βγ + ∗Kµ|aφα|a +

(

Gπηµν + Lνµ|a(∆ηπ) a|b φb
)

∆κβγ
πην

×
[

gκεTα|εβγ +∇κgα|βγ +
1

2
Rε

ακλgε
λ|βγ

]

+ Lκµ|a
(

∇κφα|a +
1

2
Rε

ακλφε
λ|a

)

.
(71)

5. Remark that, corresponding to the formulae (45),
(55) and (56),

Kµ|βγgα|βγ

= 2

[

−
(

∗

∇νG
ηπτν +

1

2
GηπρσT τ

ρσ

)

+ ∗Kτ |a(∆ηπ) a|b φb

+Lντ |a
(

(∆ηπ) a|b ∇νφ
b − δην∇πφa

)]

∆
µ(βγ)
πητ Tγ, βα.
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6. Turn to the right hand side of (71). Substitute
the expression (57) into the third item, and substi-
tute the expressions (57) and (60) into the last one.
After that commutate the second covariant deriva-
tives ∇κ∇αφ

a by the rule (C32). In the result one
obtains

Lνµ|a
(

∇νφα|a +
1

2
Rγ

ανβφγ
β |a

)

= −Lνµ|a∇α∇νφ
a

−Lνµ|a
[

(∆βγ) a|b ∇νφ
b − δβν∇γφa

]

Tγ, βα

+Lνµ|a(∆β
γ)

a|b φb

(

Rγ
βαν −∇νT

γ
βα +

1

2
Rγ

ανβ

)

.

7. Combining the results of the points 5 and 6, one
can see that the sum of the first, second, third and
fifth items, after adding and subtracting the combi-

nation
( ∗

∇νG
βγµν + 1

2G
βγρσT µ

ρσ

)

Tγ, βα, becomes

[L δµα − ∗Kµ|a∇αφ
a − Lνµ|a∇α∇νφ

a] + 2

[

−
(

∗

∇νG
ηπτν +

1

2
GηπρσT τ

ρσ

)

+∗Kτ |a(∆ηπ) a|b φb + Lντ |a
(

(∆ηπ) a|b ∇νφ
b − δην∇πφa

)]

×
(

∆
µ(βγ)
πητ − 1

2
δµτ δ

β
η δ

γ
π

)

Tγ, βα

−
(

∗

∇νG
βγµν +

1

2
GβγρσT µ

ρσ

)

Tγ, βα + Lνµ|a(∆β
γ)

a|b φb

(

Rγ
βαν −∇νT

γ
βα +

1

2
Rγ

ανβ

)

= [L δµα − ∗Kµ|a∇αφ
a − Lνµ|a∇α∇νφ

a] +
(

∆µβγ
τηπs

τ, ηπ
)

Tγ, βα

−
(

∗

∇νG
βγµν +

1

2
GβγρσT µ

ρσ

)

Tγ, βα + Lνµ|a(∆β
γ)

a|b φb

(

Rγ
βαν −∇νT

γ
βα +

1

2
Rγ

ανβ

)

,

(72)

where the identity (A11) and the definition (67)
have been taken into account.

8. After substituting the equality

−
∗

∇νG
βγµνTγ, βα =

∗

∇ν

(

GβγµνTβ, γα

)

−Gγ
βµν∇νT

γ
βα,

and adding with subtracting the expression

GγβνµRγβνα − 1
2G

γβνµRαγβν

= Gγ
βµν

(

Rγ
βαν + 1

2R
γ
ανβ

)

,

in the right hand side of (72), it acquires the form:

[

L δµα − ∗Kµ|a∇αφ
a − Lνµ|a∇α∇νφ

a −GγβνµRγβνα

]

+
(

∆µβγ
τηπs

τ, ηπ
)

Tγ, βα

+

[

∗

∇ν

(

GβγµνTβ, γα

)

+
1

2

(

GβγρσTβ, γα

)

T µ
ρσ

]

+
(

Gγ
βµν + Lνµ|a(∆β

γ)
a|b φb

)

[

Rγ
βαν −∇νT

γ
βα +

1

2
Rγ

ανβ

]

.

(73)

9. At last, turn to the fourth item in the formula
(71). Substituting the expressions (56), (59) and

(58) into the brackets

[. . . ]
def
=

[

gκεTα|εβγ +∇κgα|βγ +
1

2
Rε

ακλgε
λ|βγ

]

,

one presents it as

[. . . ] = −gκε
{

∇αT
ε
βγ +

(

T ε
λαT

λ
βγ + T ε

λβT
λ
γα + T ε

λγT
λ
αβ

)}

+ 2∇κT(β, γ)α −Rε
ακλgε(βδ

λ
γ)

= −gκε {−∇βT
ε
γα −∇γT

ε
αβ +Rε

αβγ +Rε
βγα +Rε

γαβ}+∇κTβ, γα +∇κTγ, βα − 1

2
Rβακγ − 1

2
Rγακβ,
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where the Ricci identity Rε
[αβγ] ≡ ∇[αT

ε
βγ] + T ε

λ[αT
λ
βγ] has been used. Regrouping terms one obtains

[. . . ] = ∇βTκ, γα −∇γTκ, βα +Rακβγ +Rβκγα +Rκγβα +∇κTβ, γα +∇κTγ, βα +
1

2
Rαβκγ +

1

2
Rαγκβ

=
(

2∇(κTβ), γα +Rα(κβ)γ

)

+
(

2∇[κTγ], βα −Rα[κγ]β +R[κγ]βα

)

−Rκβγα.

10. From the last, using the identities (A12) and (A13), and the definition (A1), one gets

∆κβγ
πην [. . . ] = ∆

(κβ)γ
πην (2∇κTβ, γα +Rακβγ) + ∆

[κ|β|γ]
πην (2∇κTγ, βα −Rακγβ +Rκγβα)−∆κβγ

πηνRκβγα

=
1

2
δκ(πδ

β

ν)δ
γ
η (2∇κTβ, γα +Rακβγ)−

1

2
δβη δ

κ
[πδ

γ

ν] (2∇κTγ, βα −Rακγβ +Rκγβα)

−1

2
(Rηπνα +Rνπηα −Rπηνα) = −Rπηαν +∇νTπ, ηα − 1

2
Rπανη.

11. Taking into account the result of the previous point,
one concludes that the fourth item in the formula
(71) is equal to

−
(

Gπ
ηµν + Lνµ|a(∆η

π)
a|b φb

)

×
[

Rπ
ηαν −∇νT

π
ηα +

1

2
Rπ

ανη

]

.
(74)

Notice that this expression exactly equal (up to a
sign) to the last term in the formula (73).

12. Summing (73) and (74), keeping in mind (48) –
(50), (54) and denoting

tµα
def
= L δµα − ∆I

∆(∇µφa)
∇αφ

a − ∂L

∂(∇µ∇νφa)
∇α∇νφ

a −GβγεµRβγεα, (75)

one obtains the finalized expression for the tensor U:

Uα
µ = tµα +

(

∆µβγ
πρσs

π, ρσ
)

Tγ, βα +
1

2
GβγεµRαβγε +

[

∗

∇ν

(

GβγµνTβ, γα

)

+
1

2

(

GβγρσTβ, γα

)

T µ
ρσ

]

. (76)

Notice also that the tensor t
def
= {tµν} (75) is just the gen-

eralized canonical energy-momentum tensor, correspond-
ing to the Lagrangian (23). This statement follows also
from the results of Sec. VII. Namely, basing on the
above definition of the EMT, one obtains the standard
equations of balance for itself. Besides, the gravitational
field equations acquire the form, naturally generalizing
the ECT equations. It is worse to note that the sequence
of the second derivative in the multiplier {∇α∇νφ

a} in
(75) is reverse to the sequence that follows from the con-
struction of the canonical EMT by the direct application
of the 1-st Noether theorem. The last term in (75) has
appeared due to the non-minimal coupling with the met-
ric field, and also cannot be obtained in principal by the
application of the 1-st Noether theorem in the Minkowski
space and covariantization of the expressions.

V. A PHYSICAL SENSE OF THE KLEIN AND

NOETHER IDENTITIES

A. Structure of the variational derivatives

In the following subsections of the present section, we
discuss the physical sense of the Klein and Noether iden-
tities in the manifestly generally covariant theories. The
identities include various combinations of the variational
derivatives of the action functional I with respect to fields
g, T and ϕ as ingredients. By this, it is useful to analyze
in more details the structure of such derivatives. At first,
define the tensors:

(R)sπρσ
def
= (−2)

(

∗

∇ηGρσ
πη +

1

2
Gρσ

αβT π
αβ

)

; (77)

(φ)fπ
ρσ

def
= 2

∆I

∆(∇πφa)
(∆ρσ)

a|b φb

+2
∂L

∂(∇π∇ηφa)

[

(∆ρσ)
a|b ∇ηφ

b − gηρ∇σφ
a
]

,
(78)

which are determined by the dependence of the La-
grangian L on the curvature tensor R and on the fields
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φ, respectively. It is worse to note that the sum of the
tensor (77) and the antisymmetrical part of the tensor

(78): (φ)sπρσ
def
= (φ)fπ

[ρσ] presents the canonical ST (67):

sπρσ = (R)sπρσ + (φ)sπρσ . (79)

Now, let us discuss the structure of the variational
derivative with respect to the torsion tensor. In the terms
of the quantities (77) and (78) the derivative (32) can be
rewritten as

∆I

∆Γκ
λτ

=
1

2

(

(R)sτ,λκ + (φ)f τ, λ
κ

)

. (80)

Then, due to the identity (A7), the variational derivative
(43) is equal to

∆I

∆T ε
βγ

=
∆∗I

∆T ε
βγ

+
1

2

(

∆γβα
πρσ s

π, ρσ
)

gαε, (81)

where the first term on the right hand side is defined by
the formula (51). Denote the quantity

bγβα
def
= ∆γβα

πρσ s
π, ρσ; b[γβ]α = bγβα (82)

and call it as the Belinfante tensor: b
def
=

{

bγβα
}

, in-
duced by the ST s. Then

∆I

∆T ε
βγ

=
∆∗I

∆T ε
βγ

+
1

2
bγβε. (83)

This means that in the case of only minimal T -coupling
(when the Lagrangian L does not contain the torsion
tensor T explicitly) one has

∆I

∆T ε
βγ

=
1

2
bγβε. (84)

Earlier, the same result (27) has been proved only for
the Lagrangians of the type L = L (g;ϕ,∇ϕ) (26)
with a more simple presentations both of the ST and
of the Belinfante tensor (see Refs.51–57). We have
proved a more general claim: the formula (27) is left
valid for the Lagrangians of a more general type L =
L (g,R;ϕ,∇ϕ,∇∇ϕ), as this follows from (84) .
The formula (83) shows that the presence of a non-

minimal coupling with torsion changes (84). The require-
ment (the desire) to conserve a sense of the variational
derivative (84) even at the presence of a non-minimal T -
coupling leads to a necessity to modify both the initial
Belinfante tensor and the initial ST. Let us demonstrate
the modification step by step. Rewrite the formula (83)
in form of (84):

∆I

∆T ε
βγ

=
1

2

mod

b
γβ

ε, (85)

where the modified Belinfante tensor
mod

b = {
mod

b γβα} is
defined analogously to the initial one (that is with the
use of any ST):

mod

b
γβα def

= ∆γβα
πρσ

mod
s π, ρσ. (86)

The modified Belinfante tensor and canonical ST can be
represented as initial ones and correspondent additions:

mod

b
γβα def

= bγβα+
add

b
γβα (87)

and

mod
s π

ρσ
def
= sπρσ+

add
s π

ρσ. (88)

Finally, combining (83) - (86), one obtains the definitions
for the additional Belinfante tensor and ST:

add

b
γβ

ε = 2
∆∗I

∆T ε
βγ

; (89)

add
s π, ρσ = −4g[σ|ε

∆∗I

∆T ε
|ρ]π

. (90)

Now, let us turn to the variational derivative with re-
spect to the metric tensor g. By the formulae (42) and
(80),

∆I

∆gβγ
=

1

2
L gβγ +

∂∗L

∂gβγ

−1

2

∗

∇µ

(

(R)sτ, λπ + (φ)f τ, λπ
)

∆
µ(βγ)
πλτ .

(91)

Using the identity (A11) and the formula (79), rewrite
the last as

∆I

∆gβγ
=

1

2
L gβγ +

∂∗
L

∂gβγ

−1

4

∗

∇µ

(

(R)sµ, βγ + (φ)fµ, βγ
)

− 1

2

∗

∇µb
µβγ .

(92)

Substituting this expression into the standard definition

of the metric EMT
met

t
def
= {

met

t βγ}:

1

2

met

t βγ def
=

∆I

∆gβγ
, (93)

one obtains
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met
t βγ = L gβγ + 2

∂∗L

∂gβγ
− 1

2

∗

∇µ

(

(R)sµ, βγ + (φ)fµ, βγ
)

−
∗

∇µb
µβγ . (94)

B. The physical sense of the Noether identity

Turn to the Noether identity (14)

∗

∇µIν
µ ≡ Iν . (95)

Here, corresponding to the identities (19) and (18),

Iν
µ def

=
∆I

∆ΦA
Φν

µ|A =
∆I

∆gβγ
gν

µ|βγ +
∆I

∆T ε
βγ

Tν
µ|εβγ +

∆I

∆ϕa
ϕν

µ|a def
=

∆I

∆gβγ
gν

µ|βγ +
∆I

∆φa
φν

µ|a; (96)

Iν
def
=

∆I

∆ΦA
Φν |A =

∆I

∆gβγ
gν |βγ +

∆I

∆T ε
βγ

Tν |εβγ +
∆I

∆ϕa
ϕν |a

def
=

∆I

∆gβγ
gν |βγ +

∆I

∆φa
φν |a. (97)

Taking into account the formulae (93), (56), (57), (59)
and (60), we rewrite these expressions as

Iν
µ = −

met

t µ
ν +

∆I

∆φa
(∆µ

ν)
a|b φb; (98)

Iν =
met

t µ
λT

λ
µν − ∆I

∆φa

[

∇νφ
a + (∆µ

λ)
a|b φb T λ

µν

]

.

(99)
Using the formulae (85) and (C17), we present the above
tensors in the expanded form:

Iν
µ = −

[

met

t µ
ν +

(

1

2

mod

b
βγ

νT
µ
βγ+

mod

b
µβ

γT
γ
βν

)]

+
∆I

∆ϕa
(∆µ

ν)
a|b ϕb; (100)

Iν =

[

met

t µ
λ +

(

1

2

mod

b
βγ

λT
µ
βγ+

mod

b
µβ

γT
γ
βλ

)]

T λ
µν − 1

2

mod

b
γβ

ε∇νT
ε
βγ

− ∆I

∆ϕa

[

∇νϕ
a + (∆µ

λ)
a|b ϕb T λ

µν

]

.
(101)

Substituting the expressions (98) and (99) into (95), we obtain the explicit form of the Noether identity:

∗

∇µ

met
t µ

ν ≡ − met
t µ

λT
λ
µν +

{

∗

∇µ

[

∆I

∆φa
(∆µ

ν)
a|b φb

]

+
∆I

∆φa

[

∇νφ
a + (∆µ

λ)
a|b φb T λ

µν

]

}

. (102)

After simplifying the Lagrangian L =
L (g,R; T,∇T,∇∇T; ϕ,∇ϕ,∇∇ϕ) to the form
L = L (g; ϕ,∇ϕ) the identity (102) degenerates to
the identity obtained in Refs.51–57 and, thus, generalizes
the result of these works.
The formula (102) shows that, when the equations of

motion for fields {T,ϕ} = φ hold (on φ-equations), the

Noether identity transforms to the equations of balance

for the metric EMT
met

t :

∗

∇µ

met

t µ
ν = −

met

t µ
λT

λ
µν (on the φ-equations).

(103)

If one substitutes the expressions (100) and (101) into (95), then, after taking into account the identity (D2), one
obtains the Noether identity in the expanded form:

∗

∇µ

(

met

t µ
ν +

∗

∇η

mod

b ηµ
ν

)

≡ −
(

met

t µ
λ +

∗

∇η

mod

b ηµ
λ

)

T λ
µν +

1

2

mod
s π

ρσR
ρσ

πν

+

{

∗

∇µ

[

∆I

∆ϕa
(∆µ

ν)
a|b ϕb

]

+
∆I

∆ϕa

[

∇νϕ
a + (∆µ

λ)
a|b ϕb T λ

µν

]

}

.
(104)
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It is clearly that on the equations of motion of {T,ϕ} =
φ-fields this equation turns again to (103). However, on

the equations of motion of only ϕ-fields the expanded
equations of balance acquire the form:

∗

∇µ

(

met

t µ
ν +

∗

∇η

mod

b
ηµ

ν

)

= −
(

met

t µ
λ +

∗

∇η

mod

b
ηµ

λ

)

T λ
µν +

1

2

mod
s π

ρσR
ρσ

πν (on the ϕ-equations). (105)

Thus, the Noether identity is the basis for defining the
equations of balance for the metric EMT.

C. The 4-th and 3-rd Klein identities

Notice that, by the definition (33), the tensor G
def
=

{Gκ
λµν} has the same symmetries, like the curvature

tensor. Using the definition of the tensor N (62) and
the antisymmetry of G in the second pare of indexes,
Gα

βδγ = −Gα
βγδ, we are convinced that the 4-th Klein

identity (17):

Nα
(βγδ) =

1

3

(

Nα
βγδ +Nα

γδβ +Nα
δβγ

)

≡ 0 (106)

is satisfied automatically. By the antisymmetry of G in
the first pare of indexes, Gβαγδ = −Gαβγδ, the tensor N

satisfies also the new identity:

N (αβγ)
δ =

1

3

(

Nαβγ
δ +Nβγα

δ +Nγαβ
δ

)

≡ 0. (107)

In the case of a pure metric theory another logic leads also
to this conclusion. In the Riemannian geometry R(1, D)
(but not in the Riemann-Cartan geometry C (1, D)!) the
tensor {Gαβγδ} is symmetrical with respect to the per-
mutation of the first and the second pairs of indexes:
{Gγδαβ = Gαβγδ}, like the curvature tensor {Rαβγδ}.
Then, the tensorN becomes also symmetrical in external
indexes, Nαβγδ = N δβγα. Namely this property together
with (106) gives (107).
In arbitrary generally covariant theories with the La-

grangians L , containing derivatives of the metric up to

a second order, see Refs.44–49,58,59, the quantity n
def
=

{nαµνβ} is defined as nαµνβ def
= ∂L /∂gµν,αβ . The same

as the tensor N, it satisfies the identity of the type (106).
Then, because n is symmetrical both in inner and in ex-
ternal indexes, it satisfies also the identity of the type
(107). Thus, our conclusions related to the properties of
N in the manifestly generally covariant theories general-
ize the results of the aforementioned works.
Now, let us turn to the 3-rd Klein identity (16)

Mκ
(λµ) +

∗

∇νNκ
λµν +Nκ

(λ|ρσT |µ)
ρσ ≡ 0. (108)

Taking into account (82), and (62), calculate the sym-
metrical in the upper indexes part of the tensor M (68):

Mκ
(λµ) = −

∗

∇νNκ
λµν −Nκ

(λ|ρσT |µ)
ρσ. (109)

From here it follows that the 3-rd Klein identity is sat-
isfied automatically also. Thus, the concrete form of the
Lagrangian (23) is enough to be convinced in the identi-
ties (16) - (17).

D. The physical sense of the 2-nd Klein identity

It is convenient to represent the 2-nd Klein identity
(15) in the form:

sym

U ν
µ ≡ −Iν

µ (110)

(see the Paper I, Sec. V, formulae (83) and (84)), where

sym

U ν
µ =

(

Uν
µ − 1

3
Nα

µβγRα
νβγ

)

−
(

∗

∇λθν
µλ +

1

2
θν

αβT µ
αβ

)

;
(111)

θν
µλ def

= −Mν
[µλ] +

2

3

(

∗

∇ηNν
η[µλ] +

1

2
T [µ

ρσNν
λ]ρσ

)

.

(112)
Let us calculate the expression (111).

1. At first, notice that, by (62), the relation

Nν
η[µλ] =

1

2

(

Gν
ηµλ −Gν

[µλ]η
)

(113)

takes a place. From the last the formulae

Gν
[µλ]η +

2

3
Nν

η[µλ]

=
1

3

(

Gν
µλη +Gν

ληµ +Gν
ηµλ

)

= Gν
[µλη];

(114)

1

2

(

Gν
µρσ +Gν

[ρσ]µ
)

− 1

3
Nν

µ[ρσ] = Gν
[µρσ] (115)

follow. It is useful also the formula, which follows
after contracting (114) with the Riemannian tensor:

1

2
GαβγµRναβγ − 1

3
Nα

µβγRα
νβγ = −1

2
Gα

[µρσ]Rα
νρσ.

(116)

2. Substituting into the right hand side of (112) the
expressions of the tensors M and N, (68) and (62),
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and using the definition (82) and the relations (114)
and (115), one finds

θν
µλ =

[

−bµλν +Gα
βµλTα

βν

]

+
[ ∗

∇ηGν
[µλη] + 1

2

(

Gν
[µρσ]T λ

ρσ −Gν
[λρσ]T µ

ρσ

)

]

.

(117)

3. Substituting (117) into the expression in the second
parentheses in (111), one gets

∗

∇λθν
µλ +

1

2
θν

αβT µ
αβ

= −
[

∗

∇λb
µλ

ν +
1

2
bρσνT

µ
ρσ

]

+

[

∗

∇λ

(

GαβµλTα, βν

)

+
1

2

(

GαβρσTα, βν

)

T µ
ρσ

]

−1

2
Gα

[µρσ]Rα
νρσ +

[

Gν
πρσ

(

Rµ
[πρσ] −∇[πT

µ
ρσ] − T µ

ε[πT
ε
ρσ]

)]

.

(118)

Here, the use of the identity

∗

∇λ

[

∗

∇ηθ̃ν
µλη +

1

2
θ̃ν

µρσT λ
ρσ

]

≡ 1

2

(

−Rλ
νρσ θ̃λ

µρσ +Rµ
λρσ θ̃ν

λρσ
)

(119)

has been essential (see the Paper I, Appendix C.1,
formula (C3)), with the exchange:

θ̃ν
µλη = Gν

[µλη].

4. By the Ricci identity: Rµ
[πρσ] ≡ ∇[πT

µ
ρσ] −

T µ
ε[πT

ε
ρσ], the last item on the right hand side

of the formula (118) disappears and it acquires the
form:

∗

∇λθν
µλ +

1

2
θν

αβT µ
αβ

= −
[

∗

∇λb
µλ

ν +
1

2
bρσνT

µ
ρσ

]

+

[

∗

∇λ

(

GαβµλTα, βν

)

+
1

2

(

GαβρσTα,βν

)

T µ
ρσ

]

− 1

2
Gα

[µρσ]Rα
νρσ .

(120)

5. Substituting into the first parentheses in (111) the
expression for the tensor U (76) and using (116),
one obtains

Uν
µ − 1

3
Nα

µβγRα
νβγ

= tµν + bµβγTγ, βν −
1

2
Gα

[µρσ]Rα
νρσ

+

[

∗

∇η

(

GβγµηTβ, γν

)

+
1

2

(

GβγρσTβ, γν

)

T µ
ρσ

]

,

(121)

6. Finally, substituting (120) and (121) into the right
hand side of (111), one finds the search expression:

sym

U ν
µ = tµν +

[

∗

∇λb
µλ

ν +
1

2
bρσνT

µ
ρσ + bµβγTγ, βν

]

.

(122)
At the absence of the torsion, the right hand side of this
expression presents the known expression for the Belin-
fante symmetrized EMT28,29. Therefore, when the tor-
sion presents it is naturally to define the right hand side

of (122) as symmetrized EMT
sym

t
def
= {

sym

t µ
ν}:

sym

t µ
ν

def
= tµν +

[

∗

∇λb
µλ

ν +
1

2
bρσνT

µ
ρσ + bµβαT

α
βν

]

= tµν −
[

∗

∇λb
λµ

ν +
1

2
bγβα(∆

µ
ν)

α
βγ |θ ϕξ T θ

ϕξ

]

,

(123)
and, in the result one obtains

sym

U ν
µ =

sym

t µ
ν . (124)

Substituting (124) and (98) into the 2-nd Klein identity
(110), one has

sym

t µ
ν ≡met

t µ
ν −

∆I

∆φa
(∆µ

ν)
a|b φb. (125)

From the identity (125) it follows that on the φ-equations

symmetrized EMT
sym

t (123) is equal to the metric EMT
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met

t (93):

sym

t µ
ν =

met

t µ
ν (on the φ-equations). (126)

On the other hand, if on the right hand side of (110) in-
stead of (98) one uses (100) then, keeping in mind (124),

(123) and (86), the 2-nd Klein identity can be presented
in the other form:

tµν −
∗

∇λb
λµ

ν ≡
met

t µ
ν +

(

1

2

add

b
ρσ

νT
µ
ρσ+

add

b
µβ

αT
α
βν

)

− ∆I

∆ϕa
(∆µ

ν)
a|b ϕb. (127)

In particular, on ϕ-equations one has

tµν −
∗

∇λb
λµ

ν =
met

t µ
ν +

(

1

2

add

b
ρσ

νT
µ
ρσ+

add

b
µβ

αT
α
βν

)

(on the ϕ-equations). (128)

Finalizing, one can conclude that the 2-nd Klein iden-
tity permits to define the Belinfante symmetrized EMT
sym

t (see (123)), and to prove an equivalence of the sym-

metrized
sym

t and metric
met

t EMTs on φ-fields equations
(see (126)).

E. The physical sense of the 1-st Klein identity

We call the identity

∗

∇µUν
µ − 1

2
Mµ

ρσRµ
νρσ − 1

3
Nκ

λρσ

(

∇λR
κ
νρσ +

1

2
Rκ

νλεT
ε
ρσ

)

≡ −Iν (129)

as the 1-st Klein identity (see the Paper I, Sec. III, for-
mula (38)). Calculate the left hand side of this for the
manifestly generally covariant theories.

1. Using the expression for the tensor U (76), the def-

inition (82), the identity

∗

∇µ

[

∗

∇η θ̃ν
µη +

1

2
θ̃ν

ρσT µ
ρσ

]

≡ −1

2
Rλ

νρσ θ̃λ
ρσ, (130)

(see the Paper I, Appendix C.1, formula (C2)) and

θ̃ν
µη = GαβµηTα, βν , one obtains the expression for

the first item in (129):

∗

∇µUν
µ =

∗

∇µt
µ
ν +

∗

∇µ

(

bµβαT
α
βν

)

− 1

2

( ∗

∇µGα
ρσµ

)

Rα
νρσ − 1

2
Gα

βγµ (∇µR
α
νβγ)−

1

2

(

GαβρσTα, βλ

)

Rλ
νρσ.

2. The expression for the second item in (129) can be
obtained after using the formulae for M (68) and

the definition (82):

−1

2
Mµ

ρσRµ
νρσ

= −1

2
bσρπRνπρσ +

1

2

( ∗

∇ηGµ
ρση

)

Rµ
νρσ

+
1

4

(

Gµ
ρ[αβ] +Gµ

[αβ]ρ
)

[Rµ
νρσT

σ
αβ ]

+
1

2

(

GαβρσTα, βµ

)

Rµ
νρσ.
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3. Combining the results of the points 1 and 2, taking
into account (114) and (115), and using the Bianchi
identity ∇[π|R

µ
ν|ρσ] ≡ −Rµ

νε[πT
ε
ρσ], one gets

∗

∇µUν
µ − 1

2
Mµ

ρσRµ
νρσ

−1

3
Nκ

λρσ

(

∇λR
κ
νρσ +

1

2
Rκ

νλεT
ε
ρσ

)

=
∗

∇µt
µ
ν −

∗

∇µ

(

bµβαT
α
βν

)

− 1

2
bσρπRνπρσ.

(131)

Substituting the expressions (131) and (99) into
(129), one finds the explicit form of the 1-st Klein

identity:

∗

∇µt
µ
ν ≡ −

(

met

t µ
λ +

∗

∇ηb
ηµ

λ

)

T λ
µν

+
1

2
bσρπRνπρσ − bηµλ∇ηT

λ
µν

+
∆I

∆φa

[

∇νφ
a + (∆µ

λ)
a|b φb T λ

µν

]

.

(132)

Transform this identity as follows.

1. Using the 2-nd Klein identity (125) and the formula

(123), transform the combination (
met

t +
∗

∇b):

met

t µ
λ +

∗

∇ηb
ηµ

λ ≡ tµλ − 1
2b

γβ
α(∆

µ
λ)

α
βγ |θ ϕξ T θ

ϕξ

+
∆I

∆φa
(∆µ

λ)
a|b φb.

2. Substitute the above expression into (132) and col-
lect the similar terms, then the terms containing
the Belinfante tensor b are presented by the com-
bination

1

2
bγβα [(∇βT

α
γν +∇γT

α
νβ) + (Tα

ενT
ε
βγ + Tα

εβT
ε
γν + Tα

εγT
ε
νβ)−Rα

νβγ ]

=
1

2
bγβα [−∇νT

α
βγ +Rα

βγν +Rα
γνβ] =

1

2
bγβα∇νT

α
βγ + bγ[βα]Rαβγν =

1

2
bγβα∇νT

α
βγ +

1

2
sπρσR

ρσ
πν ,

where at the first equality the Ricci identity has
been used, whereas at the third equality the defi-
nition (82) and identity (A9) have been taken into

account.

After all the above steps the 1-st Klein identity (132)
acquires the form:

∗

∇µt
µ
ν ≡ −tµλT

λ
µν +

1

2
sπρσR

ρσ
πν − 1

2
bγβα∇νT

α
βγ +

∆I

∆φa
∇νφ

a (133)

or, in the decomposed form:

∗

∇µt
µ
ν ≡ −tµλT

λ
µν +

1

2
sπρσR

ρσ
πν +

1

2

add

b
γβ

α∇νT
α
βγ +

∆I

∆ϕa
∇νϕ

a. (134)

From (133) and (134) the equations of balance for the canonical EMT t follow

∗

∇µt
µ
ν = −tµλT

λ
µν +

1

2
sπρσR

ρσ
πν − 1

2
bγβα∇νT

α
βγ (on the φ-equations); (135)

and

∗

∇µt
µ
ν = −tµλT

λ
µν +

1

2
sπρσR

ρσ
πν +

1

2

add

b
γβ

α∇νT
α
βγ (on the ϕ-equations). (136)

In Refs.51–57, for the Lagrangian of the type L =
L (g; ϕ,∇ϕ) the equation of balance for the canoni-

cal EMT (28) has been obtained. The result (28) is left
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valid in a more general case also, when the Lagrangian
has a form: L = L (g,R; ϕ,∇ϕ,∇∇ϕ) because the
last term in (136) does not appear. In the case of non-
minimal T-coupling the right hand side of (136) contains

additional term

(

1
2

add

b γβ
α∇νT

α
βγ

)

. However, the new

equation (136) can be also transformed to the form (28).
For this, using the identity (D2) in the last term in (134),
one obtains

∗

∇µ

[

tµν −
(

∗

∇λ

add

b µλ
ν +

1

2

add

b
κλ

νT
µ
κλ+

add

b
µλ

κT
κ
λν

)]

≡ −
[

tµλ −
(

∗

∇η

add

b µη
λ +

1

2

add

b
κη

λT
µ
κη+

add

b
µη

κT
κ
ηλ

)]

T λ
µν +

1

2

mod
s π

ρσR
ρσ

πν +
∆I

∆ϕa
∇νϕ

a.
(137)

Here, the expression in the brackets we denote as the

modified canonical EMT
mod

t
def
= {

mod

t µ
ν}:

mod

t µ
ν

def
= tµν+

add

t µ
ν , (138)

where the additional EMT
add

t
def
= {addt µ

ν} is defined as

add

t µ
ν

def
= −

(

∗

∇λ

add

b
µλ

ν +
1

2

add

b
κλ

νT
µ
κλ+

add

b
µλ

κT
κ
λν

)

=
∗

∇λ

add

b
λµ

ν +
1

2

add

b
γβ

α(∆
µ
ν)

α
βγ |θ ϕξ T θ

ϕξ. (139)

Note that this modification is analogous to the modifica-
tion of the canonical ST in (88) and (90). It is evidently

that the canonical EMT
mod

t (138) in the case of minimal
T -coupling only transforms to (usual) canonical EMT t.
By the definition (139), The Belinfante symmetrization

of the type (123) applied to
add

t leads to zero identically.

Therefore, the symmetrized EMT
sym

t constructed by the

symmetrization of
mod

t with the use of
mod

b by the rule

sym

t µ
ν =

mod
t µ

ν +

[

∗

∇λ

mod

b µλ
ν +

1

2

mod

b
κλ

νT
µ
κλ+

mod

b
µλ

κT
κ
λν

]

=
mod

t µ
ν −

[

∗

∇λ

mod

b λµ
ν +

1

2

mod

b
γβ

α(∆
µ
ν)

α
βγ |θ

ϕξ T θ
ϕξ

] (140)

exactly coincides with the (usual) symmetrized EMT
sym

t
(123).

In the terms of the modified canonical EMT
mod

t the
identities (133) and (134) can be rewritten as

∗

∇µ

mod

t µ
ν ≡ −

mod

t µ
λT

λ
µν +

1

2

mod
s π

ρσR
ρσ

πν

−1

2

mod

b
γβ

α∇νT
α
βγ +

∆I

∆φa
∇νφ

a

(141)

and

∗

∇µ

mod

t µ
ν ≡ −

mod

t µ
λT

λ
µν +

1

2

mod
s π

ρσR
ρσ

πν

+
∆I

∆ϕa
∇νϕ

a.

(142)
They are the basis for the equations of balance for the

modified canonical EMT
mod

t :

∗

∇µ

mod
t µ

ν = − mod
t µ

λT
λ
µν +

1

2

mod
s π

ρσR
ρσ

πν

−1

2

mod

b
γβ

α∇νT
α
βγ (on the φ-equations)

(143)
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and

∗

∇µ

mod

t µ
ν = −

mod

t µ
λT

λ
µν +

1

2

mod
s π

ρσR
ρσ

πν

(on the ϕ-equations).

(144)
Now, the equation (144) has the same structure as the
equation (28). Also notice that, when the equations for
the torsion field ∆I/∆T = 0 hold, then

mod

t µ
ν =

sym

t µ
ν (on the T-equations), (145)

as it follows from (140) and (85).

At last, let us find the identities and the equations of

balance for the symmetrized EMT
sym

t . Use (123) for

rewriting t as a function of
sym

t and b, substitute the
result into (133) and (134) and find, respectively,

∗

∇µ

sym

t µ
ν ≡ −

sym

t µ
λT

λ
µν +

∆I

∆φa
∇νφ

a; (146)

and

∗

∇µ

sym

t µ
ν ≡ −

sym

t µ
λT

λ
µν

+
1

2

mod

b
γβ

α∇νT
α
βγ +

∆I

∆ϕa
∇νϕ

a.
(147)

The same identities can be obtained by another way.

Namely, express the metric EMT
met

t through the sym-

metrized EMT
sym

t from the 2-nd Klein identity (125)
and substitute the result into the Noether identity (102).

Next, the equations of balance for the symmetrized

EMT
sym

t , which follow from the identities (146) and
(147) are

∗

∇µ

sym

t µ
ν = −

sym

t µ
λT

λ
µν (on the φ-equations)

(148)

and

∗

∇µ

sym

t µ
ν = −

sym

t µ
λT

λ
µν

+
1

2

mod

b
γβ

α∇νT
α
βγ (on the ϕ-equations).

(149)
Finalizing subsection, one concludes that the 1-st Klein

identity is the basis for constructing the equations of bal-
ance for the canonical EMT t. These relations coincide
with the known (standard) ones, when a non-minimal
coupling with torsion is absent. When a non-minimal
coupling with torsion presents the canonical EMT t is

changed by
mod

t with the use of the modified Belinfante
tensor, and then the equations of balance for the modified

EMT
mod

t acquire the standard form again. Also, the 1-st
Klein identity, as well as the 2-nd one, are the basis for
constructing the equations of balance for the symmetrized

EMT
sym

t .
VI. THE GENERALIZED SUPERPOTENTIAL AND

NOETHER CURRENT

A. The calculation of the superpotential

At first, let us calculate the generalized superpoten-
tial θ[δξ] = {θ[µν][δξ] = θµν [δξ]} in the explicit form.
Corresponding the formula (21), one has

θµν [δξ] = θα
µνδξα + θα

βµν∇βδξ
α, (150)

where

θα
µν = −Mα

[µν] +
2

3

(

∗

∇λNα
λ[µν] +

1

2
T [µ

ρσNα
ν]ρσ

)

;

(151)

θα
βµν = −4

3
Nα

β[µν]. (152)

In fact, we have calculated the tensor {θαµν} already.
It is defined by the expression (117). For the tensor
{θαβµν}, using (113), one finds

θα
βµν = − 2

3Gα
βµν + 2

3Gα
[µν]β

= −Gα
βµν + 1

3

(

Gα
βµν +Gα

µνβ +Gα
νβµ

)

= −Gα
βµν +Gα

[βµν].
(153)

Finally one obtains

θµν [δξ] =

{

[

−bµνα +Gγ
βµνT γ

βα

]

+

[

∗

∇λGα
[µνλ] +

1

2

(

Gα
[µρσ]T ν

ρσ −Gα
[νρσ]T µ

ρσ

)

]}

δξα

+
{

Gα
βµν +Gα

[βµν]
}

∇βδξ
α.

(154)

B. Dynamical quantities in the structure of the

generalized currents

More useful and interesting, however, to construct the
superpotential starting from the generalized canonical

Noether current J[δξ] (2)

Jµ[δξ] = Uα
µδξα +Mα

βµ∇βδξ
α +Nα

βγµ∇(γ∇β)δξ
α.

(155)
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Such a construction lets us understand better the con-

nections of the generalized currents J[δξ],
sym

J [δξ], on
the one hand, with the dynamical characteristics t,

sym

t ,
s, . . . , on the other hand.
Substituting (76), (68) and (62) into the formula (155),

one finds the explicit presentation for the current J[δξ]:

Jµ[δξ] =

{

tµα + bµλκT
κ
λα +

1

2
GπρσµRαπρσ +

[

∗

∇ν

(

Gκ
λµνT κ

λα

)

+
1

2

(

Gκ
λρσT κ

λα

)

T µ
ρσ

]}

δξα

+

{

−bµβα −
[

∗

∇νGα
βµν +

1

2
Gα

βρσT µ
ρσ

]

+
1

2
Gα

ρσµT β
ρσ −

(

Gκ
λβµT κ

λα

)

}

∇βδξ
α

+
{

Gα
(βγ)µ

}

∇(γ∇β)δξ
α.

(156)

As is seen, the canonical current J[δξ] essentially is con-
structed by the canonical dynamic quantities t, s and the
tensor G.
Now, apply the identical transformations to the terms

at the right hand side of (156) as follows.

1. For a first part of items in (156), differentiating
by parts, adding and subtracting the combination
(

1
2b

κλ
αT

µ
κλδξ

α
)

, one finds

(

tµα + bµλκT
κ
λα

)

δξα − bµβα∇βδξ
α =

{

tµα +

(

∗

∇λb
µλ

α +
1

2
bκλαT

µ
κλ + bµλκT

κ
λα

)}

δξα

+

{

∗

∇ν (−bµναδξ
α) +

1

2

(

−bκλαδξ
α
)

T µ
κλ

}

=
{sym

t µ
α

}

δξα +

{

∗

∇ν [−bµναδξ
α] +

1

2
[−bρσαδξ

α]T µ
ρσ

}

,
(157)

where, at the second equality, the definition (123)
has been taken into account.

2. For a second part of items in (156), differentiat-
ing by parts and collecting the similar terms, one

obtains
[

∗

∇ν

(

Gκ
λµνT κ

λα

)

+
1

2

(

Gκ
λρσT κ

λα

)

T µ
ρσ

]

δξα

−
(

Gκ
λβµT κ

λα

)

∇βδξ
α

=
∗

∇ν

[

Gκ
λµνT κ

λαδξ
α
]

+
1

2

[

Gκ
λρσT κ

λαδξ
α
]

T µ
ρσ.

(158)

3. For the last part of items in (156), again differenti-
ating by parts and collecting the similar terms, one
finds

(

1

2
GπρσµRαπρσ

)

δξα −
[

∗

∇νGα
βµν +

1

2
Gα

βρσT µ
ρσ

]

∇βδξ
α +

1

2
Gα

ρσµT β
ρσ∇βδξ

α +Gα
(βγ)µ∇γ∇βδξ

α

=
1

2

(

Gλ[ρσ]µδξα
)

Rαλρσ +

[

∗

∇γGα
[βγ]µ +

1

2
Gα

[ρσ]µT β
ρσ

]

∇βδξ
α +

∗

∇ν

[

Gα
(βν)µ∇βδξ

α
]

+
1

2

[

−Gα
βρσ∇βδξ

α
]

T µ
ρσ.

(159)

4. Differentiating by parts the second term on the
right hand side of (159), subsequently using the

identities (119) and (130) with θ̃α
µνκ = Gα

[νκµ]

and θ̃νκµ = Gα
[νκµ]δξα, respectively, and collect-

ing the similar terms, one gets
[

∗

∇γGα
[βγ]µ +

1

2
Gα

[ρσ]µT β
ρσ

]

∇βδξ
α

=
∗

∇ν

[

∗

∇κ

(

Gα
[νκ]µδξα

)

+
1

2

(

Gα
[ρσ]µδξα

)

T ν
ρσ

]

−
∗

∇ν

[

Gα
[νβ]µ∇βδξ

α
]

−1

2

(

Gα
[ρσ]λRµ

λρσ −Gλ
[ρσ]µRλ

αρσ

)

δξα

=
∗

∇ν

[

Gα
[βν]µ∇βδξ

α
]

− 1

2

(

Gλ[ρσ]µδξα
)

Rαλρσ .

(160)
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5. Substituting this result into (159) one obtains

R.H.S. of the eq. (159)

=
∗

∇ν

[

−Gα
βµν∇βδξ

α
]

+ 1
2

[

−Gα
βρσ∇βδξ

α
]

T µ
ρσ.
(161)

Combining the points 1 – 5, one finds that the formula
(156) is presented equivalently as

Jµ[δξ] =
sym

J
µ[δξ] +

{

∗

∇νθ
′µν [δξ] +

1

2
θ
′ρσ[δξ]T µ

ρσ

}

,

(162)
where

sym

J
µ[δξ]

def
=

sym

t µ
αδξ

α (163)

is the generalized symmetrized Noether current (see the
Paper I, Sec. V), and

θ
′µν [δξ]

def
=

[

−bµνα +Gκ
λµνT κ

λα

]

δξα

+
[

−Gα
βµν

]

∇βδξ
α.

(164)

The formula (163) shows that the symmetrized current
sym

J [δξ] is expressed thorough only the symmetrized EMT
sym

t even in the case of the Lagrangian of the most general
type (23). Analogously, the formula (164) shows that
the superpotential θ′[δξ] is expressed through only the
Belinfante tensor b induced by the canonical ST s and
the tensor G.
Combining the 2-nd Klein identity (125) and (98), one

finds

sym

t µ
ν = −Iµ

ν , (165)

that is the symmetrized EMT
sym

t depends on only the
Lagrangian derivatives (see definition (19)), and, conse-
quently, does not depend on divergences in Lagrangian
L . By (125) and (98) also, the formula (163), can be
represented as

sym

J
µ[δξ] =

[

met

t µ
α − ∆I

∆φa
(∆µ

α)
a|b φb

]

δξα = −Iα
µδξα.

(166)
Comparing (162) and (166) with the boundary Klein-

Noether theorem (20), one concludes that the superpo-
tential θ′[δξ] (164) has to be equivalent to the canonical
superpotential (21). Nevertheless, comparing the right
hand sides of (164) and (154) directly, we do not see this!
However, the difference is not essential. Recall the re-
mark in the Paper I (Sec. IV, formulae (55)–(69)) that is
related to arbitrary two superpotentials, θ[δξ] and θ′[δξ],
which differ in a term of the type

∆θµν [δξ]
def
= θ

′µν [δξ]− θµν [δξ]

=
[ ∗

∇λCα
µνλ + Cα

[µ|ρσT |ν]
ρσ

]

δξα +
[

Cα
βµν

]

∇βδξ
α,

(167)

where an arbitrary tensor {Cα
λµν} is totally antisymmet-

ric in contravariant indexes:

Cα
[λµν] = Cα

λµν . (168)

Then, such superpotentials, θ[δξ] and θ′[δξ], are related
to the same Noether current! One can see easily that
the difference of θ′[δξ] (164) and θ[δξ] (154) has just the
above form with Cα

λµν = −Gα
[λµν].

Rather, by a simplicity, the superpotential θ′[δξ] (164)
could be more preferable in applications.

VII. STRUCTURE AND INTERPRETATION OF THE

EQUATIONS OF GRAVITATIONAL FIELDS

A. The field equations with the total EMT and ST

The system of the equations of motion of all the fields
g, T and ϕ, as usual, is obtained by variation of the
action functional, thus











∆I/∆gµν = 0;

∆I/∆T λ
µν = 0;

∆I/∆ϕa = 0.

(169)

(170)

(171)

Combining (93), (125), (140) and (85), it is not difficult
to obtain

2
∆I

∆gµν
≡

mod

t µν −
∗

∇λ

mod

b
λµν +

∆I

∆ϕa
(∆µν ) a|b ϕb.

(172)
Then, again turning to (85), one finds that the system
(169) - (171) is equivalent to



















mod

t µν = 0;

mod

b
νµ

λ = 0;

∆I/∆ϕa = 0.

(173)

(174)

(175)

Remark that, by the identity (A9), the equation (174)
induces the equation

mod
s π

ρσ = 0, (176)

and conversely. Recall also that the dynamic characteris-

tics of the physical system
mod

t and
mod
s are total because

are related to the total action of the system.
A direct interpretation of the equations of the gravi-

tational fields that follows from the visible presentations
of (173) and (176) is evident: In an arbitrary metric-
torsion theory of gravity without background structures,

both the total modified EMT
mod

t and the total modified

canonical
mod
s are equal to nil. The claim that the total

dynamic characteristics in a gravitational theory have to
be equal to zero is not new. In GR, it has being defended
by Lorentz60,61 and Levi-Civita62,63, later by Soriau64.
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Comparatively recent, Szabados39,40 has approved this
result, examining the Belinfante procedure. In the works
by Logunov and Folomeshkin35–38 this claim is treated as
unavoidable conclusion in a pure metric theory of gravity.
However, under a more detailed consideration such an

interpretation meets serious objections, which lead to
a necessity to reject it. The first who was against is
Einstein65,66. Replying the Lorentz work60,61, he noted
that there is no a logic argument against the Lorentz
interpretation. But, basing on the equation (173), one
cannot to obtain conclusions that usually follow from the
conservation laws. Indeed, due to (173), the components
of the total energy tensor everywhere during all the time
are equal to zero, that is the total energy of the system
from the beginning is equal to zero. However, the con-
servation of “zero” does not require the next existence of
the system: one “permits” a disappearance of the physi-
cal system at all. Such a conclusion looks at as extremely
non-physical. Of course, the Einstein arguments can be

applied to discuss the total ST
mod
s .

B. Pure gravitational and matter parts of the physical

system

Recall the basis of constructing the GR and other met-
ric theories. One of the main requirements is that the dy-
namic physical picture is postulated as follows. A bend
of a curved space-time, in which the matter propagate, is
provided by the matter itself. Then, by a natural way it
turns out that the physical system is presented as a union
of divided the pure gravitational part and the matter
part. As it will be shown in the Paper III, in the last one
of the series of the works, the problem of defining phys-
ically sensible conserved quantities can be solved just in
the framework of such a presentation. Below, in sub-
section VII D, we give the other arguments supporting
the split presentation of the equations and against the
nil interpretation of the total dynamic characteristics of
the system. Now, we give and discuss the main formulae
and relations for the split presentation in the framework
of the manifestly generally covariant metric-torsion the-
ories given in the Riemann-Cartan space.
Keeping in mind the above, represent the Lagrangian

(23) as a sum of the pure gravitational L G and matter
L M parts:

L = L (g,R; T,∇T,∇∇T; ϕ,∇ϕ,∇∇ϕ)
def
= L (g,R; φ,∇φ,∇∇φ) = L G + L M ,

(177)

where

L
G = L

G(g,R)
def
= L (g,R; 0, 0, 0); (178)

L
M = L

M (g,R; φ,∇φ,∇∇φ)
def
= L − L

G. (179)

Remark that in the definition (178), of course, the con-
nection Γ (with the use of that the curvature tensor R is

constructed) continues to depend on the torsionT. Thus,
the gravitational Lagrangian L G not explicitly (through
R) depends on T also.

However, in all the cases, it is not possible to de-
fine L G as in (178), for example, in the scalar-tensor
Jordan-Brans-Dicke theories67,68, or, in more general the-
ories gravity with dilaton69,70, in “sting” presentation
(see Refs.71,72). At the same time, in the “Einstein” pre-
sentation such a splitting can be provided easily. Then it
is necessary to define clearly what unusual fields (except
of metric and torsion ones) are related to gravitational
fields.

It is evidently that the splitting of the Lagrangian
(177) leads to a correspondent splitting of the action
functional:

I =
Σ2
∫

Σ1

dx
√−gL =

Σ2
∫

Σ1

dx
√−gL G +

Σ2
∫

Σ1

dx
√−gL M

def
= IG + IM .

Of course, the Lagrangian of the vacuum system L G

has to be generally covariant scalar, and then the matter
LagrangianL M is, like this, also. Therefore all the above
results and conclusions related to the total Lagrangian L

are left valid for each of the Lagrangians L G and L M

themselves.

Define next matter tensors.

Sπ
ρσ

def
= sπρσ|L=L M

(the canonical ST of matter);

add

S
π
ρσ

def
=

add
s π

ρσ

∣

∣

∣

∣

L=L M

(the additional ST of matter);

mod

S
π
ρσ

def
=

mod
s π

ρσ

∣

∣

∣

∣

L=L M

(the modified canonical ST of matter).

(180)

(181)

(182)

Bγβα def
= bγβα

∣

∣

L=L M

(the Belinfante tensor for ST S);

add

B
γβα def

=
add

b
γβα

∣

∣

∣

∣

L=L M

(the Belinfante tensor for ST
add

S );

mod

B
γβα def

=
mod

b
γβα

∣

∣

∣

∣

L=L M

(the Belinfante tensor for ST
mod

S ).

(183)

(184)

(185)
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T µ
ν

def
= tµν |L=L M

(the canonical EMT of matter);

add

T
µ
ν

def
=

add

t µ
ν

∣

∣

∣

∣

L=L M

(the additional EMT of matter);

mod

T
µ
ν

def
=

mod

t µ
ν

∣

∣

∣

∣

L=L M

(the modified canonical EMT of matter);
sym

T
µν def

=
sym

t µν
∣

∣

∣

L=L M

(the symmetrized EMT of matter);

met

T
µν def

=
met

t µν

∣

∣

∣

∣

L=L M

(the metrical EMT of matter).

(186)

(187)

(188)

(189)

(190)

For the above defined matter tensors, relations analogous
to those between the total tensors take a place. In par-
ticular, analogously to (85) and (172), one has

∆IM

∆Tα
βγ

=
1

2

mod

B
γβ

α; (191)

2
∆IM

∆gµν
=

met

T
µν

≡
mod

T µν −
∗

∇λ

mod

B λµν +
∆IM

∆ϕa
(∆µν) a|b ϕb.

(192)

Now, define the Cartan tensor C
def
= {C [γβ]

α = C γβ
α}

and the (generalized) Einstein tensor E
def
= {E (µν) 6=

E µν}:

−1

2k
C

γβ
α

def
=

∆IG

∆Tα
βγ

=
1

2
bγβα

∣

∣

L=L G
(193)

(the Cartan tensor);

−1

2k

(

E
(µν) −

∗

∇λC
λ(µν)

)

def
=

∆IG

∆gµν
=

1

2

met

t µν

∣

∣

∣

∣

L=L G

(194)

(symmetric part of the generalized Einstein tensor);

−1

2k
E

µ
ν

def
=

1

2
tµν |L=L G

=
1

2

(

L
Gδµν −(G) GαβγµRαβγν

) (195)

(the generalized Einstein tensor).

Here,

(G)Gα
βγδ def

= Gα
βγδ

∣

∣

L=L G
= 2

∂L G

∂Rα
βγδ

; (196)

k
def
= (D − 1)Ω(D−1) κ, (197)

Ω(D−1) is an area of (D−1)-dimensional unit sphere, and
κ is the Newtonian gravitational constant in (D + 1)-
dimensional space-time.
A restriction of the 2-nd Klein identity (125) and the

definition (123) to the case of the Lagrangian L = L
G

gives, with taking into account the definitions (193) -
(195), the identity

−E µν +

{

∗

∇λC λµν +
1

2
C

γβ
α(∆

µν) α
βγ |θ ϕξ T θ

ϕξ

}

≡ −
(

E (µν) −
∗

∇λC λ(µν)
)

+
1

2
C

γβ
α(∆

µν) α
βγ |θ ϕξ T θ

ϕξ,

or

E
[µν] ≡

∗

∇λC
λ[µν]. (198)

Thus, the antisymmetric part of the generalized Einstein
tensor is the divergence of the antisymmetric part of the
Cartan tensor. Using the identity (198), one can repre-
sent (194) in the form:

2
∆IG

∆gµν
=

−1

k

(

E
(µν) −

∗

∇λC
λ(µν)

)

≡ −1

k

(

E
µν −

∗

∇λC
λµν

)

.

(199)

C. The gravitational field equations in the split form

By the equations (199) and (190), the equations of mo-
tion of the metric field, ∆(IG + IM )/∆gµν = 0, can be
rewritten as

E
(µν) −

∗

∇λC
λ(µν) = k

met

T
µν , (200)

or, using the formulae (191) - (193), (199), one can rep-
resent them in the equivalent form:

E µν = k
mod

T µν +
∗

∇λ

(

C λµν − k
mod

B λµν

)

+k
∆IM

∆ϕa
(∆µν) a|b ϕb.

(201)

If here one takes into account the equations of motion for
the torsion field

∆(IG + IM )

∆T ν
µλ

= 0 ⇔ C
λµν = k

mod

B
λµν (202)

and the equations of motion for the ϕ-fields:
∆IM/∆ϕa = 0, one obtains the equation for the
metric field only:

E
µν = k

mod

T
µν (on the φ-equations). (203)

Now, turn to (202). After antisymmetrization in indexes
µ and ν, using the definitions (185), (86) and (182), and
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the identity (A9), the equation (202) acquires an equiv-
alent form:

−2C λ[µν] = k
mod

S
λ, µν . (204)

Thus, the total system of the field equations acquires
the form:



















E
µν = k

mod

T
µν (the g-equations);

−2C λ
[µν] = k

mod

S
λ
µν (the T-equations);

∆IM/∆ϕa = 0 (the ϕ-equations).

(205)

(206)

(207)

The interpretation of the gravitational equations of the
system is as follows. The source of the metric field g is

the modified canonical EMT of matter
mod

T , whereas the
source of the torsion field T is the modified canonical ST

of matter
mod

S .

D. Geometrical identities and the equations of balance for

the matter sources

In the present subsection, we show why the total sys-
tem of the equations is more preferable just in the form
(205) - (207). At first, let us discuss the matter part.
The identity (142) for the Lagrangian L M with taking
into account the definitions (188) and (182) leads to the
identity

∗

∇µ

mod

T µ
ν ≡ −

mod

T µ
λT

λ
µν +

1

2

mod

S
π
ρσR

ρσ
πν

+
∆IM

∆ϕa
∇νϕ

a.

(208)
From here the equations of balance for the matter mod-

ified canonical EMT
mod

T follows

∗

∇µ

mod

T µ
ν = −

mod

T µ
λT

λ
µν +

1

2

mod

S
π
ρσR

ρσ
πν

(on the ϕ-equations).

(209)
It is important to note: in order the equation (209) to
take a place it is necessary only that the ϕ-equations
hold, it is not necessary to take into account the g- and
T-equations. Besides, the equation (209) is related only
to L

M , it does not relate to L
G. If, analogously to (188)

one defines the pure “gravitational EMT” as
mod

t

∣

∣

∣

∣

L=L G

,

then (in the covariant sense) both the matter and gravi-
tational EMTs, each itself will satisfy its own equation of
balance. By the Teitelboim terminology73, they are dy-
namically independent. Moreover, the restriction of the

identity (142) to the Lagrangian L G leads to the identity

∗

∇µ

mod

t µ
ν

∣

∣

∣

∣

L=L G

≡ −
mod

t µ
λ

∣

∣

∣

∣

L=L G

T λ
µν

+
1

2

mod
s π

ρσ

∣

∣

∣

∣

L=L G

Rρσ
πν ,

(210)

that holds without any equations of motion. The identity
(210) reflects the fact only that the Lagrangian L G is a
generally covariant scalar.
In order to fill the real sense of the identity (210), one

has to find concrete expressions, to which the quantities
mod

t

∣

∣

∣

∣

L=L G

and
mod
s

∣

∣

∣

∣

L=L G

correspond. After using the

definition (138) for the Lagrangian L
G, the definitions

(195) and (193), and the formula

2C λ[µν] = k
mod
s λ, µν

∣

∣

∣

∣

L=L G

,

which is carried out from (193), the identity (210) is
rewritten in the form:

∗

∇µE
µ
ν ≡ E

µ
λT

λ
µν − C

π
ρσR

ρσ
πν . (211)

As is seen, it is the pure geometrical differential identity,
which connects the divergence of the Einstein tensor E

with the Cartan tensor C .
So, the fact that the “equation of balance” for the

“gravitational EMT”
mod

t

∣

∣

∣

∣

L=L G

is satisfied identically

is the direct consequent of the diffeomorphism invariance
of the pure geometrical action. Therefore, one has to
conclude that in background independent metric-torsion
theories of gravity, there are no generally covariant ex-
pressions for EMTs and STs defined classically for the
properly gravitational fields. This claim can be stated
not only for the gravitational fields, but it has an uni-
versal character. The claim takes a place in an arbitrary
gauge invariant (in the sense of the definition in Intro-
duction) theory: There is no a gauge invariant expression
for a current namely of the gauge field because the theory
is gauge invariant.
At the end, let us discuss the role of the identity (211).

Namely its existence defines the fact that the form of the
gravitational equations (205) - (206) is more preferable.
Indeed, substituting the Einstein E and Cartan C ten-
sors with the use of the g- and T-equations (205) and
(206), respectively, into the identity (211), one obtains
the equation of balance for the matter modified EMT
mod

T :

∗

∇µ

mod

T µ
ν = −

mod

T µ
λT

λ
µν +

1

2

mod

S
π
ρσR

ρσ
πν

(on the g- and T-equations).
(212)

Recall that the copy of this equation, namely (209), con-
versely, has been carried out without using the grav-
itational equations, but only with the use of the ϕ-
equations. Therefore, one concludes that the role of the
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identity (211) is to state the self-consistence of the total
system of the field equations (205) - (207). Just in this
sense we generalize the interpretation of the gravitational
equations in ECT51–57,74–77:

{

Eµν = k T µν ;
∗

T
λ
µν = k Sλ

µν ; ,

(213)

(214)

where

Eµν def
= Rµν − 1

2
gµνR;

∗

T
λ
µν

def
= T λ

µν + δλµTν − δλνTµ.

Here, twice contracted the Bianchi identity

∗

∇µE
µ
ν ≡ −Eµ

λT
λ
µν +

1

2

∗

T
π
ρσR

ρσ
πν (215)

is treated as a dynamic conservation of the source. Re-
call the Wheeler words78 related to GR: the “gravita-
tional field watch for the conservation of its sources”.
We see that the same can be repeated also for the general
metric-torsion theories of gravity. Moreover, this state-
ment is not related to gravitational theories only, but
has an universal character and is related to an arbitrary
gauge invariant theory. Namely, the gauge field watch for
the conservation of its matter sources. Returning to the
identity (211), one sees that it is, thus, the generalization
of twice contracted the Bianchi identity (215).
At last, notice that in the case of the Lagrangians con-

sidered in the works51–57, the general system of the grav-
itational equations (205) and (206) exactly is simplified
to the equations (213) and (214) obtained in these works.
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Appendix A: The tensors {∆αβγ
λµν }, {∆

αβγ
λµν } and their

properties

In the main text, for a significant simplification of ex-
pressions we use the tensor:

∆αβγ
λµν

def
=

1

2

(

δαµδ
β
λδ

γ
ν + δαν δ

β
λδ

γ
µ − δαλ δ

β
µδ

γ
ν

)

. (A1)

It is obtained by differentiating the connection Γλ, µν =
gλεΓ

ε
µν with respect to derivatives of metric ∂αgβγ .

Thus, the use of (A1) leads to the compact presentation:

Γλ, µν = ∆αβγ
λµν (∂αgβγ + Tα,βγ). (A2)

The tensor

∆αβγ
λµν

def
=

1

2

(

δβλδ
α
µδ

γ
ν + δγλδ

α
µδ

β
ν − δαλδ

β
µδ

γ
ν

)

(A3)

with the converse symmetry of the co- and contravariant
indexes is also useful. It is easily to obtain that

∆
α(βγ)
νµλ =

1

2

{

δαλδ
(β
µ δγ)ν − δ

(γ
λ δβ)αµν

}

, (A4)

where

δαβµν

def
= δαµδ

β
ν − δβµδ

α
ν = δαµδ

β
ν − δαν δ

β
µ (A5)

is the generalized Kronecker symbol. As a consequence of
(A4) one has

∆
α(βγ)
[νµ]λ = −1

2
δ
(γ
λ δβ)αµν . (A6)

The next formulae are also valid:

∆
α[βγ]
νµλ = ∆γβα

λ[µν]; (A7)

∆
[γβ]α
λµν = −1

2
δγβλµδ

α
ν − 1

4
δαλδ

βγ
µν ; (A8)

∆
γ[βα]
λµν = −1

4
δγλδ

βα
µν ; (A9)

∆(α|β|γ)
σρπ +∆(αγ)β

σρπ = δβσδ
γ

(ρδ
α
π); (A10)

∆α(βγ)
σρπ − 1

2
δαπ δ

β
ρ δ

γ
σ = ∆αβγ

π[ρσ]; (A11)

∆(αβ)γ
σρπ =

1

2
δα(σδ

β

π)δ
γ
ρ ; (A12)

∆[α|β|γ]
σρπ = −1

2
δβρ δ

α
[σδ

γ

π]. (A13)

Appendix B: The general variations of fields functions

1. The functional and total variations

Let a set of variables, tensor fields, Φ(x) =
{ΦA(x); A = 1, N}, be given in a spacetime. Let a result
of an infinitesimal transformations be as

{

x → x′;
Φ(x) → Φ′(x′).

(B1)

The transformation (B1) we will call as the active trans-
formation. Then under its action a spacetime point with
coordinates x transforms into a new point with coordi-
nates x′, and a function (physical field) Φ(x) transforms
to a new function Φ′(x′). At the same time. the coordi-
nate system is fixed/the same.
The total variation δ̄Φ(x) of field functions Φ(x) ap-

pears as a result of a comparison of a new functionΦ′(x′),
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calculated in a new point x′, with the initial function
Φ(x), calculated in the initial point x:

δ̄Φ(x)
def
= Φ′(x′)−Φ(x). (B2)

Unlike this, comparing the new and the old functions
calculated in the same (initial) point x, one obtains the
perturbation defined as

δΦ(x)
def
= Φ′(x)−Φ(x). (B3)

This perturbation, in fact, is the functional variation
δΦ(x) of a field function Φ(x). Unlike the total vari-
ation, it commutes with partial derivatives, and up to
a sign coincides with the Lie derivative, which appears
under an infinitesimal mapping a spacetime onto itself.

2. The variation of the connection

To obtain an explicitly covariant variation of the con-
nection {δΓλ

µν} by a more economical way one has to
use the metric compatible condition (8). One obtains

∇λ(δgµν) = gµαδΓ
α
νλ + gναδΓ

α
µλ = 2g(µ|αδΓ

α
|ν)λ.

Now, using (A1) and the formula (6) after variating

δΓλ
[µν] = −1

2
δT λ

µν , (B4)

one has

∆αβγ
λµν∇α(δgβγ) = gλαδΓ

α
(µν) − g(µ|αδT

α
λ|ν).

This gives

δΓλ
(µν) = gλπ∆αβγ

πµν∇α(δgβγ) + gλπg(µ|αδT
α
π|ν). (B5)

Substituting the last formula and (B4) into the evident
equality δΓλ

µν = δΓλ
(µν) + δΓλ

[µν], one obtains finally

δΓλ
µν = gλπ∆αβγ

πµν (∇αδgβγ + gασδT
σ
βγ) . (B6)

3. The variation of the curvature tensor

Varying the relation (7)

Rκ
λµν = ∂µΓ

κ
λν − ∂νΓ

κ
λµ + Γκ

αµΓ
α
λν − Γκ

ανΓ
α
λµ,

keeping in mind that {δΓλ
µν} is a tensor and taking into

account (6), one finds

δRκ
λµν = 2∇[µ|δΓ

κ
λ|ν] + T τ

µνδΓ
κ
λτ

or

δRκ
λµν =

(

T τ
µν + δπτµν∇π

)

δΓκ
λτ . (B7)

4. The variation of the 1-st covariant derivative

Varying the definition of the covariant derivative

∇µφ
a = ∂µφ

a + Γκ
λµ(∆

λ
κ)

a|b φb, (B8)

where {(∆λ
κ)

a|b} are the Belinfante-Rosenfeld symbols
(see Appendix C 1), one gets

δ(∇µφ
a) = ∂µ(δφ

a)+Γκ
λµ(∆

λ
κ)

a|b (δφb)+(∆λ
κ)

a|b φbδΓκ
λµ.

(B9)
From here one has

δ(∇µφ
a) = ∇µ(δφ

a) + (∆λ
κ)

a|b φb δΓκ
λµ. (B10)

5. The variation of the 2-nd covariant derivative

Let us calculate δ(∇µ∇νφ
a). For the sake of simplicity,

temporarily denote φa
ν

def
= ∇νφ

a. Then, taking into
account the fact that the tensor {φa

ν} has for a one index
more than the tensor {φa} and using (B10), one obtains

δ(∇µφ
a
ν) = ∇µδφ

a
ν + (∆λ

κ)
a|b φb

νδΓ
κ
λµ − φa

λδΓ
λ
νµ

= ∇µ

[

∇νδφ
a + (∆λ

κ)
a|b φb δΓκ

λν

]

+
[

(∆λ
κ)

a|b ∇νφ
b − (∇κφ

a)δλν
]

δΓκ
λµ.

Consequently,

δ(∇µ∇νφ
a) = ∇µ∇νδφ

a +
[

(∆λ
κ)

a|b ∇νφ
b − (∇κφ

a)δλν
]

δΓκ
λµ +∇ν

[

(∆λ
κ)

a|b φb δΓκ
λν

]

. (B11)

Appendix C: The Belinfante-Rosenfeld symbols

1. The definition and properties

Let the field functions Φ(x) = {ΦA(x)} =
{Pµ1µ2...µr

ν1ν2...νs(x)} present generally covariant tensor

of the rank
(

r
s

)

. Then under a diffeomorphism
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xµ → x′µ = x′µ(x) (C1)

its components are transformed by the known rule:

Pµ1µ2...µr

ν1ν2...νs(x) → P ′µ1µ2...µr

ν1ν2...νs(x
′); (C2)

P ′µ1µ2...µr

ν1ν2...νs(x
′) =

∂x′µ1

∂xα1

∂x′µ2

∂xα2

· . . . · ∂x
′µr

∂xαr

· ∂x
β1

∂x′ν1

∂xβ2

∂x′ν2
· . . . · ∂x

βs

∂x′νs
Pα1α2...αr

β1β2...βs
(x). (C3)

For the infinitesimal diffeomorphism

xµ → x′µ = xµ + δξµ(x), (C4)

induced by the vector field δξ(x) = {δξµ(x)}, up to the
first order in δξµ, the converse diffeomorphism has the
form:

x′β → xβ ≈ x′β − δξβ(x′). (C5)

Thus, one has

∂x′µ

∂xα
= δµα + ∂αδξ

µ(x); (C6)

∂xβ

∂x′ν
≈ δβν − ∂′

νδξ
β(x′) ≈ δβν − ∂νδξ

β(x). (C7)

Then

P ′µ1µ2...µr
ν1ν2...νs(x

′)
=

(

δµ1

α1
+ ∂α1

δξµ1

) (

δµ2

α2
+ ∂α2

δξµ2

)

· . . . ·
(

δµr

αr
+ ∂αr

δξµr

)

×
(

δβ1

ν1
− ∂ν1δξ

β1

) (

δβ2

ν2
− ∂ν2δξ

β2

)

· . . . ·
(

δβs

νs
− ∂νsδξ

βs

)

Pα1α2...αr
β1β2...βs

(x)

≈ Pµ1µ2...µr
ν1ν2...νs(x)

+ (∂α1
δξµ1)

(

δµ2

α2
δµ3

α3
· . . . · δµr

αr
· δβ1

ν1
δβ2

ν2
· . . . · δβs

νs

)

Pα1α2...αr
β1β2...βs

(x)
+ (∂α2

δξµ2)
(

δµ1

α1
δµ3

α3
· . . . · δµr

αr
· δβ1

ν1
δβ2

ν2
· . . . · δβs

νs

)

Pα1α2...αr
β1β2...βs

(x)
+ . . .
+(∂αr

δξµr )
(

δµ1

α1
δµ2

α2
· . . . · δµr−1

αr−1
· δβ1

ν1
δβ2

ν2
· . . . · δβs

νs

)

Pα1α2...αr
β1β2...βs

(x)

−
(

∂ν1δξ
β1

) (

δµ1

α1
δµ2

α2
· . . . · δµr

αr
· δβ2

ν2
δβ3

ν3
· . . . · δβs

νs

)

Pα1α2...αr
β1β2...βs

(x)
−
(

∂ν2δξ
β2

) (

δµ1

α1
δµ2

α2
· . . . · δµr

αr
· δβ1

ν1
δβ3

ν3
· . . . · δβs

νs

)

Pα1α2...αr
β1β2...βs

(x)
− . . .

−
(

∂νsδξ
βs

)

(

δµ1

α1
δµ2

α2
· . . . · δµr

αr
· δβ1

ν1
δβ2

ν2
· . . . · δβs−1

νs−1

)

Pα1α2...αr
β1β2...βs

(x)

= Pµ1µ2...µr
ν1ν2...νs(x)

+∂βδξ
α
[

(δµ1

α δβα1
)δµ2

α2
δµ3

α3
· . . . · δµr

αr
· δβ1

ν1
δβ2

ν2
· . . . · δβs

νs

+δµ1

α1
(δµ2

α δβα2
)δµ3

α3
· . . . · δµr

αr
· δβ1

ν1
δβ2

ν2
· . . . · δβs

νs
+ . . .
+δµ1

α1
δµ2

α2
· . . . · δµr−1

αr−1
(δµr

α δβαr
) · δβ1

ν1
δβ2

ν2
· . . . · δβs

νs

−δµ1

α1
δµ2

α2
· . . . · δµr

αr
· (δβν1δβ1

α )δβ2

ν2
δβ3

ν3
· . . . · δβs

νs

−δµ1

α1
δµ2

α2
· . . . · δµr

αr
· δβ1

ν1
(δβν2δ

β2

α )δβ3

ν3
· . . . · δβs

νs
− . . .

− δµ1

α1
δµ2

α2
· . . . · δµr

αr
· δβ1

ν1
δβ2

ν2
· . . . · δβs−1

νs−1
(δβνsδ

βs

α )
]

Pα1α2...αr
β1β2...βs

(x).

(C8)

Consequently, the total variation (B2) for the tensor of rank
(

r
s

)

has the form

δ̄Pµ1µ2...µr

ν1ν2...νs(x) =
(

∆β
α

)

µ1µ2...µr

ν1ν2...νs |α1α2...αr

β1β2...βs Pα1α2...αr

β1β2...βs
(x) ∂βδξ

α(x), (C9)
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where

(

∆β
α

)

µ1µ2...µr
ν1ν2...νs |α1α2...αr

β1β2...βs

def
=

[

(δµ1

α δβα1
)δµ2

α2
δµ3

α3
· . . . · δµr

αr
+ δµ1

α1
(δµ2

α δβα2
)δµ3

α3
· . . . · δµr

αr
+ · · ·+ δµ1

α1
δµ2

α2
· . . . · δµr−1

αr−1
(δµr

α δβαr
)
]

δβ1

ν1
δβ2

ν2
· . . . · δβs

νs

−δµ1

α1
δµ2

α2
· . . . · δµr

αr

[

(δβν1δ
β1

α )δβ2

ν2
δβ3

ν3
· . . . · δβs

νs
+ δβ1

ν1
(δβν2δ

β2

α )δβ3

ν3
· . . . · δβs

νs
+ · · ·+ δβ1

ν1
δβ2

ν2
· . . . · δβs−1

νs−1
(δβνsδ

βs

α )
]

.

(C10)

The functional variation δξΦ of the field function Φ

induced by the diffeomorphism (C4) is connected with
the total variation δ̄Φ by the evident relation:

δ̄ΦA(x) =
(

∂αΦ
A(x)

)

δξα + δξΦ
A(x). (C11)

Then, using (C9), one obtains for the tensor of rank
(

r
s

)

:

δξP
µ1µ2...µr

ν1ν2...νs(x)
= −∂αP

µ1µ2...µr
ν1ν2...νs(x) δξ

α +
(

∆β
α

)

µ1µ2...µr
ν1ν2...νs |α1α2...αr

β1β2...βs Pα1α2...αr
β1β2...βs

(x) ∂βδξ
α(x),

(C12)

Returning to the collective indexes A = µ1µ2...µr
ν1ν2...νs

and B = α1α2...αr
β1β2...βs

, the last formula is rewritten
in the compact form:

δξΦ
A = −∂αΦ

Aδξα + (∆α
β)

A
∣

∣

B
ΦB∂βδξ

α. (C13)

The formulae of the type (C13) can be used also both
for the tensor densities of an arbitrary weight and for the

spinors of an arbitrary rank
(

k
l
| m̄
n̄

)

. As we know, firstly

the symbols (∆β
α)

A
∣

∣

B
where introduced in the works

by Belinfante28 and by Rosenfeld30,31. Therefore we call
them as the Belinfante-Rosenfeld symbols.
In our consideration, the tensors of the ranks

(

0
2

)

and
(

1
2

)

are more important, for them one has to use

(∆β
α) µν |εκ = −(δεαδ

β
µ)δ

κ
ν − δεµ(δ

κ
αδ

β
ν ); (C14)

(∆β
α)

λ
µν

∣

∣

π
ρσ =

(

δλαδ
β
π

)

δρµδ
σ
ν−δλπ

[

(δραδ
β
µ)δ

σ
ν + δρµ(δ

σ
αδ

β
ν )
]

.

(C15)

Thus, for the metric tensor g = {gµν} and for the torsion
tensor T = {T λ

µν} one finds, respectively,

(∆β
α) µν |εκ gεκ = −2gα(µδ

β

ν) (C16)

and

(∆β
α)

λ
µν

∣

∣

π
ρσ T π

ρσ = δλαT
β
µν + 2T λ

α[µδ
β

ν]. (C17)

2. The covariant derivative

With the use of the Belinfante-Rosenfeld symbols
(C10) the covariant derivative of the tensor of the rank
(

r
s

)

∇λP
µ1µ2...µr

ν1ν2...νs = ∂λP
µ1µ2...µr

ν1ν2...νs

+Γµ1
βλ P βµ2µ3...µr

ν1ν2...νs + Γµ2
βλ Pµ1βµ3...µr

ν1ν2...νs + · · ·+ Γµr
βλ Pµ1µ2...µr−1β

ν1ν2...νs

−Γα
ν1λ Pµ1µ2...µr

αν2ν3...νs − Γα
ν2λ Pµ1µ2...µr

ν1αν3...νs − · · · − Γα
νsλ Pµ1µ2...µr

ν1ν2...νs−1α

(C18)

can be presented in the form:

∇λP
µ1µ2...µr

ν1ν2...νs = ∂λP
µ1µ2...µr

ν1ν2...νs + Γα
βλ

(

∆β
α

)

µ1µ2...µr

ν1ν2...νs |γ1γ2...γr

δ1δ2...δs P γ1γ2...γr

δ1δ2...δs , (C19)

or, returning to the collective indexes A and B, as

∇λΦ
A = ∂λΦ

A + Γα
βλ(∆

β
α)

A
∣

∣

B
ΦB . (C20)

3. The covariant form of the variation δξΦ

In the Paper I, Sec. I, for the functional variation
δξΦ the generalized formula (15) has been stated, due to
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which the formula (C13) has to acquire the form:

δξΦ
A = Φα|Aδξα +Φα

β |A∇βδξ
α. (C21)

Define the explicit expressions for the coefficients in this
formula. Using (C20), find the quantity {∂λΦA}, and
using

∇βδξ
α = ∂βδξ

α + Γα
γβδξ

γ (C22)

find the quantity {∂βδξα}. Next, substitute the results
into (C13) and obtain

δξΦ
A =

{

−∇αΦ
A + 2Γγ

[βα](∆
β
γ)

A
∣

∣

B
ΦB

}

δξα

+
{

(∆β
α)

A
∣

∣

B
ΦB

}

∇βδξ
α.

Substituting here 2Γγ
[βα] = −T γ

βα, obtain finally

δξΦ
A = −

{

∇αΦ
A + T γ

βα(∆
β
γ)

A
∣

∣

B
ΦB

}

δξα

+
{

(∆β
α)

A
∣

∣

B
ΦB

}

∇βδξ
α.

(C23)
Comparing this formula with (C21) one finds

Φα|A = −
{

∇αΦ
A + T γ

βα(∆
β
γ)

A
∣

∣

B
ΦB

}

; (C24)

Φα
β |A = (∆β

α)
A
∣

∣

B
ΦB. (C25)

In particular, for the metric tensor g, using the metric
compatible condition ∇αgβγ = 0 and the formula (C16),
one gets

gα|βγ = 2T(β,γ)α; (C26)

gα
β |κλ = −2gα(κδ

β

λ). (C27)

Analogously, using the formula (C17), one has for the
torsion tensor T:

Tα|εβγ = −∇αT
ε
βγ

−(T ε
καT

κ
βγ + T ε

κβT
κ
γα + T ε

κγT
κ
αβ);

(C28)

Tα
β |εκλ = δεαT

β
κλ + 2T ε

α[κδ
β

λ]. (C29)

4. Commutator of the covariant derivatives

With the use of the Belinfante-Rosenfeld symbols
(C10) the commutator of the covariant derivatives of the
tensor of the rank

(

r
s

)

(∇ρ∇σ −∇σ∇ρ)P
µ1µ2...µr

ν1ν2...νs = −T λ
ρσ∇λP

µ1µ2...µr
ν1ν2...νs

+Rµ1
λρσP

λµ2µ3...µr
ν1ν2...νs +Rµ2

λρσP
µ1λµ3...µr

ν1ν2...νs + · · ·+Rµr
λρσP

µ1µ2...µr−1λ
ν1ν2...νs

−Rκ
ν1ρσP

µ1µ2...µr
κν2ν3...νs −Rκ

ν2ρσP
µ1µ2...µr

ν1κν3...νs − · · · −Rκ
νsρσP

µ1µ2...µr
ν1ν2...νs−1κ

(C30)

can be presented in the form:

(∇ρ∇σ −∇σ∇ρ)P
µ1µ2...µr

ν1ν2...νs = −T λ
ρσ∇λP

µ1µ2...µr
ν1ν2...νs

+Rκ
λρσ

(

∆λ
κ

)

µ1µ2...µr
ν1ν2...νs |γ1γ2...γr

δ1δ2...δsP γ1γ2...γr
δ1δ2...δs ,

(C31)

Returning to the collective indexes A, B, . . . , it is presented as

(∇ρ∇σ −∇σ∇ρ)Φ
A = −T λ

ρσ∇λΦ
A +Rκ

λρσ(∆
λ
κ)

A
∣

∣

B
ΦB. (C32)

Appendix D: The transformation of the expression
(

−1
2
b
γβ

α∇νT
α
βγ

)

Let {bγβα} def
= {∆γβα

πρσ s
π, ρσ}, where {sπ, [ρσ] = sπ, ρσ}

be an arbitrary tensor with such a symmetry. Then

b[γβ]α = bγβα. Basing on this, transform the expression
(

−1
2 bγβα∇νT

α
βγ

)

as follows.

1. Substituting the Ricci identity in the form

∇νT
α
βγ ≡ Rα

νβγ +Rα
βγν +Rα

γνβ −
(

∇βT
α
γν +∇γT

α
νβ + Tα

λνT
λ
βγ + Tα

λβT
λ
γν + Tα

λγT
λ
νβ

)

= Rα
νβγ + 2Rα

[βγ]ν − 2∇[βT
α
γ]ν − Tα

λνT
λ
βγ − 2Tα

λ[βT
λ
γ]ν,

one obtains

−1

2
bγβα∇νT

α
βγ ≡ −1

2
bγβαR

α
νβγ − bγβαR

α
βγν

+bγβα∇βT
α
γν +

1

2
bγβαT

α
λνT

λ
βγ + bγβαT

α
λβT

λ
γν.

(D1)

2. Turn to the first term on the right hand side of
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(D1). Then, recall the identity (C2) in the Paper I,
Appendix C.1:

∗

∇µ

[

∗

∇ηθν
µη +

1

2
θν

ρσT µ
ρσ

]

≡ −1

2
Rλ

νρσθλ
ρσ ,

change here θν
µη = bµην and obtain for this term:

−1

2
bγβαR

α
νβγ = −

∗

∇µ

[

∗

∇ηb
µη

ν +
1

2
bεηνT

µ
εη

]

.

3. The second term on the right hand side of (D1) is
equal to

−bγβαR
α
βγν = −bγβαRαβγν = −∆γβα

πρσ s
π, ρσRαβγν

= −1

2

(

sβ, γα + sα, γβ − sγ, βα
)

Rαβγν

=
(

s(α, β)γ − 1
2s

γ,αβ
)

Rαβγν = −1

2
sπ, ρσRρσπν ;

4. Using the differentiation by part in the third term
on the right hand side of (D1), one finds

bγβα∇βT
α
γν = −

∗

∇µ

(

bµβαT
α
βν

)

−
( ∗

∇ηb
µη

λ

)

T λ
µν ;

5. At last, one rewrites fourth and fifth terms on the
right hand side of (D1), respectively, as

1

2
bγβαT

α
λνT

λ
βγ = −1

2
(bεηλT

µ
εη)T

λ
µν .

and

bγβαT
α
λβT

λ
γν = −

(

bµβαT
α
βλ

)

T λ
µν ;

Combining the results of the points 2 – 5 in the formula
(D1), one obtains the search identity:

−1

2
bγβα∇νT

α
βγ ≡ −

∗

∇µ

[

∗

∇ηb
µη

ν +
1

2
bεηνT

µ
εη + bµβαT

α
βν

]

−
[

∗

∇ηb
µη

λ +
1

2
bεηλT

µ
εη + bµβαT

α
βλ

]

T λ
µν − 1

2
sπρσR

ρσ
πν .

(D2)
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