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1 Introduction

Surface charges in general relativity and gauge theorivsdéong history that goes back
to the founding papers on the Hamiltonian formulation, 8dddr a review and([2] for
further developments. Covariant approaches based omeerized theory are discussed
in [3], chapter 20, and also inl[4, 5]. A non-exhaustive liftsabsequent references
includes [6=10]. More recently, there has been interestran dirder formulations, see
e.g., [11-15].

Our approach here is based on actions, or more preciseliyabepce classes of La-
grangians up to total divergences. It originates in appboa of the Batalin-Vilkovisky
formalism to the perturbative renormalization of gaugeothes [17], [18], but can also
be formulated entirely independently of this machinerg, [d€-+-25] for details.

The aim of this note is to provide explicit expressions fer libcal, on-shell closed co-
dimension 2 forms in the Cartan formulation of general reiigtand prove their equiv-
alence with those of the metric formulation. The presenen®extracted from a more
complete investigation that covers other first order foatiahs of general relativity [26].

2 Generalities

2.1 Local BRST cohomology and generalized auxiliary fields

One of the virtues of the approach is that non-trivial, lpcal-dimensior2 forms that
are closed for all solutions of the equations of motion carstb@vn to be isomorphic
to local BRST cohomology classes in ghost number In turn, the latter are naturally
covariant under field redefinitions as well as suitably irsd@runder the introduction and
elimination of auxiliary and generalized auxiliary fields/]. Auxiliary fields are a set of
fields whose Euler-Lagrange equations of motion can be dallggebraically to determine
them in terms of the remaining fields of the variational pipte. Generalized auxiliary
fields extend this concept to the master action([27, 28]. Tdreypresent whenever the
vanishing of the gauge transformations of the fields can beedalgebraically for some
of the gauge parameters. The associated generalizedaayfiélds are sub-sets of fields
which are algebraically pure gauge, in the sense that theyeashifted arbitrarily by
gauge transformations that do not involve derivatives.

This is relevant for our purpose since the components of tireritz connection in
the Cartan formulation are auxiliary fields, while goingrfrahe vielbein to the metric
formulation involves elimination of generalized auxijdrelds. Indeed, in the linearized
formulation the skew-symmetric part of the vielbein flu¢ctaas are algebraically pure
gauge since they can be shifted arbitrarily by Lorentz rotat The argument can then
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be extended to the non-linear theory as well, for instanca pgrturbative analysis.

More details will be provided iri [26].

2.2 General case

Let ¢¢ denote the fields of the variational principlethe spacetime dimension afid=
L d"z the Lagrangian times the volume form. Here and below, we husadtation

1

m d.T'uerl e dﬂf'un, (21)
p:\n—p):

n—p —
(d x)#l---l‘p - €t ippip+1-in

where the wedge product is omitteg, . is completely antisymmetric arg; ,,—1 = 1.
Let 6.¢" = R!(e*) denote a generating set of non trivial gauge transformstidnder
standard regularity assumptions, one can then show thatithan isomorphism between
equivalence classes of local, on-shell closed co-dimersforms, with two such forms
being equivalent if they differ on-shell by an exact localnfip and equivalence classes
of reducibility parameterg®[z, ¢| satisfying R’ (f*) ~ 0, with two sets of reducibility
parameters being equivalent if they agree on-shell. Inratleds, the classification of lo-
cal, on-shell closed co-dimension 2 forms is done througltlassification of reducibility
parameters, which is a tractable problem.

The construction of the — 2 forms from the reducibility parameters can be summa-
rized as follows. For any®, standard integrations by parts allow one to write

oL oL

) « _ rapti
Ra(f )6¢z - f Ra ((S(bz) +dHSf7 (22)
for some weakly vanishing — 1 form
i, 0 0L L.
Sp = Sau(adxu 55 ). (2.3)

Then — 2 form is then obtained by applying the contracting homotppyfor the hori-
zontal differential of the variational bi-complex [29,30]

{dy, pgw? = WP for p < n. (2.4)

to Sf,
ki = puSy. (2.5)

Indeed, the Noether identities associated to the gengratinof non-trivial gauge trans-

formations are
oL

5
For particular reducibility parameters that satisfy( /) = 0, (2.2) reduces td;; S; = 0
so that[(2.4) reduces to

R}'(=)=0. (2.6)

diks = S§ ~ 0. 2.7)
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One can then proceed to show thatsatisfies[(2]7) also for general reducibility parame-
ters (seel[19] for details).

In this discussion, we have neglected non-trivial, ideallyoconserved currents, which
are related to the topology of the bundle of fields. We havs tieglected “magnetic”
charges and concentrated on the “electric” ones. The fooaerasily be incorporated
when taking into account the cohomology of the horizontédential of the variational
bi-complex in lower form degrees, and more specifically,egreen — 2 for the present
case.

2.3 Linearized theories

For definiteness, let us take the example of the Einsteihéadilaction in metric formula-
tion, where a generating set of gauge transformations engdiy the Lie derivative of the
metric, 6¢g,, = Leg,. 1N sSpacetime dimensiom > 3, one can then show thét|z, g]
can be assumed not to depend on the fields, so that redyciiaiiameters correspond
to Killing vectors. Since a generic metric does not admitiKg vectors, there are no
non-trivial conservech — 2 forms in general relativity. In linearized gravity howeyer
a generating set of gauge transformations is givea:by, = L¢g,., whereg,, is the
background solution around which one linearizes the thedilyere are then as many
conserved: — 2 forms as there are Killing vectors of the background sotutiéxplicit
expressions are obtained by applying the constructionritbestpreviously, but now in
the framework of the linearized theory. For Einstein grg\this has been done explicitly
in [19].

More generally, for gauge theories linearized around atswly’ with gauge trans-
formationss.o' = R! [z, ¢](e*), one can show [20] that one may obtain the 2 forms
of the linearized theory from the weakly vanishing NoethamrentS; of the full theory
through

T T et N )
by replacingf by reducibility parameters of the linearized theatyby the background
solution¢’ andd¢’ by any solutionz’ of the theory linearized around. Explicit expres-
sions for the higher order Euler-Lagrange derivatives aafolind in [29] and[[30]; our
conventions and notations for multi-indices are summadriaghe appendix of [19].

This construction is applicable in the case of Lagrangibasare of finite, arbitrarily
high order in derivatives. In casg, is of second order in derivatives, which usually
requires the Euler-Lagrange equations of motion to be afrsgtorder as well, one needs
the higher order Euler-Lagrange operators up to o2ger

kl59, 0] = 3600~y + 20,06 Lo (2.9)
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For theories for whiclb is of first order in derivatives, only the first higher orderéu
Lagrange operator is involved and reduces to the parti?éatere, so that the formula
simplifies to
k[0, 6] = =062 —2_5;. (2.10)
2 0¢t, ddxv
A first order formulation can always be achieved by introdgcsuitable auxiliary and
generalized auxiliary fields.

For notational simplicity, we take units where the graviaal constant isG =
(167)~'. More standard choices correspond to multiplying the actiod forms below
by (167G)~".

2.4 Asymptotics

The strategy to use the linearized theory at infinity withsprédoed asymptotics in order
to define conservation laws in general relativity is disedss detail in [3].

Rather than trying to develop a theory for the asymptotiecas done for instance
in [19] for the “asymptotically linear” case, one can take@reypragmatic point view that
consists in using the formula for the— 2 forms above, while substituting asymptotic
reducibility parameters and asymptotic solutions deteeatiby the fall-off conditions
instead of exact ones determined by the linearized thedmg approach is reminiscent
of the one for current algebras associated to broken glgiafretries described in [31].
As a result, the currents are in general neither integraimeonserved. This is precisely
what happens for general relativity with asymptotically Baundary conditions at null
infinity [9]124,25].

3 Application to the Cartan formulation of GR

3.1 Cartan formulation
Consider am dimensional spacetime with a moving, (pseudo-)orthonbframe,
e’ = e, dat, (3.1)

wheree,te?, = 0¥, ea“ebﬂ = 4%, andd,f = e,(f). The structure functions are defined
by
1
[eq, €p] = Dpe. = de = —§D“bcebec. (3.2)

For further use, note thatéf = det ¢, then

Ouleely) =e DY, (3.3)
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We thus assume that there is a pseudo-Riemannian metric,
Guv = 6a/ﬂ7ab6bua (34)

with a flat (Lorentz) metric in tangent spaeg;, = diag((—)1,1,...,1). As usual, tan-
gent space indices, b, ... and world indicess, v, ... are lowered and raised wiify,,
9., and their inverses, and converted into each other usingitieeinse,” and their
inverse.

Local (Lorentz) rotations are denoted By’ (z) with A,’ny.As¢ = 7.4, OF €quiva-
lently, A% A" = 54, Under a combined frame rotation and coordinate transfoomave
have

er'(2) = Ao (x)ep” (x) A¥, (), (3.5)

o't

oxv ’

with A#, =

In addition, assume that there is an affine connection debged

Dcea = 1—‘baceba (36)
and that metricity holds,
Danbc = 0. (37)
This implies in particular that
Fabc = _Fbaca (38)

In terms of the Poincaré algebra,

[Jaba ch] = nchad - nachd - ndeac + nadeca [Jaba Pc] = nbcPa - nacpba (39)

one defines the Lorentz connectibn= 1I'*J,, with ' = ' da* = ', and
e=e"P,.

The torsion and curvature tensors are defined by
T=TP,=de+[Ie], R= %RabJab =dTl + %[F, I, (3.10)
where the wedge product is omitted, and the bracket is treeegraommutator.
More explicitly, 7% = 17.e’e® = de® + I'*¢", so that
T, = 0ue’y, — 0ye”, + F“bueb,, — F“byebu, (3.11)
T = 2I"pg) + D%, (3.12)

where round (square) brackets denote (anti) symmetrizafi@nclosed indices divided
by the factorial of the number of indices involved. In thisea

ou(ev”) = e (D, + e duel, v = D, (evt), (3.13)
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with D,v* = ¢,v* for the Lorentz connection and the definition
D,e=e (eb”(?ueb,,).
In particular, this implies that
D,(eet,) =e 0.
For the curvature componentss;, = %R“bcdeced = dI'", + I'*.I"%,, we have
R o = 01 o = 0,17 oy + T g 00, =TT 4,17,

Rfcab = aarfcb - abrfca + 1—Wfdardcb - 1—Vctil)FClccu - Ddabrfcd-

Furthermore,
[Daa Db]'Uc = _Rdcabvd - Tdade'Uc-

Under a local frame rotation, we have
¢ =AeA™!, T =ATA' + AdATY,

so that
T = ATA™', R =ARA.

DefiningA = 1 4+ w + O(w?), withw = 1w Jp, w™ = —w', we have
6.0 = —(dw + [T, w]) = 6, = —(dw® + T w® + '’ w®),

and also

Spe = [w,e] == 6.6 = wel.

Under a coordinate transformation, we have

/a v_a /a vma
6u:Aueua Fbu:AuFbua

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

and forz’" = 2+ — &4 + O(€2), A*, = §* — 0,6 + O(£?), so thatw,* = 0,£# and

5§e“u = ,Cgez, 55Fab“ = EgF“bu,

whereL, denotes the Lie derivative.

The Bianchi identities are
dT"+ [I',T] = [R,e], dR+[I',R]=0.
Explicitly,

Rtea) = DTy + T 4T ey Dy R jea) = — R T ca

(3.24)

(3.25)

(3.26)
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where a bar encloses indices that are not involved in the @mhmetrization. The Ricci
tensor is defined bR,, = R, wWhile S,;, = R, = 0. Contracting the Bianchi
identities gives

Ry — Ry = _DcTcab - 2D[aTCb]c - chchaba (327)
2D[fR|b|d] + DcRcbdf = Rbngdf — 2Rcb[f‘g‘ng]c. (328)

The curvature scalar is defined Ry= ¢*R,;, the Einstein tensor by

1
Ga = Rap — §gabR- (3-29)

Contracting[(3.28) with®/ gives the contracted Bianchi identities,
1
Dbia = incdaTdbc + RbcTCab- (330)

For any affine connection, metricity,, g, = 0, implies that the connection is given

by
Fabc = {abc} + Kabc + Tabe, (331)

where the Christoffel symbols are given by
1
{abc} = §<abgac + acgab - aagbc) = {acb}a (332)

K. are the components of the contorsion tensor,

1
Kabc = §(Tbac + Tcab - Tabc) = _Kbaw (333)

and

1
Tabe = §(Dbac + Dcab - Dabc) = —Tbac- (334)

Furthermore, one can directly show that
I, = e (0uer” + TV uefy) <= Tape = €alcer” + eal'er” e’ Ty (3.35)

with
F,uup = {,uup} + K,uup- (336)

Note also that for a Lorentz connection, (3.31) reduces to

Fabc = Kabc + Tabe- (337)
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3.2 Variational principle

In the standard Cartan formulation, the variables of thetianal principle are the com-
ponents of the vielbein,” and a Lorentz connection 1-form in the coordinate bd¥ig,
in terms of which the action is

Se TP, = fd"x L¢ = fd"xe (R“bwea”eb” —2A). (3.38)
Using
IR, = D,,6T'%, — D,6I'",,, (3.39)
the variation of the action is given by
§5¢ = fd":):e [2(G®. + Ae®,)de,” + eat'ey” (D, 0T, — Dl,él“f]’)]. (3.40)
Using now [[3.1B) and neglecting boundary terms, this gives
55¢ = Jd"x [Qe (G, + Ne®,)oe! + 2D, (e ea“eb”)ﬂmb“], (3.41)
so that
SLC o a
w = 2e (G m + Ae N)7 (342)
LY oD (eepen”) = e (TVa + 26 T%.) (3.43)
61—\,117“ v [a" €b] ab [a ble)- .

Contracting the equations of motions associatedfo13.4B)ey’ givesT®,, = 0. When
re-injecting, this implieg®,. = 0. It follows that when the equations of motion fot°,

hold, the connection is torsionless and thus givehy = r.. The fieldsl“abu are thus
entirely determined by, so thatl'®,, are auxiliary fields.

Using [3.40) for an infinitesimal gauge transformation a8i1), [3.22),[(3.24) un-
der the form 510 510
55’“)50 = Jdnﬂf [@ 5§,w€a“ + W(S&wfabu], (344)

and integrating by parts in order to isolate undiffereetiajauge parameters as(in (2.6)
gives the Noether identities

SLC¢ SLC¢

_—— K D —  —

Jelalul eb] + Ué‘l"abu - 07 (345)
SLC SLC ) SLC SLC
- H __ a o Bk a —
o el 4 s O+ (5 et — g T = 0. (3.46)

Equation [[3.45) can be shown to be equivalenffo (3.27). 4J&M5), equation (3.46)
can be written as

SLC SLC SLC
a“(&ap ca") + deqt Dpea" + orab, R =0, (3:47)

and then be shown to be equivalentfo (8.30).
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3.3 Construction of the co-dimension 2 forms

When keeping the boundary term, one finds the weakly vargdNmether current asso-
ciated to the gauge symmetries as

SL¢

C
Sg,w = 5Fabu (_wab + Fabpgp) - —aeaugp- (348)
The associated co-dimension 2 fokn,, = ng(d"—Qx)W computed througH (2.10) is

given by

ke, =e [(20eqte” + erdeltes” ep) (—w™ + T ,&°)
+ 60%,(EPe,l ey’ + 281e, ey”) — (<« v)]. (3.49)

This can also be written as

A

%

hew = —0K{, + Kig 5 — €57 Oc, (3.50)
where

ng = 2ee, ey (—w™ + T &P) (d"22),, Of = 20T et ey (d" z),. (3.51)
According to the general results reviewed in seckibn 2, thelimension 2 form is

closed,dike., = 0, or equivalentlyg, k{,, = 0, if e,*,T**,, are solutions to the Euler-

Lagrange equations of motion, and thus to the Einstein @nsve,", 6I'"*, solutions

to the linearized equations and®, £7 satisfy
Leeg" + waept ~ 0, Eglmbu ~ Duwab, (3.52)

where~ now denotes on-shell for the background solution and is/aelein case the
parameters)®, £# explicitly depend on the background solutigst, I'*,, around which
one linearizes. Note that the first equation also impliesairtigular that¢” is a possibly
field dependent Killing vector of the background solutigp,

Eﬁgul/ ~ 07 (353)
and that
w? ~ —e¥ Lee ~ —elb, Loe. (3.54)
3.4 Reduction to the metric formulation

In order to compare with the results in the metric formulati@t us go on-shell for the
auxiliary fieldsI"®, and eliminateo® using [3.54). The former implies that we are in
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the torsionless case with the Lorentz connection simplifield®®, = r,, while (3.35)
reduces to
F“bu = e“l,Vueb” = e[“yvueb]”, (3.55)

with V 0¥ = 00" + {V,.}v”. Note also that the Killing equation can be written as
V,.& + V,.€, ~ 0. Together with[(3.55), we have

R B N A v 3 (3.56)
5Fabp = 5e[agvpeb]" + e[agé{”Tp}eb]T + e[agvpéeb]", (3.57)
with |
{7} = 59”5(%59& + V095 — V50Grp). (3.58)
Using that
de” eq, = %hw + o€ [u€lalu]s (3.59)

with h,,, = dg,., indices being lowered and raised with, and its inverse, and = A,
substitution into[(3.49) gives

64/19/V o (Seq el ey + kLY (3.60)

where the first term can be dropped since it is trivial in thessdghat it corresponds to the
exterior derivative of am — 3 form, while

ke = VIl [€V" 0+ &V b + €0 R
1 1 1
AV SHTNV G+ S h TNV, — (e v)]. (3.61)

We have thus recovered the results of the metric formulatione the last expression
agrees with the one given in [ﬂJ}Nhich in turn is equivalent to those derived directly in
the metric formulation in[[19].
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