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Abstract

We give a pedagogical introduction into the field of (modified) teleparallel theo-
ries of gravity. Our presentation is fairly self-contained. In particular, we carefully
explain the basic principles of metric-affine approaches to gravity.

This contribution is based on our talk ”Teleparallel gravity, its modifications,
and the local Lorentz invariance” at the 9th Mathematical Physics Meeting: School
and Conference on Modern Mathematical Physics in Belgrade, September 2017.

1 Introduction

The great success of general relativity in describing experimental data does clearly show
that we are on the right track, and our geometric theory of gravity works extremely well.
On experimental side the only reservations come from cosmology.

Even though we have a perfectly good model also there (ΛCDM), it is very unpleasant
to realise that we don’t have any reasonable idea as to the nature of some 95% of the energy
budget of the Universe [1]. Numerous searches for new physics beyond the Standard Model
of elementary particles are yet futile.

Can we do better via some (infrared) modifications of gravity? Very probably, the
answer could be in positive. It seems to be not an easy endeavor, but nevertheless the
one which is worth trying.

In order to have an interesting model, we need to start from a deep understanding
of gravity. Simply changing the Newtonian limit for incorporation of, say, flat rotation
curves in galaxies is way too easy. MOND is an archetypal example [2]. Embedding it
into a wider picture is very arbitrary and hardly was ever successfull per se [3].

Of course, modifications to the full general relativity can also be done in a large
number of different ways. However even the most straightforward consistency tests prove
to restrict the freedom a lot. A very good example is massive gravity for which even
the most basic task of avoiding the Boulware-Deser ghost turned out a highly non-trivial
problem [4] with interesting mathematical structures behind [5, 6].

Even very simple extensions such as (metric) f(R) models lead to a new degree of
freedom due to the higher derivative nature of any available curvature invariants; and
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the problem of screening the extra degrees of freedom from low energy phenomenology
emerges [7]. One notable exception from this rule is Palatini f(R) gravity which is however
subject to its own problems [8].

We must conclude that the search for a viable modification to the theory of gravita-
tional interactions is anything but a simple task, and very often the models acquire their
own deep academic interest even irrespective of possible phenomenological applications.
And despite a large number of reasonable ideas on the market, we cannot claim a defini-
tive success of any particular approach to cosmology-motivated modification of general
relativity.

From this vantage point, it would be natural to consider models of teleparallel type.
Indeed, teleparallel gravity is just an equivalent (modulo global topological issues of par-
allelisability) description of general relativity in terms of different geometry. However, if
one attempts at modifying the teleparallel Lagrangian then the resulting modified gravity
models from simple modifications would generically be different from those which can
be obtained by analogous procedures applied to general relativity in the standard for-
mulation. Therefore it is an independent direction of research which is definitely worth
trying.

It is precisely this viewpoint which we will take regarding modified teleparallel gravi-
ties in this contribution. In Section 2 we explain the essence of metric-affine approaches
to gravity. In Section 3 we describe the teleparallel equivalent of general relativity in its
classical standing with vanishing spin connection, and also present some possible exten-
sions. In Section 4 we discuss covariantised versions and related problems. Finally, in
Section 5 we conclude.

2 Metric-affine preliminaries

In principle, a metric and an affine connection are two different geometrical structures on
a manifold. The former defines lenghts and distances, and also gives the natural measure√−g ·d4x, while the latter provides us with the rule of parallel transport. Apparently, we
don’t need to think of the metric structure in order to have some choice of the horizontal
section in the tangent bundle.

2.1 Affine connection

Leaving an invariant discussion for textbooks on differential geometry, we will use the
plain language of components for the purposes of this elementary introduction. The
connection coefficients Γ are used to tell us how the components of a vector are changed
under an infinitesimal parallel transport, δxµ in terms of coordinates: δAν = −Γν

µαA
αδxµ,

or analogously for 1-forms δAν = Γα
µνAαδx

µ. The same coefficients with different signs
are used in these rules in order to ensure that scalar quantities such as AµB

µ are not
changed under the parallel transport.

One can treat the parallelly transported vector as being the same vector at a different
point. Covariant derivatives are then simply defined by subtracting this trivial change
above from the actual change of vector field components:

▽µ A
ν ≡ ∂µA

ν + Γν
µαA

α, (1)

and
▽µ Aν ≡ ∂µAν − Γα

µνAα (2)
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for differential 1-forms. Note that different conventions can be encountered at this point.
Ours is that the index which corresponds to the derivative is the left one among the lower
indices of the connection coefficients.

The rules (1) and (2) were given in one particular coordinate system. One can how-
ever deduce the transformation law for Γ demanding that the covariant derivatives be
tensors. It does not depend on any particular choice of the affine connection, and a
simple calculation from any textbook on general relativity gives

Γκ
µν =

∂xκ

∂x′ρ

(

∂x′α

∂xµ

∂x′β

∂xν
Γ′ρ

αβ +
∂2x′ρ

∂xµ∂xν

)

. (3)

Now we see that symmetric connections, Γα
µν = Γα

νµ, are somewhat distinguished from
the viewpoint of the equivalence principle since they can be set to zero at any single point
by a mere coordinate transformation. On the other hand, the antisymmetric part is a
tensor

T α
µν = Γα

µν − Γα
νµ (4)

which is known under the name of torsion. It will be very important for us in what follows.

2.1.1 Geodesic lines

Given an affine connection, one can generalise the notion of a straight line. Indeed, let us
call a line xµ(τ) geodesic if an only if its tangent vector eµ(τ) ≡ dxµ(τ)

dτ
remains tangent

when parallelly transported along the line.
In other words, the tangent vector eµ(τ) is covariantly constant along the line which

means that we demand δ dxµ

dτ
= −Γµ

να
dxα

dτ
δxν = −Γµ

να
dxα

dτ
dxν

dτ
δτ under an infinitesimal

change of the parameter τ . It gives the geodesic equation

d2xµ

dτ 2
+ Γµ

να

dxα

dτ

dxν

dτ
= 0. (5)

This equation (5) is invariant under affine changes of τ . Under a general non-linear
reparametrisation, this equation becomes more complicated. So, there is a preferred class
of choices for the parameterisation of the line, the class of affine parameters. It stems
from demanding that eµ(τ) is strictly preserved when being parallelly transported along
a geodesic line, not only up to a scalar factor, and allows one to define the null infinity in
general relativity such that a null geodesic is infinitely long if its affine parameter reaches
an infinite value.

2.2 Curvature tensor

Of course, if one simply introduces curvilinear coordinates in a Euclidean space, connec-
tion coefficients already become non-trivial. One may ask how to distinguish between a
real curvature and a (locally) flat space in curvilinear coordinates. In Riemannian geome-
try the answer is very simple (in general we will only need to add torsion and non-metricity
to this discussion, see below).

It is difficult to compare two vectors at a distance from each other, but it is fairly easy
to do so if they are at the same point in the space. If one parallelly transports a vector
along a closed contour, then the resulting vector always coincides with the initial one if
the space is flat. Therefore, if after such a procedure a vector has changed, it is a clear
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indication of non-trivial geometry (the converse is also true but not so elementary, even
for rigorous understanding of what it means).

Let us perform a parallel transport of a vector ξµ along an arbitrarily chosen closed
infinitesimal contour C. After one revolution we have

δξµ =

∮

C

dτ · dξ
µ

dτ
= −

∮

C

dτ · Γµ
ναξ

α · dx
ν

dτ

where the vector function ξµ(x(τ)) at any point of the contour is determined by the
parallel transport equation d

dτ
ξµ = −Γµ

ναξ
α dxν

dτ
with an arbitary initial value at an arbitrary

initial point on C. Moreover, we can imagine that the vector is parallelly transported to
everywhere in a small neighbourhood of the contour. Well, it is a little tricky given the
non-uniqueness we want to establish, but at least we can definitely see an obstacle for the
geometry to be trivial.

Let us assume for simplicity that the origin of the coordinate system, i.e. xµ = 0, is
chosen inside the contour and Taylor expand the vector field components and the connec-
tion coefficients around the origin. Since at the lowest order the integral is proportional
to
∮

dxµ = 0, we look at the first order correction:

δξµ = −
∮

C

dτ

(

Γµ
να · (∂ρξα)xρ + (∂ρΓ

µ
να)x

ρ · ξα +O(x2)

)

dxν

dτ

where the only x-dependence is explicit one with all functions being taken at xµ = 0.
In the first term we use again the parallel transport equation for the vector field

∂ρξ
α = −Γα

ρσξ
σ to obtain

δξµ = −
∮

C

dτ

(

− Γµ
ναΓ

α
ρσξ

σxρ + (∂ρΓ
µ
νσ)ξ

σxρ +O(x2)

)

dxν

dτ
.

Omitting the O(x2)-corrections, the integral is proportional to

∮

xρdx
ν

dτ
dτ = −

∮

xν dx
ρ

dτ
dτ =

∫ ∫

dxρ ∧ dxν ,

the infinitesimal antisymmetric area element (encircled by the contour C) which we will
denote by Sρν = −Sνρ.

The antisymmetrised coefficient in front of Sρν must also be a tensor, what can of
course be checked directly by using equation (3), and finally we get

δξµ =

∮

C

dτ ξ̇µ = −1

2
Rµ

σρνξ
σSρν

where the curvature tensor is defined as

Rµ
σρν = ∂ρΓ

µ
νσ − ∂νΓ

µ
ρσ + Γµ

ραΓ
α
νσ − Γµ

ναΓ
α
ρσ. (6)

By definition, it is always antisymmetric in the last two indices

Rµ
σρν = −Rµ

σνρ, (7)
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and this is the only symmetry property of the curvature tensor for a generic connection.
Of course, we could also transport a one-form instead of a vector around the contour.

It yields the same tensor:

δζµ =

∮

C

dτ ζ̇µ =
1

2
Rσ

µρνζσS
ρν ,

where the change of sign ensures again that the scalar quantities remain unchanged.

2.2.1 Commutator of covariant derivatives

There is also another way to introduce curvature. Normally, the partial derivatives com-
mute. However, it is not true of the covariant ones. Let us compute the commutator:

[▽µ , ▽ν] ξ
α = ▽µ

(

∂νξ
α + Γα

νβξ
β
)

−▽ν

(

∂µξ
α + Γα

µβξ
β
)

=

= ∂µ
(

∂νξ
α + Γα

νβξ
β
)

+ Γα
µρ

(

∂νξ
ρ + Γρ

νβξ
β
)

− Γρ
µν

(

∂ρξ
α + Γα

ρβξ
β
)

−
− ∂ν

(

∂µξ
α + Γα

µβξ
β
)

− Γα
νρ

(

∂µξ
ρ + Γρ

µβξ
β
)

+ Γρ
νµ

(

∂ρξ
α + Γα

ρβξ
β
)

=

= Rα
βµνξ

β − T ρ
µν ▽ρ ξ

α

where T ρ
µν = Γρ

µν − Γρ
νµ is the torsion tensor (4).

Therefore, we have

[▽µ , ▽ν ] ξ
α = Rα

βµνξ
β − T ρ

µν ▽ρ ξ
α, (8)

or analogously for a 1-form:

[▽µ , ▽ν ] ζα = −R
β
αµνζβ − T ρ

µν ▽ρ ζα. (9)

2.3 Torsion and non-metricity

In Riemannian geometry, the curvature tensor is a precise diagnostic tool to see if the
geometry is (locally) trivial. For general metric-affine models it is no longer the case, and
we need more information. Of course, one obvious indicator of non-trivial geometry is the
torsion tensor (4)

T α
µν = Γα

µν − Γα
νµ.

One more tool is easy to discover if we recall that in Riemannian geometry the metric
tensor is covariantly constant, ▽αgµν = 0. Let us therefore introduce another tensorial
quantity, the non-metricity tensor

Qµαβ = ▽µgαβ (10)

which also signals non-trivial metric-affine geometry.
Now we finally have all necessary ingredients for working with arbitrary connections

in the sense that the postulated equation (10), ∂µgαβ = Γρ
µαgρβ +Γρ

µβgαρ +Qµαβ , together
with a prescribed torsion fixes the affine connection uniquely.

Indeed, following the standard derivation of the Levi-Civita connection, we compute
the combination ∂µgνβ + ∂νgµβ − ∂βgµν and use it to determine the components of Γ, this
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time keeping track of its antisymmetric part which is T and of Q 6= 0. The result is

Γα
µν =

1

2
gαβ (∂µgνβ + ∂νgµβ − ∂βgµν)

+
1

2

(

T α
µν + T α

ν µ + T α
µ ν

)

− 1

2

(

Q α
µν +Q α

νµ −Qα
µν

)

. (11)

We see that possible connections differ from each other by contributions of torsion and
non-metricity. As it should have been, difference of two connections is always a tensor.

2.3.1 Symmetric connections

In case of symmetric connections we put torsion to zero, and the curvature tensor has
further symmetry properties. A simple inspection of the definition (6) readily shows that
for symmetric Γ we have

R
µ
αβγ +R

µ
βγα +R

µ
γαβ = 0

and also a differential (Bianchi) identity

▽αR
µ
νβγ +▽βR

µ
νγα +▽γR

µ
ναβ = 0.

Note that for non-symmetric connections, we would have got torsion terms in the right
hand sides.

Any model which deals with different metric fields in the (otherwise Riemannian)
geometric part and in the matter coupling prescription can be viewed as a model with
non-metricity and without torsion. Indeed, being Levi-Civitian for some metric, the
connection is definitely symmetric, however it is not metric compatible from the viewpoint
of the physical metric which governs the motion of matter. Concrete examples include
scalar-tensor models such as f(R) gravity in the Einstein frame.

2.3.2 Metric compatible connections

If we have a metric, we can raise and lower the indices. Moreover, if the connection is
metric compatible Q = 0, we can commute the metric with the covariant derivatives. It
implies new symmetry properties of the curvature tensor. We can rewrite the commutators
of covariant derivatives (8), (9) as

[▽µ , ▽ν ] ξα = Rαβµνξ
β − T β

µν ▽β ξα,

[▽µ , ▽ν ] ζα = −Rβαµνζ
β − T β

µν ▽β ζα.

and deduce:
Rαβµν = −Rβαµν . (12)

Note that the antisymmetry (12) is valid also in presence of torsion. Teleparallel
gravity belongs to this class of models.

2.3.3 The Levi-Civita connection

Finally, if we set both torsion and non-metricity to zero, then our expression for affine
connection (11) reduces to the Levi-Civita one

Γα
µν =

1

2
gαβ (∂µgνβ + ∂νgµβ − ∂βgµν) .
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In this case we are back to Riemannian geometry, and one can check that our definition
of the geodesic line (5) coincides with that of the path of the shortest distance between
two points (provided they are not too far from each other). Also one can prove another
symmetry of the curvature tensor

Rµναβ = Rαβµν

for the Levi-Civita connection.
As a side note, let us mention that, evidently, the curvature tensor has the maximal

amount of symmetry properties when in Riemannian geometry, and therefore it is often
much simpler to calculate with the Levi-Civita connection. On the other hand, it is second

order (6) in the connection coefficients, and substituting Γα
µν =

(0)

Γ
α
µν(g) + δΓα

µν where
(0)

Γ
α
µν(g) is the Levi-Civita connection for a given metric gµν and δΓ is always a tensor, we

have a relation

Rα
βµν(Γ) = Rα

βµν(
(0)

Γ ) +
(0)

▽ µδΓ
α
νβ −

(0)

▽ νδΓ
α
µβ + δΓα

µρ · δΓρ
νβ − δΓα

νρ · δΓρ
µβ (13)

which often gives a nicer way of approaching a modified gravity model.

2.4 Tetrad formulation

If only for introducing fermions, one needs the tetrad description of general relativity.
And so is for teleparallel gravity. We don’t need much more from that than is available
in any reasonable exposition of standard general relativity in terms of the frame field.

The main essence is that we have a non-degenerate matrix eµa composed of components
of four vector fields ea, a = 0, 1, 2, 3 which form an orthonormal (gµνe

µ
ae

ν
b = ηab) basis in

the tangent space at each point. The inverse matrix is denoted by eaµ, and the metric
components can be calculated as

gµν = eaµe
b
νηab, gµν = eµae

ν
bη

ab.

Very importantly, if we are given a metric, the tetrad fields eaµ are only defined up to an
arbitrary local Lorentz rotation eaµ(x) → Λa

b(x) · ebµ(x) since this is the natural freedom of
choosing an orthonormal basis.

Now, that we have a non-degenerate matrix with indices of two kinds, we can define
components of tensor fields with Latin indices by

T a1,...,an
b1,...,bm

≡ ea1α1
· · · eanαn

T α1,...,αn

β1,...,βm
e
β1

b1
· · · eβm

bm

which amounts to relating tensorial quantities to the chosen frame.
We ought to extend our notion of parallel transport to quantities with the new type of

indices. Therefore we introduce some new connection coefficients ωa
µb which are usually

called spin connection. And now the adopted recipe is that we use Γ-terms for Greek
indices, and ω-terms for Latin indices. For example, ▽µT

aν = ∂µT
aν +Γν

µρT
aρ + ωa

µcT
cν.

Of course, the spin connection must indeed transform as a connection under the local
Lorentz transformations in the space of tetrads:

eaµ −→ Λa
ce

c
µ , ωa

µb −→ Λa
cω

c
µd(Λ

−1)db − (Λ−1)ac∂µΛ
c
b , (14)
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and with respect to its Latin indices it is assumed to belong to the Lie algebra of the
Lorentz group.

If we treat objects with different types of indices as different representations of the same
invariant entities, then it is natural to demand that the two notions of parallel transport
coincide with each other. Formally it means that the tetrad field (which changes the type
of an index) must commute with taking a covariant derivative of a tensor. This is ensured
by vanishing of the ”full covariant derivative” of the tetrad:

∂µe
a
ν + ωa

µbe
b
ν − Γα

µνe
a
α = 0 (15)

which is usually imposed when working with tetrads, and which we will also adopt in
what follows.

Condition (15) can be solved straightforwardly to obtain

Γα
µν = eαa

(

∂µe
a
ν + ωa

µbe
b
ν

)

≡ eαa Dµe
a
ν (16)

with Dµ being the Lorentz-covariant (with respect to the Latin index only) derivative, or
another way around

ωa
µb = eaαΓ

α
µνe

ν
b − eνb∂µe

a
ν . (17)

In particular, one can find the spin connection
(0)
ω which corresponds to the Levi-Civita

connection
(0)

Γ(g) of a given metric g and obtain the tetrad description of the standard
general relativity.

Note that as we have already mentioned, under the condition (15) of vanishing full co-
variant derivative of the tetrad, both Γα

µβ and ωa
µb represent one and the same connection

in different disguises. And indeed, a simple calculation shows that the two curvatures,

Ra
bµν(ω) = ∂µω

a
νb − ∂νω

a
µb + ωa

µcω
c
νb − ωa

νcω
c
µb

and
Rα

βµν(Γ) = ∂µΓ
α
νβ − ∂νΓ

α
µβ + Γα

µρΓ
ρ
νβ − Γα

νρΓ
ρ
µβ ,

are related by a mere change of the type of indices:

Rα
βµν(Γ) = eαaR

a
bµν(ω)e

b
β .

3 Teleparallel gravity

Let us now see how we can use different geometries in the tetrad approach. We immedi-
ately note that non-metricity is automatically zero due to the condition (15):

▽αgµν ≡ ηab
(

∂α
(

eaµe
b
ν

)

− Γβ
αµe

a
βe

b
ν − Γβ

ανe
a
µe

b
β

)

= −ebµe
c
ν (ηabω

a
αc + ηacω

a
αb) = 0

where in the last step we have taken into account that the matrices ω·
α· belong to the Lie

algebra of the Lorentz group SO(1, 3). Therefore we have the antisymmetry (12) property
Rαβµν = −Rβαµν for the curvature tensor.

Given the absence of non-metricity, our connection (11) is of the form

Γα
µν =

(0)

Γ
α
µν(g) +Kα

µν

8



where
(0)

Γ
α
µν(g) is the Levi-Civita connection of the metric g, while the tensor

Kαµν =
1

2
(Tαµν + Tναµ + Tµαν) =

1

2
(Tµαν + Tναµ − Tανµ) (18)

is known under the name of contortion. It is obviously antisymmetric with respect to the
two lateral indices:

Kαµν = −Kνµα.

In the curvature variation (13) we can simply substitute δΓ by K to get

Rα
βµν(Γ) = Rα

βµν(
(0)

Γ) +
(0)

▽ µK
α
νβ −

(0)

▽ νK
α
µβ +Kα

µρK
ρ
νβ −Kα

νρK
ρ
µβ .

After necessary contractions we obtain the fundamental relation for the scalar curvatures:

R(Γ) = R(
(0)

Γ ) + 2
(0)

▽ µT
µ + T (19)

where the torsion vector is
Tµ ≡ T α

µα = −T α
αµ,

and the torsion scalar can be written in several equivalent ways:

T =
1

2
KαβµT

βαµ − TµT
µ

=
1

2
TαβµS

αβµ

=
1

4
TαβµT

αβµ +
1

2
TαβµT

βαµ − TµT
µ

with the ”superpotential”

Sαµν ≡ Kµαν + gαµT ν − gανT µ (20)

which satisfies the same antisymmetry condition Sαµν = −Sανµ as the torsion tensor itself.
The basic idea of teleparallel gravity would be to set curvature to zero: Rα

βµν(Γ) = 0 and
in particular R(Γ) = 0.

3.1 Teleparallel equivalent of general relativity

In the classical formulation of teleparallel gravity, one uses the Weitzenböck connection
given by

ωa
µb = 0 (21)

or equivalently Γα
µν = eαa∂µe

a
ν which is obviously curvature-free, Rα

βµν = 0, and has the
following torsion:

T α
µν = eαa (∂µe

a
ν − ∂µe

a
ν) .

We can denote the determinant of eaµ by ‖e‖ =
√−g and see from the fundamental

relation (19) that, under the Weitzenböck assumption (21), the action

S = −
∫

d4x‖e‖ · T (22)
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is equivalent to the action
∫

d4x
√−g · R(

(0)

Γ) of general relativity modulo a surface term

with 2
(0)

▽ µT
µ.

Note that we discuss pure gravity ignoring the matter fields. There is no problem
with minimally coupling bosonic fields since they simply have to interact with the metric

gµν = eaµe
b
νηab in the usual way. Fermionic fields would require the spin connection

(0)
ω

which is admittedly not so natural in this framework, but it won’t be our concern in this
paper.

Let us also mention straitaway that the choice (21) of ω = 0 is locally Lorentz breaking
as is evident, if nothing else, from the transformation law (14). This choice allowed us
to formulate the model without any explicit use of the spin connection. Sometimes the
teleparallel action (22) with ω = 0 is referred to as pure tetrad gravity, as opposed
to genuine teleparallel which would have used an arbitrary flat spin connection. Note
though that this distinction is not common in the literature and very often it may cause
a confusion as to what was precisely assumed in a given paper.

For the teleparallel equivalent of general relativity this issue is not particularly im-
portant since the local Lorentz violation is totally contained in the surface term without
affecting the equations of motion. However, it will play a role for modified models. We
will come to this point soon.

3.1.1 Equations of motion

Equations of motion are easily derived for the action (22). By using the standard method
of varying the inverse matrices δeµa = −e

µ
b e

ν
aδe

b
ν and determinants δ‖e‖ = ‖e‖ · eµaδeaµ we

easily get

δS = −
∫

d4x‖e‖ ·
(

−2SαµνTαβνe
β
aδe

a
µ + Teµaδe

a
µ − 2S µα

β eβaDαδe
a
µ

)

where we use the Lorentz-covariant derivative D to account for a non-trivial spin connec-
tion if there was one. In the current case D is just a partial derivative since ω = 0.

We need to perform integration by parts in the last term which readily results in

2δeaµ ·
(

∂α
(

‖e‖ · S µα
β eβa

)

− ‖e‖ · ωb
αaS

µα
β e

β
b

)

. In teleparallel gravity it is often used as

it is, in this very non-covariant form. However one can easily do better. Indeed, it is
very tempting to make the derivative in the first term into a Levi-Civita-covariant one,
(0)

▽ νS
µν

a = 1
‖e‖

∂ν
(

‖e‖Sµν
a

)

− (0)
ω b

νaS
µν

b . Correcting for the mismatch of connections with

the contortion (18) tensor ωb
νa −

(0)
ω b

νa = Kb
νa, one obtains a nice contribution to the

equation of motion:
(0)

▽ νS
µν

a −Kc
νaS

µν
c .

Finally, using non-degeneracy of tetrads, we get the equation of motion

(0)

▽ αS
µα

β − Sαµν (Tαβν +Kανβ) +
1

2
Tδ

µ
β = 0. (23)

Is it equivalent to general relativity? Yes! Directly substituting

Rα
βµν(

(0)

Γ ) = −
(

(0)

▽ µK
α
νβ −

(0)

▽ νK
α
µβ +Kα

µρK
ρ
νβ −Kα

νρK
ρ
µβ

)

into the Einstein equation G
µ
β(

(0)

Γ , g(e)) = 0, one can prove that it is.
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3.2 Possible extensions

Having found the action (22), one is naturally driven to consider possible modifications
of gravity in the teleparallel framework.

One of the first ideas in this direction was the so-called new GR of the Ref. [9]
which introduces the Lagrangian density c1TαβµT

αβµ+c2TαβµT
βαµ+c3TµT

µ with modified
(compared to T) coefficients ci. On can also add parity violating terms and explore non-
linear functions of torsion scalars. And once non-linear functions are introduced, one can

also put the divergence 2
(0)

▽ µT
µ inside as an argument [10].

Rather obviously, if the Weitzenböck connection ω = 0 is assumed, generically all
these modified gravities would violate local Lorentz invariance in the tetrad space, even
at the level of equations of motion. This fact used to be a cause of much confusion about
probably the most simple modification, the f(T) gravity [11]. Its Lagrangian density is a
non-linear function of the torsion scalar from relation (19) which is used in the teleparallel
equivalent of general relativity. As such it is in a way very similar to f(R) gravity which
has one extra degree of freedom due to higher derivatives of the metric in the curvature
scalar. The false expectation [12] was that f(T) should not increase the number of degrees
of freedom since T contains only first derivatives of the tetrad. Of course the catch is that
the local Lorentz invariance is broken and this simple count of degrees of freedom is not
justified. It has been realised a bit later [13, 14].

Another related issue is that Lorentz violating models do care about a particular
choice of the tetrad for a given metric. For example, an ansatz for a spherically symmetric
solution in spherical coordinates would normally fail for the most natural (diagonal) choice
of the tetrad unless a non-trivial flat spin connection is inserted to account for a transition
from a Cartesian to a spherical frame.

It even led to introducing the notion of good and bad tetrads [15]. The former represent
such ansätze which do go through smoothly, while the latter do fail typically requiring
d2f(T)
dT2 = 0 which brings us back to the teleparallel equivalent of general relativity with

local Lorentz invariance being restored in equations of motion. This is probably a very
unique instance in science when failing with a bad ansatz gave rise to a whole new concept.

4 Review of covariantisation

As we have already discussed, teleparallel gravity can be naturally covariantised if a spin
connection with the proper transformation law (14) is introduced as an additional physical
field. Note that it is very important that the spin connection be flat.

First, otherwise it is not a teleparallel model any longer.
Second, with an arbitrary spin connection the (exact) variation of the torsion tensor

δωT
α
µν = δωα

µν − δωα
νµ can be used to show that even the simplest action (22) yields

a trivial model instead of general relativity. Indeed, by variation with respect to ω, the
equation of motion is T µ

αν+Tνδ
µ
α−Tαδ

µ
ν = 0 which (in spacetime dimension d 6= 2) entails

Tµ = 0 upon tracing, with the totally trivial final result of T µ
αν = 0.

Sometimes the spin connection is treated as not a dynamical field, so that one does
not have to make a variation with respect to it. In this case the action with any given
choice of the flat spin connection is not invariant, however there is the freedom of making
this choice which renders the whole thing invariant again. We don’t subscribe to this
viewpoint. It seems kind of awkward to have a spacetime-dependent quantity in the
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action of a fundamental theory which is not subject to variation. Moreover, we feel that
such covariantisation is a very superficial one.

This can be compared to making a model with preferred direction isotropic by explic-
itly introducing a vector field in the preferred direction with the correct transformation
law for the components under rotations. It is only our description which gets covariantised
in this manner unless the vector, or the spin connection, is subject to an independent dy-
namics. A concrete example would be about massive bodies thrown near the surface of
Earth. Does it really put all three directions on equal footing if we covariantly introduce
the vector of free fall acceleration with arbitrary components instead of pointing it along
the usual z-direction? The real physics is objectively anisotropic at this level, and one
would have to underpin the emergence of the preferred direction in a more fundamental
theory.

4.1 Teleparallel equivalent of general relativity

Clearly, the proper procedure would be to vary the spin connection constraining it to be
flat (curvature-free) or, as some like to call it, purely inertial. Applying a gauge transfor-
mation (14) to the zero Weitzenböck connection (21), we see that the spin connection we
need is of the following form:

ωa
µb = −(Λ−1)ac∂µΛ

c
b (24)

where Λ(x) ∈ SO(1, 3) is an arbitrary Lorentz matrix. Literally it means that there exists
a frame in which ω = 0 (Weitzenböck), but a local Lorentz rotation has been done to get
away from this frame.

Guided by this idea, we replace the teleparallel (pure tetrad) action (22) with a slightly
more refined version:

S = −
∫

d4x‖e‖ · T(e, ω(Λ)) (25)

in which e and Λ should be thought of as independent variables, and the spin connec-
tion is given by equation (24). Of course, keeping Λ fixed but arbitrary would precisely
correspond to the ”superficial covariantisation” mentioned above.

Varying with respect to Λ in the action (25) does not have the disastrous consequences
of varying with respect to an arbitrary spin connection. Actually, it does not have any
consequences at all. Indeed, from the fundamental relation (19) we see that the combina-

tion 2
(0)

▽ µT
µ+T does not depend on Λ since R(ω(Λ)) = 0, and therefore the dependence

of the action (25) on the spin connection is only a surface term effect [16, 17, 18].

In other words, we have δΛT = δΛR(ω)− 2
(0)

▽ µ(δΛT
µ) where δΛ is given via the usual

chain rule δΛ(...) = δω(...) · δΛω, and since R(ω(Λ)) ≡ 0 the variation is a surface term
and does not produce any new equation of motion. For those who are not satisfied with
these simple (and exhaustive) arguments, explicit calculations are given in the Ref. [18].

4.1.1 A few remarks

Note that one could also impose the flatness condition Ra
bµν(ω) = 0 with a Lagrange

multiplier instead of our representation (24) having the Lagrangian density of the form
T(e, ω) + λ bµν

a Ra
bµν(ω) where λ bµν

a is a Lagrange multiplier with postulated symmetry

properties λabµν = −λabνµ and λabµν = −λbaµν .
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This is a possible approach [19, 20] in its own right. Moreover, it can be used in
the metric language instead of tetrads, and can also be applied to models of gravity in
terms of non-metricity with neither curvature nor torsion [21]. We think however that
for (modified) teleparallel models it might be more instructive to keep the fields Λ as the
new legitimate players in the game.

Another remark concerns some fundamental considerations about choosing the spin
connection. Namely, one might be interested in imposing proper asymptotic conditions
for rendering the action finite [16, 22] which could be of importance for quantisation
of teleparallel gravity. Moreover, sometimes it is claimed that actually there is a spin
connection which is naturally associated to a given tetrad [23].

Such claims refer to a much more elaborated framework, that is to gauging the trans-
lations group [9, 23]. In this approach, due to whatever a reason, one assumes that
there exists a global translational symmetry xa → xa + ǫa which can be gauged. Then
any tetrad can be separated into two parts, one of which is obtained by a local Lorentz
transformation of the ”trivial” tetrad ∂µx

a thereby prescribing the preferred (flat) spin
connection, and another being a non-trivial piece which serves as a gauge potential for
the torsion field [23]. This is certainly a more conventional gauge theory compared to our
covariantised teleparallel gravity which, having gauged the Lorentz group, strictly keeps
it in the purely unphysical sector with vanishing field strength.

It is very unfortunate that there is no accepted terminological distinction to set pure
torsion geometry and gauged translations apart. Once we understand that the latter
approach starts from the global translations group, it perhaps should no longer come as
an unexplainable miracle that people are able to define covariant conservation laws and
separate gravity from inertia in this framework [23], something which is not to get on well
with the basic ideas of general relativity.

Probably, the best hopes associated with these constructions hinge upon the idea that
the gauge theory approach, which certainly proved so well in doing with other fundamental
interactions, might also guide us towards better understanding of gravity [21, 23], not
without a reference to problems of quantisation. However, personally we do not feel that
it is time to abandon the unique geometrical flavour of general relativity which makes
it so exciting. After all, it’s awesome to compute amplitudes of creation from nothing;
and all the singularities, Cauchy horizons, causality violations, and time machines might
finally be inherent parts of a big beautiful picture.

4.2 Covariantisation of modified models

Covariantisation procedures cannot work the same way as above when in modified telepar-
allel gravities with generic dependence on the tetrad eaµ and the torsion T a

µν(e, ω(Λ)).
Since the dependence on the spin connection in generalised models cannot be reduced
to a surface term, the variation with respect to the (flat) spin connection does produce
non-trivial equation of motion, though a very benign one.

One can easily prove that in any covariant teleparallel model this equation is redun-
dant. More precisely, it coincides with the antisymmetric part of the equation of motion
for the tetrad field [18]. Indeed, by the very definition, the action of a covariant model is
identically invariant under combined transformations (14) which for the flat spin connec-
tion are obviously in a one-to-one correspondence with variations of the Lorentz matrix Λ
in its representation (24). Therefore, any variation of the action with respect to the flat
spin connection (24) can be precisely compensated by an appropriate Lorentz rotation of
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the tetrad. However, the latter is a legitimate variation of the tetrad field which by itself
must keep the action stationary, as is independently ensured by the antisymmetric part
of the tetrad equation of motion.

In our opinion, this simple argument constitutes a fairly rigorous proof. However,
explicit calculations are given in Ref. [18] concerning mostly the f(T) gravity, and also
in Refs. [24, 25] for more general models.

4.2.1 Further on f(T) gravity

For the simplest example, in covariant f(T) gravity

S = −
∫

d4x‖e‖ · f (T(e, ω(Λ)) (26)

one can easily perform all variations and obtain the tetrad equation of motion in the
following form [18]:

f ′(T) ·
(0)

R
µν +Kµνα∂αf

′(T)− T µ∂νf ′(T) +
1

2
f(T) · gµν = 0 (27)

which, due to the local Lorentz breaking in its pure tetrad (ω = 0) restriction, has a
non-trivial antisymmetric part

T αµν∂αf
′(T) + T ν∂µf ′(T)− T µ∂νf ′(T) = 0 (28)

which in turn coincides [18] with equation of motion coming from variation with respect
to Λ.

Note that it is this antisymmetric part (28) which normally turns a ”bad tetrad” down.
It contains only first derivatives of ω for which reason the flat spin connection of covariant
teleparallel gravities is sometimes considered as a non-dynamical variable [25]. We must
disagree on this point. For example, Hamiltonian equations are always first order in time
derivatives which does not entail that Hamiltonian systems are not truely dynamical.

This analogy might even go deeper than it seems to, with components of the spin
connection being canonically conjugate to each other which would be nicely in line with
the 3 = 6

2
new degrees of freedom compared to general relativity. It is nothing but a mere

speculation for now. However, it is evident that we desperately need better understanding
of dynamics even in such a simple model as f(T). It is not inconceivable that it can be
achieved with an accurate treatment of Λa

b (x) as new fields in the model.
It would be very good to have a new count of the number of degrees of freedom, more

palatable than the truely heroic brute force approach of the Ref. [26] and simultaneously
more detailed and reliable than the nice general arguments of the Ref. [27]. The role of
the remnant symmetry (those local Lorentz transformations which remain unbroken [28])
should also be clarified. Last but not least on this very concise list is the conundrum
of cosmological perturbations [29]. What is the fundamental reason for the extra modes
to be absent from linear cosmological perturbations around any spatially flat Friedman
universe? It is relatively simple to spot an accidental restoration of the local Lorentz
invariance in the quadratic (pure tetrad) action for perturbations around Minkowski space,
however the general cosmological hide-and-seek looks much more mysterious.
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5 Conclusions

Teleparallel gravity provides us with an unprecedented opportunity for constructing new
and interesting modified gravity models. And indeed, it is very actively used for cos-
mological model building [30]. However, as we have seen, the very foundations of the
modified teleparallel gravity models do urgently call for better understanding. We hope
for major new progress in this direction quite soon.

The Author is greatly indepted to Tomi Koivisto, José Pereira, Martin Krššák, Yen
Chin Ong, and many other people for interesting and fruitful discussions on various topics
of teleparallel gravity. Needless to say, this acknowledgement cannot be used to entail
that they would agree with any of those views on the subject which have been expressed
in this paper.
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