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Chapter 1

Einstein gravity and need for its

modification

This review presents itself as a collection of the lecture notes on modified gravity based on

lectures given at UFPB (Universidade Federal de Paraiba), CBPF, UFC (Universidade

Federal de Ceara), and Universidad del Bio-Bio (Chile).

The general relativity (GR) is clearly one of the most successful physical theories.

Being formulated as a natural development of special relativity, it has made a number of

fundamental physical predictions which have been confirmed experimentally with a very

high degree of precision. Among these predictions, the special role is played by expansion

of the Universe and precession of Mercure perihelion, which have been proved many years

ago, while other important claims of GR such as gravitational waves and black holes, have

been confirmed through direct observations only recently.

By its concept, the general relativity is an essentially geometric theory. Its key idea

consists in the fact that the gravitational field manifests itself through modifications of

the space-time geometry. Thus, one can develop a theory where the fields characterizing

geometry, that is, metric and connection, become dynamical variables so that a non-

trivial space can be described in terms of curvature and/or torsion. It has been argued

in [1] that there are eight types of geometry characterized by possibilities of zero or

non-zero curvature tensor, torsion and so-called homothetic curvature tensor, with all

these objects are constructed on the base of metric and connection. Nevertheless, the

most used formulation of the gravity is based on the Riemannian approach where the

connection is symmetric and completely characterized by the metric. Within these lecture

notes, we present namely Riemannian description of gravity where the action is described

by functions of geometric invariants completely characterized by metric (i.e. various

contractions of Riemann curvature tensor, its covariant derivatives and a metric), and
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6 CHAPTER 1. EINSTEIN GRAVITY AND NEED FOR ITS MODIFICATION

possibly some extra fields, scalar or vector ones. So, let us introduce some basic definitions

of quantities used within Riemannian approach.

By definition, the infinitesimal interval in a curved space-time is given as ds2 =

gµν(x)dx
µdxν . The metric tensor gµν(x) is considered as the only independent dynamical

variable in our theory. As usual, the action must be (Riemannian) scalar, and for the fist

step, it is assumed to involve no more than second derivatives of the metric tensor, in a

whole analogy with other field theory models where the action involves only up to second

derivatives. The only scalar involving only second derivatives is a scalar curvature R (we

follow the definitions from the book [2] except of special cases):

R = gµνRµν ; Rµν = Rα
µαν ;

Rκ
λµν = ∂µΓ

κ
λν − ∂µΓ

κ
λν + Γκ

ρµΓ
ρ
λν − Γκ

ρνΓ
ρ
λµ, (1.1)

where Γµ
νλ are the Christoffel symbols, that is, affine connections expressed in terms of

the metric tensor as

Γµ
νλ =

1

2
gµρ(∂νgρλ + ∂λgρν − ∂ρgνλ). (1.2)

The Einstein-Hilbert action is obtained as an integral from the scalar curvature over the

D-dimensional space-time:

S =
∫

dDx
√

|g|( 1

2κ2
R + Lm), (1.3)

where g is the determinant of the metric. We assume the signature to be (+−−−). The

κ2 = 8πG is the gravitational constant (it is important to note that its mass dimension in

D-dimensional space-time is equal to 2 − D); nevertheless, in many cases we will define

it to be equal to 1. The Lm is the matter Lagrangian.

Varying the action with respect to the metric tensor, we obtain the Einstein equations:

Gµν ≡ Rµν −
1

2
Rgµν = κ2Tµν , (1.4)

where Tµν is the energy-momentum tensor of the matter. The conservation of the energy-

momentum tensor presented as ∇µT
µν = 0 is clearly consistent with the Bianchi identities

∇µG
µν = 0.

Among the most important solutions of these equations, one should emphasize the

Schwarzschild metric (taking place for the vacuum, Tµν = 0) which describes the simplest

black hole with mass m, looking like

ds2 = (1− 2m

r
)c2dt2 − (1− 2m

r
)−1dr2 − r2(dθ2 + sin2 θdφ2) (1.5)
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(actually we in many cases will consider a more generic spherically symmetric static met-

ric (3.20)), and the Friedmann-Robertson-Walker (FRW) metric describing the simplest

(homogeneous and isotropic) cosmological solution:

ds2 = c2dt2 − a2(t)

(

dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

)

, (1.6)

where a(t) is the scale factor, and k = 1, 0,−1 for positive, zero and negative curvature

respectively. The matter in this case is given by the relativistic fluid:

κ2Tµν = (ρ+ p)vµvν + pgµν , (1.7)

where ρ is a density of the matter, and p is its pressure, in many case one employs the

equation of state p = ωρ, with ω is a constant characterizing the kind of the matter.

Besides of these solutions, an important example is represented also by the Gödel

solution [3]:

ds2 = a2[(dt+ exdy)2 − dx2 − 1

2
e2xdy2 − dz2], (1.8)

which, just as the FRW metric, arises if the matter is given by the fluid-like form:

κ2Tµν = κ2ρvµvν + Λgµν , (1.9)

but in this case one has vµ = 1
a
, ρ = 1

a2
, and Λ = − 1

2a2
. Namely these solutions and their

direct generalizations will be considered within our course.

Now, let us make some introduction to quantum gravity. Indeed, it is natural to expect

that the gravity, in a whole analogy with electrodynamics and other field theories, must

be quantized. To do it, one can follow the approach developed by ’t Hooft and Veltman

[4]. We start with splitting of the dynamic metric gµν into a sum of the background part

ḡµν and the quantum fluctuation hµν :

gµν = ḡµν + κhµν , (1.10)

where the κ is introduced to change dimension of hµν to 1. As a result, the action can be

expanded in infinite power series in hµν . For the first step, we can choose ḡµν = ηµν . The

lowest, quadratic contribution to the Lagrangian of hµν is

L0 =
1

4
∂µh

α
α∂

µhββ −
1

2
∂βh

α
α∂

µhβµ −
1

4
∂µhαβ∂

µhαβ +
1

2
∂αhνβ∂

νhαβ, (1.11)

where the indices of hαβ are raised and lowered with the flat Minkowski metric. The

Lagrangian (1.11) is called the Fierz-Pauli Lagrangian, it is used within constructing of

some generalizations of gravity.
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The corresponding (second-order) equations of motion are actually the linearized Ein-

stein equations:

G(0)
µν ≡ − 1

2
(∂λ∂µhλν + ∂λ∂νhλµ) +

1

2
✷hµν +

1

2
ηµν∂α∂βh

αβ −

− 1

2
ηµν✷h

λ
λ +

1

2
∂µ∂νh

λ
λ = 0. (1.12)

We have linearized gauge symmetry δhµν = ∂µξν+∂νξµ in the l.h.s., and linearized Bianchi

identities ∂µG(0)
µν = 0. As a consequence, afterwards one must fix the gauge, which can be

done by adding the term

LGF = −1

2
CµC

µ, (1.13)

where Cµ = ∂αhαµ − 1
2
∂µh

α
α, so one has a new Lagrangian

L = L0 −
1

2
CµC

µ = −1

4
∂µhαβ∂

µhαβ +
1

8
∂µh

α
α∂

µhββ, (1.14)

which can be rewritten as

L = −1

2
∂λhαβV

αβµν∂λhµν , (1.15)

where V αβµν = 1
2
ηαµηβν − 1

4
ηαβηµν , which implies the following propagator in the momen-

tum space:

< hαβ(−k)hµν(k) >= i
ηµαηνβ + ηναηµβ − 2

D−2
ηµνηαβ

k2 − iǫ
, (1.16)

where D is the space-time dimension (the singularity at D = 2 is related with the fact

that the D = 2 Einstein-Hilbert action is a pure surface term).

Now, let us expand the Einstein-Hilbert action (1.3) in series in hµν by making again

the substitution (1.10) but with the arbitrary background ḡµν . In this case we see that

the metric determinant and curvature scalar are expanded up to the second order in h as

√

|g| →
√

¯|g|(1 + 1

2
hαα − 1

4
hβαh

β
α +

1

8
(hαα)

2 + . . .); (1.17)

R → R +✷hββ −∇α∇βhαβ − Rαβhαβ −
1

2
∇α(h

β
µh

µ,α
β ) +

1

2
∇β[h

β
ν (2h

να
,α − hα,να )] +

+
1

4
(hνβ,α + hνα,β − h,ναβ)(h

β,α
ν + hβα,ν − hα,βν )−

− 1

4
(2hνα,α − hα,να )hββ,ν −

1

2
hναhββ,να +

1

2
hνα∇β(h

β,α
ν + hβα,ν − hα,βν ) + hνβh

β
αR

α
ν .

where hµ,αβ ≡ ∇αhµβ, etc., and the covariant derivative is constructed on the base of the

background metric. This expression is sufficient for the one-loop calculations which yield
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the following paradigmatic result for the one-loop counterterm arising from the purely

gravitational sector [4], within the dimensional regularization in d-dimensional space-time:

δL =

√

|g|
8π2(d− 4)

(

1

120
R2 +

7

20
RµνR

µν
)

. (1.18)

Many predictions of GR, from expansion of the Universe (which is discussed now in

any textbook on general relativity, f.e. in [2]) to existence of gravitational waves whose

observations were reported in [5], have been confirmed through observations. Nevertheless,

it turns out that there are problems which cannot be solved by GR itself, so it requires

some modifications. Actually, there are two most important difficulties which the Einstein

gravity faced. The first one is related with the quantum description of the gravity –

indeed, the gravitational constant κ2 has a negative mass dimension, precisely to 2−D in

D-dimensional space-time, thus, the Einstein-Hilbert gravity is non-renormalizable, i.e.

its consistent description must involve an infinite number of counterterms (an excellent

review on quantum calculations in gravity is presented in the book [6]). The second

difficulty consists in the fact that the cosmic acceleration whose discovery was reported

in [7] has not been predicted theoretically since it does not admit explanations within the

general relativity.

Therefore the problem of possible modifications of gravity arises naturally. Actually,

although first attempts to introduce modified gravity have been carried out much earlier,

these two discoveries radically increased attention to modified gravity models.

The simplest attempt to solve the cosmic acceleration problem is based on the in-

troducing the cosmological constant Λ, i.e. we add to the action (1.3) the extra term

SΛ = − 1
κ2Λ

∫

d4x
√

|g|. so, in the l.h.s. of (1.4), the additive term Λgµν will arise. It is

easy to see that for the FRW metric, the components of the Ricci tensor and the scalar

curvature are

R00 = −3ä

a
; Rij = δij(aä+ 2ȧ2);

R = 6

(

ä

a
+
ȧ2

a2
+
k

a2

)

. (1.19)

For the FRW metric (1.6), the Einstein equation for the (00) component, together with

the equation obtained as difference of (ii) and (00) equations, with c = 1 and κ2 = 8πG,

yield

ȧ2

a2
+ k =

1

3
(8πGρ+ Λ); (1.20)

ä

a
= −4

3
πG(ρ+ 3p) +

Λ

3
,
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where k = +1, 0,−1 for positive, zero and negative scalar curvature. As it is well known,

originally Λ was introduced by Einstein in order to provide a static solution while fur-

ther de Sitter proved that the empty space with negative Λ will exponentially expand.

Therefore, after discovery of the cosmic acceleration the idea of the cosmological constant

has been revitalized [8]. However, the cosmological constant, by astronomical observa-

tions, should be extremely small (about 120 order less than a natural scale for it given by

M4
P lanck) which has no theoretical explanation (the search for this explanation constitutes

the famous cosmological constant problem). Besides, the cosmological constant does not

solve the problem of renormalizability of gravity.

There are two manners how to extend the gravity in order to solve these problems.

Within the first approach, we modify the Einstein-Hilbert action through introducing

additive terms. Within the second approach, we suggest that the full description of

gravity involves, besides of the metric field, also some extra scalar or vector fields which

must not be confused with matter being treated as ingredients of the gravity itself, so

that usual results of Einstein gravity are recovered, for example, when these fields are

constant (the typical example is the Brans-Dicke gravity which we discuss further). In

this review, we give a description of these approaches. It should be noted that among

these approaches, an important role is played by adding new terms (and/or fields) aimed

either to break the Lorentz/CPT symmetry or to introduce a supersymmetric extension

of gravity. Within this review we also discuss these approaches.

The structure of this review looks like follows. In the chapter 2, we present various

models obtained through modifications of the purely gravitational sector. In the chapter

3, we consider various scalar-tensor gravity models, such as Chern-Simons and Brans-

Dicke gravities, and galileons. In the chapter 4, we discuss vector-tensor gravity models

and problem of Lorentz symmetry breaking in gravity. In the chapter 5, we review most

interesting results in Horava-Lifshitz gravity. In the chapter 6, we discuss some results

for nonlocal gravity. The chapter 7 represents conclusions of our course.



Chapter 2

Modifications of the pure

gravitational sector

2.1 Motivations

As we already noted in the Introduction, one of the ways to modify gravity consists in

introducing additional terms to the gravitational sector. Such terms are given by scalars

constructed on the base of the metric tensor, i.e. these scalars are functions of the Riemann

tensor, the Ricci tensor, possibly, their covariant derivatives, and the scalar curvature. In

the simplest case the Lagrangian is the function of the scalar curvature only, so, the action

is

S =
1

16πG

∫

d4x
√

|g|f(R), (2.1)

where, f(R) is a some function of the scalar curvature. Since the Einstein gravity is

very well observationally confirmed, and the curvature of the Universe is known to be

small, it is natural to suggest that f(R) = R+γRn, with n ≥ 2, so, Einstein-Hilbert term

dominates. The case n = 2 is very interesting by various reasons, from renormalizability to

possibility of cosmic acceleration, so, it will be discussed in details. However, other values

of n, including even negative ones which called attention recently, are also interesting.

Another generalization of this action is the suggestion that the Lagrangian depends also

on invariants Q = RµνR
µν and P = RµναβR

µναβ , such class of theories is called f(R,Q, P )

gravity, the paradigmatic example is the Weyl gravity (see f.e. [9] and references therein),

where the Lagrangian is given by the square of theWeyl tensor. Besides of these situations,

it is interesting also to abandon the restriction for the space-time to be four-dimensional.

In this context we will consider also higher-dimensional space-times and discuss Lovelock

gravities whose action involves higher curvature invariants.

11
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2.2 R2-gravity

Let us start with the action

S =
1

16πG

∫

d4x
√

|g|(R + αRµνR
µν − βR2) + Smat. (2.2)

A simple comparison of this expression with (1.17) shows that this action is of the second

order in curvatures, i.e. of fourth order in derivatives, therefore the theory described

by this action is called R2-gravity. In principle, one can add also the square of the

Riemann tensor, however, since in the four-dimensional space-time the Gauss-Bonnet

term G = R2 − 4RµνR
µν + RµνλρR

µνλρ is a total derivative, the square of the Riemann

tensor in D = 4 is not independent.

We see that the additive term in this action exactly matches the structure of the one-

loop divergence arising in the pure Einstein gravity (1.18). Therefore, the theory (2.2) is

one-loop renormalizable. Moreover, it is not difficult to show that no other divergences

arise in the theory. Here, we demonstrate it in the manner similar to that one used within

the background field method for the super-Yang-Mills theory [10]. Indeed, the propaga-

tor in this theory behaves as k−4. Any vertex involves no more than four derivatives.

Integration over internal momentum in any loop yields the factor 4, hence formally the

superficial degree of divergence must be ω = 4L−4P +4V = 4. However, we should take

into account that this is the upper limit for ω, and each derivative acting to the external

legs instead of the propagator decreases ω by 1. Since Rµνλρ, as well as the Ricci tensor,

involves second derivatives, each external Rµνλρ, Rµν , R decreases the ω by 2. Hence, the

R2 or RµνR
µν contributions will display only logarithmic divergences, and higher-order

contributions like R3 will yield ω < 0 being thus superficially finite. The presence of

Faddeev-Popov (FP) ghosts does not jeopardize this conclusion since their Lagrangian

looks like [4]

Lgh = C̄ρδ
ρ
µ∂ν(D

µν
α Cα), (2.3)

where C, C̄ are the FP ghosts, andDµν is the operator defined from gauge transformations

for the metric fluctuation hµν :

Dµν
α ξα ≡ ∂µξν + ∂νξµ − ηµν∂αξ

α + ∂µξαh
αν + ∂νξαh

αµ + ξα∂αh
µν − ∂αξ

αhµν .

So, the propagator of ghosts is proportional to k−2, while the vertex contains only one

derivative. Clearly, presence of ghosts will decrease the ω.

Let us discuss various aspects of the theory (2.2). We follow the argumentation pre-

sented in [11, 12]. First, one can write down the equations of motion:

Hµν ≡ (α− 2β)∇µ∇νR − α✷Rµν − (
α

2
− 2β)gµν✷R +
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+ 2αRρλRµρνλ − 2βRRµν −
1

2
gµν(αR

ρλRρλ − βR2) +

+
1

G
(Rµν −

1

2
Rgµν) = Tµν . (2.4)

Using these equations, one can find the Newtonian static limit of the theory. Proceeding in

the same way as in GR, we can show that the gravitational potential in the non-relativistic

limit is

φ = h00 =
1

r
− 4

3

e−m2r

r
+

1

3

e−m0r

r
, (2.5)

where m0 = (16πGα)−1/2, and m2 = (32πG(3β−α))−1/2. So, we find that the R2-gravity

involves massive modes displaying Yukawa-like contributions to the potential. Following

the estimations from [11], the m0,2 are about 10−17 MP l. We note that the Birkhoff

theorem is no more valid in this theory since there are mass-like parameters m0, m2, and

instead of the Bianchi identities one will have ∇µH
µν = 0.

Then, it is interesting to discuss cosmological solutions in this theory. A remarkable

feature of the R2-gravity consists in the fact that it was the first gravity model to predict

accelerated expansion of the Universe much before its observational discovery. The pioneer

role was played by the paper [13]. In this paper, terms of higher orders in curvature

generated by some anomaly have been introduced to the equation of motion, so the

resulting equation, for the vacuum, looks like

Gµν = k1(R
λ
µRνλ −

2

3
RRµν −

1

2
gµνRαβR

αβ +
1

4
gµνR

2) +

+ k2(∇ν∇µR− 2gµν✷R − 2RRµν +
1

2
gµνR

2), (2.6)

where k1, k2 are constants. Many terms in the r.h.s. of this equation are present also

in (2.4), actually, at α = 0 and k1 = 0 these equations coincide up to some numerical

coefficients, so, their solutions are not very different. Substituting the FRW metric into

(2.6), we arrive at

ȧ2 + k

a2
=

1

H2

(

ȧ2 + k

a2

)2

− (2.7)

− 1

M2
(
ȧ

a2
d3a

dt3
− ä2

a2
+ 2

äȧ2

a3
− 3(

ȧ

a
)4 − 2k

ȧ2

a4
+
k2

a4
),

where H2 = π
8Gk1

, M2 = − π
8Gk2

, with k2 < 0, effectively H is the Hubble constant. In this

case one has the very simple form for the Ricci tensor: Ra
b = −3H2δab .

The solution of (2.7) was explicitly obtained in [13] where it was found that the de

Sitter-like solution is possible, with the scale factor given by a(t) = H−1 coshHt, or
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a(t) = a0 expHt, or a(t) = H−1 sinhHt, for closed, flat and open Universe respectively.

So, we see that accelerating solution is possible in this theory, just as in the presence of

the cosmological term. Moreover, it is clear that a wide class of models involving higher

orders in curvatures will admit accelerated solutions as well. This result called interest to

f(R) gravity displaying it to be a possible candidate for a consistent explanation of cosmic

acceleration. Afterwards, many cosmological solutions for various versions of the function

f(R) were obtained and observationally tested, some of these results will be discussed in

the next section.

Now, let us discuss the problem of degrees of freedom in R2-gravity. First of all, we

note that there is a common difficulty characteristic for higher-derivative theories, either

gravitational or not. Indeed, in any Lorentz-invariant theory with four derivatives, the

propagator will be proportional to the momentum depending factor looking like:

f(k) =
1

k2 − k4

M2

, (2.8)

where M2 is the energy scale at which the higher derivatives become important. It is

clear that we can rewrite this factor as

f(k) =
1

k2
− 1

k2 −M2
. (2.9)

Therefore we see that this propagator actually describes two distinct degrees of freedom,

the massive and the massless one. Moreover, these two contributions to the propagator

have opposite signs (otherwise, if signs of these contributions are the same, the UV behav-

ior of the propagator is not improved). Clearly it means that the Hamiltonian describing

these two degrees of freedom is composed by two terms with opposite signs:

H =
1

2
(π2

1 + ∂iφ1∂iφ1)−
1

2
(π2

2 + ∂iφ2∂iφ2 +M2φ2
2). (2.10)

We see that the energy is not bounded from below, hence, we cannot define a vacuum in

the theory consistently, i.e. one can take energy from the system without any limitations,

as from the well without a bottom. Moreover, actually it means that the spectrum of the

theory describes free particles with negative energy which seems to be nonsense from the

viewpoint of the common sense. Actually this is the simplest example of the so-called

Ostrogradsky instability plaguing higher-derivative field theory models except of special

cases, see a detailed discussion of this example and similar situations in [14]; a profound

discussion of difficulties arising within the Hamiltonian formulation of these theories is

given also in [15]. Moreover, in some cases the higher-derivative theories involve not only

ghosts but even tachyons, for a specific sign of the higher-derivative term. Therefore the

higher-derivative models including the R2-gravity are treated as effective theories aimed
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for description of the low-energy dynamics of the theory (roughly speaking, for the square

of momentum much less than the characteristic massM2). However, it is necessary to note

that higher-derivative terms naturally emerge as quantum corrections after the integration

over some matter fields, see f.e. [16], so, the presence of higher-derivative terms within

the effective dynamics in many field theory models including gravity is natural.

Within our R2-gravity model, the presence of ghosts can be illustrated as follows.

If one will extract only physical degrees of freedom, whose role is played by transverse-

traceless parts of spatial components hij = Kij +Fij of the metric fluctuation, and scalar

fields , one will see that the quadratic action will look like [12]

LK = −γ
4
Kij✷Kij +

γ

4
Fij(✷+m2

2)Fij −

− 1

8
hT [(8β − 3α)κ2✷+ γ]✷hT + . . . , (2.11)

where hT = hii −∇−2hij,ij is a trace part. We see that here, Kij and Fij behave as two

degrees of freedom, with one of them is massive and another is massless, and their signs

are opposite. Hence, the ghost contributions emerge naturally. We see that the number

of degrees of freedom is increased, besides of tensor modes we have also scalar ones, and

each of them is contributed by usual and ghost ones (the contribution for the scalar hT

can be also split into usual and ghost parts).

Clearly, the natural question is – whether is it possible to deal with ghosts or even

avoid their presence? There are several answers to this question. One approach is based

on extracting the so-called ”benign” ghosts whose contribution can be controlled [17].

Another approach is based on considering the theory where the propagator has a form of

the primitive monomial rather than the product of monomials as in (2.8). The simplest

manner to do it consists in treating of the Lagrangian involving only higher-derivative

term with no usual two-derivative one. Within the gravity context it means that one

introduces the so-called pure R2 gravity where the usual Einstein-Hilbert term is absent.

This theory was introduced in [18], with its action can be treated as the special limit of

R2 gravity: S =
√

|g|(βR2 + κ−2R), with κ−2 → 0. The propagator will be proportional

to

Gµνρσ(k) =
1

6β

1

k4
P 0
µν,ρσ, (2.12)

with P 0
µν,ρσ = 1

3
PµνPρσ, the Pρσ is the usual transverse projector, and β is a coefficient

at R2. One can show that on the flat background, only scalar mode propagates [18]. It

is clear that there is no ghosts in this theory (in [18] it is also argued with analysis of

degrees of freedom). It is interesting to note that the Breit potential for this propagator
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displays confining behavior:

V (~r) =
∫

d3k

(2π)4
ei
~k·~r

~k4
∝ |~r|. (2.13)

So, this theory has only one difficulty – it does not yield Einstein-Hilbert limit which was

tested through many observations. Many aspects of the pure R2-gravity are discussed in

[19], see also references therein.

2.3 f(R)-gravity

Clearly, the natural development of the idea of R2 gravity will consist in suggestion that

the classical action can involve not only second but any degree (involving negative!) of

the scalar curvature. Thus, the concept of f(R) gravity was introduced. Its action is

given by (2.1), with f(R) = R + γRn.

First of all, we can discuss the renormalizability of this theory along the same lines

as in the previous section. It is easy to see that the term proportional to RN (or, which

is similar, to N -th degree or Riemann or Ricci tensors) is characterized by the degree of

divergence ω, in the four-dimensional space-time given by

ω = 4L− 2n(P − V )− 2N = (4− 2n)L+ 2n− 2N. (2.14)

Clearly we see that now discussion of the renormalizability is more involved than for

n = 2 (the similar situation occurs for Horava-Lifshitz-like theories where increasing

of the critical exponent z implies in growing not only of degree of momentum in the

denominator of the propagator but also of number of momenta in vertices). Actually, for

any n > 2 one should classify possible divergences with various values of N for the given

n. Many examples of quantum calculations in theories for various n, as well as in other

higher-derivative gravity theories, including studies of one-loop divergences and running

couplings are presented in [6], see also references therein. It is clear that the ghosts will

arise for any polynomial form of f(R) just as in the case of R2-gravity, so, conceptually

the quantum calculations for n = 2 and for n > 2 do not differ essentially (for discussion

of renormalizability aspects of f(R) gravity, see also [20]).

The main line of study of f(R) gravity consists in a detailed investigation of its clas-

sical, especially cosmological aspects. The modified Einstein equations in this case look

like

f ′(R)Rµν −
1

2
gµνf(R) + (gµν∇λ∇λ −∇µ∇ν)f

′(R) = 8πGTµν . (2.15)
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It is clear that the dS/adS spaces will be vacuum solutions of these equations yielding

f(R) = bR2+Λ, with b being a constant. Then, to study the cosmological aspects, we can

use the expressions for components of the Ricci tensor and scalar curvature (1.19). In a

whole analogy with (2.7) one can find that, if the f(R) involves R2 term, the corresponding

cosmological equation will be

ȧ2 + k

a2
=

1

H2

(

ȧ2 + k

a2

)2

− 1

M2n

(

ȧ2n

a2n
+ . . .

)

,

where H is the constant, accompanying the R2 term, cf. (2.7), and M is the constant

accompanying the higher curvature term. The dots in parentheses are for other terms with

2n time derivatives (if k = 0 they are all homogeneous, involving the same degrees of a

in the numerator and in the denominator). It can be shown (see f.e. [15] and references

therein), that in this theory, for any n ≥ 2 the solutions again presented by hyperbolic

sine and cosine and exponential, just as in R2 case [13]. We conclude that this theory

describes well the inflationary epoch where the curvature of the Universe was large hence

the higher-derivative contributions are important. In principle, in this earlier epoch one

can use the action introduced in the manner of [18, 19] where the Einstein-Hilbert term

is suppressed, and f(R) = γRn as a reasonable approximation. At the same time, an

interesting problem is – how one can adopt the form of the f(R) to explain the actual

accelerated expansion of the Universe, in the case where the curvature is very close to

zero, so, Rn terms with n > 1 are suppressed.

In [21], a bold departure from usual forms of the f(R) function was proposed: this

function was suggested to be

f(R) = R− µ4

R
. (2.16)

The quantum description of this theory near the flat background is problematic. However,

it can be treated perturbatively in principle near some other background.

Let us discuss the equations of motion for this choice of f(R). In the vacuum case

(Tµν = 0), we have

(1 +
µ4

R2
)Rµν −

1

2
(1− µ4

R2
)Rgµν + (gµν✷−∇µ∇ν)

µ4

R2
= 0. (2.17)

For the constant scalar curvature, one finds

Rµν = ±
√
3

4
µ2gµν , (2.18)

this is (a)dS solution, and in the case of the negative sign, at µ 6= 0 we indeed have an

acceleration [15], so, this model allows to explain accelerated expansion for the constant

curvature case.
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Unfortunately, this model suffers from a tachyonic instability. Indeed, after taking the

trace of (2.17) we find

−R +
3µ4

R
+ 3✷(

µ4

R2
) = 0. (2.19)

After we make a perturbation δR around an accelerated solution described by a constant

negative curvature, i.e. R = −
√
3µ2 + δR, we find that the δR obeys the equation

−δR +
2√
3µ2

✷δR = 0, (2.20)

and in our signature (+−−−) this equation describes a tachyon. Actually, this instability

is very weak since µ2 is observationally very small, hence the first term in this equation

is highly suppressed. It should be noted that for a non-zero density of the matter the

instability is much worse, but adding the R2 term into the action improves radically

the situation [15]. Therefore this model was naturally treated as one of candidates for

solving the dark energy problem. However, the model (2.16), in further works, was treated

mostly within the cosmological context (see also a discussion of asymptotic behavior of

cosmological solutions in [21]).

Let us note some more issues related to f(R) gravity. First, it was argued in [15] that

the f(R) gravity model is equivalent to a some scalar-tensor gravity. Indeed, let us for

the first step define f(R) = R + f̄(R), so f̄(R) is a correcting term. Then, we introduce

an auxiliary scalar field φ = 1 + f̄ ′(R). Since this equation relates R and φ it can be

solved, so one obtains a dependence R = R(φ). As a next step, the potential looking like

U(φ) = (φ− 1)R(φ)− f̄(R(φ)), (2.21)

implying U ′(φ) = R(φ), is defined. As a result, the Lagrangian (2.1) turns out to be

equivalent to

LE =
√

|g|(φR− U(φ)). (2.22)

Then, we carry out the conformal transformation of the metric:

g̃ab = φgab, φ = exp(

√

4πG

3
ϕ), (2.23)

therefore the Lagrangian is rewritten as

LE =
√

|g̃|( 1

16πG
R̃− 1

2
g̃ab∂aϕ∂bϕ− V (ϕ)),

V (ϕ) =
1

16πG
U



exp(

√

4πG

3
ϕ)



 exp



−
√

16πG

3
ϕ



 . (2.24)
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Therefore, the f(R) gravity turns out to be equivalent to the general relativity with the

extra scalar, i.e. to the scalar-tensor gravity. The form of the potential is therefore related

with the form of the function f(R).

Clearly, the natural question is about possibility to obtain other important gravita-

tional solutions within the f(R) gravity context. First, for the Gödel metric (1.8), as well

as for its straightforward generalization defined in [22] as Gödel-type metric:

ds2 = (dt+H(r)dφ)2 −D2(r)dφ2 − dr2 − dz2, (2.25)

where
H ′

D
= 2ω,

D′′

D
= m2, (2.26)

with ω,m are constants, the scalar curvature is constant, hence the equations (2.15) are

simplified drastically since the term involving covariant derivatives of f(R) goes away,

and the l.h.s. of these equations turns out to be a mere combination of constants. It

was shown in [22] that both causal and non-causal solutions are possible, with f(R) is an

arbitrary function of the scalar curvature, while to achieve causality, it is not sufficient to

have only a relativistic fluid as in [3], and one must add as well a scalar matter – one must

remind that since the Einstein equations are nonlinear, the solution of sum of two sources

is not equal to the sum of solutions generated by each source. As for the black holes,

we strongly recommend the excellent book [23] where Schwarzschild-type BH solutions in

f(R) gravity are considered, see also [24] and references therein.

In [23], a wide spectrum of possible generalizations of f(R) gravity was discussed, such

as f(R,Lm) and f(R, T ) models, where Lm is the matter Lagrangian, and T is the trace

of the energy-momentum tensor. However, within our study we will pursue another aim –

we will suggest that the matter is coupled to the gravity in the usual form while the free

gravity action depends on other scalars constructed on the base of the Riemann tensor

and metric. This will be the subject of the next section.

2.4 Functions of other curvature invariants

Let us suggest that instead of the function of the scalar curvature only, we have also

functions of other scalars. There are many examples of studies of such models, so we

discuss only some most interesting ones, the f(R,Q) gravity, the Lovelock gravity and

the Gauss-Bonnet gravity.

We start our discussion from the f(R,Q) gravity. In this theory, the Lagrangian is a

function not only of the scalar curvature, but also of Q = RµνR
µν , so,

S =
∫

d4x
√

|g|f(R,Q) + Sm. (2.27)



20 CHAPTER 2. MODIFICATIONS OF THE PURE GRAVITATIONAL SECTOR

The equations of motion are found to look like [25, 26]

fRRµν −
f

2
gµν + 2fQR

β
(µRν)β + gµν✷fR −∇(µ∇ν)fR +

+ ✷(fQRµν)− 2∇λ[∇(µ(fQR
λ
ν))] + gµν∇α∇σ(fQR

ασ) = κ2Tm
µν , (2.28)

where fQ = ∂f
∂Q

, fR = ∂f
∂R

, and Tm
µν is the energy-momentum tensor of the matter.

As an example, we consider the Gödel-type metric (2.25). One can show, that, unlike

general relativity, such solutions are possible not only for dust but also for the vacuum

(with non-zero cosmological constant), in particular, completely causal vacuum solutions

are possible [26]. Clearly, the solutions of this form are possible also for the presence of

the matter given by the relativistic fluid and a scalar field. Again, as in [22], all Einstein

equations will take the form of purely algebraic relations between density, pressure, field

amplitude and constants from the gravity Lagrangian. As for the cosmological metric,

the possibility of accelerating solutions can be shown just in the same manner as in

the previous sections. Among other possible solutions in f(R,Q) gravity, it is worth to

mention Reissner-Nordström black holes [27] and wormholes [28]. Further generalization

of this theory would consist in consideration of function not only of R and Q, but also of

P = RµναβR
µναβ , with study of the corresponding theory called f(R,Q, P ) gravity is in

principle not more difficult, see f.e. [29].

Now, let us make the next step – suggest that the dimension of the space-time is not

restricted to be four but can be arbitrary. This step allows us to introduce the Lovelock

gravity. Its key idea is as follows.

Let us consider the gravity model defined in the space-time of an arbitrary dimension

[30], called the Lovelock gravity:

S =
∫

dDx
√

|g|(c0Λ + c1R + c2G + . . .). (2.29)

Here c0, c1, c2, . . . are some constants possessing nontrivial dimensions. It is natural to

suggest that they, up to some dimensionless numbers, are given by various degrees of the

gravitational constant. Each term with 2n derivatives is topological, i.e. it represents

itself as a total derivative at D = 2n, and identical zero in minor dimension. We note

that there is no higher derivatives of the metric in the action. This action is characterized

the following properties displayed by the Einstein-Hilbert action: (i) the tensor Aαβ , the

l.h.s.of the corresponding equations of motion, is symmetric; (ii) the covariant divergence

of Aαβ vanishes; (iii) the Aαβ is linear in second derivatives of the metric.

The general form of the term with 2n derivatives in the Lagrangian corresponding to

(2.29) can be presented as [31]:

Ln =
1

2n
δi1...i2nj1...j2nR

j1j2
i1i2 . . . R

j2n−1j2n
i2n−1i2n , (2.30)
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where the 2n-order Kronecker-like delta symbol is

δi1...i2nj1...j2n =

∣

∣

∣

∣

∣

∣

∣

∣

δi1j1 . . . δi1j2n
. . . . . . . . .

δi2nj1 . . . δi2nj2n

∣

∣

∣

∣

∣

∣

∣

∣

. (2.31)

It is easy to check that at n = 1, we have the scalar curvature, and at n = 2, the Gauss-

Bonnet term. The term with n = 0 s is naturally treated as the cosmological constant.

As a result, we can write down the action;

S =
1

κ2

∫

dDx
√

|g|
∑

0≤n<D/2

αnλ
2(n−1)Ln. (2.32)

Here, zero order is for Λ, first – for R, second – for G. The αn are some numbers, and λ is

a length scale, f.e. Planck length, it is given by κ in D = 4 where the κ−1 has a dimension

of inverse length.

The l.h.s. of the modified Einstein equations looks like [31]

Gαβ =
∑

0≤n≤D/2

αnλ
2(n−1)G(n)αβ ;

G
A

(n) β = − 1

2n+1
δαi1...i2nβj1...j2n

Rj1j2
i1i2 . . . R

j2n−1j2n
i2n−1i2n . (2.33)

It is clear that G(0)αβ = −1
2
gαβ, G(1)αβ = GEH

αβ ≡ Rαβ− 1
2
Rgαβ is the usual Einstein tensor.

The r.h.s. of the modified Einstein equations is not modified within this approach, so we

have Gαβ = κ2Tαβ .

It turns out to be that although the l.h.s. (2.33) of the modified Einstein equations

is very complicated, these equations admit some exact solutions for an arbitrary space-

time dimension, i.e. for the presence of terms with very high orders in curvatures. The

most interesting cases are the maximally symmetric (anti) de Sitter space and the FRW

cosmological metric.

In the (a)dS space, the Riemann curvature tensor is given by

Rαβγδ =
σ

λ2
(gαγgβδ − gαδgβγ), (2.34)

with σ is a some number. In this case the vacuum equation yields
∑

0≤n<D/2
βnσ

n = 0, with

βn = (D−1)!
(D−2n−1)!

αn, and this equation possesses some roots for σ (in general complex ones).

Each value of σ allows to find the corresponding scalar curvature.

We can solve the modified Einstein equations also for the FRW metric (1.6):

Ri0j0 = −gij
ä

a
; Rijkl =

ȧ2 + k

a2
(gikgjl − gilgjk), (2.35)
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with A = λ2(k+ȧ2)
a2

, where as usual k = −1, 0, 1, and the l.h.s. of modified Einstein

equations yields

λ2G00 =
1

2

∑

0≤n<D/2

βnA
n, (2.36)

λ2Gij = −1

2

gij
2(D − 1)

∑

0≤n<D/2

βnA
n−1[2nλ2

ä

a
+ (D − 2n− 1)A].

For the vacuum one immediately finds A = const which implies exponential expansion.

For the fluid, also there are hyperbolic and trigonometric solutions. So, we conclude that

the Lovelock gravity is consistent with accelerating expansion of the Universe.

Concerning the general Lovelock theory, it must be noted that already third-order

contributions to the action, those ones with six derivatives, imply very complicated equa-

tions of motion. The explicit expressions for initial terms of Lovelock Lagrangians up to

fifteenth order (for which, the whole expression involves tens of millions of terms) can be

found in [32].

Now, let us discuss the Gauss-Bonnet gravity in the arbitrary spacetime dimension,

that is, the theory with the action

S =
∫

dDx
√

|g|( 1

2κ2
R + f(G) + Lm). (2.37)

The equations of motion of this theory are

1

κ2
Gµν = 2Tµν +

1

2
gµνf(G)− 2F (G)RRµν + 4F (G)Rλ

µRνλ −
− 2F (G)RµλρσR

λρσ
ν − 4F (G)RµρσνR

ρσ + 2R∇µ∇νF (G)−
− 2Rgµν∇2F (G)− 4Rρ

µ∇ν∇ρF (G)
− 4Rρ

ν∇µ∇ρF (G) + 4Rµν∇2F (G) + 4gµνR
λρ∇λ∇ρF (G)−

− 4Rµνλρ∇λ∇ρF (G)
≡ 2Tµν +Hµν , (2.38)

with F (G) = f ′(G). As a simple example, we discuss the solution of this equation in the

braneworld case, i.e. we consider the five-dimensional metric

ds2 = gµνdx
µdxν = e2A(y)ηabdx

adxb − dy2, (2.39)

where we suggest that the indices µ, ν vary from 0 to 4 while a, b – from 0 to 3, and y

is the extra (fourth) spacial coordinate, and A(y) is called the warp factor [33]. In [34],

these equations have been solved for the case when the matter is given by the scalar field
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φ, so, Tab = ηabe
2A(1

2
φ′2 + V (φ)), and T44 = 1

2
φ′2 − V (φ), for the simplified situation

G = const = ±120b2. Explicitly, for positive B(= G/120) = b2, the solution is

y + C =
4

5

∫

dA′(A′)2

b2 − (A′)4
, (2.40)

and for the negative B = −b2 – in the form

y + C = −4

5

∫

dA′(A′)2

b2 + (A′)4
. (2.41)

In principle, there are more situations when the modified Einstein equations in the Gauss-

Bonnet gravity can be solved. We note that the braneworld solutions could be found not

only for Gauss-Bonnet gravity but for other gravity models including the already discussed

f(R) gravity (see f.e. [35] and references therein), however, we do not discuss the details

of braneworld solutions here because of the restricted volume of this review.

2.5 Conclusions

We discussed various extensions of Einstein gravity characterized by modifications in the

purely gravitational sector. These modifications are based on adding new scalars repre-

senting themselves not only as various degrees of the scalar curvature but also as functions

of higher order curvature invariants. We explicitly demonstrated that the R2 gravity is

all-loop renormalizable, and that the most important solutions of general relativity, such

as cosmological FRW metric and Gödel metric continue to be solutions within modified

gravity. Moreover, we showed that modifications of the pure gravitational sector allow

for accelerated cosmological expansion being thus examples of reasonable solutions for

the dark energy problem, so that the problem of choosing a better modification of the

gravity apparently can be solved in principle while the problem of choice for the most ad-

equate modification of the gravity is actually more observational and experimental than

theoretical.

Within this section we presented several other interesting results. First, we described

the argumentation allowing for establishing the equivalence between modifications in the

pure gravitational sector and adjusting the action of the extra scalar field coupled to

gravity, which implies that the f(R) gravity is equivalent to the scalar-tensor gravity

with an appropriate potential. Second, we discussed the 1/R terms whose form seems to

be highly controversial since the observed curvature of the space-time is very small hence

these terms are very large. Third, we considered possible generalizations of the gravity

consistent within the extra dimensions concept.
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Further development of a general gravity model consists in the idea that for the com-

plete description of the gravity it is not sufficient to study only the metric, so that the

gravity model should be extended through adding some other fields which are necessary

being fundamental ingredients of the complete theory. So, one must consider scalar-tensor

and vector-tensor gravity models. We will consider some examples of these models in our

next chapters.



Chapter 3

Scalar-tensor gravities

3.1 General review

In the previous chapter we demonstrated that modifications of the pure gravitational

sector allow for obtaining interesting results, in particular, for a consistent explanation of

the cosmic acceleration. At the same time, we noted that f(R) gravities are dynamically

equivalent to some gravity models whose action is given by the sum of the usual Einstein

term and the new term depending on the extra scalar field [15]. This field, being related

with the function of the curvature, evidently cannot be associated with the matter, hence

it is natural to suggest that the complete description of gravity is given by composition

of the dynamical metric tensor and this scalar field, so we have the scalar-tensor gravity

model. Another motivation for a scalar-tensor gravity arises from quintessence models in

cosmology which involve a very light scalar field called the quintessence field and are known

to explain accelerated expansion of the Universe as well as the cosmological constant

which therefore implied active application of the quintessence field within the inflationary

context [36]. The advantage of the quintessence in comparison with the cosmological

constant consists in the fact that the very tiny mass of the quintessence field (estimated

to be about 10−33 eV [37]) is much more reasonable from the theoretical viewpoint than the

extremal smallness of the cosmological constant giving the famous cosmological constant

problem, since even the massless scalar fields are physically consistent.

While the quintessence is well discussed now (see f.e. [37] and references therein),

there are other interesting manners to introduce new scalar fields in the gravity, moreover,

while the quintessence field is treated as a matter, the scalar fields introduced within these

approaches are interpreted as ingredients of the complete description of the gravity rather

than the matter. One of these manners is the Brans-Dicke gravity where the gravitational

constant whose negative dimension is responsible for a non-renormalizability of the gravity

25
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is suggested to be not a fundamental constant but a function of a some slowly varying

fundamental scalar field. Another one is the four-dimensional Chern-Simons modified

gravity where the pseudoscalar field allows to implement the CPT (and in certain cases

Lorentz) symmetry breaking in the gravity context. And actually, one more model is

intensively discussed in this context, the galileons model. Namely these models will be

considered in the present chapter.

3.2 Chern-Simons modified gravity

3.2.1 The 4D Chern-Simons modified gravity action

The three-dimensional Chern-Simons (CS) term has been originally introduced in the

paper [38] within the electrodynamics context, as an example of a term conciliating gauge

invariance with the non-zero mass. It has been immediately generalized to the non-Abelian

case, so, one has the CS Lagrangian in the form

LA
CS = ǫµνλ(Aa

µ∂νA
a
λ +

2

3
fabcAa

µA
b
νA

c
λ), (3.1)

where Aµ = Aa
µT

a is the Lie-algebra valued gauge field, and fabc are the structure con-

stants. In the gravity case, the role of the gauge field is played by the connection, and

the three-dimensional gravitational CS term looks like [38, 39]

SCS =
1

2κ2µ

∫

d3xǫµνλ(Γ b
µa∂νΓ

a
λb +

2

3
Γ b
µaΓ

c
νbΓ

a
λc). (3.2)

In principle, in non-Riemannian geometries we can use an independent connection rather

than the Levi-Civita one, however, the general situation is outside of the scope of this

review. Here, the ǫµνλ, which can take values 1, 0,−1, is the usual Levi-Civita symbol,

not the covariant one. Varying this term with respect to the metric, one finds

δSCS = − 1

κ2µ

∫

d3xCµνδgµν , (3.3)

where

Cµν = − 1

2
√

|g|
ǫµαβ∇αR

ν
β + (µ ↔ ν) (3.4)

is the three-dimensional Cotton tensor. It is evidently symmetric and traceless. The µ is

a some constant of the mass dimension 1. So, the modified Einstein equations look like

Gµν +
1

µ
Cµν = 0. (3.5)
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It is useful also to write the linearized form of the action (3.2) obtained from (3.2) under

the replacement gµν = ηµν + κhµν :

S(0) = − 1

2µ

∫

d3xhµνǫαµρ∂
ρ(✷ηγν − ∂γ∂ν)h

γα. (3.6)

We see that this action is, first, explicitly gauge invariant under usual linearized gauge

transformations δhµν = ∂µξν + ∂νξµ, second, involves higher derivatives. However, after

obtaining the equations of motion for the full linearized action formed by the sum of

the terms (1.11) and (3.6), one finds that the physical degrees of freedom satisfy the

second-order equation [38], with their propagator behaves as (✷+ µ2)−1, thus, in the 3D

CS modified gravity there is no problems with negative-energy states discussed in the

previous chapter. The similar situation occurs in the four-dimensional case as well.

The generalization of this theory to the four-dimensional case turns out to be straight-

forward, however, in this case, similarly to the electrodynamics, this generalization essen-

tially involves the CPT (and in certain cases Lorentz) symmetry breaking. From the

formal viewpoint such a generalization is performed through replacement ǫµνλ → bρǫ
ρµνλ,

with bρ is a constant vector, which allows to convert the CS term to the Carroll-Field-

Jackiw (CFJ) term which in the Abelian case looks like

LCFJ = ǫρµνλbρAµ∂νAλ. (3.7)

In principle, such a replacement of the three-dimensional Levi-Civita symbol by the

four-dimensional one contracted with a vector already allows to write down the four-

dimensional gravitational CS term:

LCS,grav =
∫

d4xǫρµνλbρ(Γ
b

µa∂νΓ
a
λb +

2

3
Γ b
µaΓ

c
νbΓ

a
λc), (3.8)

with its linearized form is

S(0) = −1

2

∫

d4xhµνǫαµρλb
λ∂ρ(✷ηγν − ∂γ∂ν)h

γα. (3.9)

We note that this action is invariant under the same linearized gauge transformations.

Now, it is very interesting to discuss some motivations for this term.

First of all, already in 1984, much time before the interest to Lorentz-CPT breaking

strongly increased, the gravitational anomalies have been discussed in [40]. In this paper,

the topological current Kµ was introduced, with its explicit form is

Kρ = 2ǫρµνλ(Γ b
µa∂νΓ

a
λb +

2

3
Γ b
µaΓ

c
νbΓ

a
λc), (3.10)

with its divergence is

∂ρK
ρ =

1

2
ǫµναβRµνγδR

γδ
αβ ≡ ∗RR. (3.11)
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We note that the 3D gravitational Chern-Simons term, up to overall multiplier, is equal

to the K3 component, i.e. the component of this current directed along ”extra”, z axis.

It is clear that the integral from (3.11) over the space-time is a surface term. To

include it to the action in a consistent form, one should introduce a new field ϑ called the

CS coefficient. As a result, we can add to the usual Einstein-Hilbert action the new term

proportional to ϑ which we call the CS action SCS:

SCS =
1

2κ2

∫

d4x(−1

2
vµK

µ) =
1

2κ2
ICS;

SEH+CS =
1

2κ2

∫

d4x(
√−gR +

1

4
ϑ∗RR). (3.12)

Here, vµ = ∂µϑ is a vector. We note that in principle this vector is rather a function

of space-time coordinates than the constant, hence, in general the gravitational CS term

breaks the CPT symmetry. However, the ϑ can be treated as an external, but not dy-

namical, field, therefore one can choose vµ to be the constant vector. This immediately

implies the Lorentz symmetry breaking, therefore in this case the 4D CS modified gravity

whose action is given by the second equation in (3.12) turns out to be the first example

of the gravity model with the Lorentz symmetry breaking.

The equations of motion for the CS modified gravity can be easily obtained. Varying

the CS term ICS defined by the first equation in (3.12), we get

δICS =
∫

d4x
√−gCµνδgµν , (3.13)

with εαβγδ = ǫαβγδ√
|g|

is a Levi-Civita tensor (not a simple symbol!), and

Cµν = −1

2
[vσ(ε

σµαβ∇αR
ν
β + εσναβ∇αR

µ
β) + vστ (

∗Rτµσν + ∗Rτνσµ)], (3.14)

is the Cotton tensor, and vστ = ∇σvτ . One can check that the covariant divergence of the

Cotton tensor is proportional to the invariant ∗RR:

∇µC
µν =

1

8
vν ∗RR. (3.15)

This divergence plays the crucial role when the modified Einstein equations are considered.

Their explicit form is

Gµν + Cµν = κ2T µν , (3.16)

so, due to the Eq. (3.15), we find that the conservation of the energy-momentum tensor

requires the vanishing of the divergence of the Cotton tensor, which, according to (3.15),

yields an additional consistency condition

∗RR = 0, (3.17)
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which must be checked for any solution. However, since in many cases, including, among

other, the rotational symmetry, the curvature tensor has the structure R[ab][ab], i.e. its only

non-zero components are R0101, R0202, . . ., this consistency condition will be automatically

satisfied in these cases.

The further extension of the Chern-Simons modified gravity (CSMG) was carried out

through assuming the nontrivial dynamics for the ϑ CS coefficient. The key idea is as

follows [41]: we assume that the action of CSMG includes the kinetic term for ϑ, looking

like

S =
1

2κ2

∫

d4x
√

|g|(R +
1

2
∇mϑ∇mϑ− V (ϑ)− 1

α
ϑ∗RR), (3.18)

with now ∗RR ≡ 1
2
εµναβRµνγδR

γδ
αβ , i.e. it is redefined with the Levi-Civita tensor εµνλρ =

ǫµνλρ√
|g|
, and instead of the Pontryagin constraint, one has the equation of motion for ϑ:

∗RR = −α(✷ϑ+
∂V

∂ϑ
). (3.19)

If we have a metric consistent within the non-dynamical CS framework with a specific ϑ,

it is consistent in the dynamical case if the r.h.s. of this equation is zero. Then, the ϑ field

generates the additional contribution to the energy-momentum tensor T µν , and hence, to

the r.h.s. of (3.16).

Now, we present, first, some classical solutions for the CS modified gravity, second,

the methodology allowing the gravitational CS term as a quantum correction.

3.2.2 Classical solutions

So, our task will consist in solving the equations (3.16) with the additional condition

(3.17). As a first example, we consider a static spherically symmetric metric [39]:

ds2 = N2(r)dt2 −A2(r)dr2 − r2dΩ2. (3.20)

This is a very broad class of metrics including Schwarzschild, Reissner-Nordström and

many other metrics. As we already said, in this case the non-zero components of the

curvature tensor are R[ab][ab], so, the consistency condition (3.17) is automatically satisfied.

For this metric, one has only non-zero components of the Ricci tensor Rr
r = A′

rA2 , R
θ
θ =

1
r2
(1− 1

A
) + A′

rA2 . Then, we can consider the vacuum case T µν = 0, and choose the vector

vµ = ∂µϑ to be purely timelike, vµ = ( 1
µ
,~0), with µ = const, i.e. ϑ = t

µ
. In this case,

the components C00 and C0i = C i0 of the Cotton tensor immediately vanish [39]. A bit

more involved calculation (see details in [39]) allows to show that the C ij components also

vanish. As a result, we conclude that the spherically symmetric static solutions of the
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usual Einstein equations solve the modified equations (3.16) as well. It is clear that if one

suggests the ϑ to be dynamical, the equation (3.19) for ϑ will be satisfied if the potential

is zero, and ϑ = t
µ
. We note that this choice for ϑ is a particular case of the expression

ϑ = kµx
µ used within studies of the Lorentz symmetry breaking in CSMG which we will

discuss further.

Moreover, it has been shown in [41] that all, even non-static ones, spherically sym-

metric metrics given by

ds2 = gµν(x
λ)dxµdxν + Φ2(xρ)dΩ2, (3.21)

where dΩ2 is the 2-sphere line element, so that the coordinates on the sphere are xi, and

xµ are two remaining coordinates (one of them is necessarily timelike), solve the modified

Einstein equations (3.16) for

ϑ = F (xµ) + Φ(xµ)G(xi), (3.22)

where G(xi) and F (xγ) are the arbitrary functions of sphere coordinates and remaining

coordinates respectively, and Φ is defined in (3.21). The class of spherically symmetric

metrics (3.21) involves not only the static ones (3.20) but also many other metrics, includ-

ing the FRW cosmological metric (the cosmological aspects of CSMG were also discussed

in many papers, f.e. in [42]). Some types of metrics with cylindrical symmetry were also

shown in [41] to be consistent within the CSMG.

Now, let us discuss the consistency of the Gödel-type metric (2.25) in CSMG. We

consider the equations of motion (3.16) in the tetrad base, following [43].

In the non-dynamical case, with appropriate choice of units, the equations (3.16) imply

RAB + CAB = κ(TAB − 1

2
ηABT ) + ΛηAB; (3.23)

CAB = −1

2
[εCADE(∇DR

B
E)∂Cϑ+ ∗REAFB∇E∇Fϑ] + (A↔ B).

The divergence of modified Einstein equations is

∇AC
AB =

1

8
∗RR∂Bϑ. (3.24)

In tetrad base, the components of Ricci tensor for Gödel-type metric are constant, which

is an essential advantage of this base. Actually, one has

R00 = 2ω2, R11 = R22 = 2ω2 −m2, R = 2(ω2 −m2). (3.25)

Following the methodology described in [44], we consider three cases ofH andD consistent

with the conditions of space-time homogeneity of the metric (2.26):
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(i) hyperbolic, H = 2ω
m2 [coshmr − 1], D = 1

m
sinhmr;

(ii) trigonometric, H = 2ω
µ2 [1− cosmr], D = 1

m
sin µr;

(iii) linear, H = ωr2, D = r.

Repeating the argumentation from [44], one immediately sees that for 0 < m2 < 4ω2,

there is a noncausal region with r > rc, where sinh2 mrc
2

= (4ω
2

m2 − 1).

So, at m2 ≥ 4ω2 there is no problems with causality.

Now let us choose the matter. We have three most important its examples [44, 43]:

(i) Fluid, TAB = (ρ+ p)uAuB + pηAB, u
A = (1, 0, 0, 0), T00 = ρ, T11,22,33 = p.

(ii) Scalar, ψ = s(z − z0), T00,33 =
s2

2
, T11,22 = −s2

2
.

(iii) Electromagnetism, F03 = −F30 = e sin[2Ω(z−z0)], F12 = −F21 = −E cos(2Ω(z−z0)),
T00,11,22 =

e2

2
, T33 = −e2

2
.

The matter can be presented by composition of these three types. Then, the non-zero

components of the Cotton tensor in this base look like

C00 = 2
∂ϑ

∂z
ω(4ω2 −m2); C11 = C22 =

1

2
C00;

C01 = −1

2

∂2ϑ

∂z∂t

H

D
(4ω2 −m2);

C02 = −1

2

∂2ϑ

∂z∂r
(4ω2 −m2);

C03 = −1

2

∂ϑ

∂t
ω(4ω2 −m2);

C13 = −1

2

∂2ϑ

∂t2
H

D
(4ω2 −m2);

C23 =
1

2

∂2ϑ

∂r∂t
(4ω2 −m2). (3.26)

It is clear that the Cotton tensor is traceless, CA
A = 0. To cancel the off-diagonal com-

ponents of CAB we choose ϑ(z) = b(z − z0) which matches the suggestion done above

that the vector vM = ∂Mϑ is constant, which will be further used to study the Lorentz

symmetry breaking. We introduce also k = bω, and require 4ω2 6= m2.

The system of the modified Einstein equations (for 00, 11=22, 33 components respec-

tively) looks like:

2ω2 + 2 bω(4ω2 −m2) =
1

2
e2 +

1

2
ρ− Λ +

3

2
p, (3.27)

2ω2 −m2 + bω(4ω2 −m2) =
1

2
e2 − 1

2
p + Λ+

1

2
ρ,

0 = −1

2
e2 − 1

2
p+ s2 + Λ+

1

2
ρ.

We note, that, just as in the Einstein case [44], this system is a purely algebraic one. Let

us solve these equations. After some manipulations we arrive at equations for m2 and ω2,
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with k = bω (we note that at b = 0, the usual GR solution is replayed since in this case,

ϑ = 0!):

(2 + 8 k)ω2 − 2 km2 = ρ+ s2 + p, (3.28)

(2 + 4 k)ω2 − (1 + k)m2 = −s2 + e2. (3.29)

One of the interesting new results having no GR analogue is the vacuum noncausal solution

m2 = ω2, b = − 1
3ω
, Λ = 0. Some other interesting conclusions of the above system are

that, unlike the general relativity, the hyperbolic causal solutions are possible in CS

modified gravity, and that trigonometric and linear solutions can arise only for a non-zero

electromagnetic field [43].

If one suggests that the CS coefficient is dynamical, more new solutions having ana-

logues neither in GR nor for the case of the non-dynamical CS coefficient are possible, see

details in [43], with again the Einstein equations will be reduced to the algebraic equa-

tions involving some extra additive terms in comparison with (3.27). In particular, one

can have a vacuum solution, where only cosmological constant is non-zero while density,

pressure and all fields are zero.

At the same time, it is necessary to emphasize that not any solution consistent in

the GR will be consistent also in CS modified gravity. The paradigmatic example is the

Kerr metric which fails to satisfy new equations of motion [39, 45]. It has been shown

then in [46] that, to satisfy the modified Einstein equations in the dynamical CS modified

gravity, the Kerr metric should be also modified, by adding the ϑ-dependent terms, with

the equations of motion are afterwards solved order by order in ϑ. Clearly, studies of

consistency of various metrics possessing no rotational symmetry within the CS modified

gravity represent an open problem.

To close the discussion of the classical solutions, it is necessary to discuss the propaga-

tion of the plane waves. Similarly to the Section 2.2, we introduce the transverse-traceless

components hTT
ij which are the only physical variables in the theory (so, there are only

two independent components, that is, if the plane wave propagates f.e. along x3, we have

only h11 = −h22 = T and h12 = h21 = S).

In this case, for the time-like vector vµ = (µ−1, 0, 0, 0) the quadratic Lagrangian takes

the form:

L2 = −1

4
hTT
ij ✷hTT

ij +
1

4µ
ǫijkhTT

il ✷∂kh
l
j + . . . , (3.30)

where dots are for physically irrelevant (non-propagating) degrees of freedom.

The corresponding quadratic equation of motion is

−1

2
✷hijTT +

1

2µ
ǫilk✷∂kh

j
l,TT = 0. (3.31)
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As a result, one immediately concludes that the dispersion relation is the usual one,

k20 =
~k2, and both polarizations propagate with the speed of light.

The natural question is – what differs these polarizations? A more careful analysis

[39] shows that, for plane waves proportional to eiωt−ikz, one finds that there are two

basic (circular) polarizations T = iS and T = −iS, with their intensities proportional to

(1 + k
µ
)−2 and (1 − k

µ
)−2 respectively. This difference of intensities can be treated as a

consequence of parity breaking.

It should be noted that if we consider, instead of the CS term, the one-derivative

term hµνǫ
λαµρθλ∂ρh

ν
α, with θλ being a space-like vector, we will have two polarizations

with physically consistent dispersion relations E = ±θ + √
p2 + θ2, so, in this case the

velocities differ from speed of light [47]. However, this term is not gauge invariant, which,

within the gravity context, means that it breaks the general covariance.

3.2.3 Perturbative generation

The special interest is attracted to the gravitational CS term within the context of study of

the Lorentz symmetry breaking. The main reason consists in the fact that, besides of the

CPT symmetry breaking, for a special choice of the CS coefficient ϑ = bµx
µ, where bµ is a

constant vector (as we already noted in the previous subsection, this choice is consistent

with the Gödel-type solutions), the CS term displays Lorentz symmetry breaking, taking

the form (3.8), or, for the weak field, the linearized form (3.9). Therefore the natural

idea consists in a generation of this term as a perturbative correction, similarly to the

generation of the CFJ term in the extended QED, see f.e. [48]. This similarity is supported

by a natural analogy between the gravitational anomalies [40] and the Adler-Bell-Jackiw

(ABJ) anomaly [49]. Moreover, it follows from [50] that this anomaly is deeply related

with the ambiguity of results, therefore, it is natural to expect the ambiguity of the

gravitational CS term as well.

So, one can start with the action of spinors coupled to gravity, where the Lorentz-

breaking vector bµ is introduced:

S =
∫

d4xeψ̄(i∂/ −m− b/γ5 + ω/)ψ, (3.32)

here, b/ = bµeaµγa, and ωµ = 1
4
ωµbcσ

bc is a (Riemannian) connection. We note that the CS

term dominates in the limitm→ 0 while the one-derivative term discussed in [47] vanishes

in this limit. The corresponding one-loop effective action is given by the following trace

of the logarithm:

Γ(1) = iTr ln(i∂/−m− b/γ5 + ω/). (3.33)
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Just the same approach was used in [48] for the Lorentz-breaking extension of QED. In

the weak gravity case, we can use the approximation eµa ≃ ηµa + 1
2
hµa. The trace in

the above equation, however, can be calculated both in the weak field case and in the

full-fledged gravity case, with use of the Feynman diagrams or of the proper-time method.

It is interesting that, similarly to the CFJ term, the 4D gravitational CS term is

ambiguous, i.e. the results for it depend on the calculation scheme. So, within all these

approaches, the linearized gravitational CS term

SCS = C
∫

d4xhµνǫ
µρκλbκ∂λ (✷hρ

ν − ∂ν∂σhρσ) , (3.34)

or its full-fledged analogue (3.8) with the overall factor equal to 2C, was shown to arise,

with the constant C depends on the method of computation. So, in [51], where the

calculations were carried out in the weak gravity case with use of the Feynman diagrams

constructed for the action (3.32), it was found that C = 1
192π2 . Further, in [52], this

scheme has been realized for the finite temperature case where the zero component of the

internal momentum is supposed to be discrete, k0 = (2n + 1)πT , so that the result is

SCS =
∫

d4xhµν

[

1

192π2
ǫρµκλbκ∂λ (✷hρ

ν − ∂ν∂σhρσ) (3.35)

+
T 2

12
b0ǫ

ρµκλuκ∂λ

(

∂0∂
ν

✷
− uν

)(

∂0∂
σ

✷
− uσ

)

hρσ

]

,

i.e. it looks like a sum of the zero-temperature result (3.34) and the term proportional to

T 2.

In [53], where the proper time method has been used for the full-fledged gravity, so, the

result was found in the form (3.8), with C = 1
128π2 . Finally, in [54] it has been argued that

due to the arbitrariness in defining of conserved currents within the functional integral

approach, the constant C is actually completely ambiguous. The similar situation occurs

in QED [55]. However, the ambiguity of results is known to be highly controversial, and

in gravity it is even more controversial than in electrodynamics. For example, in [56] it

was claimed that, if one suggests that the bµ is the vacuum expectation value (v.e.v.)

of a some dynamical field, the correct result for the 4D gravitational CS term is zero,

as is also required by the gauge invariance of the Lagrangian (and not only the action).

Nevertheless, the question whether the requirements of [56] are indeed so necessary is still

open, as the presence of ambiguities in generic Lorentz-breaking theories is a strongly

polemical problem.

However, there are also other interesting scalar-tensor gravity models which we will

consider now.
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3.3 Brans-Dicke gravity

The Brans-Dicke (BD) gravity is one of the most known and studied scalar-tensor gravity

models. Originally, it has been introduced in [57], basing on the idea that the physical

space itself possesses geometrical features beyond those ones given by the matter (this is

one of the forms of the so-called Mach principle), so, the action of the BD gravity was

introduced in the form

S =
∫

d4x
√

|g|
(

φR +
ω

φ
∂aφ∂

aφ+ 16πLmat). (3.36)

In this theory, the new scalar field φ (which does not contribute to the matter Lagrangian)

plays the role of the effective gravitational constant; indeed, if one chooses φ = 1
2κ2 ,

the theory reduces to the Einstein gravity with the usual matter. One advantage of

the theory consists in the fact that the coupling constant ω is dimensionless, hence the

negative-dimension constants jeopardizing the renormalizability of the gravity are ruled

out. Also, in this case the gravitational constant has a dynamic origin being related with

an asymptotic value of the φ.

For this theory, one can derive equations of motion:

− 2ω

φ
✷φ+

ω

φ2
∂µφ∂

µφ+R = 0; (3.37)

Rµν −
1

2
gµνR =

(

8π

φ

)

Tµν −
ω

φ2

(

∂µφ∂νφ− 1

2
gµν∂ρφ∂

ρφ
)

+
1

φ
[∇ν(∂µφ)− gµν✷φ] ,

where Tµν is the energy-momentum tensor of the usual matter (not including φ). Con-

tracting this equation with gµν , we find

R = −
(

8π

φ

)

T − ω

φ2
∂ρφ∂

ρφ+
3

φ
✷φ, (3.38)

which we can combine with the Eq. (3.37), obtaining

✷φ =
(

8π

3− 2ω

)

T. (3.39)

The equations (3.38,3.39) are analogues of the Einstein equations and can be solved.

As a first example, we consider the static spherically symmetric metric (3.20) which

we now rewrite as

ds2 = e2α(r)dt2 − e2β(r)(dr2 + r2dΩ2) (3.40)

In the vacuum case, Tµν = 0, this metric will be a consistent solution of equations of

motion [57]. Explicitly, one finds

eα(r) = eα0

[

1− 2B
r

1 + 2B
r

]1/λ

;
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eβ(r) = eβ0(1 +
2B

r
)2
[

1− 2B
r

1 + 2B
r

](λ−C−1)/λ

; (3.41)

φ(r) = φ0e
α0C

[

1− 2B
r

1 + 2B
r

]C/λ

.

The cosmological solutions also were found in [57] where they were shown, in the vacuum

case, to look like

φ = φ0t
r, a = a0t

q;

r =
2

4− 3ω
, q =

2− 2ω

4− 3ω
, (3.42)

so, accelerating solutions (q > 1) are possible for ω > 2. Further, various papers, contin-

uing this study, discussed cosmic acceleration in BD gravity in details, see f.e. [58].

Now, let us discuss the Gödel-type solutions (2.25) in the BD gravity. It has been

shown in [59] that the nontrivial solution, i.e. that one with a non-constant scalar φ

(otherwise the BD gravity reduces trivially to the Einstein gravity) is possible only if the

action (3.36) includes the cosmological constant as well, so, one has

S =
∫

d4x
√

|g|
(

φ(R− 2Λ) +
ω

φ
∂aφ∂

aφ+ 16πLmat). (3.43)

The modified Einstein equations, in the tetrad base, look like

GA
B − δABΛ =

(

8π

φ

)

TA
B − ω

φ2

(

∂Aφ∂Bφ− 1

2
δAB∂Cφ∂

Cφ
)

+

+ φ−1
(

∇B∂
Aφ− δAB✷φ

)

, (3.44)

and choosing again the matter in the form of a composition of the fluid and electromagnetic

field (see Section 3.2.2), with the angular velocity parametrizing the Gödel-type metric

(2.25) and defined within the conditions (2.26) is now denoted as Ω instead of ω, we find

that the case φ = φ(z) yields

4Ω2 −m2 =

(

8π

φ

)

(ρ+ E2
0), m2 + 2Λ = −φ

′′

φ
. (3.45)

The typical cases are:

(i) 4Ω2−m2 = 0 (causal solution!), ρ+E2
0 = 0. In this case φ is a trigonometric function.

(ii) ρ = const, φ = const – trivial case reducing to GR.

For φ = φ(t), one arrives at φ = const, and this case is also trivial. In principle, more

involved situations can be studied as well. As for the black hole solutions in BD gravity,

we strongly recommend the classical paper [60]. In principle, many other solutions for

the BD gravity have been studied, including global monopoles, wormholes etc., but the

limited volume of these notes does not allow for their detailed discussion.
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3.4 Galileons

One of the most important examples of the scalar-tensor gravity models is the galileons

theory proposed originally in [61]. Its key idea is as follows: let us consider the most

general scalar-tensor action involves no more than second derivatives of the metric tensor

and no more than the first ones of the scalar field. Effectively, it was a suggestion of the

Lovelock-like construction not only in the gravitational sector but also in the scalar one.

Effectively, we suggest the action to look like

S =
∫

d4x
√−gL(gab, ∂cgab, ∂c∂dgab;φ, ∂aφ). (3.46)

As a result, the equations of motion involve various tensors constructed on the base of

the Riemann curvature and its covariant derivatives, and various derivatives of the scalar

field. In principle we can have the gravity equations of motion with Lovelock-like l.h.s.

and non-canonical scalar-dependent r.h.s., and strongly nonlinear equations of motion for

scalar. We note that there is no ghost problem here since there is no higher derivatives. We

note that in principle, even on the flat background, one can have a theory of a scalar field

with highly nonlinear equation of motion. the so-called K-theory (see [62] and references

therein).

However, the model (3.46) was forgotten for a long time and revitalized only in 2008,

in the paper [63] where the concept of galileons was formulated. Its key idea consists

in invariance of the theory with respect to the combination of dilatations and conformal

transformations so that the new scalar π varies as π → π + c+ bµx
µ, where c and bµ are

constants. These transformations look similarly to the Galilean ones, therefore the π was

called the galileon. So, again, the key idea is that we have derivative couplings but no

higher derivatives in the kinetic term.

There are five terms with the symmetry above. Let us introduce notations Πµν =

∂µ∂νπ, [A] = Aµ
µ for trace (so, 1

2
[Π]∂π · ∂π = 1

2
✷π∂µπ∂µπ), [Π] = ✷π, etc.), and use a dot

for the usual scalar product like A · B ≡ AµB
µ. So, we can write our five terms as:

L1 = π,

L2 = −1

2
∂π · ∂π;

L3 = −1

2
[Π]∂π · ∂π;

L4 = −1

4

(

[Π]2∂π · ∂π − 2[Π]∂π · Π · ∂π − [Π2]∂π · ∂π + 2∂π · Π2 · ∂π
)

;

L5 = −1

5

(

[Π]3∂π · ∂π − 3[Π]2∂π ·Π · ∂π − 3[Π][Π2]∂π · ∂π +

+ 6[Π]∂π · Π2 · ∂π + 2[Π]3∂π · ∂π + 3[Π2]∂π · Π · ∂π − 6∂π ·Π3 · ∂π
)

. (3.47)
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The complete Lagrangian of π is a linear combination of these terms: L = c1L1 + c2L2 +

c3L3 + c4L4 + c5L5. Clearly, the next step consists in coupling of these Lagrangians to

gravity. But let us first describe some perturbative effects of these couplings.

One of the interesting effects is that these galileon terms Li are not renormalized under

quantum corrections! The reasons are as follows [64]. First, the galileon is massless, so, its

propagator is 1/k2. Then, all galileon couplings c3, c4, c5 have negative mass dimensions,

therefore the contributions to these terms possess quadratic and even higher divergences.

After integration of subloops, the leading divergence is proportional to
∫

d4k(k2)n, with

n ≥ −1, and this integral vanishes within dimensional regularization. Finally, the sub-

leading contributions to galileon vertices vanish as well (this proof is more sophisticated

being based on analysis of symmetries). In principle, such conclusions are natural for a

massless theory with derivative couplings. Other divergent contributions in the galileons

theory in the flat space, which do not match the classical action, in particular, involve

more derivatives (f.e. ✷2 terms), are discussed in [65].

Clearly, the next step is the coupling of the scalar π to the gravity. One of the first

ideas consists in coupling of galileons to the curvature, so we have terms like [66, 67]:

δS4 =
∫

d4x
√−g(πµπµ)(πνG

νρπρ), (3.48)

where πµ ≡ ∇µπ, etc., or the higher terms like πµπ
µνπρGνρ, or the simplest terms πµπνGµν

(the last term is the example of the John term, see below). So, effectively we have

a gravity-coupled scalar field with strongly nonlinear dynamics involving derivative de-

pending couplings. As it has been claimed in [67], these terms are of special interest

within the cosmological context, where it has been explicitly shown that the solutions

with constant H = ȧ
a
are consistent for the presence of galileons, therefore the de Sitter-

like exponential expansion is possible in this case, with neither potential term for the

scalar nor cosmological constant are employed, therefore the galileons theory is a sound

candidate for the role of the dark energy. In [68], it was argued that only the minimal

scalar-gravity couplings must be considered, as a result, there were introduced four typical

galileon-gravity couplings called John, Paul, George and Ringo:

LJohn = VJ(π)Gµν∇µπ∇νπ;

LPaul = VP (π)Pµνρσ∇µπ∇νπ∇ρ∇σπ;

LGeorge = VG(π)R;

LRingo = VR(π)G. (3.49)

where P µναβ = −1
4
ǫµνρσǫαβγδRρσγδ is the double dual of the Riemann curvature. In [68],

the cosmological aspects of this theory were studied, especially, it was argued how the
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known cosmological self-tuning problem is solved in this theory. Various issues related to

the cosmic acceleration in this context are studied numerically also in [69]. Many other

papers are also devoted to galileon cosmology. However, up to now the galileons are

mostly considered namely within the cosmological context, there are only a few papers on

other solutions such as f.e. black holes (see f.e. [70]). An interesting review of galileons is

presented in [71]. To close this section, we note that many aspects of galileons still must

be studied.

3.5 Conclusions

We formulated several examples of scalar-tensor gravity models whose form does not

match the standard quintessence-gravity Lagrangian L =
√

|g|( 1
16πG

R − 1
2
gµν∂µφ∂νφ −

V (φ)) which is well studied, both within the cosmological and QFT contexts. Explicitly,

we considered the 4D CS modified gravity, the Brans-Dicke gravity and the galileons

theory. These theories display new interesting features.

First of all, the CSMG allows for the CPT symmetry breaking, and, for a certain form

of the CS coefficient, also for the Lorentz symmetry breaking, opening thus a way for

intensive studies of the Lorentz-breaking modifications of gravity. Some of these studies

will be discussed in the next chapter. Besides, in the presence of the gravitational CS

term new solutions impossible within the usual GR arise.

Second, the Brans-Dicke gravity represents itself as a theory allowing to rule out the

gravitational constant possessing negative mass dimension and hence implying in problems

with quantum description of the gravity. Moreover, it turns to be that some new solutions

which are not consistent within the GR, are also possible.

Third, the galileons theory turns out to be a sound candidate for a description of the

dark energy allowing for accelerated solutions. Besides of it, the galileons contributions

to the action arise within applying the Stuckelberg approach for the massive gravity.

Essentially, at the first step one introduces the new vector field to construct the gauge

invariant extension for the mass term of the gravity, and at the second step, to achieve the

gauge symmetry for this vector field, one introduces the scalar field whose action matches

the galileon form [72].

To conclude, for the scalar-tensor gravity models, one has essentially new results. One

of the most interesting conclusions is the possibility to introduce the Lorentz symmetry

breaking within the gravitational context, for a special form of the CS coefficient. How-

ever, it is clear that in this context, an extension of gravity through introduction of vector

fields seems to be more promising since the vacuum expectations of vector fields can yield
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constant vectors necessary to introduce privileged space-time directions breaking thus the

Lorentz symmetry.



Chapter 4

Vector-tensor gravities and problem

of Lorentz symmetry breaking in

gravity

4.1 Introduction and motivations

The interest to vector-tensor gravity models strongly increased in recent years. One of the

main motivations to studying these models arises from studies of the Lorentz symmetry

breaking. Indeed, as it is well known, in the flat space the explicit Lorentz symmetry

breaking is implemented through introduction of a constant vector (tensor) generating a

space-time anisotropy (see f.e. [73, 74]). As we already noted in the previous chapter,

this methodology allowed to define, for example, the Carroll-Field-Jackiw term (3.7) as

well as many other terms discussed in [73]. However, in the curved space the explicit

Lorentz symmetry breaking faces serious problems. First of all, the definition of the

constant vector (tensor) itself in this case becomes highly controversial: for example,

while in the flat space the constant vector kµ is defined to satisfy the condition ∂νk
µ = 0,

this condition cannot be applied in a curved space since it breaks the general covariance.

The possible ”covariant extension” of this condition like ∇νk
µ = 0 would imply in extra

conditions for the space-time geometry (and, moreover, nobody could guarantee these

conditions to be satisfied for a general choice of the vector kµ). In principle, one can

also deal with derivative expansions of the corresponding effective actions, where various

orders of derivatives of ”constant” tensors are considered (see f.e. [75]), however, it is clear

that in this case the definition of the constant vector (or tensor) simply loses its sense,

and such a vector becomes an extra field. Moreover, in many cases such possible new

terms are not gauge invariant which means that together with the Lorentz symmetry, the

41



42 CHAPTER 4. VECTOR-TENSOR GRAVITIES

general covariance for such terms is broken as well (the problem of breaking the general

covariance in modified gravity is discussed in details in [76]; in principle, it should be

noted that breaking of general covariance occurs for the term uµuνRµν proposed in [77]

as a possible example of CPT-even Lorentz-breaking term for gravity, as well as for the

one-derivative linearized term discussed in [47]).

Therefore, the most appropriate method for implementing the Lorentz symmetry

breaking into a curved space-time turns out to be based on the spontaneous symmetry

breaking. Its essence is as follows. One considers the action of the metric tensor coupled

to the vector field (again, similarly to the previous chapter, this vector field is treated as

an ingredient of gravity model itself but not as the matter, thus, we have the vector-tensor

gravity) so that the purely metric sector is presented by the usual Einstein-Hilbert action,

and the dynamics of the vector field is described by the Maxwell-like term, plus a poten-

tial whose minimum yields a vector implementing the Lorentz symmetry breaking, and

maybe also some extra terms responsible for a vector-gravity coupling. The paradigmatic

example is the bumblebee action [78] (the name ”bumblebee” itself was introduced in

[79]), looking like

S =
∫

d4x
√

|g|
(

1

16πG
(R + ξBµBνRµν)−

1

4
BµνB

µν − V (BµBµ ± b2)
)

. (4.1)

Here ξ is a dimensionless constant, Bµν = ∂µBν − ∂νBµ is the stress tensor for the

bumblebee field Bµ, and V is the potential possessing an infinite set of minima B0µ

satisfying the condition Bµ
0B0µ = ±b2 (the difference of signs reflects that the vector B0µ

can be either time-like or space-like, while b2 > 0). So, actually choosing of one of the

vacua B0µ allows to introduce the privileged direction. The potential is usually chosen

to be quartic in the field Bµ by renormalizability reasons. Alternatively, one can deal

with Einstein-aether theory where, instead of this, the minima arise due to a constraint

multiplied by a Lagrange multiplier σ, so that one has V = σ(BµBµ± b2), but the kinetic

term is not Maxwell-like being a more generic quadratic function of covariant derivatives

of the vector Bµ. In principle, one can consider the vector-tensor gravity models without

potential [80], however, in this case the spontaneous Lorentz symmetry breaking cannot

occur. Such theories are considered mostly within the cosmological context (see f.e. [80]).

Within this chapter, we discuss some interesting classical results for the Einstein-aether

gravity and for the bumblebee gravity. At the end of the chapter, we also will review some

terms proposed in [73, 74] as possible extensions of the Einstein gravity allowing to break

the Lorentz symmetry explicitly. As for the Horava-Lifshitz gravity, although it represents

itself as an example of non-Lorentz-invariant gravity model, it is described in terms of the

essentially distinct methodology and will be discussed in the next chapter.
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4.2 Einstein-aether gravity

So, let us implement the spontaneous Lorentz symmetry breaking in a curved space-time.

To justify importance of this approach, one can remind that namely spontaneous break-

ing mechanism has been initially proposed to explain the origin of the Lorentz symmetry

breaking in the low-energy limit of the string theory [81]. Following this approach, one

considers a vector field Bµ with a constant square, i.e. BµBµ = ±b2, which is implemented

via introducing the constraint with use of the Lagrange multiplier σ, adding to the La-

grangian the potential V = σ(BµBµ ± b2). Alternatively, as we already noted above, one

can introduce the quartic potential. The approach based on the Lagrange multiplier has

been adopted within gravity studies in the paper [82]. In this case, the above constraint

is generalized to a curved space-time as gµνuµuν − 1 = 0, where uµ is the aether vector

field.

Our starting point is the action [82]

S = − 1

16πG

∫

d4x
√−g

[

R + λ(uµuµ − 1) +Kαβ
µν ∇αu

µ∇βu
ν
]

, (4.2)

where

Kαβ
µν = c1g

αβgµν + c2δ
α
µδ

β
ν + c3δ

α
ν δ

β
µ + c4u

αuβgµν . (4.3)

This action involves an above-mentioned constraint introduced with use of the Lagrange

multiplier λ. The c1, c2, c3, c4 are some dimensionless constants. It is interesting to note

that the term Rαβu
αuβ proposed as the aether term in [77] arises in this theory (together

with some other terms) for the particular case c3 = −c2 when the commutator of covariant

derivatives yielding a curvature tensor emerges [83].

The corresponding equations of motion look like [83]:

gαβu
αuβ = 1; ∇αJ

α
µ − c4u̇α∇µu

α = λuµ;

Tαβ = −1

2
gαβLu +∇µ

(

Jα
(µuβ) − Jµ

(αuβ) − J(αβ)u
µ
)

+ (4.4)

+ c1[(∇µuα)(∇µuν)− (∇αumu)(∇βu
µ)] + c4u̇αu̇β + [uν∇µJ

µν − c4u̇
2]uαuβ.

Here u̇µ = uα∇αu
µ, Jα

µ = Kαβ
µν ∇βu

ν, and Lu is u-dependent part of the Lagrangian. We

note again that the vector uµ has nothing to do with the usual matter, so, the Einstein-

aether theory is an example of the vector-tensor gravity.

So, now our task will consist in finding some solutions for these equations, or, to be

more precise, in checking the consistency of known GR solutions within the Einstein-

aether gravity.
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As the simplest example we choose the spherically symmetric static metric, which is

consistent since the vector uµ is time-like, in order to satisfy the constraint. In our case,

it is convenient to choose this metric in the form slightly different from (3.20), namely,

ds2 = N(r)dt2 −B(r)(dr2 + r2dΩ2). (4.5)

The consistency of this metric within the Einstein-aether gravity has been verified within

perturbative methodology for various relations between the parameters c1, c2, c3, f.e. c1+

c2+c3 = 0, and c4 can be chosen to be zero without any problems since it can be removed

through a simple change of variables (see details in [83]) so that the N(r) and B(r) turn

out to be represented as power series in x = 1/r providing that they tend to 1 at infinity

as it must be, with some lower coefficients in these power series, up to 1/r3 terms in large

r limit have been explicitly found in certain cases.

For example, treating the black holes solutions, one can show [83] that the metric

ds2 = (1− 2M

r
+

2βM2

r2
)dt2 − (1− 2γM

r
)(dr2 + r2dΩ2). (4.6)

is consistent in this theory, with γ = 1 (this is is the usual value characteristic for

Schwarzschild metric) and β expressed in terms of coefficients c1, c2, c3. Actually this

solution is the Schwarzschild metric modified by the additive term.

Similarly, much more solutions for the Einstein-aether gravity can be obtained, in par-

ticular, the cosmological ones. In this context, the detailed study of various cosmological

aspects of this theory has been performed in [84] where the model involving two scalar

fields coupled to Einstein-aether gravity has been considered, and it has been explicitly

demonstrated on the base of the numerical analysis of solutions that the consistent po-

tential for these fields is the exponential one, and the de Sitter-like solutions can arise

both in the past (inflationary Universe) and in the future (de Sitter attractor). Earlier

the idea of using the Einstein-aether model in order to explain the cosmic acceleration

has been claimed in [85]. All this allows to conclude that the Einstein-aether gravity can

be considered as an acceptable solution of the dark energy problem. Besides of this, a

detailed discussion of various aspects of Einstein-aether gravity, including discussion of

plane wave solutions and observational constraints on parameters of the theory, can be

found in [86]. Also, we note that the Einstein-aether gravity also displays some similarity

to the Einstein-Maxwell theory, see [82].

However, it is clear that the Einstein-aether model is problematic from the quantum

viewpoint. Indeed, its action involves a constraint. As it is well known (see f.e. [87]),

a theory with constraints, being considered at the perturbative level, requires special

methodologies like 1/N expansion which clearly cannot be applied to the Einstein-aether
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gravity since it involves only four fields uµ. Moreover, in principle such a theory, when

treated in an improper manner, can display various instabilities. Therefore, the natural

idea consists in introducing the spontaneous Lorentz symmetry breaking not through

constrains but through choice of a some minimum of the potential. This idea gave origin

to the bumblebee gravity [78, 79] which we become to discuss now.

4.3 Bumblebee gravity

So, let us begin with considering the bumblebee gravity. Our starting point will be the

action (4.1). The key features of this action, in comparison with the Einstein-aether

action, are the following ones.

First, this action is characterized by the generic potential, instead of the constraint,

which makes it better for quantum studies since the usual perturbative methodology can

be applied. Second, the kinetic term is Maxwell-like which is essential to avoid arising of

ghost modes. Again, the ± sign reflect the fact that b2 > 0. We note again that the vacua

B0µ are given by the condition Bµ
0B0µ = ±b2, and these vacua are not required to be

constants, in a curved space-time, which avoids the difficulties connected with definition

of the constant vectors in this case.

First effect to note here is that after Lorentz symmetry breaking, we will have Nambu-

Goldstone modes: if we introduce the vector bµ corresponding to one of the vacua, i.e.

bµbµ = ±b2, define Bµ = bµ + Aµ, and rewrite the action (4.1) in terms of bµ and Aµ,

the resulting form of the action will be given by the Maxwell term, plus the axial gauge

term proportional to (bµAµ)
2, plus new couplings of the vector Aµ with the curvature,

like AµAνRµν , plus the Carroll-like term bµbνRµν [77].

Let us discuss some exact solutions for this theory. First, we consider the static

spherically symmetric metric, following the lines of [79], for the reasons of convenience,

we rewrite the metric (3.20) as:

ds2 = −e2φ(r)dt2 + e2ρ(r)dr2 + r2dΩ2. (4.7)

Then, we choose the vacuum vector to be purely radial, i.e. bµ = (0, b(r), 0, 0), thus

one has ∇mbn = 0 if b(r) = ξ−1/2b0e
ρ(r), ξ is a constant, and the variable φ(r) becomes

irrelevant within modified Einstein equations.

For this metric we find the only non-zero component of the Ricci tensor and the

corresponding scalar curvature to be

Rrr =
2ρ′

r
; R =

2[1 + 2(rρ′ − 1)e−2ρ]

r2
. (4.8)
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It is convenient to introduce a new dynamical variable Ψ = 1−e−2ρ

r2
. Its action will look

like:

S =
2

κ

∫

dtdrr2eρ+φ[(3 + b20)Ψ + (1 +
b20
2
rΨ′)], (4.9)

where b0 was defined above.

The equation of motion, after varying with respect to φ, is

(3 + b20)Ψ + (1 +
b20
2
rΨ′) = 0. (4.10)

Its solution is Ψ(r) = Ψ0r
L−3, with 3− L = (3 + b20)/(1 + b20/2), and

grr = e2ρ = (1−Ψ0r
L−1)−1, (4.11)

so, this component is similar to grr of the Schwarzschild metric, therefore our solution

is characterized by the event horizon. In principle, more results for this metric can be

obtained, f.e. the Hawking temperature [79]. The case when the bµ vacuum vector

possesses not only the radial component but also the temporal one has been also discussed

in [79], as a result, the Schwarzschild-like solution will carry extra factor e±2Kirα, where

α is a constant, the sign + is for the temporal component, and the sign − for the radial

one, with the values of Ki are different for these two components. Therefore, we conclude

that the Lorentz symmetry breaking generates the black hole solutions.

Another important example is the cosmological FRW metric. Here we review its

description within the bumblebee context presented in [88]. Explicitly, as a first attempt,

we suggest the vector Bµ to be directed along the time axis, Bµ = (B(t), 0, 0, 0). Evidently,

in this case the stress tensor for the bumblebee field vanishes, and the only nontrivial

component of the equations of motion for the Bµ is

(V ′ − 3

2κ2
ä

a
)B = 0. (4.12)

Thus, the bumblebee field either vanishes or, at ξ = 0, stays at one of the minima of the

potential. In this case, it is possible to show numerically that one has the de Sitter-like

expansion of the Universe.

More generic solutions can be obtained for Bµν 6= 0. However, in this case the numer-

ical analysis is necessary. Explicit studies carried out in [88] show that in this case, the

de Sitter-like solutions arises for many values of parameters of the theory confirming this

a possibility to have a cosmic acceleration due to the bumblebee field, therefore, one can

conclude that the spontaneous Lorentz symmetry breaking can explain the dark energy

problem.
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Finally, we consider also the Gödel solution (1.8). Within the bumblebee context it

has been considered in [89]. In this case, the energy-momentum tensor is suggested to

be a sum of that one for the relativistic fluid (we note that namely this form has been

employed in [3]):

TM
µν = ρvµvν + Λgµν , (4.13)

and that one for the bumblebee:

TB
µν = BµαB

α
ν − 1

4
gµνBλρB

λρ − V gµν + 2V ′BµBν , (4.14)

where V ′ is a derivative of the potential with respect to its argument. Therefore, the

modified Einstein equation (in an appropriate system of units where κ = 1) looks like

Gµν = TM
µν + TB

µν . (4.15)

The Einstein tensor Gµν and the matter energy-momentum tensor TM
µν (4.13) in the bum-

blebee gravity are the same as in the usual Einstein gravity with the cosmological term.

Therefore, the Gödel metric continues to be solution in our theory if and only if the energy-

momentum tensor of the bumblebee field will vanish. To achieve this situation, we suggest

that the field Bµ is one of the vacua which, for the quartic potential V = λ
2
(BµBµ ± b2)2,

will yield vanishing of the potential and its derivative. So, it remains to find the vacuum

for which the stress tensor Bµν = ∂µBν−∂νBµ would vanish as well (the part proportional

to Christoffel symbols vanishes identically). It is clear that the case of the constant Bµ

is an excellent example. Some interesting cases of such vacua, for the metric in the form

(1.8), are: Bµ = (ab, 0, 0, 0), Bµ = (0, ab, 0, 0), Bµ = (0, 0, 0, ab) (we note that the Gödel

metric is characterized by the constant parameter a).

It remains to check consistency of these solutions with the equation of motion for the

bumblebee field:

∇µB
µν = 2V ′(B2)Bν . (4.16)

These equations are satisfied immediately. Indeed, the l.h.s. is zero since Bµν = 0 for these

solutions, and its covariant derivative is also zero, and the r.h.s. is zero for the quartic

potential, if Bµ is one of the vacua. Therefore, we conclude that the Gödel solution is

consistent in the bumblebee gravity. More detailed discussion on this solution can be

found in [89]. It is clear that a more generic Gödel-type solution (2.25) can be analyzed

along the same lines.

An interesting discussion of the bumblebee field is presented also in [90]. The starting

point is the generalized bumblebee Lagrangian

L = R− ζḡαγḡβδBαβBγδ − V (B2), (4.17)
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where V is a some potential of the bumblebee field, ζ is a coupling constant, and ḡαγ =

gαγ + βBαBγ is the effective metric.

Then, we carry out background-quantum splitting for gravitational and bumblebee

fields by the formulas gαβ = ηαβ + hαβ and Bα = B̄α +Aα, where B̄α is one of vacua, i.e.

V (B̄2) = V ′(B̄2) = 0.

As a result, we arrive at the linearized equations of motion for the fluctuations hαβ,

Aα:

Gαβ | = V ′′(B̄2)B̄αB̄βB
2|,

η̄αδη̄βγ∂βFγδ[A] =
1

2ζ
V ′′(B̄2)B̄αB2|. (4.18)

where | symbol is for a part linear in fluctuations hαβ , Aα, f.e. B
2| = 2B̄αAα − B̄αB̄βhαβ,

and η̄αδ = ηαδ + βB̄αB̄δ (it is interesting to note that the similar metric arises within

aether studies). The Fγδ[A] = ∂γAδ − ∂δAγ as usual.

We can introduce background-dependent densities

ρm = −V ′′(B̄2)B̄2B2|,

ρe = ±
V ′′(B̄2)

√

|B̄2|
2ζ

B2| (4.19)

and a 4-velocity uα = ± B̄α√
|B̄2|

, as a result the equations of motion become

Gαβ | = ρmuαuβ,

∂βFβα[A] = ρeuα, (4.20)

replaying thus the Einstein and Maxwell equations respectively. Effectively we showed

that our background field Bµ plays the role of the charged dust. We note that in principle,

the B̄α and Aα fields can be coupled to usual matter in various manners being treated

either as usual photon or as a some extra particle.

To conclude, we see that the bumblebee gravity can be treated as a sound candidate,

first, to implement the Lorentz symmetry breaking within the gravity context, second,

to display consistency with astronomical observations, due to validity of most important

general relativity solutions. Among other results one can mention study of dispersion

relations in a linearized bumblebee gravity where the constant bumblebee field triggers

deviations from the standard dispersion relations [91]. However, much more aspects of the

bumblebee gravity, especially problem of validity and consistency of many other solutions,

are still to be studied. In this context, one of the most important issues is the study of

perturbative aspects of the bumblebee gravity, and only first steps in this study are done

now.



4.4. CONCLUSIONS 49

4.4 Conclusions

We discussed vector-tensor gravity models. Just as in the previous chapter, the additional

field, in this case the vector one, is treated not as a matter field but as an ingredient of

the complete description of the gravity itself. The most important aspect of these models

consists in the fact that some of them, namely those ones involving potential terms for

the vector field, can be extremely useful within the context of the spontaneous Lorentz

symmetry breaking. The known examples of these theories are the Einstein-aether gravity

and the bumblebee gravity.

The Einstein-aether theory has been formulated earlier. Within it, the potential term

generating the spontaneous Lorentz symmetry breaking is implemented through the con-

straint with the corresponding Lagrange multiplier field. From one side, this action is

rather simple, but from another side, the presence of the constraint generates essential

difficulties for the perturbative description. Therefore, the bumblebee model is certainly

much more promising. Moreover, the bumblebee approach displays an advantage in com-

parison with the naive application of the QFT approach suggesting to couple dynamical

fields with the constant vectors (tensors) which, as we already noted, cannot be consis-

tently defined in a curved space-time.

The bumblebee approach allows to introduce many Lorentz-breaking vector-tensor

terms. The term BµBνRµν from (4.1) is effectively nothing more that the gravitational

aether term proposed in [77]. We note that treating of the Bµ as one of the bumblebee

vacua rather than the usual constant vector allows to avoid breaking of the general co-

variance. In a similar manner, other Lorentz-breaking gravitational terms introduced in

[74] can be treated. As a result, relaxing the condition for the Lorentz-breaking vector to

be constant, we have a theory consistent with the general covariance requirement.

We note that the term BµBνRµν is the particular case of the term sµνRµν discussed in

[74]. Actually, in [74], two terms are presented, so, the possible Lorentz-breaking extension

of gravity is introduced through adding the term

δS =
∫

d4x
√

|g|(sµνRµν + tµνλρRµνλρ), (4.21)

where sµν , tµνλρ are coefficients of explicit Lorentz symmetry breaking (in this review, we

consider only the zero torsion case). However, up to now the main attention (see f.e. [91])

was paid to the sµν term while the tµνλρ = 0 condition was applied.

To close the discussion of the Lorentz symmetry breaking in gravity, let us say some

words about the weak (linearized) gravity. We have noted already that, for the specific

form of the Chern-Simons coefficient, the gravitational CS term (3.6) displays Lorentz

symmetry breaking. In [47], another, one-derivative Lorentz-breaking term in the lin-



50 CHAPTER 4. VECTOR-TENSOR GRAVITIES

earized gravity has been studied. In principle, much more Lorentz-breaking terms in the

linearized gravity can be introduced. However, it is clear that many studies of Lorentz

symmetry breaking in gravity are still to be carried out, and it is natural to expect that

such studies will be performed in the next years.



Chapter 5

Horava-Lifshitz gravity

5.1 Introduction

As it is well known, the most serious problem of the gravity is the problem of its quantum

behavior. Indeed, we have noted in the Chapter 1 that the Einstein gravity is non-

renormalizable since the mass dimension of the gravitational constant is negative. The

natural improvement of situation could consist in adding the higher-derivative terms which

clearly make the UV asymptotics of the propagator better. However, it is known that in

this case the ghosts arise which makes the theory to be unstable, hence higher-derivative

gravity models can be used only as effective theories for the low-energy domain.

Therefore, in [92], the following idea has been proposed: let us suggest that the desired

extension of gravity involves only second time derivatives, so, the ghosts will be ruled

out, and higher spatial derivatives, therefore the UV behavior of the propagator will be

improved. The similar models for the scalar field, with modified kinetic terms like 1
2
φ(∂20+

(−1)zα∆z)φ have been introduced a long ago within the condensed matter context in [93]

where they were used to describe critical phenomena. In other words, we suggest that

the Lorentz symmetry breaking is strong. Further, such theories with strong difference

between spatial and time directions have been denominated as theories with space-time

anisotropy. The number z, defined in a manner similar to the action above (once more,

if the action involves two time derivatives, it involves 2z spatial derivatives), is called

the critical exponent. For the Lorentz-invariant theories, one has z = 1. To recover the

Einstein limit, one must suppose that the action involves also lower-derivative terms. One

can verify that in such a theory, the dimension of the effective gravitational constant will

depend on z, being actually equal to z − d, in a d-dimensional space-time. Therefore, in

(3+1)-dimensional space-time, the gravity model formulated on the base of the space-time

anisotropy (further such theories became to be called the Horava-Lifshitz (HL) theories)
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is power-counting renormalizable at z = 3. However, it is clear that for such a theory, the

perturbative calculations will be very involved.

In this chapter we present a general review on HL gravity, introduce definitions and

describe most important classical solutions.

5.2 Basic definitions

So, let us construct the gravity model on the base of a strong difference between time and

space coordinates. Following the methodology developed in [92], we consider the space-

time as a foliation R×M3, where R is the real axis corresponding to the time, and M3 is

the three-dimensional manifold parametrized by spatial coordinates. The most convenient

variables to parametrize the gravitational field in this case are the Arnowitt-Deser-Misner

(ADM) variables [94], that is, N,Ni, gij defined from the metric:

ds2 = gµνdx
µdxν ≡ g00 dt

2 + 2 g0i dx
idt+ gij dx

idxj =

= −N2dt2 + gij(dx
i +N idt)(dxj +N jdt), (5.1)

so, gij is the purely spatial metric, and one has the shift vector Ni = g0i and the lapse

function N given by N = (gijN
iN j − g00)

1/2.

The Lagrangian was suggested to be in the form

L =
√
gN

( 2

κ2
(KijK

ij − λK2)− κ2

2w4
CijC

ij +
κ2µ

2w2

ǫijk√
g
Ril∇jR

l
k −

− κ2µ2

8
RijR

ij +
κ2µ2

8(1− 3λ)
[
1− 4λ

4
R2 + ΛR− 3Λ2] + Lm

)

, (5.2)

where the Rij is a purely spatial curvature constructed on the base of the spatial metric

gij, and

Kij =
1

2N
(ġij −∇iNj −∇jNi), (5.3)

is the extrinsic curvature, with the dot is for a derivative with respect to t, K = gijKij,

and

C ij =
ǫikl√
g
∇k(R

j
l −

1

4
Rδjl ) (5.4)

is a Cotton tensor. It involves three spatial derivatives, hence the term CijC
ij is of sixth

order. So, it is clear that the propagator in this theory behaves as G(k) ∼ 1

k2
0
−~k6

. As

we already noted, this implies power-counting renormalizability of the theory, and the

gravitational constant κ is indeed dimensionless.
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The form of the Lagrangian (5.2) has been motivated by ”detailed balance” condition

[92] requiring that the potential term (i.e. the part of the action which does not involve

the extrinsic curvature Kij which only includes the time derivatives) is

SV =
κ2

8

√
gN

δW

δgij
Gijkl

δW

δgkl
, (5.5)

where W is a some action, and Gijkl =
1
2
(gikgjl + gilgjk − λgijgkl). For z = 2, one has

W = W2 = 1
2κW

∫

dDx
√
g(R − 2ΛW ), and for z = 3, one chooses W = W3 to be the 3D

Chern-Simons action, so, δW3

δgij
= C ij (a similar expression for the Cotton tensor in 2 + 1

dimensions has been considered in the section 3.2), and substitution of W = W2 +W3 to

(5.5) yields the potential term given by (5.2).

However, there are only very few attempts to do quantum calculations in the HL grav-

ity [95]. Actually, however, in these papers the gravity is suggested to be a background

field, only the matter is quantized. At the same time, it is clear that the calculations

of quantum corrections in a pure HL gravity, besides being extremely involved techni-

cally, must answer the fundamental question – whether the form of quantum corrections

matches the form of the classical action, i.e. whether the HL gravity is multiplicatively

renormalizable? This question is still open.

Let us now write down the equations of motion for the HL gravity. We use approach

and notations from [97] with Qkl = N(γRkl + 2βCkl). It should be noted that g00 is not

a fundamental dynamical variable of the theory. For g00 one has

δS

δg00
= (

δSg

δN
+
δSm

δN
)
δN

δg00
= G00 − T 00 = 0. (5.6)

We note that, since N = (gijN
iN j − g00)

1/2, one has δN
δg00

= − 1
2N

. Hence,

G00 =
1

2N
(−α(KijK

ij − λK2) + βCijC
ij + σ (5.7)

+ γ
ǫijk√
g
Ril∇jR

l
k + ζRijR

ij + ηR2 + ξR),

where

α =
2

κ2
, β = − κ2

2w4
, γ =

κ2µ

2w2
, ζ = −κ

2µ2

8
;

η =
κ2µ2(1− 4λ)

32(1− 3λ)
, ξ =

κ2µ2Λ

8(1− 3λ)
,

σ = − 3κ2µ2Λ2

8(1− 3λ)
, Qij ≡ N(γRij + 2βCij) (5.8)
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are constant parameters of the theory.

For g0i we find

δS

δg0l
=

δS

δNl
= 2α∇k(K

kl − λKgkl)− T 0l = 0. (5.9)

Finally, for gij we find

Gij = Tij, (5.10)

where

Gij = G
(1)
ij +G

(2)
ij +G

(3)
ij +G

(4)
ij +G

(5)
ij +G

(6)
ij . (5.11)

Here, with ✷ ≡ ∇2, one has

G
(1)
ij = 2αNKikK

k
j − αN

2
KklK

klgij + α(KikNj)
;k + α(KjkNi)

;k −
− α(KijNk)

;k + (i↔ j) ,

G
(2)
ij = −2αλNKKij +

αλN

2
K2gij −

αλ√
g
gikgjl

∂

∂t
(
√
gKgkl)

− αλ(KgikNj)
;k − αλ(KgjkNi)

;k + αλ(KgijNk)
;k + (i↔ j) ,

G
(3)
ij = NξRij −

N

2
(ξR+ σ)gij − ξN;ij + ξ✷Ngij + (i↔ j) ,

G
(4)
ij = 2NηRRij −

N

2
ηR2gij + 2η✷(NR)gij − 2η(NR);ij + (i↔ j) ,

G
(5)
ij = ✷(N(ζRij +

γ

2
Cij))− (N(ζRki +

γ

2
Cki))

; k
;j +

+ (N(ζRkl +
γ

2
Ckl));lk gij + (i↔ j) ,

and

G
(6)
ij =

1

2

ǫmkl

√
g

[

(Qmi);kjl + (Q n
m );kingjl −

− (Qmi)
; n
;kn gjl − (Qmi);kRjl − (QmiR

n
k );ngjl

+ (Qn
mRki);ngjl +

1

2
(Rn

pklQ
p

m );ngij + QmiRjl;k

]

+

+ 2NζRikR
k
j

− N

2
(βCklC

kl + γRklC
kl + ζRklR

kl)gij −
1

2
QklC

klgij +

+ (i↔ j) . (5.12)

These equations are very involved. However, already now we can indicate some situations

where the equations are essentially simplified.
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First of all, it is clear that the equations of motion are simplified when the variable to

be found depends only on one argument (examples of such variables are scale factor and

radial function). Second, the case of a diagonal metric simplifies the system immediately

since one has Ni = 0 and N =
√

|g00|. We note that the static spherically symmetric

metric (f.e. non-rotating black hole) and FRW metric are diagonal. As for the Gödel

metric, it has been considered in a tetrad base which strongly simplifies calculations

(see [96] for details). Now, let us consider examples of solutions for gravitational field

equations.

5.3 Exact solutions

So, let us consider the exact solutions. Again, as earlier, we consider three examples –

cosmological FRW metric, black hole and Gödel-type metric.

We follow [97]. So, for the cosmological case, one suggests N = N(t), Ni = 0 (since

the FRW metric is diagonal), and gij = a2(t)γij, where γij is the maximally symmetric

spatial metric yielding constant scalar curvature: R = 6k, and Rij = 2kγij, therefore

∇iR = 0, and the Cotton tensor is also zero, Cij = 0. The matter is suggested to be the

function of time only, Φ = Φ(t). We can introduce the new Hubble parameter H = ȧ
Na

,

where a = a(t) is the usual scale factor in (1.6).

It is natural to suggest that the matter is given by a scalar field which, as usual in

cosmology, depends only on time. As a result, the equation of motion for N looks like:

3α(3λ− 1)H2 + σ +
6kξ

a2
+

12k2(ζ + 3η)

a4
=

Φ̇2

N2
+ V (Φ). (5.13)

For gij, one finds

2α(3λ− 1)(Ḣ +
3

2
H2) + σ +

2kξ

a2
− 4k2(ζ + 3η)

a4
=

= − Φ̇2

N2
+ V (Φ). (5.14)

Finally, for a matter the equation is

1

N
∂t(

Φ̇

N
) + 3H

Φ̇

N
+

1

2
VΦ = 0. (5.15)

One can verify that cyclic or bouncing solutions are possible [98]. In the vacuum one

can prove also the possibility of static solutions, while in the presence of the matter, the

solutions can be obtained only numerically [99].
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We can have also static spherically symmetric solutions described by the Eq. (3.20).

Clearly, the possibility of black hole solutions is of the special interest. We start with the

particular case of the metric (3.20):

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dΩ2, (5.16)

It is clear that the Schwarzschild and Reissner-Nordstrom metrics match this form.

In [100] it has been explicitly shown that, for λ = 1, one has

f(r) = 1 + ωr2 −
√

r(ω2r3 + 4ωM), (5.17)

The ω is a function of constant parameters of the theory. The essential conclusion is that

at large distances, i.e. r ≪ (M/ω)1/3, one has f(r) ≃ 1 − 2M
r

+ O(r−4), that is, the

Schwarzschild result, i.e. the consistency with the general relativity is achieved.

It has been demonstrated in [100] that the equation f(r) = 0 has two solutions, so

this black hole has two horizons with rpm =M(1±
√

1− 1
2ωM2 ). The naked singularity is

avoided at ωM2 ≥ 1/2.

Now, let us consider the Gödel-type solution (2.25). It has been considered in details

in [96]. First of all, we note that gφφ = D2 − H2 = G(r) (other two components of gij

are 1), and N = D(r)√
G(r)

. So, the positiveness of G(r), and hence satisfying the causality

condition, is necessary to have a consistent (real) value of N !

After some change of variables discussed in [96], we can rewrite this metric as

ds2 = −(dt′ +
2ω

m
emxdy)2 + e2mxdy2 + dr2 + dz′

2
, (5.18)

with G(x) = v2e2mx > 0, and v2 = 1− 4ω2

m2 , so, the causality is guaranteed if v2 > 0. For

this metric, R1212 = −m2v2e2mx, K12 = −vωemx, C ij = 0, R = −2m2.

To verify the consistency of this solution, we choose the fluid-like matter with

T µν = (p+ ρ)uµuν + pgµν . (5.19)

Namely this matter has been used in the original paper [3]. After solving algebraic

equations we find m2 = 2
3
ω2 or m2 = 1

4
ω2. However, both these solutions appear to be

not completely satisfactory since they are non-causal (as it has been proved in [44], the

causality is achieved for m2 ≥ 4ω2). As for constant parameters of the theory λ, µ, Λ,

they can also be found in terms of m, ω, p, ρ, the explicit values are given in [96].

Therefore, we have seen that these solutions of GR are consistent within the HL

gravity, at least asymptotically. Again, it is important to note that it is power-counting

renormalizable (although up to now there is no examples of full-fledged quantum calcu-

lations in the theory). Nevertheless, it must be noted that the HL gravity also displays

some difficulties which we will discuss now.
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5.4 Modified versions of HL gravity

While the HL gravity seems to solve the problem of renormalizability, and the most im-

portant classical solutions in it are consistent with the GR in certain limits, the consistent

description of degrees of freedom in it turns out to be problematic. This fact has been

firstly described in [101]. Following this paper, the main problem of the HL gravity is

as follows: the full-fledged general covariance group is broken up to the subgroup which

leaves the space-time foliation to be invariant. In other words, since there is no more

symmetry between space and time, one has the reduced gauge group for spatial coordi-

nates only. Thus, the gauge symmetry is partially broken, which implies in arising of new

degrees of freedom which can imply unstable vacuum, strong coupling and other unusual

effects [102]. It was claimed in [101] that the extra mode is found, but it appears to satisfy

the first-order equation of motion and hence does not propagate.

To illustrate this fact, let us consider the equations of motion (5.6,5.9,5.10). As we

already noted, they are invariant under three-dimensional gauge transformations in lin-

earized case looking like δgij = ∂iξj + ∂jξi. These transformations allow to impose the

gauge Ni = 0 [101, 102]. Afterwards, the Eq. (5.3) takes the form: ġij = 2NKij . However,

in the system (5.6,5.9,5.10) there is no equation for the evolution of N ! And since N is

separated from all other dynamical variables, it cannot be fixed by gauge transformations.

As a result, one concludes that N describes the new degree of freedom. To study it we

take the time derivative of (5.7), combine it with other equations, and arrive at

∇i

(

N2
[

ξ(λ− 1)∇iK + F i(Kjk, Rjk, K)
])

= 0. (5.20)

It is easy to see that we have 13 dynamical variables (Kij, gij, N), five constraints given

by (5.6,5.9,5.20), so, we rest with 8 independent variables. Using three gauge parameters

ξi we can eliminate three variables more. For five remaining ones, we have four initial

conditions for two helicities of hij. So, we stay with one extra degree of freedom!

More detailed analysis performed in [101] shows that if we consider kij , small fluctua-

tion of Kij, its trace κ = kii does not propagate since ∇2κ = 0. So, we can conclude that

this extra mode is non-physical.

Returning to dynamics of N , we can fix N through the additive term in the action

given by Sn =
∫

d3xdt
√
gN ρ

2
(N−2 − 1), which implies strong coupling (roughly speaking,

due to the presence of the constraint). Under some tricks like covariant extension (i.e.

introducing of Lorentz-covariant analogue), it appears to be equivalent to Einstein-aether

action (φ is a Stuckelberg field) Sn =
∫

d3xdt
√
g ρ
2
(∇µφ∇µφ− 1) [103], φ is called chronon

since there is a gauge in which this field is equal to a time coordinate, φ = t.

It was argued in [103] that if we introduce uµ = ∂µφ√
X
, with X = gµν∂

µφ∂νφ, we can
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add some terms to our action to get a consistent theory!

Actually, we have

S = − 1

κ2

∫

d4x
√−g(R4 + (λ− 1)(∇µu

µ)2 + αuµ(∇µu
ν)uλ(∇λuν) + . . .), (5.21)

and this action, for splitting φ → t + χ, yields reasonable dispersion relations for χ like

ω2 = C~p2, with C is a some number. In [103], also some cosmological impacts of this

term were studied. An aside result is an emergence of Einstein-aether action. So, the

consistent extension of the HL gravity is found.

Another approach is based on use of so-called projectable version of the HL gravity,

where the lapse N is suggested to be a function of a time only, N = N(t). However, it

turns to be that although in this case the theory is strongly simplified, the scalar excitation

is still unstable and cannot be ruled out [104].

5.5 Conclusions

Let us make some conclusions regarding the HL gravity. As we already noted, the key

idea of the HL gravity is that the usual general covariance is an essentially low-energy

phenomenon but not a fundamental feature of the nature. In a certain sense, it can be said

that the HL concept was developed to ”sacrifice” general covariance in order to conciliate

desired renormalizability with absence of ghosts. In this context, it should be noted that

breaking of general covariance in gravity is discussed as well in ”usual” Lorentz-breaking

gravity models without strong space-time asymmetry [76].

We demonstrated how the known GR solutions are modified within the HL context.

Within the cosmological context, accelerated and bouncing solutions are possible thus the

HL gravity is a good candidate to solve the dark energy problem. We demonstrated that

there are black hole solutions behaving like usual Schwarzschild BHs at large distances.

Also, we demonstrated that the Gödel-type solutions consistent within the HL gravity are

non-causal but the Gödel solution itself is non-causal.

However, quantum description of the HL gravity is rather problematic. One of the rea-

sons is the very complicated structure of the classical action implying a possibly very great

number of divergent contributions, therefore while the HL is power counting renormaliz-

able, we cannot yet be sure that it is multiplicatively renormalizable. Another difficulty

is the problem of an extra degree of freedom. While this problem was in principle solved

in [103], where the ”healthy extension” of HL gravity was introduced, the problem now

consists in obtaining physically consistent results on the base of this extension. There-

fore, even in this case we have more questions than answers. To close the discussion, we

recommend an excellent review on HL gravity given by [105].



Chapter 6

Nonlocal gravity

6.1 Motivations

As we have noted several times along this review, the main problem of various gravity

models is the development of a consistent quantum description for these models. Indeed,

the Einstein gravity is non-renormalizable, and introduction of higher derivative additive

terms implies in arising of ghosts. We have argued in the previous chapter that the Horava-

Lifshitz gravity appears to be a good solution since it is power-counting renormalizable,

and ghosts ate absent since the action involves only second time derivatives. However,

the HL gravity, first, is very complicated, second, breaks the Lorentz symmetry strongly,

third, displays a problem of extra degrees of freedom whose solving, as we noted, requires

special efforts. At the same time, the concept of nonlocality developed originally within

phenomenological context in order to describe finite-size effects (see f.e. [106]), began

to attract the interest. Besides of this, the nonlocality enjoys also a stringy motivation

since the factors like e✷ emerge naturally within the string context [107]. The key idea of

nonlocal field theories looks like follows. Let us consider for example the free scalar field

whose Lagrangian is

L =
1

2
φf(✷/Λ2)φ, (6.1)

where f(z) is a some non-polynomial function (with Λ is the characteristic nonlocality

scale) which we choose to satisfy the following requirements.

First, at small arguments this function behaves as f(z) = a+z, in order to provide the

correct ✷+m2 IR asymptotic behavior. Second, this function decays rapidly at |z| → ∞
(in principle, we can consider only Euclidean space, so, z is essentially positive), so that

integrals like
∫∞
0 f(z)zndz are finite for any finite non-negative n, to guarantee finiteness

of the theory (in principle in some case this requirement is weakened, if the theory is
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required to be not finite but only renormalizable). Third, the f(z) is required to be so-

called entire function, i.e. it cannot be presented in the form of a product of primitive

multipliers like (z − a1)(z − a2) . . ., so, its propagator has no different poles (as we noted

in the Chapter 2, namely presence of such a set of poles implies in existence of ghost

modes). The simplest example of such a function is the exponential, f(z) = e−z.

Another motivations for nonlocality are the loop quantum gravity dealing with finite-

size objects, and the noncommutativity, where the Moyal product is essentially nonlocal

by construction. At the same time, it is interesting to note that although the so-called

coherent states approach [108] has been motivated by quantum mechanics, by its essence

it represents itself as a natural manner to implement nonlocality, so that all propagators

carry the factor e−θk2, with θ is the noncommutativity parameter. Within the gravity

context, use of the nonlocal methodology appears to be especially promising since it

is expected that the nonlocality, being implemented in a proper manner, can allow to

achieve renormalizability without paying the price of arising the ghosts. The first step in

this study has been done in a seminal paper [109].

6.2 Some results in non-gravitational nonlocal theo-

ries

Before embarking to studies of gravity, let us first discuss the most interesting results in

non-gravitational nonlocal theories, especially within the context of quantum corrections.

As we already noted, effectively the nonlocal methodology has been applied to pertur-

bative studies for the first time within the coherent states approach [108] which includes

Gaussian propagator guaranteeing convergence of quantum corrections. Further, various

other studies have been performed. An important role was played by the paper [110]

where the effective potential in a nonlocal theory has been calculated for the first time.

In this paper, the following theory has been introduced:

L = −1

2
φ(exp(✷/Λ2)✷+m2)φ− V (φ). (6.2)

Here, Λ is a characteristic nonlocality scale. For this theory, one can calculate the one-loop

effective potential given by the following integral:

V (1) =
1

2

∫ d4kE
(2π)4

ln

(

exp(−k
2
E

Λ2
)k2E +m2 + V ′′

)

. (6.3)

It is clear that at k2 ≪ Λ2, the theory is reduced to usual one. The exponential factors

guarantee finiteness. It is easy to see that there is no ghosts in the theory since there
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is no different denominators ✷ + m2
i in the propagator of the theory. However, the

integral (6.3) can be calculated only approximately for various limits, and it is easy to

see that it diverges as Λ → ∞ (in [110], a some procedure to isolate this divergence

has been adopted). Further, this study has been generalized for the superfield theories

representing themselves as various nonlocal extensions of Wess-Zumino model and super-

QED, in [111]. It is clear that when, in these theories, one consider the limit of an

infinite nonlocality scale Λ → ∞, the theory returns to the local limit and becomes to be

divergent, i.e. the nonlocality acts as a kind of the higher-derivative regularization, so, the

quantum contributions are singular in this limit growing as Λ2 if the local counterpart of

the theory involves quadratic divergences, or as ln Λ2, if it involves the logarithmic ones.

From a formal viewpoint, the existence of these singularity can be exemplified by the fact

that the typical integral in nonlocal (Euclidean) theory grows quadratically with Λ scale

since
∫ d4k

(2π)4
1
k2
e−k2/Λ2 ∝ Λ2. Effectively, the problem of the singularity of the result at

Λ → ∞ is nothing more that the the problem of large quantum corrections arising also

in higher-derivative and noncommutative field theories.

At the same time, the problems of unitarity and causality in nonlocal theories require

special attention since the nonlocality is commonly associated with an instant propagation

of a signal. These problems were discussed in details in various papers. So, it has been

claimed in [112] that the problems of unitarity and causality can be solved at least for

certain forms of nonlocal functions. Further this result was corroborated and discussed

in more details in [113]. However, the complete discussion of unitarity and causality in

nonlocal field theories is still to be done. Otherwise, the nonlocal theories must be treated

only as effective ones.

So, to go to studies of gravity, we can formulate some preliminary conclusions: (i)

there is a mechanism allowing to avoid UV divergences: (ii) this mechanism is Lorentz

covariant and ghost free: (iii) the unitarity and causality are still to be studied.

6.3 Classical solutions in nonlocal gravity models

So, let us introduce examples of nonlocal gravity models. The paradigmatic example has

been proposed in [114], where the Lagrangian L = 1
G

√

|g|F (R) was studied, with

F (R) = R− R

6
(
e−✷/M2 − 1

✷
)R. (6.4)

Here the d’Alembertian ✷ is covariant: ✷ = gµν∇µ∇ν . This is nonlocal extension of

R2-gravity.



62 CHAPTER 6. NONLOCAL GRAVITY

First of all, it is easy to show that this theory is ghost-free. Indeed, we can expand

F (R) = R +
∞
∑

n=0

cn
M2n+2

R✷nR, (6.5)

with cn = −1
6
(−1)n+1

(n+1)!
. We can rewrite this Lagrangian with auxiliary Φ and scalar ψ (we

can eliminate first Φ, and then ψ, through their equations of motion):

L =
1

G

√

|g|(ΦR + ψ
∞
∑

n=1

cn
M2n+2

✷
nψ − [ψ(Φ− 1)− c0

M2
ψ2]). (6.6)

Then we do conformal transformations gmn → Φgmn, with Φ ≃ 1 + φ, to absorb Φ in

curvature term. As a result, we arrive at the Lagrangian

L =
1

G

√

|g|(R + ψ
∞
∑

n=0

cn
M2n+2

✷
nψ − ψφ+

3

2
φ✷φ). (6.7)

with the equations of motion are

ψ = 3✷φ; φ = 2
∞
∑

n=0

cn
M2n+2

✷
nψ. (6.8)

From here we have equation of motion for φ:

(1− 6
∞
∑

n=1

cn
✷

n+1

M2n+2
)φ = [1 +

e✷/M2 − 1

✷/M2
]φ = 0, (6.9)

The l.h.s. is evidently entire, so we have no ghosts.

We conclude that the nonlocality in gravity sector can be transferred to matter sector!

This is valid for various models. In a certain sense, this fact is analogous to the observation

made in the section 2.3 where it was argued that the f(R) gravity, representing itself as

an example of higher-derivative theory, can be mapped to a some scalar-tensor gravity

with no higher derivatives in the gravity sector.

The Lagrangian (6.4) can be rewritten as [115]:

L =
√

|g|
( 1

G
R +

λ

2
RF (✷)R− Λ+ LM

)

. (6.10)

The function F (✷) is assumed to be analytic, as it is motivated by string theory, and,

moreover, in the analytic case the theory does not display problems in IR limit. The

Gaussian case, which is especially convenient from the viewpoint of the UV finiteness, is

the perfect example. The equations of motion, for M2
P = G−1, take the form

[
M2

P

2
+ 2λF (✷)R]Gµ

ν = T µ
ν + Λδµν + λKµ

ν − λ

2
(Kα

α +K1)−
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− λ

2
RF (✷)Rδµν + 2λ(gµα∇α∇ν − δµν✷)F (✷)R, (6.11)

Kµ
ν = gµρ

∞
∑

n=1

fn
n−1
∑

l=0

∂ρ✷
lR∂µ✷

n−l−1R;

K1 =
∞
∑

n=1

fn
n−1
∑

l=0

✷
lR✷

n−lR; F (✷) =
∞
∑

n=0

fn✷
n.

It is important to note that in two last lines ✷l acts only to the adjacent R.

Now, the natural problem is finding some solutions of these equations. In [115], the

following ansatz has been proposed, with r1, r2 are some real numbers:

✷R − r1R− r2 = 0 (6.12)

which implies (here f0 is zeroth order in expansion of F (✷) in series)

F (✷)R = F (r1)R +
r2
r1
(F (r1)− f0). (6.13)

This allows to reduce the order of equations to at maximum second. It is clear that

constant curvature makes the equation trivial, just this situation occurs for Gödel-type

solutions.

One can found nontrivial cosmological solutions for this theory. In particular, bouncing

solutions, for r1 > 0, are possible:

a(t) = a0 cosh(

√

r1
2
t). (6.14)

Let us give more details for cosmology. Indeed, if we substitute the FRW metric (1.6) to

(6.11), and suggest that, as usual in cosmology, ρ = ρ0(
a0
a
)4, we have from (6.12), with

r1 6= 0:

d3H

dt3
+ 7HḦ + 4Ḣ2 − 12H2Ḣ = −2r1H

2 − r1Ḣ − r2
6
, (6.15)

whose solution is H =
√

r1
2
tanh(

√

r1
2
t) which just implies hyperbolic dependence of a(t)

(6.14). It is well known that namely such a scenario (decreasing of scale changing then

to increasing) is called bouncing scenario. We also introduce h1 = Ḧ/M3.

The density can be found as well: if we use G =M−2
P , and redefine F (✷) → F (✷/M2),

with M is the characteristic nonlocality scale, we find

ρ0 =
3(M2

P r1 − 2λf0r2)(r2 − 12h1M
4)

12r21 − 4r2
. (6.16)

Let us discuss possible implications of the equation (6.15). The cosmological constant

turns out to be equal to Λ = − r2M2
P

4r1
, and there are three scenarios for evolution of the

Universe:
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1. Λ < 0, r1 > 0, r2 > 0 – cyclic Universe (in particular one can have cyclic inflation).

2. Λ > 0, r1 < 0, r2 > 0 – first contraction, then very rapid inflation (super-inflation)

a(t) ∝ exp(kt2).

3. Λ > 0, r1 > 0, r2 < 0 – constant curvature R = 4 Λ
M2

P

, i.e. de Sitter solution.

So we find that accelerating solutions are possible within all these scenarios. Again,

we note that in the constant scalar curvature case, we have drastic reducing of equations.

Moreover, it has been shown in [116] that for L =
√

|g|
√
R− 2ΛF (✷)

√
R− 2Λ, with

F (✷) being an arbitrary analytic function, there are hyper-exponentially accelerating

cosmological solutions a(t) ∝ ekt
2

.

The next step in study of nonlocal theories consists in introducing non-analytic func-

tions of the d’Alembertian operator. The simplest case is F (✷) = 1
✷
. Actually it means

that we must consider terms like R✷−1R. It is clear that the gravity extension with such a

term is non-renormalizable since the propagator behaves as only 1
k2
, so we gain nothing in

comparison with the usual Einstein-Hlbert gravity [117]. However, theories with negative

degrees of the d’Alembertian operator can display new tree-level effects, especially within

the cosmological context where an important class of nonlocal gravity models has been

introduced in [118]. The action of this class of theories is

S =
∫

d4x
√

|g|
( 1

2G

(

R +Rf(✷−1R)− 2Λ
)

+ Lm

)

. (6.17)

We note that the presence of the factor ✷
−1 actually implies in ”retarded” solutions

behaving similarly to the potential of a moving charge in electrodynamics. Further, this

action has been considered in [119], and below, we review the discussion given in that

paper.

It is convenient to rewrite the action (6.17) with use of two extra scalar fields ξ and η:

S =
∫

d4x
√

|g|
[ 1

2G
[R(1 + f(η)− ξ) + ξ✷η − 2Λ] + Lm

]

. (6.18)

Varying this action with respect to ξ and expressing η = ✷
−1R, we return to (6.17).

This corroborates the already mentioned idea that the modified gravity is in many cases

equivalent to a some scalar-tensor gravity.

Then, we vary (6.18) with respect to the metric and η respectively:

✷ξ + fη(η)R = 0;

1

2
gµν [R(1 + f(η)− ξ)− ∂αξ∂

αη − 2Λ]− Rµν(1 + f(η)− ξ) +

+
1

2
(∂µξ∂νη + ∂µη∂νξ)− (gµν✷−∇µ∇ν)(f(η)− ξ) = −GTµν . (6.19)
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We consider the FRW cosmological metric (1.6) with k = 0. As usual, the Hubble

parameter is H = ȧ
a
. The evolution equation for matter is usual:

ρ̇ = −3H(ρ+ p). (6.20)

For scale factor and scalars, we have

2Ḣ(1 + f(η)− ξ) + ξ̇η̇ + (
d2

dt2
−H

d

dt
)(f(η)− ξ) +G(ρ+ p) = 0;

η̈ + 3Hη̇ = −6(Ḣ + 2H2);

ξ̈ + 3Hξ̇ = −6(Ḣ + 2H2)fη(η). (6.21)

We start with the de Sitter space corresponding to H = H0 = const, with the scalar

curvature is R = 12H2
0 . The equation of state is p = ωρ, as usual, so, we have the

following solutions for the scalar η and the density:

η(t) = −4H0(t− t0)− η0e
−H0(t−t0);

ρ(t) = ρ0e
3(1+ω)H0t. (6.22)

Then we introduce the new variable Ψ = f(η)− ξ, and its equation of evolution is

Ψ̈ + 5H0Ψ̇ + 6H2
0 (1 + Ψ)− 2Λ +G(ω − 1)ρ = 0. (6.23)

For η we have

η̇2fηη + (η̈ + 3H0η̇ − 12H2
0 )fη = Ψ̈ + 3H0Ψ̇. (6.24)

This equation is a necessary condition for existence of the de Sitter solution.

Let us consider the particular case η0 = 0 in (6.22). So, (6.24) reduces to

16H2
0fηη − 24H2

0fη = Ψ̈ + 3H0Ψ̇. (6.25)

So, knowing Ψ, one can find f(η). It remains to solve (6.23). Some characteristic cases

are:

• ρ0 = 0: Ψ = C1e
−3H0t + C2e

−2H0t − 1 + Λ
3H2

0

;

• w = 0: Ψ = C1e
−3H0t + C2e

−2H0t − 1 + Λ
3H2

0

− Gρ0
H0
e−3H0tt.

• w = −1/3: Ψ = C1e
−3H0t + C2e

−2H0t − 1 + Λ
3H2

0

+ 4Gρ0
3H0

e−2H0tt.
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As for the function f(η), in all cases it will be proportional to eη/β , with β > 0 (or,

at most, linear combination of such functions with various values of β). Effectively we

demonstrated arising of the exponential potential widely used in cosmology.

An important particular case is η0 = 0. It follows from (6.22) that we have for β 6= 4/3:

ξ = − 3f0β

3β − 4
e−H0(t−t0)/β +

c0
3H0

e−3H0(t−t0) − ξ0;

η = −4H0(t− t0); ω =
4

3β
− 1, Λ = 3H2

0 (1 + ξ0);

ρ0 =
6(β − 2)H2

0f0
βG

, (6.26)

so we can have exotic matter for 0 < β < 2. And at β = 2 we have vacuum. If β = 4/3,

we have ω = 0, and ρ < 0 (ghost-like dust).

However, we note that the nonlocal modifications of gravity are used mostly in cos-

mology. One of a few discussions of other metric within the nonlocal gravity has been

presented in [120] where not only cosmological but also (anti) de Sitter-like solutions

were discussed for theories involving, besides of.already mentioned term RF (✷)R, also

the terms RµνF1(✷)R
µν and RµναβF2(✷)R

µναβ , with F, F1, F2 are some functions of the

covariant d’Alembertian operator.

Let us say a few words about other non-analytic nonlocal extensions of gravity. In

[121], the additive term µ2R✷−2R was introduced and shown to be consistent with cosmo-

logical observations. However, this theory turns out to be problematic from the causality

viewpoint [122]. Also, in [123], the first-order correction in µ2 to the Schwarzschild solu-

tion in a theory with this term has been obtained explicitly.

To close the discussion, it is important to note that the nonlocal gravity can arise as an

effective theory as a result of integration over some matter fields. Namely in this manner,

the term R✷−1R contributes to the trace anomaly, at least in two dimensions, in [16].

Therefore, the presence of nonlocal terms can be apparently treated as a consequence of

some hidden couplings with matter.

6.4 Conclusions

We discussed various nonlocal extensions of gravity. The key property of nonlocal theories

is the possibility to achieve UV finiteness for an appropriate choice for nonlocal form

factor(s). However, apparently explicit quantum calculations in nonlocal gravity models

would be extremely complicated from the technical viewpoint, therefore, up to now, all

studies of such theories are completely classical ones. Moreover, most papers on nonlocal
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gravity models are devoted to cosmological aspects of these theories, and the results

demonstrated along this chapter allow to conclude that nonlocal extensions of gravity can

be treated as acceptable solutions for the dark energy problem. At the same time, nonlocal

theories, including gravitational ones, display certain difficulties. The main problem is

that one of unitarity and causality which still requires special attention.

To conclude this chapter, let us emphasize the main directions for studies of nonlocal

gravity models. First, clearly, it will be very important to check consistency of different

known GR solutions, especially, various black holes (including f.e. non-singular and ro-

tating ones). Second, various nonlocal form factors, not only Gaussian ones, are to be

introduced, and their impact must be tested within the gravity context. Third, study

of quantum effects in nonlocal gravity models is of special importance since namely at

the perturbative level the main advantages of these theories such as the expected UV

finiteness are crucial. It is natural to hope that these studies will be performed in next

years.
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Chapter 7

Summary

We discussed various modifications of gravity introduced within the framework of the

metric formalism. As we noted, in principle there are two fundamental problems to

be solved by gravity: first, explanation of cosmic acceleration, second, development of a

theory consistent from the quantum viewpoint. Within the models we presented, different

attempts to solve these problems are taken. It turns out to be that the problem of

cosmic acceleration is solved by many extensions of gravity, and actually the main issue

in this context consists in finding the theory fitting better the observational results (for

discussion of cosmological constraining of gravitational models, see f.e. [124] and many

other papers). At the same time, the problem of formulating perturbatively consistent

gravity theory appears to be much more complicated. While the simplest way to construct

the renormalizable gravity model is based on introducing higher-derivative terms, this

manner suffers from a problem of arising ghost states. To solve the problem of ghosts,

one can follow two ways: either break Lorentz symmetry in a strong way introducing

the HL gravity (effectively it means that we have a higher-derivative regularization in a

spatial sector only) paying a price of arising a very complicated theory, and moreover,

treating the Lorentz symmetry as an essentially low-energy phenomenon, or introduce

nonlocality which allows to achieve renormalizability or even to rule out divergences, but,

in this case, solving the problems of unitarity and causality would require special efforts.

One more way to solve the problem of renormalizability of the gravity is based on its

supersymmetric extension. As it is well known, supersymmetric extension of any field

theory improves essentially its ultraviolet behavior since so-called ”miraculous cancel-

lations” of UV divergences occur [125]. It is well known that the mechanism of these

cancellation is very simple – since fermionic contributions carry an extra minus sign,

under an appropriate relations between coupling constants occurring due to the super-

symmetry, some of fermionic divergent contributions cancel bosonic divergent contribu-
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tions (for example, while the φ4 theory and Yukawa model display quadratic divergences,

the Wess-Zumino model involving these theories as ingredients displays only logarithmic

divergences). Moreover, there are known examples of completely finite supersymmetric

theories, the paradigmatic example is the N = 4 super-Yang-Mills theory, where N is a

number of supersymmetries (number of sets of generators of supersymmetry). Clearly,

this called interest to a possible supersymmetric extension of gravity, so, the supergravity

(SUGRA) was introduced (see [126] for a review). However, the N = 1 SUGRA is still

non-renormalizable, therefore, the extensions of SUGRA with larger values of N began

to be introduced. The maximal N allowing for a consistent theory is 8, for SUGRA

(for larger values of N , higher spin fields arise, and they cannot be consistently coupled

to gravity. It should be noted also that the interest to SUGRA models with high N is

motivated also by possible applications of these theories to superstrings.

So, let us briefly review the most important results found within N = 8 SUGRA

obtained in series of papers by Bern, Dixon, Kosower and collaborators. In [127] it was

proved that the degree of divergence, at N = 8, in D dimensions and L loops, is

ω = (D − 2)L− 10. (7.1)

So we see that divergences in four dimensions begin only from five-loop order! It is

interesting to note that the approach from the same paper allows to show that the N = 4

super-Yang-Mills theory is all-loop finite.

Further, on the base of the unitarity cuts approach, in [128], it has been proved that

the four-point functions in N = 8 SUGRA satisfies the same finiteness condition in the

D-dimensional space-time

D <
6

L
+ 4, (7.2)

which for D = 4 implies all-loop finiteness of these functions. Then, in [129], with use

of some identities applied for sets of more than 30 supergraphs, it was proved that some

extra cancellations occur, so, the finiteness of N = 8 SUGRA is achieved up to four

loops at D ≤ 5. Afterwards, in [130] it was proved that the five-loop correction in this

theory begins to diverge at D ≥ 24/5, so, in the four-dimensional space-time, the theory

is five-loop finite. Taking all together, we conclude that there is a natural hope that

N = 8 SUGRA is all-loop finite in D = 4. The next problem consists in extracting some

observable results for SUGRA (scattering amplitudes, corrections to GR etc.) while, up

to now, there are only some isolated conclusions.

We conclude out course with the ideas that, first, in study of gravity one still has

more questions that answers, second, apparently the most promising extensions of grav-

ity are the SUGRA, the nonlocal gravity and the HL gravity. However, each of these
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modifications still has its difficulties which need to be solved. In principle, there are

some other approaches to gravity, for example, treating the gravity as an emergent phe-

nomenon caused by essentially quantum effects [131], asymptotic safety also known as

non-perturbative renormalizability, which allows to treat many divergences as nonphys-

ical ones [132], bimetric gravity based on use of the additional second-rank symmetric

tensor, and, clearly, modifications of gravity based on use of non-Riemannian geometry,

especially, torsion and nonmetricity. To finish, in gravity there is still much more questions

than answers.
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