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General covariance and the foundations of general relativity:
eight decades of dispute

John D Norton ,
Department of History and Philosophy of Science, University of Pittsburgh, Piesburgh, PA 15260, USA

Abstract

Einstein offered the principle of general covariance as the fundamental physical principle of
his general theory of relativity and as responsible for extending the principle of relativity to
accelerated motion. This view was disputed almost immediately with the counter-claim that
the principle was no relativity principle and was physically vacuous. The disagreement
persists today. This article reviews the development of Einstein’s thought on general
covariance, its relation to the foundations of general relativity and the evolution of the
continuing debate over his viewpoint.
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1. Introduction

In November 1915, Einstein completed his general theory of relativity. Almost eight
decades later, we universally acclaim his discovery as one of the most sublime acts of
 human speculative thought. However, the question of precisely what Einstein discovered
remains unanswered, for we have no consensus over the exact nature of the theory’s
foundations. Is this the theory that extends the relativity of motion from inertial motion to
accelerated motion, as Einstein contended? Or is it just a theory that treats gravitation
geometrically in the spacetime setting? When Einstein completed his theory, his own
account of the foundations of the theory was adopted nearly universally. However, among
the voices welcoming the new theory were small murmurs of dissent. Over the brief
moments of history that followed, these murmurs grew until they are now some of the
loudest voices of the continuing debate.

In any logical system, we have great freedom to exchange theorem and axiom without
altering the system’s content. Thus we need no longer formulate Euclidean geometry with
exactly the definitions and postulates of Euclid or use precisely Newton’s three laws of
motion as the foundations of classical mechanics. However, some two millennia after
Euclid and three centuries after Newton, we still find their postulates and laws within our
systems, now possibly as theorems and sometimes even in a wording remarkably close to
the original.

The continuing disagreement over the foundations of Einstein’s theory extends well
beyond such an orderly expansion of our understanding of a theory’s foundations. It is far
more than a squabble over the most perspicacious way to reorganize postulate and theorem
or to clarify brief moments of vagueness. The voices of dissent proclaim that Einstein was
mistaken over the fundamental ideas of his own theory and that the basic principles
Einstein proposed are simply incompatible with his theory. Many newer texts make no
mention of the principles Einstein listed as fundamental to his theory; they appear as
neither axiom nor theorem. At best, they are recalled as ideas of purely historical
importance in the theory’s formation. The very name ‘general relativity’ is now routinely
condemned as a misnomer and its use often zealously avoided in favour of, say, ‘Einstein’s
theory of gravitation.”

What has complicated an easy resolution of the debate are the alterations of Einstein’s
own position on the foundations of his theory. At different times of his life, he sought these
foundations in three principles and with varying emphasis. They were the principle of
equivalence, Mach's principle and the principle of relativity. By his own admission
(Einstein 1918), he did not always distinguish clearly between the last two. Again, he lost
completely his enthusiasm for Mach’s principle, abandoning it unequivocally in his later
life.

The reception and development of Einstein's account in the literature has been anything
but a graceful evolution. It has been more a process of uncontrolled mutation, fragmentation
and even disintegration. The principle of equivalence tock root in so many variant forms that
Anderson and Gautreau (1969, p 1656) eventually lamented that there are ‘almost as many
formulations of the principle as there are authors writing about it.” This dissipation is at least
partially fuelled by skeptical attacks on the principle such as Synge’s (1960, pix) famous
complaint that he has never been able to find a version of the principle that is not false or
trivial.

The locus of greatest controversy has been at the core of Einstein’s interpretation, the
principle of relativity. Does the general theory extend the principle of relativity to
accelerated motion and is this extension captured by the general covariance of its laws? It is
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routinely allowed that the special theory of relativity satisfies the principle of relativity of
inertial motion simply because it is Lorentz covariant: its laws remain unchanged in form
under a Lorentz transformation of the space and time coordinates. Now Einstein’s general
theory is generally covariant: its laws remain unchanged under an arbitrary transformation
of the spacetime coordinates. Does this formal property allow the theory to extend the
relativity of motion to accelerated motion? Until recent decades, the majority of expositions
of general relativity answered yes and some still do.

As early as 1917, Kretschmann (1917) argued that general covariance has no real -
physical content and no cennection to an extension of the principle of relativity. Rather, the
finding a generally covariant formulation of a theory amounts essentially to a challenge to
the mathematical ingenuity of the theorist. Skeptical sentiments such as these drove a
dissident tradition that has grown from a minority in Kretschmann’s time to one of the
dominant traditions at present. It has derived further support from the development of more
sophisticated mathematical techniques that are now routinely used to give generally
covariant formulations of essentially all commonly discussed spacetime theories, including
special relativity and Newtonian spacetime theory. ’

Finally, to many, Einstein’s statements of his views seemed too simple or abbreviated to
stand without further elaboration or repair; whereas their flat rejection by the skeptics
seemed too easy. Thus much energy has been devoted to finding ways in which the general
covariance of Einstein’s theory can be seen to be distinctive even in comparison with the
generally covariant formulations of special relativity and Newtonian spacetime theory. The
best developed of these attempts is due to Anderson (1967) and is based on the distinction of
absolute from dynamical objects. General relativity satisfies Anderson’s ‘principle of
general invariance’ which entails that the theory can employ no non-trivial absolute objects.
This principle is offered as a clearer statement of Einstein’s real intentions and as giving a
precise interpretation of Einstein’s repeated disavowal of the absolutes of Newton's space
and time. '

The purpose of this article is to review the development of Einstein’s views on general
covariance, their relation to the foundations of general relativity and the evelution of the
continuing debate that sprang up around these views. Sections 2 and 3 will review the
development of Einstein’s views. Section 4 will outline the ways in which attempts were
made to receive and assimilate Einstein’s views in a favourable manner. Section 5 will
review Kretschmann’s famous objection, Einstein’s response and the diverse ways in which
both were received in the literature. It includes discussion of modern geometrical methods
that ensure automatic general covariance. Section ¢ reviews the development of the
characterization of a relativity principle as a symmetry principle rather than a covariance
principle. Section 7 explores the tradition of exposition of general relativity that simply
ignores the entire debate and makes no mention of principles of general relativity or of
general covariance. Section 8 develops Anderson’s theory of absolute and dynamical objects
as it relates to Einstein’s views, Section 9 examines Fock’s and Arzeligs proposals for
alterations to the covariance of general relativity and gives an historical explanation of why
so many of Einstein’s pronouncements on coordinates and covariance are puzzling to
modem readers.

In the time period covered in this review article, the mathematical methods used in
relativity theory evolved from a coordinate based calculus of tensors to a coordinate free,
geometric approach. The mathematical language and sensibilities used in various stages of
the article will match those of the particular subject under review. The alternative of
translating everything into a single language would harmfully distort the subject (see section
9.2).
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2. The background of special relativity

2.1, Lorentz covariance and the relativity of inertial motion

Einstein's (1905) celebrated paper on special relativity brought the notion of the covariance
of a theory to prominence in physics and introduced a theme that would come to dominate
Einstein’s work in relativity theory. The project of the paper was to restore the principle of
relativity of inertial motion to electrodynamics. In its then current state, the theory
distinguished a preferred frame of rest, although that frame had eluded all experiment and
even failed to appear in the observational consequences of electrodynamics itself. Einstein’s
renowned solution was not to modify electrodynamics, but the background space and time
itself. He devised a theory in which inertial frames of reference were related by the Lorentz
transformation. If an inertial frame has Cartesian spatial coordinates (x, y, z) and time ¢ and a
second frame moving at velacity v in the x direction has spatial coordinates (§, m. {) and
time coordinate T, then, under the Lorentz transformation,

£ = ‘T(x“ vi) T = y({t — vxfc?) M=y { =z 4}

where v = (1 = v¥¢)™? and ¢ is the speed of light. Hitherto classical theory had in effect
employed what was shortly called (by, for exampie, Laue (1911, p3)) the Galilei-
transformation

E=x—v T=1 n=y [=rcz

Selecting suitable transformation laws for the field and other quantities, Einstein was able to
show that the laws of electrodynamics remained unchanged under the Lorentz
transformation. That is, they were Lorentz covariant. Therefore, within the space and time of
special relativity, electrodynamics could no longer pick out any inertial frame of reference
as preferred. Each inertial frame was fully equivalent within the laws of the theory.
Anything said about one by the laws of electrodynamics must aiso be said of all the rest.
Electrodynamics was now compatible with the relativity of inertial motion.

With the example of electrodynamics as its paradigm, the task of constructing a special
relativistic version of a physical theory reduced essentially to formulating its laws in such a
way that they remained unchanged under Lorentz transformation. Thus Einstein’s (1905,
section 10) original paper proceeded to formulate a modified mechanics for slowly accelerated
electrons with this property. Thermodynamics soon also received some of its earliest
relativistic reformulations in the same manner (see Einstein 1907, part IV, for example).

The lesson of Einstein’s 1905 paper was simple and clear. To construct a physical theory
that satisfied the principle of relativity of inertial motion, it was sufficient to ensure that it
had a particular formal property: its laws must be Lorentz covariant. Lorentz covariance
became synonymous with satisfaction of the principle of relativity of inertial motion and the
whole theory itself, as Einstein (1940, p 329) later declared:

The content of the restricted relativity theory can accordingly be summarized in one
sentence: all natural laws must be so conditioned that they are covariant with respect to
Lorentz transformations,

2.2. Minkowski's introduction of geometrical methods

In Einstein’s hands, Lorentz covariance was a purely algebraic property. Space and time
coordinates were, in effect, variables that transformed according to certain formuiae.
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Hermann Minkowski (1908, 1909) was responsible for introducing geometric methods and
thinking into relativity theory. He explained the background to his approach in his more
popular (1909) lecture. It amounted to an inspired but essentially straightforward application
of then current ideas in geometry. Minkowski’s colleague at Géttingen, Felix Klein, had
brought a fertile order to the world of 19th century geometry, That world was beginning to
fragment after the discovery that geometry did not have to be Euclidean, In his famous
Erlangen program, Klein (1872) proposed categorizing the new geometries by their
characteristic groups of transformations. Euclidean geometry, for example, was
characterized by the group of rotations, translations and reflections. The entities of the
geometry were the invariants of these transformations.

Minkowski pointed out that geometers had concentrated on the characteristic
transformations of space. But they had ignored the groups of transformations associated with
mechanics, those that connected various inertial states of motion. Minkowski proceeded to
treat these groups in exactly the same way as the geometric groups. In particular he
constructed the geometry associated with the Lorentz transformation. To begin, it was not
the geometry of a space, but of a spacetime, and the notion of spacetime was introduced into
physics almost as a perfunctory by-product of the Erlanger program. Moreover he found the
spacetime had the hyperbolic structure now associated with a Minkowski spacetime.

From this geometric perspective, the formulation of a theory that satisfied the principle
of relativity became trivial. One merely needed to formulate the theory in terms of the
geometric entities of the spacetime—in effect the various types of spacetime vectors
Minkowski had defined—and the theory would be automatically Lorentz covariant. Thus
Minkowski (1908, appendix; 1909, section V) could write down a gravitation theory without
even needing to consider whether it was compatible with the principle of relativity, for the
theory was constructed purely geometrically. Thus, in his exposition of four-dimensional
vector algebra and analysis, Sommerfeld (1210, p 749) could state:

According to Minkowski, as is well known, one can._formulate the content of the

principle of relativity as: only spacetime vectors may appear in physical equations . . .

2.3. Covariance versus invariance in special relativiry

The difference between Einstein and Minkowski’s approach to the same theory and even the
same formalism is a polarity that will persist in varions manifestations throughout the hole
development of relativity theory, both special and general. Einstein’s emphasis is on the
algebraic properties of the theory, the equations that express its laws and their behaviour under
transformation, its covariance. Thus the satisfaction of the principle of relativity is established
by often arduous algebraic manipulation. The equations of the theory are transformed under
the Lorentz transformation and the resulting equations are shown to have preserved their form.
Minkowski’s emphasis is on the geometric properties of the theory, on those geometric entities
which remain unchanged behind the transformations, its invariance. Thus Minkowski ensures
satisfaction of the principle of relativity by quite different means. The only structures allowed
in constructing a theory are spacetime invariants. This restriction ensures compatibility with
the principle of relativity and that its satisfaction can be settled by inspection.

3. Einstein’s development of general relativity

While it may have been some years in preparation, the special theory of relativity coalesced
info its final form quite suddenly so that Einstein’s first paper on the theory rematns one of
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its classic expositions. The development of general relativity was far slower and more
tangled. Eight years elapsed between the inception and completion of the theory, during
which time Einstein published repeated reports on the intermediate phases, false turns and
unproven expectations. Even after the completion of the theory Einstein's account of its
foundations continued to evolve. The modern image of Einstein’s view of the foundations of
general relativity is drawn fairly haphazardly from pronouncements that were made at
differing times in this evolution. As a result, they are not always compatible. Indeed the
pronouncements were sometimes as much expressions of results anticipated as
demoenstrated. For this reason, it would be misleading to construct any single edifice and
proclaim it. Einstein’s account of the foundations of general relativity. Rather we shall have
to trace the evolution of Einstein’s views as they were elaborated and modified in pace with
the development of his theory.

In developing general relativity, Einstein sought to satisfy many requirements. However
we shall see that his efforts were dominated by a single theme, covariance, and they reduced
essentially to an enduring task, expanding the covariance of relativity theory beyond Lorentz
covariance.

3.1. The early years 1907-1912: principle of equivalence and the relativity of inertia

Two years after his completion of the special theory, Einstein began developing ideas that
would ultimately lead him to the general theory of relativity. In a final speculative section of
a 1907 review article on relativity theory, he raised the question of whether the principle of
relativity could be extended to acceleraied motion (Einstein 1907, part V). The question was
immediately understood as asking whether he could expand the covariance group of
relativity theory. Feeling unable to tackle the general question, Einstein considered the
simple case of a transformation from an inertial reference frame of special relativity to a
reference frame in uniform rectilinear acceleration. [n the accelerated frame of reference a
homogeneous inertial field arises. Because of the key empirical fact of the equality of
inertial and gravitational mass, Einstein was able to identify this field as a gravitational field.
He then made the postulate that wounld dominate the early years of his work on gravitation.
In the wording of Einstein (1911, section 1)
... we assume that the systems X [inertial system in a homogeneous gravitational fieid]
and K’ [uniformly accelerated system in gravitation free space] are physically exactly
equivalent, that is, . . . we assume that we may just as well regard the system K as being
in a space free from gravitational fields, if we then regard K as uniformly accelerated.
This assumption soon acquired the name ‘hypothesis of equivalence’ (Einstein 1912a, p 355)
and then ‘principle of equivalence’ (Einstein 1912b, p443). Through it, Einstein generated a
novel theory of static gravitational fields (Einstein 1907, part V, 1911, 1912a,b). In it, the
now variable speed of light played the role of the gravitational potential; light from a heavy
body such as the sun would be red shifted; and light grazing a heavy body such as the sun
would be deflected.
For our purposes, the important point is that Einstein saw in the principle an extension of
the principle of relativity. Continuing the above passage, he observed
This assumption of exact physical equivalence makes it impossible for us to speak of
the absolute acceleration of the system of reference, just as the usual theory of relativity
forbids us to talk of the absolute velocity of a system . . ..
The principle of equivalence formed just one part of Einstein’s assauit on the problem of
extending the principle of relativity. He had also to answer the more general worry that
acceleration seemed distinguishable from inertial motion by observable consequences,
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whereas no such consequences enable us to distinguish inertial motion from rest. Newton
had driven home the peint in the Scholium to the Definitions of Book 1 of his Principia
(1687). He noted that the absolute of rotation of water in a bucket was revealed by the
observable curvature of the water’s surface. The inertia of the water was responsible for this
effect, leading it to recede from the axis of rotation.

Einstein found his answer to Newton in his reading of Ernst Mach., Mach (1893, p284)
pointed out that all that was revealed in Newton’s bucket thought experiment was a
correlation between the curvature of the water and its rotation with respect to the earth and
other celestial bodies. Thus Einstein (1912c¢) was delighted to report his 1912 theory entailed
certain weak field effects that promised to convert this correlation into a physical interaction,
with the rotation of the stars with respect to the water directly causing the curvature of its
surface. He found that the inertia of a test mass is increased if it is surrounded by a shell of
inertial masses and that, if these same masses are accelerated, they tend to drag the test mass
with it. These results raised the possibility of an idea which he attributed (p39) directly to
Mach:

... the entire inertia of a point mass i$ an interaction with the presence of all the

-remaining masses and based on a kind of interaction with them.

Einstein (1913, p 1261) soon called this idea the *hypothesis of the relativity of inertia.’

Clearly if a theory could be found that implemented this hypothesis, Einstein would have
succeeded in generalizing the principle of relativity to acceleration. For, in such a theory, the
preferred set of inertial frames would cease to be an absolute feature of the background
space and time; the disposition of inertial frames of reference would merely be an accident
of the overall distribution of matter in the universe. However, by the middle of 1912,
Einstein was still far from such a theory. In concluding his response to a polemical assault
by Max Abraham, Einstein (1912d, pp1063-4) described his project in terms of the
expansion of the covariance of the current theory of relativity and his hope that ‘the
equations of theory of relativity that also embraced gravitation would be invariant with
respect to acceleration (and rotation) transformations.” However he confessed that ‘it still
cannot be foreseen what form the general spacetime transformations equations could have.”
The Einstein who wrote these words in July 1912 had not yet foreseen that his name would
be irrevocably associated with a generally covariant theory.

3.2. The 'Enrwurf theory 19]2-1915: general covariance gained and lost
All this changed with Einstein's move to Zurich in August 1912, There he began
collaborating with the mathematician Marcel Grossmann, a good friend from his student
days. Grossmann discovered for Einstein the existence of the ‘absolute differential
calculus™ of Ricci and Levi-Civita (1901) and pointed out that this calculus would enable
Einstein to construct a generally covariant theory.

The focus -of this calculus was the fundamental quadratic differential form

i’

¢ = Zamcu,dxs 2)

ra=1

which was assumed to remain invariant under arbitrary transformations of the variables
X1y 0 X, Of course the modern reader immediately associates this form with the invariant

t The Ricci-Levi-Civita calculus only later acquired its modem name of ‘tensor calculus’ after Einstein and
Grossmann (1913} renamed all of Ricei and Levi-Civita’s ‘contravariant and covariant systems” as ‘tensors’ thereby
extending the formerly rather resiricted compass of the term *tensor.” See Norton (1992, appendix).
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line element of a aon-Euclidean surface of variable curvature, such as was introduced by
Gauss and developed by Riemann. However Ricei and Levi-Civita’s x,, ..., x, were
variables and not necessarily geometric coordinates. They were at pains to emphasize that
what was then called infinitesimal geometry was just one of many possible applications of
their calculus.

As late as 1912, Einstein had not adopted the four-dimensional methods of Minkowski,
even though these methods had already found their first text book exposition (Laue 1911).
Einstein's 1912 static gravitational theory had been developed using essentially the same
mathematical techniques as his 1905 special relativity paper. Thus it is an odd quirk of
history that, when Einstein did finally immerse himself in the four-dimensional spacetime
approach, he turmed to exploit a calculus whose creators sought to skirt its geometric
interpretation in favour of a broader interpretation.

Einstein and Grossmann published the results of their joint research early the following
year with Einstein writing the ‘Physical Part’ and Grossmann the ‘Mathematical Part.” The
theory of the resulting paper (Einstein and Grossmann 1913) is commonly known as the
‘Entwurf  theory from the title of the paper. ‘Entwurf einer veraligemeinerten
Relativitiitstheorie und einer Theorie der Gravitation’ (‘outline of a generalized theory of
relativity and a theory of gravitation’). Its central idea involved the introduction of Ricci and
Levi-Civita’s fundamental form (2). They started with the invariant interval of Minkowski in
differential form

ds? = c2d? — & — dy? — dz? (3)

where (x, y, z, £} are the space and time coordinates of an inertial frame of reference in a
Minkowski spacetime. Transforming to arbitrary coordinates x,, for p=1,...,4, (3)
becomest{

ds* = g,,dx, dx,. (4)

Einstein employed his principle of equivalence to interpret the matrix of quantities g,,
that had arisen with the introduction of arbitrary coordinates. In the special case of the
principle, the transformation from (3) to (4} is from an inertial coordinate system to a
uniformly accelerated coordinate system. In that case, the matrix of coefficients g,, reduces
to that of (3), except that ¢ now is a function of the coordinates (x*, y’, z"). That is, (4)
becomes

ds? = (x',y', 2"’ — dx'? — dy'? — dz’% (3%

According to the principle of equivalence, the presence of a gravitational field was the only
difference between the spacetime of (3") and that of special relativity (3). Therefore Einstein
interpreted the coordinate dependent ¢ of (3"} as representing a gravitational field and, more
generally, the g,, of (4) as representing a gravitational field.

Einstein and Grossmann proceeded to develop essentially all the major components of
the final general theory of relativity. Just one eluded them. The spacetimes represented by
(3), (3") and (4) are all flat. To treat the general case of the gravitational field, non-flat
metrics must also be admitted and, in the final theory, the decision of which are admitted is

¥ Henceforth summation over repeated indices is implied. Einstein himself did not introduce this summation
convention until 1816,
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made by the gravitational field equations. Einstein expected these equations to take the now
familiar form

G = KT, (5)
where T, is the stress-energy tensor and G,,, a gravitation tensor constructed solely from the
metric tensor g,,, and its derivatives. Einstein and Grossmann considered the Ricci tensor as
their gravitation tensor—ijust a hair’s breadth away from Einstein’s final choice of the
Einstein tensor. However they reported that the resulting field equations failed to give the
Newtonian limit in the case of weak, static gravitational fields. In their place, to the
astonishment of modern readers, they offered a set of gravitational field equations that was
not generally covariant. Einstein then descended into a long struggle with his imperfect
theory that lasted almost three intense years before he emerged victoriously with the final
generally covariant theory in handf.

3.3. The hole argument: general covariance condemned

During these three years, Einstein formulated an argument that would decisively redirect his
understanding of general covariance. He and Grossmann had been unable to find acceptable
generally covariant field equations. The so-called ‘hole argument’ purported to show that
this circumstance need not worry them since all generally covariant field equations would be
physicaily uninteresting. Einstein published the argument four times in 1914, appearing, for
example, as a later appendix to the journal printing of Einstein and Grossmann (1913). Its
clearest exposition was in a review article (Einstein 1914, pp 1066-7)+1.

The argument was beguilingly simple. Einstein asked us to imagine a region of
spacetime devoid of matter—the ‘hole’—in which the stress energy tensor T, vanished. He
now assumed that we had generally covariant gravitational field equations and that g,, was a
solution for this spacetime in a coordinate system x,. Einstein transfromed to a new
coordinate system x’, which agreed with x, outside the hole but came smoothly to differ
from it within the hole. In the new coordinate system the metric would be g’,, and
constructed according to the usual tensor transformation law, That is, the same gravitational
field would be represented by g, in coordinate system x, and by g’,, in coordinate system
x'. :

At this point Einstein effected a subtle manipulation that is the key to the hole argument.
One could consider the symmetric matrix g,.(x.) as a set of ten functions of the variable x,
and g',.(x",) as a set of ten functions of the varjable x'.. One can now construct a new set of
ten functions g*,,,(x,). That is, take the ten functions of the new matrix g',, and consider them
as functions of the ofd coordinates x.. The original g,,,(x.} and the construction g’,,(x.) cannot
represent the same gravitational field in different coordinate systems, They are both defined
on the same coordinate system x,, yet they have different components, since g, and g’,, are
different functions. That is, g,.(x;) and g',,(x.) represent different gravitational fields in the
same coordinate system. Now, by their construction, the functions g, ,(x,) and g’,(x.) will be
the same outiside the hole, but they will come smoothly to differ within the hole. Thus the two
sets of functions represent distinct gravitational fields. Let us call them g and g'. The fields g
and g’ are the same outside the hole but come smoothly to differ within the hole.

+ This fascinating episode has been dissected in some detait with some help from his private calculation (see
Stachel 1980 and Norton 1984).
1§ For further discussion see Noston (1987).
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Einstein has presumed the field equations general covariant. Therefore, if they are solved
by the g, .(x), then they must be solved by g°,.(x',) and therefore also by the construction
&' w(x). That is, generally covariant gravitational field equations allow as solutions the two
distinct gravitational fields g and g'. Einstein found this outcome unacceptable. For the one
matter disiribution outside the hole now clearly fails to determine what the gravitational field
would be within the hole. That is, we could specify the maiter distribution and gravitational
field everywhere in spacetime excepting some matter-free hole that could be arbitrarily
small in both spatial and temporal extent. Nonetheless generally covariant field equations
would be unable to determine what the gravitational field would be within this hole. This
was a dramatic faflure of what he called the law of causality and we might now call
determinism, Einstein deemed the failure sufficiently troublesome to warrant rejection of
generally covariant gravitational field equations as physically interesting?,

3.4. Einstein’s 1916 account of the foundations of general relativity: general covariance
regained

In November 1915, Einstein’s long struggle with his ‘Entwurf’ theory came to a close. His
resistance to general covariance finally broke under the accumulating weight of serious
problems in his ‘Entwur{” theory. His return to general covariance and the final general
theory of relativity were reported to the Prussian Academy in a series of hasty
communications that chronicle the tense confusions of these last desperate daystf. Early the
foltowing year, Einstein (1916) sent Annalen der Physik a review article on the final theory.

The article’s account of the theory’s foundations was written with a freedom unavailabie
to Einstein in the dark years of the ‘Entwurf" theory, Throughout those years, Einstein had
maintained his allegiance to the relativity of inertia. That allegiance had to rest principally
on a sincere hope of what might be demonstrable. He had not demonstrated the
unconditional relativity of inertia in his ‘Entwwf theory; he was still sure only of weak field
effects compatible with the relativity of inertia (Einstein 1913, section 9) and similar to
those he had found in his 1912 theory. More vexing, however, was the very public failure of
general covariance, which compromised the claim that he was extending the principle of
relativity. Einstein did not report on equally serious problems that had befallen the principle
of equivalence. The simple 1907/1211 version of the principle required only equivalence of
uniform acceleration and a homogeneous gravitational field. Yet in the final version of the
1912 theory, the principle had to be restricted to infinitesimally small regions of space.
Einstein found the need for this restriction extremely puzzling since the restriction was not
invoked to homogenize an inhomogeneous field. Worse, in the ‘Entwurf’ theory, even this
restriction failed to save this form of the principle, which had to be reported as a result of his
earlier 1912 theory (see Norton (1985, section 4.3) for a discussion).

By 1916, Einstein’s problems with general covariance had evaporated and with them the
problems with the principle of equivalence. Thus the 1916 review article could commence
with a more confident account of the theory’s foundations which remains today one of the
most widely known of Einstein’s accounts. The exposition began with a series of now

+ It was pointed out much later by Stachel (1980), using mathematical notions not available to Einstein in 1913,
that the new gravitational field g" was generated from g as the carry along g’ = k’g under the diffeomorphism 4
induced by the coordinate transformation x, to x',. The indeterminism that worried Einstein so profoundly is now
routinely obliterated as a gauge freedom associated with arbitrary diffeomorphism so that, while g and g" may be
mathematically distinct, they are not judged to represent physically distinct gravitational fields (see Wald 1984, p
438).

Tt Einstein 1915, For dissection of this episode, see Norton (1984, sections 7, 8).
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familiar considerations all of which drove towards general covariance.

Both special relativity and classical mechanics, Einsiein reported, suffered an
epistemological defect. It was illustrated with Einstein’s variant of Newton’s bucket. Two
fluid bodies hover in space. They are in an observable state of constant relative rotation
about a line that connects them. In spite of the obvious symmetry of this set up, Einstein
supposed that one sphere §; proves to be spherical when surveyed and the other §, proves to
be an ellipsoid of revolution. Classical mechanics and special relativity could explain the
difference by supposing that the first sphere is at rest in an inertial frame of reference,
introduced by Einstein into the argument as a ‘privileged Galilean space,” and that the
second is not. This explanation, Einstein objected, violates the ‘demand of causality,” for
these privileged frames are ‘merely factitious causes’ and not an observable thing. The true
cause of the difference must lic outside the system, Einstein continued, immediately
identifying the true cause in the disposition of distant masses. In effect Einstein used his
exampie to conclude that the only theory that could satisfactorily account for this example
was one that satisfied the requirement of the relativity of inertia. Any such theory, Einstein
continued, cannot single out any inertial frame as preferred. Therefore:

The laws of physics must be of such a nature that they apply to systems of reference in

any kind of motion, Along this road we arrive at an extension of the postulate of

relativity (Einstein's emphasis).

Einstein then introduced the principle of equivalence in the form given above in section
3.1 in which it asserts the equivalence of uniform acceleration and a homogeneous
gravitational field. The principle is used to suggest that a theory which implements a
generalized principle of relativity will also be a theory of gravitation. Einstein then turns to
deal with a complication that arises from using accelerated frames of reference in special
relativity. In accelerated frames, in particular in rotating frames, geometry ceases to be
Euclidean and clocks are slowed in a position-dependent manner. As a result it turns out that
one can no longer easily define space and time coordinate systerns by the familiar operations
of laying out rods and using standard clocks. This apparent complication—and not the need
for a generalization of the principle of relativity—leads Einstein to propose general
covariancet}:

The method hitherto employed for laying co-ordinates into the space-time
continuum in a definite manner thus breaks down, and there seems to be no other way
which would allow us to adapt systems of co-ordinates to the four-dimensional universe
so that we might expect from their application a particularly simple formulation of the
laws of nature. So there is nothing for it but to regard all imaginable systems of co-
ordinates, on principle, as equally suitable for the description of nature. This comes to
requiring that:—

The general laws of nature are to be expressed by equations which hold good for all
systems of co-ordinates, that is, are co-variant with respect to amy substitutions
whatever (generally covariant).

It is clear that a physical theory which satisfies this postulate will also be suitable for
the general postulate of relativity. For the sum of @il substitutions in any case includes
those which correspond to all relative motions of three-dimensional systems of co-
ordinates (Einstein’s emphasis}).

t A footnote at the word ‘imaginable’ was omitted from the standard Perrett and Jeffrey English translation, It
says: ‘Here we do not want to discuss certain restrictions which correspond to the requirement of unique
coordination and of continuity.” This now essentially unknown footnote shows that Einstein did at least once
apologize for his failure to specify precisely which group of transformations was intended by ‘any substitutions
whatever.”
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Why did Einstein not simply insist that the generalization of the principle of relativity to
accelerated motion forces general covariance? Following the analogy with Lorentz
covariance, the generalized principle of relativity would require an extension of the
covaniance of the theory to include transformations between frames in arbitrary states of
motion. But general covariance extends it even fusther. It includes transformations that have
nothing to do with changes of states of motion, such as the transformarion between Cartesian
and polar spatial coordinates. But, as Einstein indicates, he feels compelled to go to this
larger group since he can see no natural way of restricting the spacetime coordinate system.

3.5. The point-coincidence argument

Immediately following the above statement of the requirement of general covariance,
Einstein gave another argument for general covariance which John Stachel has conveniently
labelied the ‘point-coincidence argument.’

That this requirement of general co-variance, which takes away from space and time the
last remmnant of physical objectivity, is a naturai one, will be seen from the following
reflexion. All our space-time verifications invariably amount to a determination of
space-time coincidences. If, for example, events consisted merely in the motion of
material points, then ultimately nothing would be observable but the meetings of two or
more of these points. Moreover, the results of our measurings are nothing but
verifications of such meetings of the material points of our measuring instruments with
other material points, coincidences between the hands of a clock and points on the clock
dial, and observed point-events happening at the same place and the same time.

The introduction of a system of reference serves no other purpose than to facilitate
the description of the totality of such coincidences. We allot to the universe four space-
time variables x|, x;, X3, x5, i0 such a way that for every point-event there is a
corresponding system of values of the variables x, ... x;. To two coincident point-
events there corresponds one system of valnes of the variables x, . . . x,, i.e. coincidence
is characterized by the identity of the co-ordinates. If, in the place of the variables x, . . .
x,, we introduce functions of them, x|, x’,, x';, "4, a8 a new system of co-ordinates, so
that the system of values are made to corespond {o one another without ambiguity, the
equality of all four co-ordinates in the new system will also serve as an expression for
the space-time coincidence of the two point-events. As all our physical experience can
be ultimately reduced to such coincidences, there is no immediate reason for preferring
certain systems of co-ordinates {o others, that is to say, we arrive at the requirement of
general co-variance.

This point-coincidence argument is cited very frequently in the literature since 1916,
However its real purpose was essentially completely forgotten until it was rediscovered and
revealed by Stachel (1980). Einstein’s 1916 exposition of general relativity contained a very
puzzling omission. In the years immediately preceding, by means of the hole argument,
Einstein had apparently proved that any generally covariant theory would be physically
uninteresting, Yet here was Einstein extolling exactly such a theory without explaining
where the hole argument went astray.

That melancholy task of correcting his past error was the real function of the point
coincidence argument. This was precisely the use to which the argument was put in
Einstein’s correspondence of December 1915 and January 1916 (see Norton 1987, section
4), According to Einstein’s assumption, the physical content of a theory is fully exhausted
by a catalogue of the spacetime coincidences it sanctions. Therefore any transformation that
preserves these coincidences preserves its physical content. Now the transformation used in
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the hole argument from the field g to the mathematically distinct field g’ is more than a mere
transformation of coordinates. For g and g’ are mathematically distinct fields in the same
coordinate system. However the transformation from g to g’ is one that preserves all
coincidences. Therefore g and g’ represent the same physical field. Whatever indeterminism
is revaaled in the hole argument is a purely mathematical freedom akin to a gauge freedom
and offers no obstacle to the physical interest of a generally covariant theory.

Einstein scarcely ever menttoned the debacle of the hole argument again in print.
However it continued to inform his ideas about covariance, spacetime, fields and coordinate
systems. For example, in executing the hole argument, in order to effect the transition from
&%) 1o g',.(x,), one has to assume, in effect, that the coordinate system x,, has some real
existence, independent of the g, or g’,,. For, figuratively speaking, one has to remove the
field g,,, leaving the bare coordinate system x,, and then insert the new field g’,,. In a letter
of December 26, 1915, to Paul Ehrenfest, Einstein explained that one defeats the hole
argument by assuming among other things that ‘the reference system signifies nothing
real’.T We hear these echoes of the hole argument when Einstein (1922, p 21) proclaims in a
May 1920 address in Leiden: ‘

There can be no space nor any part of space without gravitational potentials; for these

confer upon space its meirical qualities, without which it cannot be imagined at all.
These same echoes still reverberate in the 1952 appendix to Einstein’s popular text
Relativity: The Special and the General Theory, when Einstein (1952, p 155) insists

. .. & pure gravitational field might have been described in terms of the g, (as functions
of the co-ordinates), by solution of the gravitational equations. If we Imagine the
gravitational field, i.e. the functions g, to be removed, there does not remain a space of
the type (1) [Minkowski spacetime], but absolutely nothing, and also no ‘topological
space’ (Einstein’s emphasis).
Most recently, the hole argument has enjoyed a revival in the philosophy of space and time
literature where, in variant form, it provides a strong argument againsi the doctrine of
spacetime substantivalism (Earman and Norton 1987). For further discussion of the
background and ramifications of the hole and poini-coincidence arguments see Howard
(1992) and Ryckman (1992).

3.6. The Géttingen defence of general covariance

The most prominent legacy of the hole argument in the literature on general relativity does
not arise from Einstein’s analysis, however. In 1915 and 1917, David Hilbert (1915, 1917)
published a two-part paper on general relativity which proved to be enormously influential,
Citing the hole argument, Hilbert (1917, pp 59-63) turned to the question of the ‘principle of
causality’. He observed that his formulation of general relativity employed fourteen
independent variables, that is, ten metrical components for the gravitational field and four
potentials for the electromagnetic field. However in the joint theory of gravitational and
electromagnetic fields, four identities reduced the fourteen field equations to only ten
independent equations. The indeterrninism lay in the freedom to set the four remaining
conditions. These four conditions could, however, be absorbed in four stipulations used to
specify a coordinate system.

Hilbert insisted thai this underdetermination of the field was not physical. Echoing the
geometric themes of his Gottingen colleagues Klein and the late Minkowski, he recalled (p
61) . . . an assertion that does not remain invariant under any arbitrary transformation of the

+ As quoted in Norton (1987, p 169).
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coordinate system is marked as physically meaningless’ (Hilbert’s emphasis). He then
argued that the four degrees of freedom did not leave the invariant content of the theory
underdetermined. His example was an electron at rest in some coordinate system. A
coordinate transformation leaves the electron unchanged in the past of some instant specified
by time coordinate x, = 0, but sets it in motion in the future. The two coordinate descriptions
are the same in the past, the electron is at rest, but in the future only one describes the
electron as moving. The one past can extend to different futures. The differences, however,
have no physical significance, since the relevant assertions about the electron’s motion are
not invariant. One could make them invariant by introducing an invariant coordinate system
adapted to the spacetime geometry, such as the Gaussian system Hilbert considered.
Coordinate based assertions of the electron’s motion would now be invariant, but they
would no longer be underdetermined since the introduction of the Gaussian system used up
the four remaining degrees of freedom.

Hilbert’s depiction of the indeterminism of a generally covariant theory was in terms of
a count of independent field variables and independent field equations. It is the version that
rapidly came to appear most often in the literature (e.g. Pauli 1921, section 56). The four
identities among the field equations that allowed the underdetermination were only later
connected with the contracted Bianchi identities {see Mehra 1974, section 7.3). Again
Hilbert’s discussion and his example of the electron was the first treatment of the Cauchy
problem in general relativity, so that the literature on the Cauchy problem can trace its
descent back to Einstein’s hole argument (see Stachel 1992)F.

3.7. Einstein's three principles of 1918

In March 1918, Einstein (1918) returned to the question of the fundamental principles of
general relativity. As he made clear in his introductory remarks, the paper was provoked by
Kretschmann’s (1917) criticism (see section 5.2 below). However its purpose was to lay out
his understanding of the foundations of his theory. This exposition differed from the 1916
account in at least one major area. In 1916, Einstein assumed that his generally covariant
theory would satisfy the relativity of inertia, although no proof had been given. At best
Einstein would have been able to point to weak field effects compatible with the relativity of
inertia. (These weak field effects are of the same type as those he reported in the “Entwurf’
theory in Einstein (1913, section 9) and are described in his text (Einstein 1922a, p 100)),

By 1917, Einstein had found that a simple reading of the relativity of inertia was
incompatible with his theory. He reported this failure in an introductory section (section 2)
to his famous paper on relativistic cosmology (Einstein 1917). On the basis of the relativity
of inertia, he expected that the inertia of a body would approach zero if it was moved
sufficiently far from other masses in the universe. This expectation would be realized in the
theory if the spacetime metric adopted certain degenerate values at a mass-free spatial
infinity. However Einstein found that such degenerate behaviour was inadmissible in his
theory. Instead he seemed compelled to postulate some non-degenerate boundary conditions
for the metric at a mass-free spatial infinity, such as Minkowskian values.

This Minkowskian boundary condition became the embodiment for Einstein of the
failure of the relativity of inertia. For this boundary condition made a definite contribution to
the inertia of a test body that could not be traced to other masses. That is, with these
boundary conditions, the inertia of a body was influenced by the presence of other masses, in

¥ Howard and Norton (forthcoming) conjecture that there was an encounter in 19135 between the Gittingen
resolution of the hole argument and an unreceptive Einstein, still convinced of the comrectness of the hole argument,
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50 far as they affected the metric field. However its inertia was not fully determined by the
other masses. Therefore, if the relativity of inertia was to be satisfied, it was necessary to
abolish these arbitrarily postulated boundary conditions. (The question of whether this was
also sufficient remained unaddressed.) Einstein succeeded in abolishing these boundary
conditions at spatial infinity by a most ingenious ploy: he abolished spatial infinity itself. He
introduced the first of the modern relativistic cosmologies, the one we now call the ‘Einstein
universe’, which is spatially closed and finite. The price Einstein had to pay turned out to be
high. In order for his field equations to admit the Einstein universe as a solution, he needed
to introduce the extra ‘cosmological’ term in his field equations. In his notation and
formulation of 1917, with G, representing the Ricci tensor and k a constant, this meant that
the old field equations

Gp.v = "K(Tp.v - %gu.vT)
were replaced by
G = Aguo = = (T, — %g,.T)

The cosmological term is Ag,, and A is the cosmological constant.

This development was essential background to understanding the three principles
Einstein listed in (Einstein 1918, pp241-2) as those on which his theory rested.

{(a) Principle of relativity. The laws of nature are only assertions of timespace
coincidences; therefore they find their unique, natural expression in generally covariant
equations.

(b) Principle of equivalence. Inertia and weight are identical in essence, From this
and from the results of the special theory of relativity, it follows necessarily that the
symmetric ‘fundamental tensor’ (g,,) determines the metric properties of space, the
inertial relations of bodies in it, as well as gravitational effects. We will call the
condition of space, described by the fundamental tensor, the ‘G-field.’

(¢y Mack’s principle. The G-field is determined without residue by the masses of
bodies. Since mass and energy are equivalent according to the results of the special
thecry of relativity and since energy is described formally by the symmetric energy
tensor (7,,}, this means that the G-field is conditioned and determined by the energy
tensor.

The separation of the principle of relativity and Mach’s principle into two distinct
principles was clearly the product of Einstein’s experience with the cosmological problem.
If the Einstein of 1916 had assumed that the relativity inertia would be satisfied
automatically within a generally covariant theory, then the Einstein of 1918 no longer
harboured such delusions. The 1918 version of the principle of relativity seems to assert
something less than a fully generalized relativity of the motion of bodies. In effect it merely
asserts the key thesis of the point-coincidence argument: the physical content of a theory is
exhausted by its catalogue of allowed spacetime coincidences. General covariance follows
from this thesis as a consequence. The principle of refativity (a) is now supplemented by the
new Mach’s principle (c) and it is only their conjunction that begins to resemble Einstein's
original goal of a fully generalized relativity of motion. In effect Mach’s principle (¢c) was
intended to capture in a field theoretic setting the ofd, Mach-inspired requirement of the
relativity of inertia. It was to rule out the arbitrary postulation of boundary conditions for the
metric field at spatial infinity, which, Einstein reported in 1917, compromised the relativity
of inertia. All this was alluded to by Einstein in a footnote to the title “Mach’s Principle,’
which also announced that he was introducing the. name for the first time:
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Up to now I have not distinguished principles (a) and (c) and that caused confusion. 1

have chosen the name ‘Mach’s principle’ since this principle is a generalization of

Mach’s requirement that inertia be reducible to an interaction of bodies.
Einstein’s wording of the principle of equivalence (b) was an interesting departure in so far
as it now emphasized that the principle depended on the empirical equality of two quantities,
inertial and gravitational mass, and that the effect of the principle had been to unify them
completely. However there was little real change from Einstein’s earlier use of the principle,
as was shown by the remainder of the paragraph that described the principle. In effect it
gave a synopsis of the transition from the line element (3) to (3') and (4) and the resulting
interpretation of the non-constant coefficients of (3') and (4) as representing the
gravitational field, as well as the inertial and geometric properties of spacetime.

3.8, Mach's principie forsaken

For all his efforts, Einstein’s portrayal of the foundations of general relativity had still not
reached its final form with the 1918 list. Over the years following, the principle of relativity
and of equivalence retained their 1918 forms. However Einstein came to abandon Mach’s
principle.

The seeds of Einstein’s disenchantment with Mach's principle were becoming apparent
as early as 1919. Einstein (1919, section 1) described its offspring, the cosmological term
added to his 1915 field equations, as ‘gravely detrimental to the formal beauty of the theory’.
With the discovery of the expansion of the universe, Einstein formally disowned the
cosmological term (Einstein and de Sitter 1932). In any case, the augmentation of his field
equations with the cosmological term had forced neither the relativity of inertia nor Mach’s
principle into his theory. For it had not eliminated the possibility of essentially matter-free
solutions of the field equations. In such solutions, the inertia of a test body could not be
attributed to other masses. These solutions were the subject of an extended exchange in
publication and in private between Einstein and de Sitter towards the end of the 1910s (see
Kerszberg 1989).

Einstein also began to distance himself from the relativity of inertia. Whereas the idea
was urged without reservation up to 1916, he soon came to describe it as a very significant
idea, but one of essentially historical interest only, For example, Einstein (1924, p87)
attributed to Mach the idea that inertia arose as an unmediated interaction between masses.
But he dismissed it casually as ‘logically possible, but cannot be considered seriously any
more today by us since it is an action-at-a-distance theory’.} Einstein (1924, p90) did still
maintain that the meiric is fully determined by ponderable masses in a spatially finite
cosmology according to his theory, although the term ‘Mach’s principle” was not used. As
time passed, Einstein had fewer and fewer kind words for this Machian approach to inertia.
He explained in 1946 for example in his Autobiographical Notes (1949, p27)

Mach conjectures that, in a truly reasonable theory, inertia would have to depend upon
the interaction of the masses, precisely as was true for Newton's other forces, a
conception that for a long time I considered in principle the correct one. It presupposes
implicitly, however, that the basic theory should be of the general type of Newton's
mechanics: masses and their interaction as the original concepts. Such an attempt at a
resolution does not fit into a consistent field theory, as will be immediately recognized.
His 1918 Mach’s Principle had been an attempt to translate this requirement on masses and
their interactions into field theoretic terms, but he soon seemed to lose enthusiasm even for

% The same point is made less forcefully in Einstein (1922, pp 17-18) and Einstein (19223, p 56),



General covariance and general relativity | 809

this enterprise. The difficulty was that the 1918 principle required that the metric field g,, be
determined by the masses of bodies as represented by the stress-energy tensor T, However
this gave a primary determining function to a quantity, T,,, which Einstein (1949, p71)
reported he had always felt was ‘a formal condensation of all things whose comprehension
in the sense of a field theory is still problematic’ and one that was ‘merely a makeshift’.
Einstein gave a final synopsis of Mach’s principle int a letter of February 2, 1954 to Felix
Pirani in the year prior to his death. Citing the above difficulty with the stress-energy tensor
and the fact that this tensor presumes the metric, he labeled his 1918 version of Mach’s
principle ‘a ticklish affair’ and concluded ‘In my opinion we ought not to speak about
Mach’s principle any more.t '

3.9. Einstein's causal objection to absolutes

When FEinstein disowned the relativity of inertia and Mach’s principle, he actually disowned
somewhat less than it first seemed. Both these principles were introduced to solve a problem
in earlier theories of space and time: these theories were defective in the way they used
inertial systems as causes. Einstein sti]l clearly maintained that the problem was serious and
that his general theory of relativity had solved it. However he-had originally thought the
solution was best expressed in terms inspired by his reading of Mach; that s, as a
generalized relativity of the motion of bodies. As he put it in Einstein (1913, p 1260)
To talk of the motion and therefore also acceleration of a body A in itself has no
meaning. One can only speak of the motion or acceleration of a body A relative to other
bodies B, C etc. What holds in kinematic relation for acceleration ought also to hold for
the inertial resistance, with which bodies oppose acceleration . . .
He was led away from this Machian characterization of the solution by his work on Mach’s
principle and the cosmological problem, as well as his preference for field rather than body
as a primitive notion, We shall see that his mature characterization of the solution was that
general relativity allowed space and time to be mutable. They no longer just acted causally,
they could also be acted upon and, in this sense, had lost their absolute character. In
Einstein’s mature view, it is this special cansal property that distinguishes general relativity
from earlier theories and possibly even justifies the name ‘general relativity’, in so far as it is
the field theoretic translation of Einstein’s original notion of the generalized relativity of the
motion of bodies. :

In the early years of Einstein’s theory, the causal defect was located most prominently in
the mere fact of the older theories’ use of an inertial reference system as a cause, Thus in
Einstein’s 1916 review article, he sought to account for the centrifugal bulges in a rotating
fluid body (see section 3.4 above). To say that the body bulges because it rotated with
respect to an inertial frame of reference is to iniroduce a ‘merely factitious cause, and not a
thing that can be observed (1916, p 113)". This same example is treated similarly in Einstein
(1914a, pp344-6). Einstein (1917a) makes clear the sort of cause that he would find
acceptable in his popular exposition of relativity. In ch XXI he asks for the reason for the
preferred status of inertial systems. He draws an analogy with two pans of water on a gas
range. One is boiling; one is not. The difference, Einstein insists, only becomes satisfactorily
explained when we notice the bluish flame under the boiling pan and none under the other.

Einstein soon came to stress a different aspect of these earlier theories as causaily
defective. He identified this aspect with their absolute character. In his Meaning of Relativity
(1922a, p 55) he wrote in parody of Newton's Latin

§ Translation from Torretti (1983, p 202) with *dem Mach’schen Prinzip® rendered as “Mach’s principle’.
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. . . from the standpeint of the special theory of relativity we must say, continuum spatii
et temporis est absolutum. In this latter statement absolutum means not only ‘physically
real’, but also ‘independent in its physical properties, having a physical effect, but not
itself influenced by physical conditions’,
and continued to explain that such absolutes are objectionable since (pp 55-6)
... it is contrary to the mode of thinking in science to conceive of a thing (the space-
time continuum) which acts itself, but which cannot be acted upon.
The text immediately turned to Mach’s ideas and, later (pp 99-108) to the weak field effects
compatible with the relativity of inertia and his 1917 field formulation of this idea in a
spatially closed cosmology. Around this same time, Einstein’s briefer summaries advertised
general relativity as eliminating the absoluteness of space and time (Einstein 1972, p260)t:
Space and time were thereby divested not of their reality but of their causal
absoluteness—i.e. affacting but not affected,

In these briefer summaries, Einstein was no longer insisting that the spacetime metric
was to be fully determined by the distribution of masses. Space and time had lost their
absoluteness simply because they were no longer immutable. By the 1950s, as Einstein
explained to Pirani, he no longer endorsed his 1918 Mach’s principle. However he did retain
the idea that the earlier theories were causally defective in admitting such absolutes (e.g.
Einstein 1950, p348) and, as he explained in the ‘completely revised” (p0) 1954 appendix to
his Meaning of Relativity (1922, pp 139-40), general relativity had resolved the problem as
its essential achievement:

It is the essential achievement of the general theory of relativity that it has freed physics
from the necessity of introducing the ‘inertial system’ {or inertial systems). . . . Thereby
[in earlier theories], space as such is assigned a role in the system of physics that
distinguishes it from all other elements of physical description. It plays a determining
role in all processes, without in its turn being influenced by them.
This view of the deficiency of earlier theories and general relativity’s achievement is not one
that grew in the wake of Einstein’s disenchantment with Mach’s principle. Rather, it was
present even in his earliest writings beneath the concerns for the relative motion of bodies
and the observability of causes. Einstein (1913, pp 1260-1) makes the essential point:
. . . in [theories current today], the inertial system is introduced; its state of motion, on
the one hand, is not conditioned by the states of observable objects (and therefore
caused by nothing accessible to perception) but, on the other hand, it is supposed to
determine the relations of material points.
A footnote earlier in the paragraph also tried to identify what was so unsatisfactory about
inertial systems
What is unsatisfactory about this is that it remains unexplained kow the inertial system
can be singled from other systems.
Thus we have here the enduring core of the cluster of ideas that led Einstein to the relativity
of inertia and Mach’s priociple: his concern that, through their introduction of inertial
systems, earlier theories allowed absolutes that acted but could not be acted upon.

Finally, we may ask whether the ‘essential achievement’ of general relativity, the
elimination of the absolute inertial systems, follows automatically from general covariance
in Einstein's view, so that general covariance would then truly amount to a generalized
principle of relativity in a form adapted to a field theory. It is hard to find a clear answer in
Einstein’s writings. His 1918 catalogue of three principles suggested that the requirement of
general covariance (‘{a) principle of relativity’) needed to be supplemented by something

t8ee also Einstein (1922, p 18, 1924, p88).
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additional (*(c) Mach’s principle’) to realize fuliy the general relativity of motion. Einstein’s
text suggests this without clearly stating it, for Einstein (1918, p241) introduces the three
principles with the remark that they are ‘in any case in no way independent of one another’.
Thus it is not clear whether these particular two of the three principles really are independent
or, if they are not, whether general covariance somehow leads to Mach’s principle. Perhaps
the best answer we will find is Einstein’s repeated insistence that general covariance, in
conjunction with a requirement of simplicity, leads us directly to general relativity (see, for
example, Einstein (1952, pp 152-3, 1949, pp 71-3; 1933, p274)) And it is this theory that
eliminates the absoluteness of the inertial system.

4. The favourable text-book assimilation of Einstein’s view: fragmentation and
mutation

Although Einstein had to struggle to gain acceptance of this theory in its earliest years
{(especially prior to 1916), by 1920 Einstein’s new theory was widely celebrated. The
extravagant publicity surrounding the success of Eddington’s 1919 eclipse expedition had
even launched Einstein into the popular press and public eye. During this period, the vast
majority of accounts of Einstein’s theory merely sought to recapitulate Einstein’s own
account. Thus began the tradition of writing in what I call the favourable assimilation of
Einstein’s view and which is to be reviewed in this section. I shall consider an account of the
foundations of general relativity favourably to Einstein’s view if it names some or all of
Einstein’s three principles of 1918 as foundations of the theory: principle of
relativity/covariance, principle of equivalence and Mach’s principle; it must include at least
the first principle.

Two things will become clear about the favourable reception of Einstein’s account of the
foundations of general relativity. First, it is very widespread and still a major tradition today.
Second, what is often offered as a recapitulation of Einstein's account—even if only
tacitly—can differ in very significant ways from what Einstein really said. Most
prominently, the relativity of inertia and Mach’s principle is only infrequently reported as
part of the foundations of general relativity in more technical expositions. This disfavour is
not a response to Einstein’s own later disillusionment with Mach’s principle. From the
earliest moments, the principle failed to find a place in the majority of accounts within more
technical expositions. Rather the favourable accounts rapidly stabilized, most commonty,
into locating the foundations of general relativity in the principle of equivalence and the
principle of general covariance, with the latter understood as a generalization of the
principle of relativity. Even here, these accounts have failed to remain faithful to Einstein’s
viewpoint. They almost exclusively employ an infinitesimal principle of equivalence, a
variant form that Einstein never endorsed and was quite different in outlook from Einstein’s
own form.

In order to gauge the magnitude and character of the favourable reception, this section
will review the favourable accounts of the foundations of general relativity as they have
appeared in the textbooks on general relativity. The review is also limited principally to
expositions that either provide a self-contained exposition of tensor calculus or sufficient
differential geometry for general relativity or presume such knowledge in the reader and that
proceed at least as far as a formulation of the gravitational field equations. We should note
also that the favourable reception extends beyond the realm of relativity theory. Aguirre and
Krause (1991, p 508) are prepared to label a mechanics ‘general relativistic’ merely because
itis generally covariant.

Jean Eisenstaedt (1986, 1989) has described the rising and falling fortunes of general
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relativity, After an initial period of great interest and activity in the late 19108 and early
1920s, the theory fell into decades of neglect because of many factors: a sense that the
theory had only slender confirmation, that its practical utility to physicists was small and that
the theory had been eclipsed by the developments in quantum theory. The 1960s saw a new
vigour in work on the theory, in part due to a renewed interest in empirical test of the theory
and to the exploitation of new, more sophisticated mathematical tools. In the following, the
favourable reception is divided into periods reflecting these shifts in intensity of work. First,
however, I will review the special problem of the principle of equivalence.

4.1, Einstein's principle of equivalence as a covariance principle and its later
misrepresentation

There are many instances of later accounts misrepresenting Einstein’s ideas. None is as
universal and complete as the later treatments of Einstein’s principle of equivalence. In his
Meaning of Relativity, Einstein gives a statement of the principle typical of all his writing. K
is an inertial system in special relativity and K’ a system of coordinates uniformly
accelerating with respect to K. Having noted that free masses in K" are accelerated *just as if
a gravitational field were present and K’ unaccelerated’, Einstein (1922a, p57-8) then
writes:,
... there is nothing to prevent our conceiving this gravitational field as real, that is, the
conception that K’ is ‘at rest’” and a gravitational field is present we can consider as
equivaient to the conception that only X is an ‘allowable’ system of co-ordinaies and no
gravitational field is present. The assumpiion of the complete physical equivalence of
the systems of coordinates, K and K’, we call the ‘principle of equivalence’; . . . fit]
signifies an extension of the principle of relativity to co-ordinate systems which are in
non-uniform motion relatively to each other. In fact, through this conception we arrive
at the unity of nature of inertia and gravitation.
Einstein, however, is nearly universally understood as urging a rather different principle,
which I shall call the ‘infinitesimal principle of equivalence’. A canonical formulation is
given in Pauli (1921, p 145):
For every infinitely small world region (i.e. a world region which is so small that the
space- and time-variation of gravity can be neglected in it) there always exists a
coordinate system K,(X |, X,. X», X,) in which gravitation has no influence either on the
motion of particles or any other physical process.
The key idea here is that in adopting a sufficiently small region of spacetime, an arbitrary
gravitational field becomes homogenous and can be transformed away by a suitable choice
of coordinate systern. This principle exists in many variant forms, Sometimes it is
strengthened to require that when the gravitational field is transformed away, we recover
special relativity locally (for example. Misner et al., 1973, p 386). With somewhat different
qualifications, Pauli’s infinitesimal principle comresponds to Dicke’s ‘strong equivalence
principle (Roll et al., 1964, p444). Dicke’s ‘weak equivalence principle’, however, requires
only the uniqueness of gravitational acceleration, which amounts to requiring that the
trajectories of free fall of suitably idealized bodies are independent of their constitutions.
Unlike most other writers, Pauli (1921, pi45) acknowledged that his infinitesimal
version of the principle of equivalence differed from Einstein's, suggesting that, where
Einstein’s principle applied only to homogeneous gravitational fields, Pauli’s version was
for the *general case’. However the differences ran far deeper than Pauli allowed and pertain
to quite fundamental questions of the role of the principle of equivalence in general
relativity. These differences can be summarized in three essential aspects of the principle
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which remained fixed throughout Einstein’s writings on general relativity, from the earliest
moments in 1907, to his final years in the 1950s7:
# Einstein’s principle of equivalence was a covariance principle.

Special relativity required the complete physical equivalence of all inertial coordinate
systems; for Einstein, general relativity required the complete equivalence of all coordinate
systems. Einstein’s principle of equivalence required the complete equivalence of a set of
coordinate systems of intermediate size: inertial coordinate systems plus uniformly accelerated
coordinate systems. That is, the principle sanctioned the extension of the covariance of
special relativity beyond Lorentz covariance but not as far as general covariance. Thus, for
Einstein, the principle of equivalence was a relativity principle intermediate in range
between the principle of relativity of special relativity and of general relativity.

The point is so important for our concerns here that it is helpful to have it in Einstein’s
own words of (1950, p 347):

This is the gist of the principle of equivalence: In order to account for the equality of
inert and gravitational mass within the theory it is necessary to admit non-linear
transformations of the four coordinates. That is, the group of Lorentz transformations
and hence the set of ‘permissible’ coordinate systems has to be extended.
Or, more succinetly, in an article devoted to explicating precisely what he intended with his
principle of equivalence, Einstein {1916a, p641) wrote in emphasized text:
The requirement of general covariance of equations embraces that of the principle of
equivalence as a quite special case.

The function of the alternative, infinitesimal principle of equivalence is to stipulate that a
spacetime of general relativity with an arbitrary gravitational field is in some sense locally—
that is, in infinitesimal regions—like the spacetime of special relativity. (Einstein objected in
correspondence with Schlick to the latter’s use of this idea, pointing out to Schlick that the
sense in which special relativity holds locally must be so weak that accelerated and
unaccelerated particles cannot be distinguished. For details, see Norton (1985, section 9).)
As a covariance principle, Einstein’s version of the principle served no such function.
Therefore it was invariably restricted in the following related ways:

& Einstein’s principle of equivalence was applied only in special relativity to what we

now would call Minkowski spacetimes.
That is, the inertial coordinate system K of Einstein’s formulation of the principle is not
some kind of free fall coordinate system of general relativity. It is simply an inertial
coordinate system of special relativity. Thus the coordinate systems K and K" are both
coordinate systems of a Minkowski spacetime. Because of this, we would now be inclined to
picture the entire principle as operating within special relativity. This seems not to have been
Einstein’s view. He seems to have regarded special relativity supplemented with the
principle of equivalence as having more physical content than special relativity alone. The
supplemented theory had a wider covariance and it deait with a new phenomenon,
homogeneous gravitational fields.

® Einstein’s principle of equivalence was not a prescription for transforming away

arbitrary gravitational fields; it was just a recipe for creating a special type of

gravitational field.
Einstein’s principle of equivalence gave a recipe for creating a homogenecus gravitational
field by transforming to a uniformly accelerated coordinate system. The infinitesimal
principle gives a recipe for transforming away an arbitrary gravitational field: one first

t The case for these differences between Einstein’s version and the common infinitesimai version of the principle
is laid out in some detail in Norton (1985).
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homogenizes it by considering an infinitesimal region of spacetime and then transforms it
away by the reverse transformation of Einstein’s principle. Einstein repeatedly insisted that
his principle of equivalence did not allow one to transform away an arbitrary gravitational
field, but only gravitational fields of a guite special type, those produced by acceleration of
the coordinate system. (Einstein devotes a paragraph of near page length to this point
(19162, pp 640-1). See Norton (1985, section 2).)F

4.2. The early years: 1916-1930

Einstein had named Mach’s principle as one of the three fundamental principles of general
relativity. However, the principle or its precursor, the relativity of inertia, has played the
least role in accounts of the foundations of general relativity. Typically the principle does
not appear in the discussion of the foundations of the theory, If it appears in an exposition, it
arises most commonly later in the context of the cosmological problem and not always in a
favourable light, even in expositions otherwise well disposed to Einstein’s viewpoint.

This pattern was set at the earliest moments. In 1916 and 1917 the Dutch astronomer de
Sitter took up the task of allowing the Germans and British to exchange more than artillery
shells. He presented a three part report to the British Royal Astronomical Society on
Einstein’s new theory of gravitation (de Sitter 1916). Whilst otherwise favourable to
Einstein, its second part concluded with criticism of Einstein’s notion of the relativity of
inertia. Development of this criticism continued in the third part. Einstein’s 1917 work on
the cosmological problem and his 1918 formulation of Mach’s principle did not improve the
reception of his ideas on the origin of inertia. Laue’s (1921, pp 179-80) early general
relativity text mentions them only in passing as incompatible with Minkowskian boundary
conditions at spatial infinity. He finds the whole question physically too unclarified to
warrant further discussion. Pauli (1921) does give the question more coverage, but only in a
later, closing section (section 62). Einstein’s ideas on the relativity of inertia figured more
prominently in more popular expositions of general relativity. For example Freundlich
(1919, section 4), Thirring (1922, section XV), Bom (1924, ch VII, section 1) and Kopff
(1923, pp 1-5, 191-5) treat the relativity of inertia. Indeed, the more popular the text, the
more likely we are to find these ideas used to explain the foundations of general relativity.

The literature on Mach’s principle has become enormous and is flourishing today.
However its concerns have come to diverge from the concerns of this article, generai
covariance and the foundations of general relativity. The interested reader is referred to
Reinhart (1973) and Torretti (1983, pp 194-202) for further discussion.

What is most important for our concerns is that the majority of expositions of relativity
theory from this period emphasize the general covariance of general relativity as especially
important. Of course this emphasis was justified if only for the novelty of general
covariance. However the achievement of general covariance was also routinely assumed to
ensure automatic satisfaction of a generalized principle of relativity. In some expositions this
assumption was discussed in detail; in others it was merely suggested by labelling the
requirement of general covariance, a principle of relativity. Accounts that emphasize general
covariance and presume an automatic connection to a generalized principle of relativity
include: De Sitter (1916, pp700-02), Freundlich (119, p28), Carmichael (1920, ch VII),

t Einstein himself never employed the trick of homogenizing an arbitrary gravitationa)l field by considering
infinitesimal regions of spacetime. In 1912, when his principle still dealt only with homogenous gravitational fields,
he was forced to restrict it to infinitesimal regions of space to overcome certain technical difficulties with his theory
of static gravitational fields. When they were overcome, the restriction disappeared. See Norton (1983, section 4.3).
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Page (1920, p387), Schlick (1920, pp 52-3), Cunningham (1921, ch VII), De Donder (1921,
pp 1014}, Lave (1921, p21), Pauli (1921, section 52), Weyl (1921, section 27), Becquerel
(1922), Kottler (1922, pp 188-9), Thirring (1922, p 151), Kopff (1923), Born (1924, ch VII),
Reichenbach (1924, p 141), Levi-Civita (1926, p294), Levinson and Zeisler (1929, p70).
Some of these accounts explicitly invoke Einstein’s point coincidence argument to establish
general covariance. They include: De Sitter (1916, p700). Carmichael (1920, ch VII),
Schlick (1920, pp 52-3).

Many of these expositions also place great emphasis on the principle of equivalence. A
few from the very earliest years state the principle in exactly Einstein’s fashion: Thirring
(1922, p 109), Kopff (1923, p110) (also Carmichael (1920, p 80), although critically). Others
employ the now familiar infinitesimal principle of equivalence, other variant formulations of
the principles or give vague characterizations of the principle that defy clear classification.
The following at least name a principle of equivalence in the foundations of general
relativity: Freundlich (1919, section 5), Laue (1921, pp18-21), Panli (1921, p145),
Becquerel (1922, section 55), Kottler (1922, p 192), Born (1924, ch VII}, Reichenbach
(1924, pp 141-2).

4.3. The lean years: 19301960

During these three lean decades for general relativity, the volume of publication fell to the
merest frickle. Within that trickle, Einstein’s view of general covariance remained a
dominant theme. Accounts of general relativity which emphasized the general covariance of
the theory and either explicitly or tacitly took this general covariance to extend the principle
of relativity include:; Bergmann (1942, ch X), Schrédinger (1950, p2), Moller (1952, ch
VII), Jordan (1955, section 14), Kratzer (1956, section 15), Bargmann (1957, p162),
Tonnelat (1959, ch XI). All but Schrdinger and Jordan introduce a principle of equivalence
by name.

Moller (1952, pp219-20) introduces general relativity with a discussion of the relativity
of inertia. Tolman {1934, p3 and ch VI) is exceptional in offering Einstein’s three principles
of 1918—the principle of covariance, the principle of equivalence and Mach’s principle—as
the foundations of general relativity. However his version of the principle of equivalence is
the infinitesimal version never endorsed by Einstein and he accepts Kretschmann’s view of
the physical vacuity of the principle of covariance, while insisting with Einstein on its
heuristic value.

4.4. Rebirth: 1960-1980

The renaissance of general relativity in the 1960s brought clearer divisions in the literature
on the foundations of general relativity. As we shall see below, one increasingly important
strand either simply ignored Einstein’s view of the foundations of the theory or became
quite strident in its denunciation of Einstein’s view. Another sought to repair Einstein’s
account in the face of such assaults, A major part of the literature, however, continued in
simple assent with Einstein’s view, only making smaller adjustment according to taste.

Most commonly, accounts in this last category found both an infinitesimal principle of
equivalence and the principle of general covariance in the foundations of general relativity.
Such accounts include: Weber (1961, sections 1.3, 2.4), Bergmann (1961, 1962), Lawden
(1962, ch 6), Rosser {1964, sections 12.1, 12.2), McVittie (1965, ch 4), Yilmaz (1965, ch 15,
16), Skinner (1969, ch 3), Davis (1970, 5.1.2), Prasanna (1971, preface, ch 1), Mavridas
{1973, sections [I1.4, [11.5), Papapetrou (1974, Introduction, section 18), Pathria (1974, ch 6,
7), Bowler (1976, ch 9), Adler, Bazin and Schiffer (1977, p60 and section 5.1), Stephani
(1977, section 8.1), Treder et al. (1980, Introduction). Most of these accounts expiicitly
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connected general covariance with a generalized principle of relativity, either in name or by
explicit discussion. These include: Bergmann (1961, 1962), Lawden (1962, ch 6), Rosser
{1964, section 12.1), Yilmaz (1963, ch 15), Prasanna (1971), Mavridés (1973, section H1.4),
Papapetrou (1974, Introduction), Pathria (1974, ch 6), Bowler (1976, ch 9), Adler, Bazin and
Schiffer (1977, section 5.1), Stephani {1977, section 8.1}, Treder ef al. (1980, Introduction).
Skinner {1969, section 3.3.1) reported that the principle of general relativity required
something beyond the principle of covariance: ‘the laws of physics must determine the
geometry of space-time appropriate for a particular physical circumstance’., Two accounts
portrayed general covariance as a generalized principle of relativity but did not place the
principle of equivalence by name in the foundations of general relativity: Charon {1963,
Legon 8), Atwater (1974). Mach’s principle is mentioned by Lawden (1962, p 133).

Work on general relativity in this period also gave rise to a variant form of the principle
of general covariance. Weinberg (1972, pp 91-2) defined his principle of general covariance
as:

It states that a physical equation holds in a general gravitational field, if two conditions
are met:
1. The equation holds in the absence of gravitation; that is, it agrees with the laws
of special relativity when the metric field g, equals the Minkowski tensor n,, and when
the affine connection I'§, vanishes.
2. The equation is generally covariant; that is, it preserves its form under 2 general
coordinate transformation x — x'.
The novelty, of course, is that the second condition alone is usually taken as the principle of
general covariance, whereas the first looks like of form of the infinitesimal principle of
equivalence. Indeed Weinberg presents the principle as an alternate form of the infinitesimal
principle of equivalence and shows how it follows from the principle of equivalence, He
insists that it is not a relativity principle like the Lorentz invariance of special relativity.
Bose (1980, ch 1) locates the foundations of general relativity in a tocal principle of
equivalence and its re-expression in a two condition principle of general covariance
equivalent to Weinberg's. Similarly Foster and Nightingale (1979, ppxi—xiii) locate the
foundations of general relativity in an infinitesimal principle of equivalence and 2 version of
the principle of general covariance essentially the same as Weinberg’s. They strengthen
Weinberg's condition 2. to read

[2'.] the equation is a tensor equation (i.e. it preserves its form under general coordinate

transformation).
The strengthening lies in the fact that not only tensor equations are covariant under arbitrary
coordinate transformations. See also Treder et al (1980).

4.5. Recent years since 1980

The years since 1980 have seen no resolution of the disagreements over the foundations of
general relativity. As we shall see later, the literatures that reject Einstein's account or seek
major repairs continue to flourish. At the same time, a significant literature retains a
viewpiont almost as close to Einstein’s as the favourable reception of the 1920s. Broadly, in
this latter literature, the foundations of general relativity are still located within an
infinitesimal principle of equivalence and a principle of general covariance.

Two accounts offer essentially Weinberg’s view. Both Straumann (1984, ch 2) and
Kenyon (1990, ch 1) base general relativity on an infinitesimal principle of equivalence,
{Kenyon discusses both Dicke’s weak and strong version, with the latter amounting to an
infinitesimal principle.) Kenyon (1990, section 6.4) gives a formulation of the principle of
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general covariance which is essentially Weinberg’s as strengthened by Foster and
Nightingale (see above). Without explicitly introducing the name, principle of general
covariance, Straumann (1984, section 1.3) provides two requirements which are ‘a
mathematical formulation of the principle of equivalence’. The first is actually the principle
of minimat coupling, a version of the principle of equivalence {Trantman 1965, Anderson
1967, p337, Anderson and Gautreau 1969). The second requirement is essentially
Weinberg’s version of the principle of general covariance.

De Felice and Clarke (1990, pp 7-13) locate the foundations of general relativity in the
familiar infinitesimal principle of equivalence and principle of general covariance, Carmeli
(1982, section 1.4, 1.5} locates the foundation of the theory in these same two principles. He
does, however, delineate three versions of the principle of general covartance which, he
notes, are ‘not quite equivalent’,

1. All coordinate systems are equally good for stating the laws of physics. Hence all
coordinate systems should be treated on the same footing, t00.
2. The equations that describe the laws of physics should have tensorial forms and
be expressed in a four-dimensional Riemannian spacetime.
3. The equations describing the laws of physics should have the same form in all
coordinate systems.
Ellis and Williams (1988, section 5.2) locate the foundations of the theory in an infinitesimal
principle of equivalence and what they call an extension of the principle of relativity: ‘the
laws of physics are the same for all observers, no maiter what their state of motion’. The
term principle of general covariance is not mentioned. Sexl and Urbantke (1983) treat all
three of Einstein’s principles of 1918. The principle of equivalence (section !.2)} is given
most emphasis, although in its infinitesimal form. Mach’s principle and the principle of
general covariance are mentioned only apparently for historical interest (section 4.5), with
the latter offered as Einstein’s attempt to satisfy the former.

Finally, d’fverno (1992, ch 9), in a chapter entitled ‘The Principles of General
Relativity’, acknowledges that these principles have been a source of much controversy.
However, as principles fundamental to general relativity or at least serious candidates for
them, he presents Einstein’s three principles of 1918, the Anderson and Gautreau principle
of minimal coupling and a principle of correspondence (with Newtonian gravitation theory
and special relativity in the limiting cases). The infinitesimal principle of equivalence is
presented as the ‘key principle’. Mach’s principle is given three formulations, all closely
connected with Einstein’s cosmological ideas of 1917 and 1918. d’Inverno finds the “full
import’ of the principle of general relativity (“All observers are equivalent’) contained in the
principle of general covariance (‘the equations of physics should have tensorial form’). And,
the hole argument, which figured so prominently in Einstein’s early thinking about general
covariance, is discussed in section 13.6. To my knowledge, this is the first time the hole
argument has been discussed in a general relativity text in over half a century. The hole
arpument has also recently reappeared in the physics journal literature. See, for example,
Rovelli (1991).

5. Is general covariance physically vacuous?

5.1. Kretschmann’s objection: the point-coincidence argument turned against Einstein

In the tradition that is skeptical of Einstein’s account of the foundations of general relativity,
the best known of all objections is due to Kretschmann (1917, pp575-6). He began his
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paper with the remarks?.
The forms in which different authors have expressed the postulate of the
Lorentz-Einstein theory of relativity—and especially the forms in which Einstein has
recently expressed his postulate of general relativity—admit the following interpretation
(in the case of Einstein, it is required explicitly): A system of physical laws satisfies a
relativity postulate if the equations by means of which it is represented are covariant
with respect to the group of spatio-temnporal coordinate transformations associated with
that postulate. If one accepts this interpretation and recalls that, in the final analysis, all
physical observations consist in the determination of purely topelogical relations
(‘coincidences’) between objects of spatio-temporal perception, from which it follows
that no coordinate system is privileged by these observations, then one is forced to the
following conclusion: By means of a purely mathematical reformulation of the
equations representing the theory, and with, at most, mathematical complications
connected with that reformulation, any physical theory can be brought into agreement
with any, arbitrary relativity postulate, even the most general one, and this without
modifying any of its content that can be tested by observation.

Kretschmann’s point is that there must be something more to a relativity principle than

covariance. For he argues that we can take any theory and reformulate it so that it is

covariant under any group of transformations we pick; the problem is not physical, it is

merely a challenge to our mathematical ingenuity. In brief, general covariance is physically

vacuous.

This, at least, is how Kretschmann's point has been understood almost universaily and it
is almost what he actually argued. His real objection was a little more subtle. It depended on
a non-trivial assumption that virtually all later commentators fail to report}

All physical observations consist in the determination of purely topological relations
(‘coincidences’) between cbjects and spatio-temporal perception.
This assumption is clearly recognizable to us as the basic premise of Einstein’s own point
coincidence argument (see section 3.5 above). There can be no question of the importance of
this assumption to Kretschmann's point, even though it is buried in the grammar of his
statement. A little later, he repeats it (p 579).
. . . according to the investigations of Ricci and Levi-Civita {1901] it may scarcely be
doubted that one can bring any physical system of equations into a generally covariant
form without alteration of its observationally testable content. This is obvious from the
beginning, if one once again recalls that sirictly only purely topological facts of natural
phenomena or, according to Einstein, coincides are observable.
Thus, allowing that Kretschmann’s mention of ‘topological facts’ alludes to his own version
of the point-coincidence argument (see Howard and Norton, forthcoming), we find that
Kretschmann’s real objection is this: if we accept the point coincidence argument, then any
theory can be given a formulation of arbitrary covariance.

This is a most striking reversal of fortunes. The point-coincidence argument had been
Einstein's salvation from the hole argument and permitted his retum to general covariance.
However, in advocating the point-coincidence argument, Einstein had in effect already
agreed to virtually everything in Kretschmann's objection. To establish the admissibility of

1 have suppressed Kratschmann’s foototes in this passage to other literature. For further discussion see Norton
{1922, section 8). See also Howard and Norton (forthcoming) for speculation that these footnotes direct readers to
Einstein’s unacknowledged source for his point coincidence argument, Kretschmana (1915)!

{ I cannot resist speculating that this misreading is at least in part due to the bewildering complexity of his German
prose, which has been disentangled considerably in the above translation. This translation also slightly corrects the
translation of Norton (1992, section 8.1).
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general covariance for his own theory, Einstein had allowed that the physical content of 2
theory resides solely in the observable coincidences it sanctions. Since these coincidences
are preserved under arbitrary coordinate transformation, the physical content of a theory is
unaffected by the adoption of a generally covariant formulation. What Kretschmann noticed
was that this argument depended on nothing peculiar to general relativity, so it conld equally
be used to establish the admissibility of a generally covariant formulation of any theary.
Again it did not depend on the fact that the covarance group was the general group, so the
same argument established the admissibility of formulations of any theory of arbitrary
covariance, '

5.2. Einstein’s reply

Einstein (1918) responded to Kretschmann’s objection. Having laid out the three principles
vpon which he believed general relativity to be based, he tumned to Kretschmann’s objection,
which he restated correctly with its now lost premise {(p 242):
Concernign (a) [principle of relativity], Herr Kretschmann observes that a principle of
relativity, formulated in this way, makes no assertions over physical reality, i.e. over the
content of the laws of nature; rather, it is only a requirement on their mathematical
Jormulation. That is, since all physical experience relates only to coincidences, it must
always be possible to represent experiences of the lawful connections of these
coincidences by generally covariant equations. Therefore he believes it necessary to
connect another meaning with the requirement of relativity.
Einstein had little choice but to accept Kretschmann’s point. The alternative was to renounce
the point coincidence argument that he had advertised so widely. However he tried to
salvage something of the special comnection between general covariance and general
relativity in the heuristics of theory choice. He continued:
[ believe Herr Kretschmann’s argument t0 be correct, but the innovation proposed by
him not to be commendable. That is, if it is correct that one can bring any empirical law
into generally covariant form, the principle (a) still possesses a significant heuristic
force, which has already proved itself brilliantly in the problem of gravitation and rests
on the following. Of two theoretical systems compatible with experience, the one is to
be preferred that is the simpler and more transparent from the standpoint of the absolute
differential calculus. Let one bring Newtonian gravitational mechanics into the form of
absolutely covariant equations (four-dimensional) and one will certainly be convinced
that principle (a) excludes this theory, not theoreticaily, but practically!
Thus Einstein seems to accept Kretschmann’s objection, begrudgingly, with a qualification
on the role of general covariance in theory choice and with the reservation that general
covariance in all theories would be impractical. Indeed it is ironic that the version of the
principle of relativity given in this same paper by Einstein (quoted in section 3.7 above)
essentially just restates Kretschmann’s pointt.

Whatever concession Einstein made to Kretschmann seems to have had a lesser effect on
Einstein’s later writings. He does occasionally allow that general covariance is ‘more
characteristic of the mathematical form of this theory {of general relativity] than its physical
content® (1924, p90-1). Or that the ‘requirement [of general covariance] (combined with

+ The only difference is that Kretschmann allows the point eoincidence argument to justify a formulation of any
convariance, whereas Einstein sees it forcing a generally covariant formulation as the ‘unigque, natural expression’
of the theory. Presumably this is because a generally covariant formulation adds the least to the catalog of
coincidences. See Einstein to Besso, January 3, 1916, as quoted in Norton (1992, p 298},
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thai of the greatest possible logical simplicity of the Jaws) limits the natural laws concemed
incomparably more strongly than the special principle of relativity’ (1952, p153). The
heuristic role of simpiicity in connection with general covariance was emphasized in his
Autobiographical Notes (1949, p65). But this emphasis seemed to be forgotten by p73,
where he recalled: ‘We have already given physical reasons for the fact that in physics
invariance under the wider [general] group has to be required’. (Einstein’s emphasis) More
commonly, however, the qualification over simplicity is simply not mentioned. It does not
appear at the relevant point in his text, Einstein (1922a, p61). Again, Einstein (1950, p 352)
ingists, without explicit mention of simplicity considerations that

. . . the principle of general relativity imposes exceedingly strong restrictions on the

theoretical possibilities. Without this restrictive principle it would be practically

impossible for anybody to hit on the gravitational equations . . .

How can we reconcile Einstein’s concession to Kretschmann and his continuing
emphasis on the importance of general covariance? The answer may well lie in Einstein’s
famous proclamation of his 1933 Herbert Spencer lecture, which revealed a metaphysics not
present explicitly in Einstein’s writings of 1918:

Our experience hitherto justifies us in believing that nature is the realization of the

simplest conceivable mathematical ideas. I am convinced that we can discover by

means of purely mathematical constructions the concepts and laws connecting them

with each other, which fumish the key to the understanding of natural phenomena . . .

the creative principle resides in mathematics.
When Einstein replied to Kretschmann that one ought to pick of two empirically viable
systems the simpler and more transparent within the absolute differential calculus, he may
have been urging something more than merely a matter of practical convenience. It is not
just that the simpler is more convenient, so that generally covariant formulations of
Newtonian gravitational mechanics are (he believed) practical impossibilities. We can
recognize the truth of a theory in its mathematical simplicity. And instead of being
physically vacuous, general covariance is the right language in which to seek this simplicity.
Later writers who endorsed Einstein’s 1918 reply to Kretschmann may well have affirmed a
more extreme metaphysics than they realized!

5.3, Generally covariant formulations of Newtonian mechanics

In 1918 Einstein sought to protect the special connection between general covariance and his
general theory of relativity by issuing a challenge: find a generally covariant formulation of
Newtonian gravitational mechanics. He had confidently predicted that should anyone try the
result would be unworkable practically.

Einstein was shortly proved wrong., Cartan (1923) and Friedrichs (1927) found
serviceable, generally covariant formulations of Newtonian gravitation theory. Einstein was
right in so far as these generally covariant formulations were more complex than general
relativity, However Einstein was quite wrong in predicting that such formulations would not
be usable practically. Although they are not as atiractive a host for routine calculation as the
far simpler Galilean covariant formulation, they are of the same order of complexity as other
theories routinely examined in physics. However there are certain circumstances in which
their use is preferable if not mandatory. In an article comparing Newtonian and relativistic
theories of gravitation, Trautman (1966, p413) pointed out such comparison can really only
be effected reliably if the two theories under comparison are formulated in the same
mathematical language. Otherwise it is hard to ascertain which differences are physical and
which are accidents of the differences in formulation. Since general relativity is known only
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in a generally covariant formulation, this means we ought to compare it only with the
generally covariant formulation of Newtonian theory. (For similar sentiments, see also
Havas (1964, p939) and Malament (1986, p 181).)

For this reason, a few expositions of relativity include a treatment of Newtonian
spacetime theory in a generally covariant formulation, although the practice is not common.
See for example Trautman (1964, ch 5) and Misner et al (1973, ch 12). In the philosophy
space and time literature, however, the use of the general covariant formulation of
Newtonian theory is becoming standard, even at the introductory level, see Earman and
Friedman (1973), Earman (1974, pp 276-7), Friedman (1983, ch III}, Malament (1986) and
Norton (1992a).

Although both Cartan and Friedrichs were very much concerned with the relationship
between their work and Einstein’s general theory of relativity, it is striking that neither made
the obvious point that their work had seriously weakened Einstein’s 1918 reply to
Kretschmann and raised very serious doubts over Einstein's claim to have generalized the
principle of relativity to accelerationt. It is only later that this obvious peoint about generally
covariant formulations of Newionian theory is made: they provide an instantiation of
Kretschmann’s claim that any theory can be made generally covariant. See Havas (1964, p
939) and Misner et af (1973, p302).

54. Automatic general covariance: coordinate free geometric formulation

It did not need the labours of Cartan and Friedrichs to show that theories other than general
relativity admitted generally covariant formulations. In a sense this possibility had been
known for a long time. As Painlevé pointed out as early as 1921 in his discussion of general
relativity (1921, p877), Lagrangian mechanics has always been invariant under arbitrary
spatial transformation. Again, the moment Einstein applied the absolute differential calculus
of Ricci and Levi-Civita to relativity theory in 1913, it was obvious that special relativity
could be given generally covariant formulation. In this form, special retativity is simply the
theory of a spacetime with line element (4), where g,,, is symmetric with Lorentz signature
and whose Riemann—Christoffel curvature tensor vanishes. That Einstein never embraced
this obvious possibility suggests that his understanding of general covariance was a little
more complex than the simple one supposed in Kretschmann’s objectiont. Perhaps for this
reason or perhaps just for its simplicity, the Lorentz covariant formulation of special
relativity remains popular today. The possibility of formulating special relativity in arbitrary
coordinates, however, was explicitly recognized in the literature quite early (see for example
Kretschmann (1917, p579), De Donder (1925, ch I), Fock {1959, ch IV, p350).

A number of commentators have observed that Ricci and Levi-Civita’s calcuius
vindicates Kretschmann’s objection in the sense that it provides the necessary mathematical
apparatus for finding generally covariance formulation of ‘practically any assumed law’
{Whittaker 1951, vol II, p159) or ‘almost any law’ (North 1965, p58). This possibility has
not really been exploited widely in the relativity literature until the 1960s and 1970s with the
introduction of what Misner, Thorne and Wheeler (1973) label as the ‘geometric’ or

% Thus Hoffmann (1932, p 177) makes no mention of Cartan’s and Friedrich’s work when he remarks that the
general principle of relativity ‘holds in exactly the same words for the Newtonian theory [as for general relativity].
Rather the remark is supported merely be observing that the principle requires only that the mathematical
expression of a theory be independent of the coordinate system and does not restrict the theory's content.

% Indeed, as he made clear through his principle of equivalence, he held that an extension of the covariance of
special relativity beyond Lorentz covariance was a physical extension of the theory; his principle of equivalence
tells us that extending the covariance to uniformly accelerated coordinates now allows the theery to embrace the
phenomenon of gravitation in a special case.
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‘coordinate free’ approach. This approach is based on Ricei and Levi-Civita's calculus.
However, as was pointed out in section 3.2 above, the calculus was created quite explicitly
as an abstract calculus, as independent as possible from geometric notions. The calculus was
significantly altered to arrive at its modem geometric incarnation. It is now augmented with
geometric ideas from topology. The most significant augmentations are the modern ideas of
a differential manifold and of a geometric object of Veblen and Whitehead (1932), as well
as an abstract, algebraic approach to vectors, tensors and the like, attributed to Cartan
{Misner ez al 1973, ch 8 and 9).

These methods became standard in the 1960s and 1970s through such expositions of
relativity theory as Trautman (1965), Hawking and Ellis (1973), Misner, Thorne and
Wheeler {(1973), Sachs and Wu (1977). Following their methods, we would characterize
special relativity as a theory of Minkowski spacetimes. That is, the theory has models

(M’ gab>

where M is a connected, four-dimensional, differentiable manifold and g, is a symmetric,
second rank tensor of Lorentz signature which is flat, so that is satifies the equation

Rnbcd=0

where R?,, is the Riemann—Christoffel curvature tensor. There are obvious extensions if one
wishes to include further fields, such as a Maxwell field and charge flux. Similarly, general
relativity is the theory with models

<M » Save Tab)

where now g, need not be flat. T, is the second rank, symmetric stress-energy tensor, which
may be required to satisfy further ‘energy conditions’ (Hawking and Ellis, [973, section
4.3). The metric tensor g,, and T, are related by the gravitational field equation

Gab = KTab

where &, is the Einstein tensor and k a constant,
A typical geometric formulation of Newtonjan spacetime theory without absolute rest
(after Malament 1936) has models

M, 1, k. V)

The theory’s temporal metric is ¢,, is a smooth, non-vanishing co-vector field. The spatial
metric is second rank, symmetric, smooth non-vanishing contravariant tensor, 2%, which is
degenerate through its signature (0,1,1,1). V, is a smooth derivative operator, conferring
affine structure on the spacetime. These structures satisfy orthogonality and compatibility
conditions

Ret, = 0 Vi, = Vi =0

Many alternative, further conditions can be imposed upon this basic spacetime structure, for
example, according to whether we wish to add gravitation as a distinct scalar field and leave
the background spacetime flai or whether we wish to incorporate gravitation into the
spacetime as curvature after the model of general relativity (see Friedman 1983, Ch. III}.

These are all instances of a general, geometric formulation of spacetime theories. All
such theories have models
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where 0|, O,, . .., 0, are now just » geometric object fields subject to certain constraining
field equations. Virtually all theories of space and time now given serious consideration can
be formulated in this wayt. Such theories are automatically generally covariant in a sense that
actually follows from the definitions of the mathematical structures used in the formulation.

Following Standard definitions (e.g. Bishop and Goldberg 1968, ch 1, Hawking and Ellis
1973, ch 2, Torretti 1983, appendix), an n-dimensional differentiable manifold is a
connected, topological space with a set of coordinate charts, such that every point of the
topological space lies in the domain of a coordinate chart, which is a homeomorphism of an
open set of the space with R". The set of coordinate charts form a maximal or complete atlas
in so far as the atlas contains every coordinate chart that can be constructed in the usual way
from its coordinate charts by C*-transformations on R”, & is some positive integer or, most
commonly, infinity.

The next step is complicated by the vagueness of the deﬁmnon of *geometric object’. It
is given by Veblen and Whitehead (1932, p46) as “an invariant which is related to the space
{under consideration]” where an invariantis “anything which is unaltered by transformations
of coordinates’.¥ Thus for our purposes, it is prudent to assume that our geometric object
fields are like Anderson’s (1967, p 15) ‘local geometrical objects’. They are represented by a
finite set of numbers for each point in the manifold in each coordinate charts and which
transform under coordinate transformation in a way that respects transitivity, identity and
inversion. These numbers are the geometric object’s components in the coordinate charts.
Let us say that a geometric object field @ has components O, where the integer valued i, &,

. Tepresents a suitable set of index labels.

Combining, we now arrive at the sense in which any theory with models (6) is generally
covariant. If N is any ‘local coordinate neighbourhood’ of M, an open set of N that is the
domain of some coordinate chart X, then the restriction of the model (6) to N will be
represented by

(A! (Ol)rk7 trey (On)r'k...) (7)

where 4 is the range of x' and the remaining structures are the components of the objects
Q. ..., 0, in the coordinate chart x'. The theory is generally covariant in the sense that if
(7) is a coordinate representation of the model (6), then so is any representation derivable
from (7) by arbitrary C* transformation. This is sometimes known as ‘passive general
covariance’.

Put more briefly, once we have formulated a theory as having models of the form (6),
then, built into the definitions of the structures used is the possibility of representing the
models in coordinate systems that are related by the arbitrary transformations of
Einstein’s general covariance. (More precisely, they are related by C* transformations if
the manifold has a C* maximal atlas of coordinate charts.) These coordinate
representations behave exactly like the components of the generally covariant
formulation of theories used by Einstein and others in the early years of general

+ That is not to say that all intelligible theories of space and time must admit such a formulation. With a precise
definition of geometric object in hand, it is just a matter of mathematical patience to construct 2 spacetime theory
without such a formulation. One could begin, for example, by considering spacetimes whose event sets are very
large but finite and do not admit smooth coordinate charts.

+ The still vague ‘related to the space’ clavse is an attempt to avoid the problem that °. . . strictly speaking,
anything, such as a plant or an animal, which is unrelated to the space which we are talking about, is an invariant’,
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relativity.

It is to this automatic general covariance that Thirring (1979, p 166) referred when he

wrote
At the time of the birth of gravitation theory, the requirement of general covariance
provided some relief from the labor pains, but later on it was more often a source of
confusion. The concept of a manifold incorporates it automatically when the definition
uses eguivalence classes of atlases, and hence only chart independent statements are
regarded as meaningful. This program is by no means unique to gravitation theory—we
have also followed it in classical mechanics and electrodynamics. The big difference [in
general relativity] is that the metric ¢ on M is now not determined a prior.

While the use of these geometric methods has become standard in modern work on general

relativity, it should be noted that their dominance is not viewed universally with unmixed

joy. Weinberg (1972, preface) notes that an emphasis on these methods tends to obscure the

importance of the principle of equivalence within the theory and the natural connections to

quantum theory.

Finally, there is a notion that is loosely dual to the notion of passive general covariance
described above. It is the notion of ‘active general covariance’. The main mathematical
difference is that the active version employs maps on the manifold M of the models (6)
rather than transformations between coordinate charts. It can be defined as follows. Let 4 be
an arbitrary diffeomorphism? from M to M. Then a theory with models of the form (6} is
generally covariant in the active sense if every structure

M KO, B O, ..., HOY (6"
is a model whenever
M, 0,0, ...,0) (6)

is 2 model. In addition, it is routinely assumed that the structure {6) and (6"} represent the
same physical circumstance (e.g., in the case of general relativity, see Hawking and Ellis
1973, p536). This assumption has been called ‘Leibniz equivalence’ (Earman and Norton
1987).

Many theories are generally covariant in the active sense. A sufficient condition for
active general covariance is that the object fields O, O,, . . ., O, that can be included in
the models (6} are determined sclely by tensor equations. Thus general relativity is
covariant in this sense as are versions of special relativity and Newtontan spacetime
theory.

Passive general covariance invelves no physically contingent principles. Once models
of the form of {6) are selected, passive general covariance follows as a matter of
mathematical definition, no matter what the physical content of the theory. This is not the
case with active general covariance/Leibniz equivalence. Structures (6) and (6") are
mathematically independent structures. That they represent the same physical
circumstance is an assumption dependent on the properties of the physical circumstance
and our methods of coordinating the structures to it. The differences between such pairs of
structures as (6} and (6') are generally of a nature that make it uninteresting to suppose
anything other than Leibniz equivalence. However, it has been argued (Earman and

+ For example, if M is a C* manifold, then / might be any C* diffeomorphism in the sense of Hawking and Ellis
(1973, p 23).



General covariance and general relativity 825

Norton 1987, Norton 1988) that at Ieast one doctrine, spacetime substantivalism, must
deoy Leibniz equivalencet.

Since the assumption of active general covariance/Leibniz equivalence is a physical
assumption albeit weak, it does require physical arguments to support it. It turns out that
Einstein’s two celebrated arguments—ihe point-coincidence argument and the hole
argument~—can be put into modern forms that support active general covariance/Leibniz
equivalence. According to the modemized point-coincidence argument, the two
diffeomorphic models (6) and (6') would agree on all observables, for all that is observable
are coincidences that are preserved by the diffeomorphism. Therefore, if we deny Leibniz
equivalence, we would have to insist that the two diffeomorphic models represent distinct
physical circumstances, even though no possible observation could pick between them.

To construct the modernized hole argument, we consider some neighbourhood & of the
manifold M in models (6) and (6') and pick a diffeomorphism # that is the identity outside H
but comes smoothly to differ from it within A. Then the two diffeomorphic models will be
the same outside H but will come smoothly to differ within H. We now have a mathematical
indeterminism, in the sense that the fullest specification of the model outside A will fail to
determnine how it is to be extended into H according to the theory. This indeterminism is
usually dismissed as a purely mathematical gange freedom associated with active general
covariance. If we deny Leibniz equivalence and insist that the two models represent distinct
physical circumstnaces, then we convert this gauge freedom into a physical indeterminism.
The differences between the models within & must now represent a difference of physical
circurnstances. Which will obtain within H cannot be determined by the fullest specification
of the physical circumstances outside H, no matter how small & is in spatial and temporal
extension.

For further discussion of the differences between active and passive general covariance,
see Norton (1989, section 1, 2). '

5.5. Later responses to Kretschmann's objection

Kretschmann's objections is probably the single most frequentiy mentioned of all objections
to Einstein’s views on the foundations of general relativity. As I have already indicated
above, however, the objection which appears universally under Kretschmann’s name in the
literature is actually a considerably reduced version of what Kretschmann really said. It is
commonly reported as the assertion that general covariance is physically vacuous, since it is
merely a challenge to our mathematical ingenuity to bring any theory into generally
covariant form. For the purposes of this section, which reviews later resposnes to the
objection, I will take ‘Kretschmann’s objection’ to be this reduced version, for that is the
one that was responded to. Essentially no one other than Einstein seemed to realize that
Kretschmann had based his objection on a contingent assumption, the premise of the point-
coincidence argument. That assumption—that ‘the laws of nature are only assertions of
timespace coincidences’—is so non-trivial that Einstein actually made it the statement of his
1918 version of the principle of relativity.

In later literature, Kretschmann’s objection is commonly accepted. Instances in which
Kretschmann is cited by name include Havas (1964, p939), Rindler (1969, p 196), Earman

+ At present, however, there is no consensus in the philosophy of space and time literature over the connection
between spacetime substantivaltism, Leibniz equivalence and the hole argument, with virtually every conceivable
position being defended. See Bartels (1993), Butterfield (1987, 1988, 1989), Earman {1989, ch 9), Norton (1992a,
section 5.12), Cartwright and Hoefer (forthcoming, Maudlin (1988, 1990}, Rynasiewicz (forthcoming (a), (b)),
Stachel (forthcoming), Teller (forthcoming), Mundy (1992),
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(1974, p271), Friedman (1973, p55), Ray (1987, p70). Again Kretschmann's assertion of
the physical vacuity of general covariance may be made without naming Kretschmann.
Instances include: Silberstein (1922, pp22-3), Szekeres (1955, p212), Fock (1939, p370,
but see pxvi), Thirring (1979, p 166).

Einstein's 1918 response to Kretschmann also commands considerable assent. Einstein’s
response is encapsulated in the simple remark that general covariance is physically vacuous
alone; hawever it achieves physical content and significant heuristic force when it is
supplemented by the requirement that the faws of nature take simple forms. This viewpoint
is advocated by: Painlevé (1921, p877), Tolman (1934, pp 3, 166-67)t, Bridgman (1949, pp
33940, 345), Whittaker (1951, vol. II, p 159), Weber (1961, pp 15-16), Skinner (1969, p
314), Adler, Bazin and Schiffer (1977, p145). Ohanian (1976, pp253-4) states
Kretschmann’s objection and quotes Einstein’s 1918 reply at length, but he proceeds to
elucidate Einstein’s response in terms of the requirement of general invariance of the
absolute object tradition (see section 8 below). In his 1918 reply to Kretschmann, Einstein
urged the heuristic power of general covariance on the basis of his brilliant success with
general relativity, d’Inverno (1992, p 131) comes closest to this viewpoint when he sugpests
that we cannot ignore general covariance, even if it is vacuous, precisely because it was of
such importance to Einstein, rather than because of some as yet unrealized heuristic power.
But perhaps Misner er af (1973, section 12.5) capture Einstein's metaphysics most clearly
when they recapitulate Kretschmann's objection and retort

But another viewpoint is cogent. It constructs a powerful sieve in the form of a slightly
altered and slightly more nebulous principle: ‘MNature likes theories that are simple when
stated in coordinate-free, geometric language’. . . . According to this principle, Nature
must love general relativity, and it must hate Newtonian theory. Of all theories ever
conceived by physicists, general relativity has the simplest, most elegant geometric
foundations. . . . By contrast, what diabolically clever physicist would ever foist on man
a theory with such a complicated geometric foundation as Newtonian theory?

There are obvious problems with this view. To begin, it would seem that the view is
plainly false. The very simplest laws, which nature ought to love the most, are just
incompatible with experience. For example, it would be very simple if all of space, time and
the distribution of matter were homogenous; but they are not homogeneous. S¢ Nature’s
preferences can only be exercised among the more complicated dregs that remain after
experience has drained off the truly simple—Nature’s preference here is a rather contrived
one. Next, it is not clear by what rules we are to judge which of two theories is the simpler.
It cannot just be a matter of intuitive impressions, since then we have no way of adjudicating
disagreements. But even a basic count of the number of mathematical structures in a theory
is hard to do unambiguously:. Or we might judge that general covariance implemented by
tensor equations is simpler. Bondi {1959, p 108), however, endorses the view that general
covariance is physically vacuous and points out that conservation laws explicitly involving
gravitational energy — momentum in general relativity are not tensorial, but pseudo-
tensorial. Finally, it is not obvious why nature should be so kind ag to prefer laws that we
humans deem simpie. Thus North (1965, p58) muses that the virtue of simplicity for
covariant laws might merely be that they are more likely to be accepied by others,

My own view is that one should not look on simplicity as resulting from the emotional

t Tolman gives Kretschmann’s objection in its full form insofar as the possibility of geunerally covariant
formulation is taken to follow necessarily from the point-coincidence argument.

 Is the stress-cnergy tensor of pressureless dust, T = plU?, counted as one structure T%° or as two, the matter
density p and the four-velocity field U"?
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attachments of Nature, Rather it arises from the labours of theorists who have constructed
languages in which Nature’s choices appear simple. Whether Nature’s further choices will
continue to appear simple in some language seems to me an entirely contingent matter and
one takes a great risk elevating any language 1o the status of Nature’s own. As we explore
new domains of physical law, the one thing that is most clear is Nature’s surprising
versatility in frustrating our natural expectations. However this does not mean that there is
no value in simplicity. Apart from its pragmatic value, it has an epistemic value. The more
complicated a theory, the more likely we are to have introduced structures with no
correlations in reality; and the more complicated the theory, the harder it will be to test for
these physically irrelevant structures. We should prefer the simpler theory and seek
languages that make our theories simple, but not because Nature is simple. Rather, if we
restrict ourselves to simpler theories, we are more likely to know the truth when we find it.
There is a variation of Einstein’s response to Kretschmann that avoids the difficuit
questions over simplicity. Its overall effect is to direct us towards simpler theories by
restricting the structures we can employ in our formulations. It focuses on the process of
finding generally covariant formulations of arbitrary laws. If we restrict the number of
additional mathematical structures that can be introduced in this process, it may no longer be
possible to construct a generall covariant formulations for some laws, so that we once again
have an interesting division between generally covariant and other theories. Fock (1959, p
xvi) describes the idea in its most general form
.. . the requirement of covariance of equations has great heuristic value because it
limits the variety of possible forms of equations and thereby makes it easier to choose
the correct ones. However, one should stress that the equations can so be limited only
under the necessary condition that the nsumber of functions introduced is also limited; if
one permits the introduction of an arbitrary number of new auxiliary functions,
practically any equation can be given covariant form.
Trautman (1964, pp 122-3) iliustrates how unrestricted admission of new structures allows
construction of a generally covariant formulation of equations that clearly are coordinate
dependent. He considers the equation

A =0
the vanishing of the first component of a covector A, in some coordinate system. If «* is the

coordinate basis vector field associated with the x!' coordinate, then this law admits generally
covariant formulation as : '

wA, =0
The villain is the vector field #%, since (p 123) .

one should not introduce such additional structures in addition to those already present

in the axioms of the theory (e.g. the metric tensor, affine connection) and to those that

are necessary to describe the physical system.

If we now apply this thinking to general relativity, we arrive at a popular means of
injecting content into the general covariance of general relativity. In a Loreniz covariant
version of special relativity, the metrical propertics of spacetime are not represented
explicitly. In the fransition to the generally covariant, general theory of relativity, these
properties become explicit as a new structure, the metric tensor g,,. It is required that this
new structure represent some definite physical element of reality and not just be a
mathematical contrivance introduced to force through general covariance. The metric tensor
satisfies this requirement in so far as it represents the gravitational field as well as the
metrical properties of spacetime. Pauli {1921, p 130) describes this outcome

... Kretschmann . . . took the view that the postulate of general covariance does not
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make any assertions about the physical content of the physical laws, but only about their
mathematical formulation; and Einstein . . . entirely concurred with this view. The
generally covariant formulation of the physical laws acquires a physical content only
through the principle of equivalence, in consequence of which gravitation is described
solely by the g, and these latter are not given independently from matter, but are
themselves determined by field equations.
We find a similar view in Borel (1926, pp 172-3), Weyl (1921, pp226-7), Reichenbach
(1924, p141), Anderson (1967, 1971—see section 8.1 below), Graves (1971, p138) and
even as recently as Wald (1984, p 57) who formulates the principle of general covariance as

The principle of general covariance in this context [pre-relativistic and relativistic physics]

states that the metric of space is the only quantity pertaining to space that can appear in

the laws of physics. Specifically there are no preferred vector fields or preferred bases of
vector fields pertaining only to the structure of space which appear in any law of physics.
(He cautions that ‘the phrase ‘’pertaining fo space’’ does not have a precise meaning’.)

Both Pauli and Weyl stress a special aspect of the physical character of the metric in
their discussions: the metric is not given @ priori but is influenced or determined by the
matter distribution via invariant field equations. This would, of course, rule out generally
covariant formulations of special relativity. Weyl, in particular, sees this as the decisive
property of general relativity, ‘Only this fact justifies us in assigning the name *“general
theory of relativity” to our reasoning ...” he wrote (p226). Further, he emphasized the
result that ‘gravitation is a mode of expression of the metrical field” and that ‘this
assumption, rather than the postulate of general invariance, seems to the author to be the real
pivot of the general theory of relativity’ (pp226-7). We shall see that this theme will be
incorporated into the absolute object approach (see section 8 below).

A practical difficulty still remains. At the most fundamental level, the general principle
is clearly correct: we should deny admission to theories or structures that do not represent
elements of reality. The hope is that this restriction will preserve a unigue association
between general covariance and the general theory of relativity. However the principle may
well not be sufficiently precisely formulated to have any force in realistic examples.
Consider the structures dt,, # and V,, introduced in constructing a generally covariant
formulation of Newtonian theory. Are they admissible or not? Notice that Pauli and Weyl’s
emphsis on the dymamic character of the metric may not help us here. In versions of
Newtonian gravitation theory, the gravitational field is incorporated into the affine structure
V., which then has similar dynamical properties to the metric of general relativity.

The strategy so far has been to augment the requirement of general covariance with
additional requirements that make it non-trivial. It turns out that there is an extremely simple
way of augmenting the principle of general covariance so that we cannot render generally
covariant such theories as special relativity and versions of Newtonian theory that do not
incorporate the gravitational field into affine structure. In both these cases, the associated
generally covariant formulations have the property that they can be simplified by
reintroducing restricted coordinate systems. This is not so in the case of general relativity, so
we can pick between these cases by insisting that the generally covariant formulation not
admit simplification. Bergmann (1942, p159) explicitly incorporates this requirement into
the statement of the principle of general covariance:

The hypothesis that the geometry of physical space is represented best by a formalism

which is covariant with respect to general coordinate transformations, and that a
restriction to a less general group of transformations would not simplify that formalism,
is called the principle of general covariance.

At first this seems like a purely ad foc contrivance. However Bergmann’s proposal connects
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directly with the view that relativity principles are geometric symmetry principles, as we
shall see in section 6.2 below. Alternately, Bondi {1959, p108) calls the proposal into
question by recalling Foek’s use of harmonic coordinates to reduce the covariance of general
relativity (see section 9 below).

There have been other studies of the relationship between a theory and its generally
covariant reformulation and these stdies arrive at conclusions uncomfortable for
Kretschmann’s objection. Scheibe (1991, 1981) has considered the reilationship within a
more precise formal setting. He concludes that it is simply not obvious that any geomeitry of
festricted covariance can always be recast in a generally covagiant formulation. Post (1967)
concludes that the process of rendering theories generally covariant is far from automatic
triviality and must be treaied with some care. In the case of electromagnetic theory, he
shows how different ways of rendering the theory generally covariant actually lead to
distinct theories. Mashoon (1986} similarly emphasizes that, while any theory can be
vendered generally covariant, the manner in which it is done can have physical
consequences, in particular, in the measurements of accelerated observers.

Many authors are prepared to accept Kretschmann’s objection but feel that it has to be
qualified in significant ways if the true significance of general covariance is to be
appreciated. While accepting Kretschmann’s objection and that a requirement of general
covariance is not a relativity principle like that of special relativity, Weinberg (1972, pp92,
111-3) characterizes general covariance as akin to the gauge invariance of electromagnetic
fields. Accepting Kretschmann’s cbjection, Bunge (1967, section 3.1.3) observes that if
general covariance s understood as simply requiring form invariance of laws, then it does
become a purely mathematical requirement. Therefore he concludes that general covariance
is to be understood as a regulative rather than constitutive principle. Mavridés (1973, p66)
also accepts Kretschmann’s objection but sees the significance of the principle in absorption
of acceleration into the non-Euclidean structure of spacetime.

Zahar {1989, section 8.1) approaches the problem with a distinction introduced by
logicians between an object language and its metalanguage. In this context, the object
language contains the assertions about physics systems and the metalanguage contains
assertions about the object language. Whether a body of object language assertions, such as
Newtonian theory, is generally covariant is not itself an object language assertion. It belongs
{o the metalanguage, We may be able to find a generaily covariant formulation of Newtonian
theory which is logically equivalent to the original Galilean covariant version. However the
meta-level property of general covariance is not inherited by the original formulation, for
meta-level properties are not transmitted by logical equivalence, Therefore we cannot say
that Newtonian theory itself is generally covariant. Several other authors have approached
general covariance as a principle of operating a meta-level of Janguage. See Graves (1971,
pp 143-7). In particular, Térnebohm (1952, section 41) characierizes the principle of general
covariance as a closure rule operating on a meta-level in which one guantifies over
coordinate systems employed in statements of physical laws.

Finally, see Kuchar (1988) for a reincarnation of the issues raised by the debate of
Kretschmann’s objection in Hamilionian dynanucs and canonical quantization of generaily
covariant systems.

6. Is the requirement of general covariance a relativity principle?

6.1. Disanalogies with the principle of relativity of special relativity

In addition to accusations that his principle of general covariance is physically vacuous,
Einstein’s treatment of general covariance has been besieged by continuing complaints that
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the achievement of general covariance does not amount to a generalization of the principle
of relativity to acceleration. These complaints have come in many different forms. Some of
the earliest make the obvious point that such an extension of the principle of relativity to
accelerated motion seems to be flatly contradicted by the simplest observations. The
principle of relativity of inertial motion fits the experiences of a traveler in a train moving
uniformly on smooth tracks; nothing within the camiage reveals the train's motion,
However, the same is not so if the irain accelerates, as was pointed out acerbically by
Lenard (1921, p 15), whose involvement in the persecution of Einstein in Germany i the
1920s is well known:

Let the train in consideration undertake a distinct, non-uniform motion. ... If, as a

result, everything in the train is wrecked through the effects of inertia, while outside

everything remains undamaged, then, | believe, no sound mind would want to draw any
other conclusion than that the train had altered its motion with a jolt and not the
surroundings.

For Einstein’s reply to this exact passage, see Einstein (1918a).

It was only in the 19505 and 1960s that such long-standing worries took a prominent
though still disputed place in the mainstream literature. This dissident view drew strength
from such eminent relativists as Fock and Synge, who dared to proclaim what few would
admit: they just could not see how Einstein’s theory generalizes the principle of relativity—
and they even suspected that Einstein could not see it either. So Synge (1966, p7) wrote:

. .. the general theory of relativity. The name is repellent. Relativity? I have never been

able to understand what that word means in this connection. I used to think that this was

my fault, some flaw in my intelligence, but it is now apparent that nobody ever
understood it, probably not even Einstein himself. So let it go. What is before us is

Einstein’s theory of gravitation.

See also Synge (1964, p3) and (1960, pix), where he wrote
. .. the geometric way of looking at space-time comes directly from Minkowski. He
protested against the use of the word ‘relativity’ to describe a theory based on an
‘absolute’ (spacetime), and, had he lived to see the general theory of relativity, T believe
he would have repeated his protest in even stronger terms.

In similar vein, Fock (1959, pp xvi-xviii, 367-8, 375-06) treated a relativity principle as
stating a uniformity of spacetime. Thus special relativity admits a relativity principle
because of the uniformity of a Minkowski spacetime. The spacetimes of general relativity,
however, manifest this uniformity only in the infinitesimal, so that the naming of the theory
‘general relativity” or ‘general theory of relativity’ is simply incorrect, betraying Einstein’s
failure to understand his own theory. Fock continued (p 368)

The fact that the theory of gravitation, a theory of such amazing depth, beauty and

cogency, was not correctly understood by its author, should not surprise us. We should

also not be surprised at the gaps in logic, and even errors, which the author permiited
himseif when he derived the basic equations of the theory. In the history of physics we
have many examples in which the underiying significance of a fundamentally new
physical theory was realized not by its author but by somebody else and in which the
derivation of the basic equations proposed by the author proved to be logically

inconsisteat. It is sufficient to point to Maxwell’s theory of electromagnetic field . . .
Allowing in addition that the only admissible sense of ‘general relativity” is as the purely
formal property of general covariance, Fock (1974, p5) concluded

Thus we can sum up: general relativity can not be physical, and physical relativity

cannot be general,

These confessions were engagingly candid and their iconoclastic sentiments found receptive
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audiences. The heresy of disbelief in Einstein became respectable.

Fock and Synge are, of course, not alone in divorcing general covariance from a
generalization of the principle of relativity and announcing the failure of Einstein’s effort in
this regard. See for example Landau and Lifshitz (1951, p229), Da\us (1970, p219), Raine
and Heller (1981, p 135} and Bondi {1979, p 129),

6.2, Relativity principles as symmetry principles

If covariance principles are not relativity principles, then what are relativity principles? New
answers to this question have come repeatedly within the tradition that proposes the divorce
of general covariance from a generalization of principle of relativity. We shall see that they
eventually stabilize on the view that a relativity principle expresses a symmetry of the
spacetime structure,

One of the earliest proposals comes from Kretschmann, His famous objection to general
covariance actually only occupies.a small part of his lengthy paper (1917). The bulk of it is
devoted to developing an alternate interpretation of relativity principles. Hls proposals are
embedded within extended calculations and circuitous verbiage. They appear to reduce to
the following. The key idea in identifying the relativity principle of some given theory lies
not in extending its covariance, but in reducing it to the minimum group possible. This
reduction must be done in a way that identifies a group associated with the theory’s physical
content rather than some particular formulation of it,

In the case of special relativity, his general proposal leads 1o the expected result: the
Lorentz group expresses the theory’s relativity principle. Consider the bundle of all light-
like worid lines in the theory. In the Lorentz covariant formulation, this bundle is described
by the equation

=P+ @ =0 (8)

where x, =x,...,x,=ict are the usual spacetime coordinates and (x%, . , ¥} some
arbitrary origin event. This bundle is mapped back into itself by any Lorentz transformation
that preserves the origin. Kretschmann allowed that we could extend the usual Lorentz
covariant formulation of the theory even as far as a generally covariant formulation, using
the methods of Ricci and Levi-Civita. However, in a formulation of extended covariance, an
allowed transformation will, in general, not map this bundle back into itself. Rather, such a
transformation will alter the coordinate image of the bundle. Again, one could consider a
formulation whose covariance is restricted to a group smaller than the Lorentz group.
However this formulation could only be constructed at the expense of altering the physical
content of the theoryt. The Lorentz transformation is the formulation of minimal covariance
faithful to the theory’s physical content. Therefore the Lorentz transformation is the group
associated with the theory’s relativity principle. ’

A similar analysis in the case of general relativity leads to a quite different result. In
effect Kretschmann finds that the single membered identity group plays the same role in
general relativity as does the Lorentz group in special relativity. As a result, he can arrive at
a conclusion that directly contradicts Einstein’s (p610)

1 How Kreischmann arrived at this crucial conclusion is a little unclear to me. Such a formulation would need to
replace (8) by another formula or formulae of more restricted covariance and presumably Kretschmann held that
any such formulae would have to alter the physical content of (8). For example, to violate Lorentz covariance, the
new formula might pick out one or other spatial direction as preferrcd whereas equation (8) describing the bundle
admits no such preferred directions,
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Therefore Einstein’s theory satisfies no relativity principle at all in the sense developed

[earlier in the paper]; on the basis of its content, it is a completely absolute theory.
To arrive at this resuli, Kretschmann considered the bundle of light-like worldlines and of
free material particles within the theory. He found the former fixed the components of the
metric tensor g,, up to a multiplicative factor A and the latter forced A to be a constant.
{(Notice that these are now familiar results. In modern language: conformal structure fixes
the metric up to a conformal factor and specifying affine structure forces the factor to be
constant.} Finally consideration of spacetime curvature rules out any value of Ak other than
unity. Thus the physical content of the theory fixes the metrical components. But once these
components are fixed, the coordinate system is fixed and no covariance transformation
remains; in effect the covariance group has become the identity group and one has no
relativity principle. Kretschmann also showed that the same result could be arrived at in
another way. As long as the spacetime metric is sufficiently non-uniform, it is possible to
define a unique spacetime coordinate system for each metric by setting the four coordinates
equal to unique curvature invariants. This once again reduces the covariance group to the
identity.

Finally Kretschmann could extract one final blow from his calculations. In effect he
could conclude that the Lorentz group was the iargest group possible for any relativity
principle in a spacetime theory of the type of special and general relativity (p610):

A physical theory, which accords an observationally accessible meaning to the external

principle

[8 f ds = Qwhere ds® = gm,dxpdxv]

of a space-time manifold with Minkowski normal form of the line element or posits that

the invariant metrical character of the manifold is in some other way in principle

observable to the same extent, can satisfy no broader relativity postulate in the sense
[developed earlier in the paper] than that of the original Einsteinian theory of relativity.

Kretschmann's proposal has been criticized at length by Anderson (1966). He argues
that the proposal fails since one can too readily reduce the covariance of a theory to the
identity. His examples include electrodynamics and special relativity, provided that we add
some other structure, such as a scalar field, to the Minkowski spacetime.

Cartan (1927} gave a less bellicose and mathematically more perspicacious
characterization of the difference between the general covariance of general relativity and
the Lorentz covariance of special relativity.

General relativity threw into physics and philosophy the antagonism that existed

between the two principle directors of geometry, Riemann and Klein. The space-times

of classical mechanics and or special relativity are of the type of Klein, those of general

relativity are of the type of Riemann.
Under Klein's Erlangen program a wide range of geometries were all characterized by their
associated groups and the geometric entities they studied were the invariants of those
groups. The key aspect of these Erlangen program geometries—the Euclidean, the
projective, the affine, the conformal and others—was that all the spaces were
homogeneous. In the Riemann tradition, one considered a space and a group of
transformations. But the geometric entities investigated are no longer the invariants of the
transformations, for in this case there are essentially none. Instead one is interested in the
invariants of a quadratic differential form, the fundamental or metrical form, that is
adjoined to the space. As result, the groups associated with geometries in the two traditions
have very different significance. The spacetime geometry of special relativity, as
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introduced by Minkowski, is in the tradition of Klein. As a result its characteristic group,
the Lorentz group, is associated with the homogeneity of the spacetime. General relativity
lies in the Riemann tradition and, as a resuit, its general group of transformations is
associated with no such homogeneity.

Sesmat (1937, pp382-3) gave a more algebraic characterization of why he felt the
general covariance of general relativity had failed to implement a generalization of the
principle of relativity. What was needed was a theory whose laws would remain unchanged
in form under transformations between all frames of reference including accelerated ones, in
the same way that the laws of special relativity remained invariant under Lorentz
transformation. The general covariance of general relativity just did not do this. Under the
transformations of general covariance, such as a transformation between Cartesian and polar
coordinates, the expressions for basic tensors do change. What general covariance does
allow, however, is that a tensor, such as the Einstein tensor, can retain its zero value in
empty space under these transformations, even though its expression changes.

Sesmat’s point seems to be precisely the point that Weinberg (1972, p92) is making
when he explains the difference between the Lorentz invariance of special relativity and
general covariance. One could, he notes, expand the covariance of Newton’s second law by
transforming it under Lorentz transformation. However, a new quantity, the velocity of the
coordinate frame would appear in the transformed equation.

The requirement that this velocity does not appear in the transformed equation is what
we call the Principle of Special Relativity, or ‘Lorentz invariance’ for short, and this
requirement places very powerful restrictions on the original equation. Similasly, when
we make an equation generally covariant, new ingredients will enter, that is, the metric
tensor g, and the affine connection I'},. The difference is that we do not require that
these quantities drop out at the end, and hence we do not obtain any restrictions on the
equations we start with; rather, we exploit the presence of g,, and I, to represent
gravitational fields.

Fock (1957) (see also Fock 1959, p xiii—xiv, 166) gave a synthesis of all these ideas: the
homogeneity of spaces in the Klein tradition, the mapping back into themselves of
Kretschmann’s bundle of lightlike and inertial worldlines and he gave it in an algebraic form
indicated by Sesmat and Weinberg. In considering the uniform or homogeneous spacetime
of special relativity, he explained (p325):

The property of spacetime being homogeneous means that (a) there are no privileged

points in space and in time; (b) there are no privileged directions, and (c) there are no

privileged inertial frames (that all frames moving uniformly and in a straight line with
respect to one another are on the same footing).

The uniformity of space and time manifests itseif in the existence of the Lorentz
group. In particular, the equality of points in space and time corresponds to the
possibility of a displacement, the equality of directions corresponds to that of spatial
rotations, and the equality of inertial frames corresponds to a special Lorentz
transformation.

Fock then gave this condition mathematical expression. The Lorentz transformatlon leaves
unchanged the Minkowski line element

dﬂ:dx%—d.ﬁ—dx%—dx%=m,,dxudx, %

where the X, ...,x;, are the usual spacetime coordinates of the Lorentz covariant
formulation. This same condition can be stated in arbitrary coordinates in which the line
element (9) becomes
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ds* = g, dx, dr,

The mathernatical expression of the homogeneity of the Minkowski spacetime is now stated
as the preservation of the functional form of the components of the metric in some class of
coordinate systems. That is, if the metric has components g,, in some arbitrary coordinate
systerm X, then it will be possible to transform to a new coordinate system x’,, in which the
new components of the metric g’,, are the same functions of x', as the g,, are of the x,. That
is,

g’uv(x,a) = g;w(-‘ra-) (10)

where the equality must be read as holding for equal numerical values of the quadruples x,
and x',. This condition is considerably more restrictive than merely requiring that the
components g,, transform into g’,, under the usual tensor transformation rule. And it
expresses a homogeneity of the spacetime since both coordinate systems x, and x', relate in
indistinguishable fashion to the metric tensor. The set of coordinate systems with this
property are related by a ten parameter group which corresponds to the Lorentz group.

Notice that the algebraic expression for the transformations from x, to x’ in the Lorentz
group can no longer be the familiar formulae (1) of Einstein’s original 1905 paper. For
example, in generalizing the coordinates, the coordinate system of (9) may remain inertial
but with the Cartesian spatial coordinates replaced by polar coordinates, in which case the
expression for the Lorentz transformation would have to be altered correspendingly.
However, whatever may be their altered form, the transformation equations must leave
unchanged the functional form of components of the metric tensor. Otherwise the spacetime
would distinguish between two inertial coordinate systems, in violation of its uniformity.
That is the condition expressed in (10).

The distinction between simple covariance and transformations of form (10) seems to be
distinction between Buchdahl’s (1981, p29) ‘improper’ and ‘proper form invariance’. In his
example, the equation g%5,S,=0 (where § is a scalar field and commas denote
differentiation) is improperly form invariant if the transformed equation just retains this
form as, say, gS,. S, =0. It is properly form invariant if the g/ of the transformed
equation also remain the same functions of the new coordinates as the uniransformed g¥
were of the old.

Fock’s proposal now relates directly to Bergmann’s (1942, p159) statement of the
principle of general covariance as given in section 5.5 above. According to (10), a generally
covariant formulation of special relativity will admit a ten parameter subgroup of
transformation—the Lorentz transformation—that preserves the functional form of the
components of the metric tensor g,.,. It can do so in many different ways. One merely selects
some arbitary coordinate system in which the Minkowski metric has components g, and
allows condition (10) to generate the subgroup. If one begins with the usual diagonal form
of the metric, m,,. one arrives at the usual form of the Lorentz transformation (1), Each of
these subgroups is associated with a formulation of special relativity of reduced covariance
and the particular functional form of the metrical components that remain unaltered
according to (10) will be built into its laws. Therefore Bergmann’s statement of the principle
of general covariance will judge the generally covariant formulation of special relativity to
be inadmissible and thus preserves a distinction between the covariance of general relativity
and of special relativity.

Notice also that the formulations of special relativity of reduced covariance are now of a
form compatible with Klein’s Erlangen program, since the Riemannian quadratic differential
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form are no longer transformed merely covariantly within the theory. Thus, in accord with
Cartan’s observations, the transformation groups of the formulations are now associated
with the homogeneity of the spacetime.

Fock’s condition (10) has an immediate expression in the geometric approach to
spacetime theories., Let % be the dual manifold diffeomorphism of the coordinate
transformation defined on a Minkowski {M, g,,). Then Fock’s condition (10) becomes

Kew = 8u {11)

and the group of transformations satisfying this condition is the Lorentz group}. That is, the
Lorentz group is the group of diffeomorphisms that are the symmetry transformations or
isometries of the Minkowski metric (Wald, 1584, pp58, 60, 438). The existence of this
group expresses the uniformity of the Minkowski spacetime.

With this terminology, we can summarize why Fock and others believe that the
transition from special to general relativity has failed to generalize the principle of relativity.
Two groups are associated with the formulation of a theory: its covariance group
characterizes purely formal aspects of its formulation; its symmetry group characterizes a
physical fact, the degree of uniformity of the spacetime and this uniformity allows the theory
to satisfy a relativity principle. In the transition from a Lorentz covariant formulation of
special relativity to a generally covariant formulation of general relativity, the covariance
group is expanded. This is, however, merely an accident of formulation. The symmetry
group is actually reduced from the Lorentz group to the identity group, for the general case.
The identity group is associated with no relativity principle at all. Therefore the transition
from special to general relativity does not generalize the relativity principle. It eradicates it.

6.3. Coordinate systems versus frames of reference

Fock took it as immediate that his condition (10) automatically realized the equivalence of
inertial frames of reference whereas general relativity embodies no such equivalence. That
this is correct may not be immediately clear given that such formulations of the principle of
general covariance as Bergmann’s do preserve a sense in which the natural covariance of
special relativity differs from that of general relativity. To give a precise statement of this
result we require a clearer statement of what is a frame of reference. _

In traditional developments of special and general relativity it has been customary not to
distinguish between two quite distinct ideas. The first is the notion of a coordinate system,
understood simply as the smooth, invertible assignment of four numbers to events in

t To see the transition, let the metric g, have components g, in some coordinate system and let the transformation
from coordinate systems x, 1o x', satisfy condition (10), To generate the dual diffeomorphism &, we now just
consider the functional relation between x, and x', as a map from quadruples of reals x, to quadruples of reals
X' (x.). In one of the coordinate systems allowed under (10), the diffeomorphism 4 maps an event p with the four
coprdinates x, to an hevent ip with coordinates x',{x,} in the same coordinate system. Consider the metric #°g,,
carried along to Ap from p under A. If the metic at p has components g,,, then the carried along metric at hp will
have the same components g, in the carried along coordinate system and the carried along coordinate system will
assign coordinates x, to kp. We now see that this carried along metric is the same as the original metric at Ap, as
{11) demands, by comparing their components in the original coordinate system, We wansform the carried along
metric back from the carried along coordinate system to the original by means of the coordinate transformation of
{10) and find that the carried along metric has components g',, at Ap, which has coordinates x',. Therefore the
carried along metric agrees with the original metric since the functional forms of g, and g',, are the same. For
further discussion of the duality of coordinate transformation and manifold diffeomorphism, see Norton (1989,
section 2.3).
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spacetime neighbourhoods, The second, the frame of reference, refers to an idealized
physical system used to assign such numbers. More precisely, since the physical systems
tend to be space filling, one is concerned with how such hypothetical systems would behave
were they to be constructed. Many such systems are possible. For example one can imagine
space full of similarly constituted clocks and all of them attached to a rigid frame of small
rods. The clock readings give us the time coordinates and the counting of rods gives us
spatial coordinates. To avoid unnecessary restrictions, we can divorce this arrangement from
metrical notions. Following Kopczynski and Trautman (1992, pp24-5), we could require
only that the space-filling family of clocks bear three smoothly assigned indices (which
could function as spatial coordinates), that the clocks tick smoothly, although not necessarily
in proper time, and that time readings vary smoothly from clock to clock. Of special
importance for our purposes is that each frame of reference has a definite state of motion at
sach event of spacetime.

Within the context of special relativity and as long as we restrict ourselves to frames of
reference in inertial motion, then little of importance depends on the difference between an
inertial frame of reference and the inertial coordinate system it induces. This comfortable
circumstance ceases immediately once we begin to consider frames of reference in non-
uniform motion even within special relativity. This became a major problem for Einstein to
negotiate as early as 1907, when he began to consider uniformly accelerated frames of
reference in his new gravitation theory. He found (1907, section 18) the need to introduce
coordinate times which could not be read directly from clock measurements. Similarly, due
to the Lorentz contraction of rods oriented in the direction of motion, the geometry
associated with a uniformly rotating frame of reference ceased to be Euclidean. As a resuit,
spatial coordinates can no longer be assigned by the usual methods with measuring rods.
The point of Einstein’s rotating disk thought experiment {first published in Einstein (1912,
section 1) and best known from Einstein (1916, section 3)) is that spacetime coordinates will
lose this direct metrical significance once we stray from the familiar inertial coordinate
systems of special relativityT.

With the advent of general relativity, Einstein wished to consider frames of reference
with arbitrary states of motion. However he deemed it impractical to retain even a vestige of
the idealized physical system of the frame of reference. In their place he simply used
arbitrary coordinate systems. The association of an arbitrary coordinate system with an
arbitrary frame of reference became standard in the literature for many decades. Thus, for
example Bergmann (1962, p 207) explains

In all that follows we shall use the terms ‘curvilinear four-dimensional coordinate

system’ and ‘frame of reference” interchangeably.
Thus, in Einstein’s writings, whatever equivalence is established by general covariance for
arbitrary coordinate systems is also conferred upon arbitrary frames of reference and, if we
recall the connection between a frame of reference and a state of motion, the powerful
suggestion is that this is all that is needed to extend the principle of relativity to arbitrary
motions, The connection is complicated slightly by the fact that some coordinate

+ The problem is even more complicated than Einstein indicated. An inertial frame of reference in a Minkowski
spacetime is naturally associated with Euclidean spaces, which are the spatial hypersurfaces everywhere orthpgonal
to the world lines of the frame’s elements. The wordlines of the elements of a rotating disk admit no such
orthogonal hypersurfaces. Since the spacetime of special relativity remains flat, we may well ask in what space does
the geometry become non-Euclidean. The most direct answer is that this geometry is induced onto the ‘relative
space’ formed by the worldliness of the elements of the disk. This space can be defined precisely as in Norton
(1985, section 3). For further discussion of the role of the rotating disk thought experiment in Einstein’s thought,
see Stachel (1980a).
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transformations clearly do not relate different states of motion, such as the transformation
between spatial Cartesian and polar coordinates. However some subgroup of the general
group of coordinate transformations is the appropriate one, as Einstein (1916, section 3)
makes clear when he writes

It is clear that a physical theory which satisfies this postulate {of general covariance]

will also be suitable for the general postulate of relativity. For the sum of alf

substitutions in any case includes those which correspond to all relative motions of
three-dimensional systems of co-ordinates.

More recently, to negotiate the obvious ambiguities of Einstein’s treatment, the notion of
frame of reference has reappeared as a structure distinct from a coordinate system. If one
conceives of a frame of reference as a space filling system of hypothetical instruments
moving with arbitrary velocities, then the minimum information needed to pick out the
frame is the specification of the world lines of its elements. As a result, the simplest
workable definition of an arbitrary frame of reference—and the one T shall use here—is that
it is a congruence of curves, that is, a set of curves such that every event in the spacetime
manifold lies on exactly one of its curves (Torretti 1983, p28, Norton 1983, section 3,
Viadimirov et af 1987, p95). If the notion of timelike is defined, we would also require the
curves be timelike 1o ensure that they are the worldlines of physical elements. In the case of
the semi-Riemannian spacetimes of relativity theory, whatever further information one
might need is supplied by the theory’s metrical structure. From it we can read the time
- elapsed as read by proper clocks moving with the frame, or changes in the directions and
spatial distances of neighbouring elements of the frame,

Various alternative definitions of frame of reference are possible. Since a smooth
congruence of curves can be specified as the unique set of integral curves of a smooth, non-
vanishing, timelike vector field, one could take a frame of refereace to be such a timelike
vector field (Earman 1974, p270, Jones 1981, p163). Again, one can employ richer
structures. The timelike vector field could be supplemented by a triad of spacelike vectors
pointing to the worldlines of neighbouring elements of the frame. A frame of reference then
becomes the specification of an orthonormal tetrad of vectors over the spacetime manifold.
(Synge 1960, ch IIL.5, Viadimirov er ¢/ 1987, p95). Finally a coordinate system is adapted to
a frame of reference if the curves of the frame coincide with the curves of constant spatial
coordinates. Therefore we could take a frame to be the equivalence class of all coordinate
systems adapted to some congruence (Earman 1974, p270). This definition has the
advantage of bringing us closest to the traditional correspondence between frames of
reference and coordinate systems.

In special relativity, an inertial frame of reference is a congruence of timelike geodesics.
An ipertial coordinate system is a coordinate system adapted to an inertial frame of
reference. : ‘

6.4. Relativity principles and the equivalence of frames

With the notion of frame of reference clarified, it proves possible to give a more precise
treatment of the principle of relativity in so far as it asserts an equivalence of various states
of motion, that is, of various frames of reference. Einstein’s original treatment of the
principle of relativity in special relativity amounted to requiring that the laws of physics
adopt the same form when expressed in any inertial coordinate system. This type of
formulation of the principle was quite serviceable in the context of a Lorentz covariant
special theory of relativity. As we have seen, however, there have been significant
challenges to the idea that form invariance of laws can capture any physical principle when
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we are prepared to employ mathematical techniques powerful enough to render virtually any
theory generally covariant.

A precise formulation of the relevant notion of equivalence of frame has been developed
within work that includes Earman (1974), Friedman (1983, especially ch. IV.5) and Jones
{1981}, Their proposals explore many variant definitions and do so within the context of a
wide range of theories, including variants of Newtonian spacetime theory. The essential
ideas they share can be illustrated by the following treatment of special and general
relativity.

The essence of the principle of relativity in the special theory is the indistinguishability
of all the inertial states of motion. Thus Einstein’s 1905 special relativity paper had been
‘motivated by the realization that no experiment in mechanics, optics or electrodynamics
could reveal the uniform motion of the earth through the aether. That is, space and time
‘look the same’ experimentally to observers in any state of inertial motion. Einstein’s task
was to devise a theory in which they locked the same theoretically as well.

This condition can broken up into a kind of pseudo-experiment. We begin with an
inertial observer, who performs a range of experiments in kinematics and other branches of
physics. The observer is then boosted into uniform motion with respect to his original state
of motion and carries along with him a complete record of all the experiments and their
outcomes. These experiments are now repeated and the outcomes compared with those of
the original set. The principle of relativity requires that both sets of outcomes must be the
same and a theory satisfying the principle of relativity must predict that this will be so. (For
a comparison of this sense of the principle and the one that requires form invartance of laws,
see Anderson (1964, pp 176--82).)

This pseudo-experimental condition can be translated into a theoretical condition that
amounts to the principle of relativity in special relativity., The theoretical analog of the
inertial observer is the inertial frame of reference. The analog of the setting of the observer
into uniform motion is a Lorentz transformation of the frame of reference. The setting up
and outcome of ail experiments performed by the observer will be determined fully by the
spacetime structures of the theory. Therefore the carrying along of the complete description
of the observer’s experiments and ouilcomes translates into the carrying along under Lorentz
transformation of the spacetime structures of the theoryt, The principle of relativity now
simply amounts to the requirement that the Lorentz fransformation map spacetime structures
allowed by the theory into spacetime structures allowed by the theory.

Without further assumption it follows that special relativity satisfies the principle of
relativity as far as all kinematical experiments are concerned. These are idealized
experiments in which the frame of reference directly ‘sees’ the metrical structure of the
spacetime without assistance from further material systems. Their outcome is determined
solely by that metrical structure. The satisfaction of the principle of relativity follows
immediately from the fact that an arbitrary Lorentz transformation % is a symmetry of the
Minkowski metric g,,, that is, it satisfies Fock’s condition (11). Therefore, if 4 transforms an
inertial frame F, into an inertial frame F,, then the metric seen by F, and carried along to F,,
#*g.. is the same as the metric g,, seen by F,.

In the more realistic case, the experiments will involve further spacetime structures, such
as electromagnetic fields and charges. The principle of relativity will be satisfied only if
these further spacetime structures satisfy the following condition, which is the geomeiric

t This treatment assumes that there are no spacetime structures that elude experimental test, such as the absolute
spacetime rigging of a Newtonian spacetime, which introduces a state of rest that cannot be revealed in any
experiment (see Friedman 1983, ch IID).
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statement of the Lorentz covariance of the theories of these further structures. Let the theory
have models

<M’ Sab (Oi)ab...a (Oz)ab...’ L ) (12)

where M is an R* differentiable manifold, g, a Minkowski metric and (@), (O2)w.s . - .
the extra spacetime structures. If / is any Lorentz transformation and (12) a model of the
theory, then '

(M’ 8a h*(ol)ab._’ h*(oz)ab...’ mre }

must also be a model of the theory. The satisfaction of the principle of relativity now
follows. Let F, be an inertial frame of reference in which are conducted experiments
associated with structures (3,),, , (Opas., - - - If we transform via Lorentz transformation 4
to any other inertial frame F,, we require that the theory admit precisely the same
experiments and outcomes. That is, we require that the theory allow siructures A*(Q)),. .
KOs}y, - . - This is precisely what the geometric version of Lorentz covariance allows.

This analysis gives us a precise sense in which the equivalence of inertial frames of
reference is realized within the special theory of relativity. The basic moral of the work of
Earman, Friedman and Jones is that there is no natural sense in which this equivalence
obtains in the spacetimes of general relativity and that there is certainly no extension of it
to accelerated frames of reference. In this sense, there is no principle of relativity in the
general theory of relativity. This moral follows immediately from the fact that special
relativity admits a non-trivial symmetry group, the Lorentz group, which maps inertial
frames of reference into one another, The spacetimes of general relativity in general admit
no symmetries. In general relativity, the closest analog of an inertial frame of reference is a
frame in free fall. It is represented by a congruence of timelike geodesics. In general, a
transformation that maps one freely falling frame or reference into another will not be a
symmetry of the metrical structure. Therefore spacetime observers of the first frame will
see different metrical properties in spacetime than will those of the second. The
indistinguishability required for the equivalence of frames does not obtain. Considering
arbitrary frames of reference rather than those in free fall clearly does not change this
result.

That this sense of equivalence of frames fails to obtain in general relativity is not so
surprising and it is difficult to imagine that Einstein ever expected that it would. The real
puzzle, then, is to determine the sense in which Einstein believed the equivalence to be
extended by general relativity. There is one reading in this geometric language that does
allow a general equivalence of frames (Norton 1985, section 3). So far it has been
assumed that the background spacetime is represented by the combination of manifold and
metric. If instead one takes the manifold alone as the background spacetime, then one
immediately has an equivalence of all frames of reference. For, considering just R*
manifolds for simplicity, an arbitrary automorphism is a symmetry of the manifold. Since
any frame of reference can be mapped into any other by an automorphism, it follows that
each frame ‘sees’ the same spacetime background so that they are equivalent in at least
that sense. '

If this equivalence is to be extended to the sort of equivalence of the principle of
relativity of special relativity, then the metric tensor field of general relativity must be
treated in a similar fashion to the structures (G, . (G,),, of the above discussion of
special relativity. Then a similar sense of equivalence of arbitrary frames follows directly



840 J D Norton

from the active general covariance of general relativity. Let F; be any frame of reference
which sees a metrical field g,, and other fields (3,),,_, (Q2).... - - - That is, the theory has a
model

(M » Saby (Ok)ab...s (Oﬂab...) .

Then, if F, is any other frame of reference, the theory must allow a2 model in which F, sees
an identically configured set of fields. That is, if & is an automorphism that maps F, into
F,, then F, must see the fields 4°g,z, #°(0 )., A (0. so that theory must also have a
model

<M7 h*gabv k‘(ol)ab...' h*(oz)nh..}'

That it does follows directly from its active general covariance (section 5.4 above).

The difficulty with this proposal is that it allows an equivalence of arbitrary frames of
reference in all theories that are actively generally covariant. Such theories include versions
of special relativity and Newtonian spacetime theory. Thus, if this generalized equivalence
of frames is to be distinctive to general relativity, there must be some principled way of
relegating the metric tensor to the contents of spacetime in general relativity, whereas in
other spacetime theories, such as special relativity, this metrical structure is to be part of the
background spacetime. What makes such a division plausible is the fact that the metric
tensor of general relativity incorporates the gravitational field. Thus its state is affected by
the disposition of masses in the same way as a Maxwell field is affected by the disposition of
charges.

The analogy can be pressed further. In special relativity one can conduct an electrical
experiment with some configuration of charges in an inertial frame of reference. The
principle of relativity requires that, if we were to recreate that same configuration of charges
in another inertial frame, then we would produce the identical fields and experimental
outcomes. This is the sense in which all inertial frames of reference are equivalent.
Similarly, one could consider some configuration of masses and the metric field they
produce in relation to an arbitrary frame of reference in general relativity as a kind of
gravitational experiment in that frame. The active general covariance of general relativity
then tells us that we could have laid out the same configuration of masses and fields in any
other frame of reference, so that the gravitational experiment would have proceeded
identically in any frame of reference. This gives us a sense in which arbitrary frames of
reference are equivalent in general relativity.

The success of this generalized equivalence depends fully on our being able to conceive
of the metric field as a part of the contents of spacetime in general relativity but not in other
theories like special relativity. Einstein’s 1918 version of Mach’s Principle allowed this
conception since it required that the metric field be fully determined by the matter
distribution, so that this field would have the same sort of status as the matter distribution.
Since Mach’s Principle in this form fails in many of the spacetimes of general relativity, it
cannot be used to justify a generalized equivalence of frames in that theory. The only other
well developed analysis that allows this conception of the metric field concerns the
distinction between absolute and dynamic objects te be discussed in section 8 below. As a
dynamical object, the metric of general relativity is naturally classified as part of the content
of spacetime. As an absolute object, the Minkowski metric of special relativity is naturally
classified as nart of the background spacetime.
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7. General relativity without principles

7.1. General relativity without general relativity

Einstein’s own developments and discussion of the general theory of relativity place so
much importance on general covariance and the extension of the principle of relativity that
most accounts of the theory seems compelled to take a position on their importance. Many
essentially agree with Einstein as we have seen in section 4. Many others, as we have seen in
sections 5 and 6, disagree with Einstein’s views; they develop general relativity without
claiming general covartance as a fundamental physical postulate and they explain why they
do so.

There is a third category of exposition of general relativity. These are the expositions
that take no special notice of general covariance at all. Of course they develop general
relativity in a generally covariant formalism, as is the standard practice. However the
expositions are conspicucus for the absence of any statement of fundamental principle
concerning covariance or relativity, There is no ‘principle of general covariance’, no
‘general principle of relativity’ and no pronouncement that the theory has extended the
equivalence of frames of reference to accelerated frames. And there is no explanation of
- why these principles are not discussed.

It is difficult to know what significance to read into such formulations of general
relativity without general relativity, Many of these expositions are mathematically oriented.
So we might suppose that their authors simply decided not to contend with the question of
the physical foundations in favor of other more mathematical aspects of the theory. It is hard
to imagine, however, that an author writing on general relativity can be completely unaware
of Einstein’s views, if not also the disputes over them. Therefore when that author writes a
textbook length exposition of general relativity which fails to include such phrases as
‘general principle of relativity’ or ‘principle of general covariance’, one must suppose that
the author is making a statement by omission. {The omissions are typically so complete that,
if the text has an index, these terms will not be listed in it.) We have already seen that Synge
and Fock object to ‘general relativity’ as a misnomer. Thus it seems obvious that similar
sentiments drive such authors as that of Time and Space, Weight and Inertia: A
Chronogeometrical Introduction to Einstein’s Theory (Fokker 1965) who display
remarkable ingenuity in avoiding the term ‘general relativity.’

Finally, even if no siatement is being made by omission, the very possibility and
frequency of such accounts of general relativity do indicate that the place of these principles
in the theory might not be so straightforward. If the principles are fundamental physical
axioms, they would be hard to avoid, even as consequences in an alternate axiomatization.
One is hard pressed to imagine a formulation of thermodynamics without the law of
conservation of energy as a fundamental axiom or one of the earliest and most important
theorems! The subtlety of the situation is captured by Trautman, who observed well into his
exposition (1964, p 122) of general relativity

.. . we have managed to obtain general relativity by a (we hope) fairly convincing chain

of reasoning without ever mentioning such a principle [of general covariance]. '
He did proceed, however, to list several senses of the principle and their non-trivial
relationships to the theory. Thus one can find general covariance relevant without
mentioning it in a development of the theory.

With these interpretative cautions, we can proceed to note that the tradition of exposition
of general relativity without general relativity extends back to the eariiest decades of the
theory. There are many exposition of relativity theory with this character from the 1920s.
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They include Bauer (1922), Birkhoff (1927), Darmois (1927), Chazy (1928) and De Donder
(1925) (but De Donder (1921, pp 10~15) had emphasized the arbitrariness of coordinates in
general relativity and the invariance of its fundamental equations). Eddington (1924, ch I,
section 1) labours in detail the notion that one can use arbitrary “space-time frames’ for
describing phenomena, but without ever mentioning a principle of covariance or a
generalized principie of refativity. His earlier Eddington (1920, p20) had allowed that a
generalization of the principle of relativity in the theory in so far as he conceded ‘it will be
seen that this principle of equivalence is a natural generalization of the principle of
relativity’. This remark was not repeated in Eddington (1924).

The lean years after the 1920s saw several exposition of general relativity without
general relativity: Rainich (1950) and the synopsis of general relativity by Zatzkis {1955).
The revival of interest in general relativity in the 1960s brought more such expositions and
they have included some of the most important expositions of the theory: Fokker (1965),
Schild (1967} (although he mentions (p 20) that general relativity ‘shows there are no inertial
frames as all’), Robertson and Noonan (1968), Ehlers (1971}, Hawking and Ellis {1973),
Dirac (1975), Falk and Ruppel (1975) (although the notion of a generalized principle of
relativity is alluded to briefly, e.z., $323), Sachs and Wu (1977), Clarke (1979 (although
section 3.1.3 does emphasize the loss of global inertial systems and the novelty of arbitrary
coordinate systems in general relativity), Frankel (1979), Shutz (1985) (although it is
allowed (p 3) that general relativity is more general in allowing both inertial and accelerated
observers), Martin (1988), Hughston and Tod (1990), Stewart (1990).

7.2. The principle of equivalence as the fundamental principle

While many of these accounts of general relativity avoid mention of principles of general
covariance and of generalized relativity, many of them do find a special place for just one of
the three fundamental principles listed by Einstein in 1918, the principle of equivalence. Of
course the version used is typically not Einstein’s but one or other variant of an infinitesimal
principle of equivalence. The principle is not used in Einstein’s manner as a stepping stone
to a generalized the principle of relativity. Rather it is used to establish a notion claimed as a
fundamental principle of general relativity, that special relativity holds infinitesimally in the
theory; or, less commonly, it is just taken to be as much of the generalized principle of
relativity as general relativity will admit.

Such treatments, which employ only the principle of equivalence as a fundamental
principle, include: Silberstein (1922, p12), Eddington (1924, section 17) (although
emphasizing (p41) that the principle is to be derived rather than postulated in the
exposition), Birkhoff (1927, pp 140-4), Landau and Lifshitz (1951, ch 10), Fokker {1965,
section V.6) (with the principle in Einstein’s original form), Robertson and Noonan (1968,
section 6.9), Schild (1967), Falk and Ruppel (1975, section 32), Clarke (1979, ch 3), Frankel
{1979, ch 2), Raine and Heller (1981, ch 6,8), Schutz (1985, p 184), Martin (1988, sections
1.6, 5.11), Stewart (1990, section 1.13). We have the expositions of Tonnelat (1939), who
takes the principle of equivalence to be a ‘principle of generalized relativity’ (p327) and
Wasserman (1992), who also remarks briefly (p342) that the principle of equivalence
extends the principle of relativity to include accelerated frames of reference.

7.3. Challenges to the principle of equivalence

One might well wonder if we have not at last found the uncontroversial core of Einstein’s
accounts of the foundational principles of general relativity in these expositions. That core
would now just be the principle of equivalence, even if it is in an altered form Einstein never
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endorsed. However not even the popular versions of the principle of equivalence have
escaped telling attack. .

The best known challenge has been stated most clearly by Synge. His concern is that the
presence or absence of a gravitational field must be characterized geometrically, that is, in
invartant terms. He asserts that the presence of a gravitational field corresponds just with non-
vanishing curvature of the spacetime. Such an invariant criterion is unaffected by coordinate
transformation, by change of frame of reference or by a change of the state of motion of the
observer. Therefore none of these changes will be able to transform away a gravitational field
or bring one into existence, contrary to many versions of the principle of equivalence. He is
unimpressed with the requirement that the spacetime metric be such that we can always find a
coordinate system in which the components of the metric become diag (1,1,1,—1) at some
nominated event, thereby mimicking special relativity at least in some infinitesimal sense.
Synge deems this trivial since it merely amounts to the requirement that the metric have
Lorentz signature. Thus he wrote his famous lament (1960, pix) about relativists who

. . . speak of the Principle of Equivaience. If so, it is my turn to have a blank mind, for I
have never been able to understand this Principle. Does it mean that the signature of the
space-time metric is +2 {or —2 if you prefer the other convention)? If so, it is important,
but hardly a Principle. Does it mean that the effects of a gravitational field are
indistinguishable from the effects of an observer’s acceleration? If so, it is false. In
Einstein’s theory, either there is a gravitational field or there is none, according as the
Riemann tensor does not or does vanish. This is an absolute property; it has nothing to
do with any observer’s world-line. Spacetime is either flat or curved, and in several
places in the book 1 have been at considerable pains to separate truly gravitational
effects due to curvature of space-time from those due to curvature of the observer’s
world-line (in most cases the latier predominate). The Principle of Equivalence
performed the essential office of midwife at the birth of general relativity, but, as
Einstein remarked, the jnfant would never get beyond its long-clothes had it not been
for Minkowski’s concept. 1 suggest that the midwife be now buried with appropriate
honors and the facts of absolute space-time faced.
The idea that the presence of a gravitational field is associated with the invariant property of
curvature can be translated into observational terms. The non-vanishing of the Riemann
curvature tensor entails the existence of tidal forces acting on bodies in free fall. The goal of
restricting versions of the principle of relativity to infinitesimal regions of spacetime is to
eliminate these tidal forces. However they cannot be so eliminated; for example, the tidal
bulges on a freely falling droplet remain as the droplet becomes arbitrarily small, ignoring
such effects as surface tension: see Ohanian (1976, ch 1, 1977) and Bondi {1979). See also
Norton (1985, section 10) for an attempt to characterize the imprecise restriction to
infinitesimal regions as a restriction on access to certain orders of quantities defined at a
point. Following a suggestion from Einstein, it turns out that an infinitesimal principle of
equivalence can hold only at the expense of a restriction so severe that it trivializes the
principle. See also Norton (1985, section [1) for Einstein's response to the idea that
vanishing spacetime curvature is to be associated with the absence of a gravitational field.

8. Eliminating the absolute
8.1. Anderson's absolute and dynamical objects

However else he may have changed his viewpoint, we have seen (section 3.9) that Einstein
maintained throughout the lifetime of this writings on general relativity that it was
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distinguished from earlier theories by a single achievement: it had eliminated a causal
absolute, the inertial system. If we are to have an account that truly captures Einstein’s
vnderstanding of geperal covariance, then we should expect this rather imprecisely
formulated notion to play a prominent role. This notion surely lies behind Pauli and Weyl’s
emphasizing that the metric tensor is determined by the matter distribution through field
equations and that this justifies (Weyl) the name ‘general theory of relativity’ (see section
5.5 above).

Einstein's notion surfaces more clearly in Bergmann’s (1957, pp 11-12) conception of
weak and strong covariance. Weak covariance is the type we see in when we use many
different coordinate systems to describe the one phenomenon in Lagrangian mechanics.

The fundamentally trivial nature of this ‘weak covariance’ derives from the rigidity of

the classical metric.

This is quite distinct from the strong covariance of general relativity where?

it is one’s task to calculate the metric . . . as a dynamical varable. We can take one

coordinate system or another for this job, but all that we can know is the relation of one

frame to the other: we do not know the relation of either to the world. ‘Strong
covariance’, therefore, contains not only a reference to the structural similarity of an
equation and its transform; it implies as well that one frame is as good a starting point
as another — that we do not need prior knowledge of its physical meaning . . . which is
generated at the end.
Many important themes are touched on here, as has been indicated by Stachel (forthcoming,
footnote 3). The distinction between weak and strong covariance amount to that between
passive and active covariance. What concerns us here, however, is the contrasting of the
‘rigidity of the classical metric’ with the metric of general relativity ‘as a dynamical variable’,

The most precise context so far for the statement of Einstein's causal concerns has been
provided by Anderson (1964, 1967, ch 4, 1971) (but see also Anderson (1962) for a
definition of absolute change within general refativity). In laying out his system, Anderson
uses a somewhat idiosyncratic nomenclature. He labels the set of all possible values of the
geometric objects of a theory the ‘kinematically possible trajectories’. Those sanctioned by
the ‘dynamical laws’ or ‘equations of motion’ of the theory, he calls the ‘dynamically
possible trajectories’. The principal novelty of Anderson’s development is the distinction
between ‘absolute’ and ‘dynamical’ objects. That distinction will be used to strengihen the
principle of general covariance into a more restrictive ‘principle of general invariance’.

Although allowing for a time that both special and general covariance principles are
devoid of physical content (1964, p182), Anderson (1967, section 4.2, 1971, pp 162-65)
then came to urge that the requiremert of general covariance is not physically vacuous. He
allowed that one can take a physical theory and generate successive formulations of wider
and wider covariance. However there is a point in the hierarchy at which we are forced to
introduce elements which are unobservable or transcend measurement. Since we are
prohibited from proceeding to this point in the hierarchy, covariance requirements have
physical force. (This strategy for injecting physical content into covariance principles is
essentially the one used by Pauli and others in section 5.5 above.)

The absolute objects of a spacetime theory are distinguished by precisely the causal
criterion that allowed Einstein to designate the inertial systems of special relativity as
absolute. Anderson and Gautreau (1969, p 1657) summarize:

Roughly speaking, an absolute object affects the behaviour of other objects but is not

affected by these objects in turn.

¥ The two eilipses *. . .’ and emphasis are Bergmann’s,
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The remaining objects are dynamical. Thus the Minkowski metric of special relativity is an
absolute object. In special relativistic electrodynamics, the Minkowski metric affects the
Maxwell field and charge flux in determining, for example, which are the inertial trajectories
of charges, However neither Maxwell field nor charge flux, the dynamical objects of the
theory, affect the Minkowski metric. Whatever their form, the Minkowski metric stays the
same. This is the sense in which it affects without being affected. Since the Minkowski
metric induces the inertial frames on spacetime, Anderson’s identification of the Minkowski
metric as an absolute object fits exactly with Einstein’s identification of inertial frames as
absolutes.

This loose definition must be made more precise and Anderson (1967, pp 83-4) (see also
Anderson 1971, p 166) gives a more precise definition. Having eliminated irrelevant objects
from the set of geometric objects y, allowed in the theory:

We now proceed to divide the components of y, into two sets, ¢, and z, where the
&, have the following two properties:

{1) The &, constitute the basis of a faithful realization of the covariance group of
the theory.

(2) Any ¢, that satisfies the equations of motion of the theory appears, together will
all its transforms under the covariance group, in every equivalence class of dpt
[dynamically possible irajectories].

The ¢, if they exist, are the components of the absolute objects of the theory. The
remaining part of y,, the z,, are then the components of the dynamical objects of the
theory.

Condition (1) is an important but essentially technical condition that the transformation
behaviour of the ¢, respect the group structure of the theory’s covariance group (e.g. the &,
ought to transform back into themselves under an identity transformation of the covariance
group). Condition (2) essentially just says that the absolute objects &, are the same in every
dynamically possible trajectory (i.e. model) of the theory. The condition, however, must
allow that an absolute object, such as a Minkowski metric g, can be manifested in many
different forms as it transforms under the members of the covariance group. Therefore the
second condition collects the dynamically possible trajectories into equivalence classes of
intertransformable members. Since each class is closed under transformations of the
covariance group, the one set of absolute objects and all their transforms will appear in each
class. Thus condition (2) requires, in effect, that the absolute objects that appear in all
models are the same up to a transformation of the theory’s covariance group.

With this distinction in place, Anderson now defines the symmetry group or ‘invariance
group of a physical theory’ (Anderson 1971,p166)as

that subgroup of the covariance group of the theory which leaves invariant the absolute

objects of the theory. In particular, if there are no absolute objects, the invariance group

and the covariance group are the same group.
The ‘leaves invariant’ is to be understood in the sense of a symmetry transformation such as
given in (10) and (11) above. There is an analogous definition for the ‘symmetry group of a
physical system’ (Anderson 1967, p87).

Anderson’s central claim (e.g. Anderson 1967, p338) is that this symmetry group is
what Einstein really had in mind when he associated the Lorentz group with special
relativity and the general group with general relativity. For a requirement on a symmetry
' group, not a covariance group, is the correct way to express a relativity principle. Even if
we formulate our theories in generally covariant fashion, they continue to be
characterized by the groups expected if we look to their symmetry groups. The symmetry

group of a generally covariant special relativity is the Lorentz group. Again, consider a
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generally covariant formulation of Newtonian spacetime theory with spacetime structures
t,, h* and V,, where the gravitational field is not incorporated into V,. Then these three
objects are the absolute objects of the theory and their symmetry group is the Galilean
group. Finally, general relativity has no absolute objects. Its symmetry group is the
general group.

One can grasp the picture urged if one imagines that the background spacetime of a
theory is the spacetime manifold together with the theory’s absolute objects—although
“background spacetime’ is not a notion discussed by Anderson. In the cases of special
relativity and the above version of Newtonian spacetime theory, both admit a family of
preferred inertial frames of reference which remain unchanged under the Lorentz group
or Galilean group respectively. In the case of general relativity, the background
spacetime is just the manifold whose symmetry group is the group of arbitrary
transformations.

According to Anderson, what Einstein really intended with his principle of general
covariance is what Anderson calls the ‘principle of general invariance’. This principle
reguires that the symmetry group of a theory be the general group of transformations or, as
Anderson calls them, the ‘manifold mapping group’. This principle rules out the possibility
of any non-trivial absolute objects in the theory, that is, those which have more than merely
topological properties. In this sense, the principle of general invariance amounts to a no-
absolute-objects requirement and offers a precise reading for Einstein’s claim that general
covariance has eliminated an absolute from spacetime.

8.2. Responses to Anderson’s viewpaint

Anderson’s ideas on absclute and dynamical objects have found a limited but favorable
response in the literature. Misner ef al (1973, section 17.6) present a requirement of no
absolute objects in terms of the requirement of ‘no prior geometry” where:

By ‘prior geometry’ one means any aspect of the geometry of spacetime that is fixed

immutably, i.e., that cannot be changed by changing the distribution of gravitating

sources. :
They describe Einstein as seeking both this requirement as well as a ‘geometric, coordinate
independent formulation of physics” when he required general covariance—and that this has
been responsible for a half century of confusion.

Anderson’s priaciple of general invariance appears in Trautman (1973), as does the
distinction between absolute and dynamical objects in Kopczynski and Trautman (1992,
ch 13). Ohanian (1976, pp252-4) uses Anderson’s principle of general invariance to
respond to Kretschmann’s objection that general covariance is physically vacuous. He
does insist, however, that the principle is not a relativity principle and that the general
theory of relativity is no more relativistic than the special theory (p257). Anderson’s
ideas seem also to inform Buchdahl’s (1981, Lecture 6) notion of ‘absolute form
invariance’.

The distinction between absolute and dynamical objects has been received and
developed most warmly by philosophers of space and time, so that in place of (6), the
general model of a spacetime theory is given as

M, AL A, ..., DDy, L)

where Ay, A,, . . . are the absolute objects and D,, D,, . . . the dynamical. However they do
not generally allow that Anderson’s reasoning has vindicated Einstein’s claim that the
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general theory of relativity extends the principle of relativity of special relativity. See
Earman (1974, 1989, ch 3), Friedman (1973, 1983) and Hiskes (1984). Farman (I1989,
section 3.4) investigates the possibilities for the symmetry group of the absolute objects of a
theory differing from the symmetry group of the dynamical objects.

8.3. No gravitational field—no spacetime points

Stachel (1986, sections 5, 6) has provided an interesting extension of the viewpoint
advanced by Anderson. Stachel’s concern is that our formulations of general relativity are
still not in a position to explicate Einstein’s idea that spacetime cannot exist without the
gravitational field (see section 3.5 above). Stachel faults our representing or physical
spacetime events by the mathematical points of the spacetime manifold. Read naively, this
definition tells us that a manifoid without metrical field represents a physical spacetime of
events with topological properties but with no metrical relations.

Stachel’s proposal applies to spacetime theories without absolute objects, which he
calls ‘generally covariant’, and can be reviewed only informally here. To form the
models of such theories one assigns various geomeiric objects—tensor fields, for
example—to each point of the manifold in the usual way. In principle, many different
such fields could be assigned. In the case of general relativity, we have a host of possible
metrical fields of all sorts of different curvature, The loose notion of the space of all such
possible fields is given precise formulation by Stachel as a fibre bundle £ over the
manifold M. The particular fields that are chosen for inclusion in the theory's models are
picked out through cross-sections of the fibre bundle E. Loosely speaking, a cross-
section ¢ amounts to an association of a point of the manifold M with the geometric
objects assigned to it in some model of the theory. (More precisely, a cross-section ¢ i3 a
map that goes from a point p of the manifold M to a member o(p) of the fibre bundle E,
where o{p) must be associated with p by the bundle’s projection map , so that wo(p) =
7y '

The core of Stachel’s proposal is that the physical events of spacetime are represented by
the inverse of this map ¢. That is—loosely speaking—the physical events are not
represented directly by the poinis of the spacetime manifold; rather, in their place, we use
the association of the points of the manifold with the geometric structures defined on them.
We now automatically have the property of spacetime that Einstein announced. If we take
away the gravitational field, that is the metric field, from a spacetime in general relativity,
then we have taken away the fibre bundie and with it the map that represents the physical
spacetime events. In a theory with absolute objects, however, physical events are
represented directly by points of the base manifold. Therefore their behaviour is quite
different. See Stache] (1986) for further details of how theories with absolute objects are
treated and of the machinery needed to atlow that one physical situation is represented by an
equivalence class of diffeomorphic models.

8.4. What are absolute objects and why should we despise them?

There are two areas of difficulty associated with the general theory of absolute and
dynamical objects. The first is the question of how we define absclute objects. Anderson’s
definition was that an object was absolute if the same object (up to coordinate
transformation) appeared in all the theory’s models. In the coordinate free, geometric
language, how are we to understand the ‘same’? The obvious candidate is that two objects
are the same if they are isomorphic. Global isomorphism is the criterion used in Earman’s
(1974, p282) definition of absolute objects to pick out when one has the same object in all
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models. Friedman (1973, p308-9, 1983, p58-60) uses only the requirement that the objects
by locally diffeomorphict.

The first difficulty with this criterion of diffeomorphic equivalence as sameness was
pointed out by Geroch (Friedman 1983, p 59). The criterion deems as the same all timelike,
non-vanishing vector fields, so that however such a field arises in a theory, it will be one of
its absolute objects. Thus, in standard ‘dust’ cosmologies, the velocity field U? of the dust
becomes an absolute object. To avoid the problem, Friedman suggests a rather contrived
escape: formulate the theory of dust with the dust flux pl/, where p is the mass density,
instead of p and I/® separately. (Friedman is relying here on the possibility that p vanishes
somewhere. A better choice would have been the stress-energy tensor for pressureless dust
pleLb)

More sericusly, modifying slightly an example of Torretti (1984, p285), we could
imagine the following hybrid classical relativistic cosmology. The spacetime structure is
given exactly by any of the Robertson—Walker spacetime metrics. The metrics are posited a
priori and not governed by the presumed inhomogeneous matter distribution through
gravitational field equations. Therefore the curvature of the metric is unaltered in the vicinity
of massive bodies. In this case, we would judge the metrical spacetime structure to act on
the matter distribution without the matter distribution acting back on it. However, since
models of the theory would allow metrics of different curvature, we cannot use existing
definitions to identify the spacetime metric as an absolute object. Torretti’s counterexample
shows us that the basic notion of ‘sameness’ does not fully capture the notion of things that
act but are not acted upon.

The second area of difficulty associated with the general theory of absolute and
dynamical objects is a presumption of Anderson and Einstein (assuming that he is correctly
interpreted by the theory). They presume that there is some compulsion to eliminate absolute
objects. Of course they are right in the sense that our best theory of space and time happens
not to employ absolute objects. Thus several of Anderson’s arguments for the principle of
general invariance and therefore against absolute objects essentially tell us that this
assumption can form a premise of arguments that lead to empirically confirmed results
{Anderson 1967, section 10.3, 1971, p 169). However absolutes are supposed to be defective
in a deeper sense. It is not just that we happen not to see absolutes in nature; Nature is
somehow supposed to abhor things that act but are not acted upon. The difficulty is to clarify
and justify this deeper sense.

Anderson (1967, p339, 1971, p 169) sees in nature a ‘generalized law [principle in 197]
of action and reaction’. But the principle is so vague that it is vnclear what the principle
really says and where it can be applied. Does Planck’s constant 2 or the gravitation constant
G ‘act’ on matter without suffering ‘reaction’? With this vagueness how can we tell if the
law is true or even whether we should hope for it to be true? Is it, perhaps, a dubious guilt by
association with Aristotle’s Unmoved Mover? Einstein comes closer to an explanation with
his analogy (section 3.9 above} to pots of water, one boiling, one not. There has to be a
sufficient reason for the difference. Analogously, the difficulty with absolute objects is that
there is no sufficient reason for them to be one way rather than another. Now we might
allow that such a principle of sufficient reason applies io temporally successive states of
systems, although quantum theory calls even that into doubt. But why should we require this
sort of principle to hold for aspects of the universe as a whole? In answer, we might take

t More precisely, in the 1983 version of the definition, what Friedman calls ‘d-equivalence’ is this: If a theory has
models (M, &, ..., ®)and {M, ¥y, . .., V), then ¥, and P, are d-equivalent if, for every p & M, there
are neighbourhoods A and B of p and a diffeomorphism # : A — Bsuchthat ¥, = &P,
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Born expansion of Einstein’s (1916, section 2) denunciation of an absolute, inertial space as
an ad hoc cause. Born (1924, p311) explains
If, however, we ask what absolute space is and in what other way it expresses 1tse1f no
one can furnish an answer other than that absolute space is the cause of centrifugal
forces but has no further properties. This consideration shows that space as the cause of
physical occurrences must be eliminated from the world picture.

It is hard to sympathize with Born’s complaint. The absolute Minkowski metric of a
special relativistic world has an extremely rich collection of properties all of which can be
confirmed by possible experiences. It is difficult not to see the very objection of Born and
Einstein as ad hkoc. They seek to use vague and speculative metaphysics to convert
something that happens to be false into something that has to be false. These seem 10 be
Schlick’s (1920, p40) sentiments when he observes

. we can . . . consider the expression ‘absolute space’ to be a paraphrase of the mere
fact that these [centrifugal] forces exist. They would then simply be immediate data;
and the question why they arise in certain bodies and are wanting in others would be on
the same level with the question why a body is present at one place in the world and not
at another. . . . I believe Newton’s dynamics is quite in order as regards the principle of
causality.

Special relativity has suffered too long from the crank myth that it not just happens to be
true but it has to be true and that proper meditation on clocks and light signaling reveals it.
Let us not create 2 similar myth for general relativity.

9. Boundaries and puzzles

9.1, Is general covariance too general? Or not general enough?

While most have been satisfied with general relativity as a generally covariant theory, Fock
(1957, 1939, ppxv-xvi, section 93) has proposed that the four coordinate degrees of
freedom of the generally covariant theory be reduced by application of a coordinate
condition. Fock’s ‘harmonic coordinates” are picked out by the condition

g
ax,

( vV —ggm=0

[

Fock applies this restriction to the case of spacetimes which are Minkowskian at spatial
infinity and finds that the resulting equations are the natural generalization of the standard
Galilean coordinates of special relativity and are fixed up to a Lorentz transformation. Fock
sees the physical importance of harmonic coordinates in such problems as the justifying of
Copemican over the Ptolemaic cosmology. In harmonic coordinates, the earth orbits the sun
and not vice versa.

Fock’s proposal proved controversial. Criticism of Fock’s proposal was aired at a
conference in Berne in July 1955 for the jubilee of relativity theory (Fock 1956). Infeld
argued that a restriction to harmonic coordinates is acceptable as a convenience. ‘But to add
it always (or almost always) to the gravitational equation and to claim that its virtue lies in
the fact that the system is only Lorentz invariant, means to contradict the principle idea of
relativity theory.” Trautman (1964, p 123) and Kopezynski and Trautman (1992, p 124) have
also objected that Fock’s proposal amounts to the postulation of new spacetime struciures
for which no physical interpretation can be given.
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In so far as Fock intended to reduce permanently the covariance of general relativity and
introduce further structure, then these critical attacks are warranted. The harmonic
coordinate condition is unacceptable as a new physical principle. But Fock (1959) seems to
hold a milder position. He emphasized (pp330-1) that the introduction of harmonic
coordinates is intended in a spirit no different from that which introduces preferred Galilean
coordinates into a generally covariant formulation of special relativity. Thus ‘the existence
of a preferred set of coordinates . . . s by no means trivial, but reflects intrinsic properties of
space-time’. In the case of a spacetime Minkowskian at spatial infinity, harmonic
coordinates simply reveal a structure already assumed as part of the boundary condition.
Their use does not amount to an unwarranted postulation of new structure—unless one
deems the boundary conditions themselves unwarranted. For further discussion see Gorelik
(forthcoming).

The issue surrounding Fock’s proposal was whether a restriction of the covariance of
general relativity could be justified, Arzelizs (1961, ppxhv—il, 5-7 ch XIV} has proposed a
modification of general relativity which amounts to a kind of expansion of its covariance. He
urges that Einstein’s theory has still not satisfied the requirements of the generalized
principle of relativity and that the transformations it allows should be extended in the
following sense. If we start with is a coordinate system X', then, under a coordinate
iransformation, the coordinate differential dX* transform into new coordinate differentials
dx’. It is customarily assumed that the coordinate differentials dx’ are exact, so that they can
be integrated into the new coordinate systems x', Arzeliés proposed that this restriction be
dropped. This would certainly generalize the group of transformations since the functions A}
of the equations dx’ = AjdX* need no longer be restricted by the requirement of exactness.
The modification is extremely far reaching, however, in so far as it leads to the loss of many
familiar theorems. For example, it will now be possible to transform the line elements of
non-flat metrics to the form

ds? = (dx')? + (dx®)? + (dF)? + (dx?

over a neighbourhood (not just at a point), where this was formerly only possible if the
metric was flat.

9.2. The Einstein puzzle

There is a presumption in much modern interpretation of Einstein’s pronouncements on the
foundations of the general theory of relativity. It is that much of what he says cannot be
taken at face value. (Why does Einstein make such a fuss about introducing arbitrary
spacetime coordinates? We have always been able to label spacetime events any way we
please!) Thus we are either to translate what he reaily meant into some more precise context,
as does Anderson, or to dismiss it as confused. The proposal of Norton (1989, 1992) is that
our modern difficulty in reading Einstein literally actually stems from a change of context.
(For related concerns see Norton (1993).)

The relevant change lies in the mathematical tools used to represent physically possible
spacetimes. In recent work in spacetime theories, we begin with a very refined mathematical
entity, an abstract differentiable manifold, which usually contains the minimum structure to
be attributed to the physical spacetimes. We then judiciously add further geometric objects
only as the physical content of the theory warrants. Moreover, we have two levels of
representation. We first represent the physically possible spacetimes by the geometric
models of form (6) and then these geometric models are represented by the coordinate based
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structures (7). General covariance is vsually understood as passive general covariance and
therefore arises as a mathematical definition, as we have seen.

In the 1910s, mathematical practices in physics were quite different. The two levels of
representation were not used. When one represented a general space or spacetime, one used
number manifolds—R* or 7, for example. Thus Minkowski’s ‘world’ was not a
differentiable manifold that was merely topologically R*. It was literally R5; that is, it was
the set of all quadruples of real numbers.

Now anyone seeking to build a spacetime theory w1th these mathematical tools of the
1810s faces very different problems from the ones we see now. Modem differentiable
manifolds have too little structure and we must add to them. Nomber manifolds have far too
much structure. They are fully inhomogeneous and anisotropic. The origin {0,0,0,0} is quite
different from every other point, for examples. And all this structure had cancnical physical
interpretation. If one took the x, axis as the time axis, then x, coordinate differences were
physically interpreted as differences of clock readings. Timelike straights would be the
inertial trajectories of force free particles. The problem was not how to add structure to the
manifolds, but how to deny physical significance to existing parts of the number manifolds.
How do we rule out the idea that (0,0,0,0 represents the preferred center of the universe and
that the x, coordinate axis a preferred state of rest?

_ Felix Klein’s Erfangen program provided precisely the tool that was needed. One

assigns a characteristic group to the theory. In Minkowski’s case, it is the Lorentz group.
Only those aspects of the number manifold that remain invariant under this group are
allowed physical significance. Thus there is no physical significance in the preferred origin
" {0,0,0,0) of the number manifold since it is not invariant under the transformation. But the
collection of timelike straights of the manifold are invariant; they represent the physically
real collection of a}l inertial states of motion. As cne increases the size of the group, one
strips more and more physical significance out of the number manifold.

We can put this in another way. A spacetime theory coordinates a physically possible
spacetime with the number manifold. The characteristic group of the theory tells us that
many different such coordinations are allowed and equally good. What is physically
significant is read off as that part of each coordination common to all of them. This
coordination of physical events with quadruples of numbers in R* is what was meant by
‘coordinate system’ and the equivalence of two such systems was far from a mathematical
triviality. It was the essence of the physical content of the theory.

It is in this tradition that Einstein worked in the 1910s. His project was to expand the
group of his theory as far as possible. But he had to proceed carefully since such expansions
came with a stripping of physical significance from the number manifold. Thus Einstein
(1916, section 3) needed to proceed very cautiously in explaining how the general
covariance of his new theory had stripped the coordinates of their direct relationship to the
results of measurement by rod and clock. The project is clearly also a project of
relativization of motion. The imposition of the Lorentz group stripped the x, axis of the
physical significance as a state of rest, implementing a principle of relativity for inertial
motion. The transition to the general group stripped the set of timelike straights of physical
significance as inertial motion, extending the principle to accelerated motion.

H this was all that Einstein had done, then his whole project would have remained within
the Erfangen program tradition and there would be no debates today over whether Einstein
succeeded in extending the principle of relativity, But, in the transition from the Lorentz to
the general group, Einstein added an element that carried him out of the tradition of the
Erlangen program. He associated 2 Riemannian quadratic differential form with the
spacetime. (Thus Cartan (section 6.2 above) captures precisely the crucial point.) While
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Einstein could correctly say that he had generalized the principle of relativity insofar as he
had stripped physical significance from the timelike straights of the number manifold, what
remained to be seen was whether he had reintroduced essentially this same structure by
means of the quadratic differential form. In effect this question has become the focus of the
debate over the generalized principle of relativity.

Finally, it is helpful to bear in mind that what Einstein meant by ‘coordinate system’ is
not the same as the modern ‘coordinate charts’ of a differentiable manifold. The latter relate
structures of (6) and (7) and the equivalence of each representation is a matter of
mathematical definition. Einstein’s coordinate systems are actually akin the representation
relation between physically possible spacetimes and the models of form (6). That two
models represent the one physically possible spacetime is a physical assumption that
amounts to assuming that their mathematical differences have no physical significance.
Correspondingly, within the context of Einstein’s formulation of spacetime theories, that
two coordinate systern represent a physically possible spacetime is once again a physical
assumption and for the same reason. That is, Einstein’s covariance principles are most akin
to modem active covariance principles.

In sum, there is no real puzzle in much that of what Einstein said. Rather it now only
seems puzzling since he is solving problems we no longer have because of the greater
sophistication of our mathematical tools. Indeed, in good measure we owe to Einstein’s
inspiration the development and widespread use of mathematical tools that avtomatically
solve problems over which he laboured so hard.

10. Conclusion

The debate over the significance of general covariance in Einstein’s general theory of
relativity is far from settled. There are essentially three view points now current.

First is the viewpoint routinely atiributed to Einstein. It holds that the achievement of
general covariance automatically implements a generalized principle of relativity. In view of
the considerable weight of criticism, this view is no longer tenable. Relativity principles are
symmetry principles; the requirement of general covariance is not a symmetry principle. The
requirement of general covariance, taken by itself, is even devoid of physical coatent. It can
be salvaged as a physical principle by suppiementing it with further requirements. The most
popular are a restriction to simple law forms and a restriction on the additional structures
that may be used to achieve general covariance. However neither supplementary condition
has been developed systematically beyond the stage of fairly casual remarks.

The second viewpoint has been developed by Anderson and is based on his distinction
between absolute and dynamical objects. His ‘principle of general invariance’ entails that a
spacetime theory can have no non-trivial absolute objects. Anderson argues that the
principle is a relativity principle, since it is a symmetry principle, and that it is what Binstein
really intended with his principle of general covariance, In this approach, general relativity
is able to extend the symmetry group of special relativity from the Lorentz group to the
general group. This extension depends on the metric being 2 dynamical object, which is no
longer required to be preserved by the symmeiry transformations of the theory’s relativity -
principle.

The third viewpoint holds that the dynamical character of the metric is irrelevant in this
context and that the metric must be preserved under the theory’s symmetry group, if that
group is to be associated with a relativity principle. Since the metrics of general relativistic
spacetimes have, in general, no non-trivial symmetries, there is no non-trivial relativity
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principle in general relativity. Whatever may have been its role and place historically,
general covariance is now automatically achieved by routine methods in the formulation of
all seriously considered spacetime theories. The foundations of general relativity do not lie
in one or other principle advanced by Einstein. Rather, they lie in the simple assertion that
spacetime is semi-Riemannian, with gravity represented by its curvature and its metric
tensor governed by the Einstein field equations.,

Acknowledgments

The researching and writing of this review was supported by the National Science
Foundation under Grant No. SBE-9121326, 1 thank the foundation for its support and also
Jean Eisenstaedt, Don Howard, Al Janis and Carlo Rovelli for helpful discussion. I am also
very grateful to Don Howard for assistance with German translations.

References

Adler R, Bazin M and Schiffer M 1977 Introduction to General Relativity 2nd ed (Tokyo: MceGraw-Hill
Kogakusha)

Aguirre M and Krause I 1991 fnternational Journal of Theoretical Physics 30 495-509

Anderson J L 1962 Recent Developments in General Relativity ed ‘Editorial Committee” (New York: MacMiilan)

—— 1964 Graviration and Relativity eds HY Chiu and W F Hoffrnann (New York: Benjamin) ch 9

—— 1966 Perspectives in Gepmetry and Relartivity ed B Hoffmann (Bloomington In: Iadiana University Press) pp
16-27 ’

——— 1967 Principles of Relativity Physics (New York: Academic)

—— 1971 General Relativity and Gravitation 2 161-72

—— and Gautrean R. 1969 Phys. Rev. 185 1636—661

Arzelids H 1961 Relativité Généralisée Gravitation (Paris: Gauthier-Villars)

Arwater H A 1974 Introduction to General Relativity (Oxford: Pergamon)

Bargmann V 1957 Reviews of Modern Physics 29 161-174

Bartels A 1993 Semantical Aspects of Spacetime Theories ed U Majer and H J Schmidt (Mannheim: BI)

Bauer H 1922 Mathematische Einfiihrung in die Gravitationstheorie Einsteins (Leipzig: Franz Deuticke)

Becquerel J 1922 La Principe de la Relativiié et la Théorie de la Gravitation (Paris: Gauthier-Villars)

Bergmann P G 1942 fntroduction to the Theory of Relarivity (New York: Dover)

—— 1957 Topics in the Theory of General Relativity, Lectures in Theoretical Physics Notes by N A Wheeler
(Waltham, MA: Brandeis University, Summer School, Institute of Physics)

—— 1961 Rev. Mod. Phys. 33 5104

—~—— 1962 The General Theory of Relativity Encyclopedia of Physics Vol. IV ed S. Flilgge (Berlin: Springer)

Birkhoff G D 1927 Relativity and Modern Physics {Cambridge, MA: Harvard University Press}

Bishop R L and Goldberg 3 1 1968 Tensor Analysis on Marifolds (New York: Dover)

Bondi B 1959 Rep. Prog. Phys. 22 97-120

1979 Einstein: A Centenary Volume ed A P French (Cambridge, MA: Harvard University Press) pp 113-29

Borel E 1926 Space and Time transl A S Rappaport and J Dougall (New York: Dover)

Bom M 1924 Einstein's Theory of Relarivity revised edn 1962, ed G. Leibfried and W Biem (New York: Dover)

Bose 8 K 1980 An Introduction to General Relarivity (New York: Wiley)

Bowler M G 1976 Gravitation and Relativity {Oxford: Pergamon)

Bridgman P 1949 Albert Einstein: Philosopher Scientist 2nd edn, ed P A Schilpp (New York: Tudor) pp 315-54

Buchdahl H A 1981 Seventeen Simple Lectures on General Relativity (New York: Wiley)

Bunge M 1567 Foundations of Physics (New York: Springer)

Butterfield J 1987 [nternarional Studies in the Philosophy of Science 2 10-32

1988 Proceedings of the 1988 Biennial Meeting of the Philosophy af Science Association vol, 2 ed A Fine

and J Leplin (East Lansing, MI: Philosophy of Science Association) pp 65-81

—— 1989 British J. Phil. Sci. 40 1-28




854 J D Norton

Carmeli M 1982 Classical Fields: General Relarivity and Gauge Theory (New York: Wiley)

Carmichael R 1920 The Theory of Relativity 2nd edn {(New York: Wiley)

Cartan E 1923 Ann. Sci. ENS 40 325—412; 1924 Ann. Sci. ENS 41 1-25; trans] 1982 A Magnon and A Ashiekhar in
On Manifolds with an Affine connection and the Theory of Gereral Relarivity (Naples: Bibliopolis)

—— 1927 L’Ensignment Mathématique 26 200-225; 1952 Oevres Complétes Part 1, vol U (Paris: Gauthier-
Villars) pp 841-66

Cartwright N and Hoefer C (forthcoming) Philosophical Problems of the Internal and External Worlds: Essays on
the Philosophy of Adolf Griinbaum ed J Earman, A Janis, G Massey, N Rescher (Pittsburgh PA: University of
Pittsburgh/University of Konstanz)

Charon: ] E 1963 15 Legons sur la Relativité Générale avec une Introduction au Calcul Tensorie! (Geneva: Editions
René Kister)

Chazy J 1928 La Théorie de la Relativité et la Mécanigue Céleste (Paris: Gauthier-Villars)

Clarke C 1979 Elementary General Relativity (London: Edward Arnold)

Cunningham E 1921 Relativizy: The Electron Theory and Gravitation (London: Longmans Green & Co.)

d’Inverno R 1992 fntroducing Einstein’s Relativity (Oxford: Clarendon)

Darmois G 1927 Les Equations de la Gravitation Einsteinfenne: Mémorial des Sciences Mathémarique,
L' Académie des Sciences de Paris. Fasc. XXV (Paris: Gauthier-Villars)

Davis W R 1970 Classical Fields, Particles and the Theory of Relativity (New York: Gordon and Breach)

De Donder T 1921 La Gravifigue Einsteinienne (Paris: Gauthier-Villars)

—— 1925 Ilntroduction & la Gravifigué Einsteinienne: Mémorial des Sciences Mathémeatique, L' Académie des
Sciences de Paris Fasc. VIHI (Paris: Gauthier-Villars)

De Felice F and Clarke C I § 1990 Relativity on Curved Manifolds (Cambridge: Cambridge University Press)

De Sitter W (1916) Mon. Not. R. Astron. Soc. 76 659-728; 1916 77 155-184; 1917 78 3-28

Dirac P A M 1975 General Thaory of Relativity (New York: Wiley)

Earman J 1974 Found. Phys. 4 267-89

—— 1989 Worid Enough and Spacetime: Absolute versus Relational Theories of Space and Time (Cambridge,
MwA: Bradford/MIT Press)

Earman J and Friedman M 1973 Phil. Sci. 40 329-5%

Earman J and Norton J D 1987 British J. Phil. Sci. 38 515-25

Eddington A S 1920 Report on the Relativity Theory of Gravitation 2nd ed (London: Fleetway)

—— 1924 The Mathematical Theory of Relativity 2nd edn (1952) (Cambridge: Cambridge University Press)

Ehlers J 1971 Proc. fnt. School of Physics 'Enrico Fermi® Course XLVIT ed B K Sachs (New York: Academic) pp
1-70

Einstein A 1905 Ann, Phys. 17 891-921 (trans] Lorentz 1923 pp 37-65)

1907 Jakrbuch der Radioaktivitdt und Elektronik 4 411-462; 1908 5 98-99

1911 Ann. Phys. 35 898-908 (wrans! Lorentz 1923, pp 93-108)

1912a Ann. Phys. 38 355-69

1912b Ann. Phys, 38 443-58

1912¢ Vierteljahrsschrift fiir gerichtliche Medizin und dffentliches Sanitdtswesen 44 37-40

1912d Ann. Phys. 38 1059-64

1913 Physikalische Zeitschrift 14 1249-62

1914 Preussische Akademie der Wissenschaften (Berlin}, Sitzungsberichte 1030—-1085

1914a Scientia 15 337-48.

1915 Preussische Akademie der Wissenschaften {Berlin), Sitzungsberichte 778-86, 799-86, 831-9, 844-7

1816 Ann, Phys, 49 769-822 (translated 1923 Lorentz ef al, pp 111-164 (without p 769))

1916a Ann, Phys. 51 639642

1917 Preussische Akademie der Wissenschaften (Berlin), Sitzungsberichte 142-152 {transl 1923, Lorentz ¢f

alpp 175-88)

1917a Relativity: the Special and the General Theory (transl 1977 R W Lawson (London: Methuen))

1918 Ann. Phys, 58 240-44

1918a Maturwissenschafen 6 697-702

1919 Preussische Akademie der Wissenschaften, Sitzungsberichte 349-56 (transl 1923 Lorentz ef af pp

161-8)

1922 Sidelights on Relativity transl G B Jeffrey and W Perrett (New York: Dutton) (Reprinted 1983 New

York: Daver)

1522a The Meaning of Relativity 5th edn (Princeton NJ: Princeton University Press)

—— 1924 Schweizerische Naturforschende (Feselischaft, Verhandlungen 105 85-93

1927 “The Mechanies of Newton and Their Infiuence on the Development of Theoretical Physics Ideas and

Opinions (New York: Bonanza) pp 253-61



General covariance and general relativity ‘ 855

—— 1933 ‘On the Methods of Theoretical Physics’ Ideas and Opinions (New York: Bonanza) pp 270-6

—— 1940 The Fundaments of Theoretical Physics Ideas and Opinions (New York: Bonanza) pp 323-35

—— 1949 Antobiographical Nores (La Salle, IL: Open Court)

—— 1950 *On the Generalized Theory of Gravitation' fdeas and Opinions (New York: Bonanza) pp 341-356

—— 1952 Relativity: the Special and the General Theory transl R W Lawson. {London: Methuen) Appendix V

Einstein A and de Sitter W 1932 Proc. Nar. Acad. Sei. (Washington) 18 213-14

Einstein A and Grossmann M 1913 Entwurf einer verallgemeinerten Relativitdtstheorie und einer Theorie der
Gravitation (Leibzig: Teubner, separatum); addendum 1913 Einstein Zeitschrift filr Mathematik und Physik
63 225-61

Eisenstaedt J 1986 Archive for History of Exacr Sciences 35 115-185

—— 1989 Einstein and the History of General Relativity: Elnstein Studies, vol | eds D Howard and I Stachel
{Boston: Birkhduser) pp 277-92

Ellis G F R and Williams R M 1983 Flat and Curved Space- Ttmes (Oxford Clarendon)

Falk G and Ruppel W 1975 Mechanik Relativitdt Gravitation: Ein Lehrbuch 2nd edn (Berlin: Springer)}

Fock V 1956 Helv. Phys. Acta. Supplementum IV, pp 239-243

—— 1957 Reviews of Modern Physics 29 325333

—— 1959 The Theory of Space Time and Gravitation transl N Kemmer (New York: Pergamon) -

—— 1974 Die Stellung des Copernicanischen Systems im [deenkreis der Einsteinschen Gravitationstheorie
(Leipzig: Karl Marx Universitét)

Fokker A D 1963 Time and Space, Weight and Inertia: A Chronogeometrical Introduction ta Einstein’s Theory
transk D Bijl: transl and ed D Field (Oxford: Pergamon)

Foster I and Nightingale I D 1979 A Short Course in General Relativity (London: Longman)

Frankel T 1979 Gravitational Curvature: Ar Introduction to Einstein's Theory (San Francisco: Freeman)

Freundlich E 1919 The Foundations of Einstein's Theory of Gravitasion transl H L Brose (London: Methuen)

Friedman M 1973 Space, Time and Geomerry ed P Suppes. (Dordrecht: Reidel) pp 296-320

—— 1983 Foundations of Space-Time Theories: Relativistic Physics and the Philosophy of Science (Princeton,
NI Princeton University Press) -

Friedrichs K 1927 Mathematische Annalen 98 566-75

Gorelik G (forthcoming) The Attraction of Gravitation: New Studies in History of General Relativity ed ] Earman,
M Janssen and J D Norton (Boston: Birkhiuser)

Graves J C 1971 The Conceptual Foundations of Contemporary Relativity Theory (Cambridge, MA: MIT Press)

Havas P 1964 Rev. Mod, Phys. 36 938-65

Hawking S and Ellis G F R 1973 The Large Scale Structure of Space-time (Cambridge: Cambridge University
Press) .

Hilbert D 1915 Akademie der Wissenschafien, Géttingen, Nachrichten pp 395-407; 1917 Akademie der
Wissenschaften, Géttingen, Nachrichten pp 53=76

Hiskes A L D 1984 Found. Phys. 14 307-32

Hoffmann B 1932 Rev. Mod, Phys. 4 173-204

Howard D 1992 Studies in the History of General Relativity ed ] Eisenstaedt and A Kox (Boston: B1rk.hauser) pp
154-243

Howard D and Norten J D (forthcoming) The Attraction of Gravitation: New Studies in History of General
Relativity ed J Earman, M Janssen and J D Norton (Boston: Birkhiuser)

Hughston L. P and Tod K P 1990 An fatroduction to General Relativity (Cambridge: Cambridge University Press)

Tones R 1981 Afrer Einstein ed P Barker and C G Shugart (Memphis, TN: Memphis State University Press)

Jordan P 1955 Schwerkraft und Weltal! (Braunschweig: Vieweg)

Kenyon I R 1990 General Relativity (Oxford: Oxford University Press)

Kerszberg P 1989 Einstein and the History of General Relativity ed D Howard and J Stachel (Boston: Birkhiuser)
pp 325-66

Klein F 1872 Gesammelte Mathematische Abhnadlungen. vol 1, ed R Fricke and A Ostrowski (Berlin: Springer) pp
450497

Kopczynski W and Trantman A 1992 Spacetime and Gravitation (Chichester: Wiley)

Kopff A 1923 Grundziige der Einsteinschen Relativitdistheorie (Leipzig: Hirzel)

Kottler F 1922 Encykiopddie der mathematischen wissenschaften mit Einschiuss an ihrer Auwendung vol
VI, part 2, 22a Asironomie ed K Schwertzschild, S Oppenheim and W v Dyke (Leipzig: Teubner) pp
159-237

Kratzer A 1956 Relativitdtstheorie (Minster: Aschendorfsche)

Kretschmann E 1915 Ann. Phys. 48 907-982

—— 1917 Ann. Phys. 53 575-614

Kuchar X V 1988 Highlights in Gravitation and Cosmology (Cambndge Cambridge University Press)



856 J D Norton

Landau L D and Lifshitz E M 1951 The Classical Theory of Fields trans] M Hamermesh (Oxford: Pergamon)

Laue M 1911 Das Relarivitdtsprinzip (Braunschweig: Vieweg)

— 1921 Die Refativitdtstheorie. Vol 2: Die allgemeine Relarivititstheorie und Elnsteins Lehre von der
Schwerlraft (Braunschweig: Vieweg)

Lawden D F 1962 An introduction to Tensor Calculus and Relativiry (London: Methuen)

Lenard P 1921 Ober Relativitdtsprinzip, Ather, Gravitation 3rd edn (Leipzig: Hirzel)

Levi-Civita T 1926 The Absolute Differential Calculus wransl M Long (New York: Dover)

Levinson H C and Zeisler E B 1929 The Law of Gravitation in Relativity (Chicago: University of Chicago Press)
2nd edn

Lorentz H A et al 1923 Principle of Relativity (London: Methuen); (1952 New York: Dover)

Mach E 1893 Science of Mechanles trans] 1960 T ] McCormack (La Salle, IL: Open Court)

Malament D 1986 From Quarks to Quasars. Philosophical Problems of Modern Physics ed R G Colodny
(Pittsburgh, PA: University of Pittsburgh Press) pp 181-201

Martin J L 1988 General Relativiry: A Guide 1o its Consequences for Gravity and Cosmology {Chichester: Ellis
Horwood)

Mashoon B 1986 Found. Phys. 16 619-35.

Maudlin T 1988 Proc. 1988 Biennial Meeting of the Philosophy of Science Association vel, 2, ed A Fine and J
Leplin (East Lansing, MI: Philesophy of Science Assaciation) pp 82-91

—— 1990 Stud. Hist. Philos. Sci. 21 531-61

Mavridés S 1973 L' Univers Relativiste (Paris: Masson)

McVittie G C 1965 General Relativity and Cosmology (Urbana I1.; University of Hlinois Press)

Mehra J 1974 Einstein, Hilbert and The Theory of Gravitation (Dordrecht: Reidel)

Minkowski H 1908 Kdniglichen Gesellschaft der Wissenschaften zu Géttingen, Mathematische-Physikalische
Klasse, Nachrichten, 53-111

wname 1909 Physikalische Zeitschrift 10 104-111 {transl Lorentz 1923, pp 75-81)

Misner € W, Thorne K S and Wheeler J A 1973 Graviration (San Francisco: Fresman)

Moller C 1952 The Theory of Relariviry (Oxford: Clarendon)

Mundy B 1992 Proc. 1992 Biennial Meeting of the Philosophy of Science Association vol, I ed D Hull, M Forbes
and K Okruklik (East Lansing, M1: Philosophy of Science Association) pp 515527

Newton I 1687 Mathematical Principie of Narural Philosophy transl 1934 F Cajori (Berkeley, CA: University of
Los Angeles Press)

North J D 1965 The Measure of the Universe: A History of Modern Cosmology (Oxford: Clarendon)

Norton J D 1984 Historical Studies in the Physical Sciences 14 253-316; reprinted in Einstein and the History of
General Relativity: Einstein Studies, Vol | eds D Howard and J Stachel (Boston: Birkhduser, 1989) pp
101-159 '

—— 1985 Studies in History and Philosophy of Science 16 203-246; reprinted in Einstein and the History of
General Relativity: Einstein Studies, Vol 1 eds D Howard and J Stachel (Boston: Birkh#user, 1989) pp 3—47.

—am 1987 Measurement, Realism and Qbjectivity ed I Forge (Dordrecht; Reidel) pp 153-188

—— 1988 Proceedings of the 1988 Biennial Meeting of the Philosophy of Science Association Vol. 2 eds A Fine
and J Leplin (East Lansing, MI: Philosophy of Science Assoc., 198%) pp 56-64

—— 1989 Found Phys 19 1215-1263

—— 1992 Swudies in the History af General Relativiry: Einstein Swudies, Vol, 3 F Eisenstaedt and A Kox eds
(Boston: Birkhauser) pp 281-313 .

—— 1992a Introduction to the Philosophy of Science M H Salmon er af (Englewood Cliffs, NJ: Prentice-Hall) pp
179-231

—— 1993 Semantical Aspects of Spacetime Theories ed U Majer and H J Schmidt (Mannheim: BI)

Chanian H C 1976 Gravitation and Spacetime (New York: Norton)

Page L 1920 The Principle of General Relativity and Einstein’s Theory of Gravitation (New Haven, CT:
Connecticut Academy of Arts and Sciences)

Painlevé P 1921 C. R, Acad. Sci. Paris 173 873-887

Papapetrou A 1974 Lectures on General Relativity (Dordrecht: Reidel)

Pathria R K 1974 The Theory of Relativiry 2nd edn (Oxford: Pergamon)

Pauli W 1921 Encyklopddie der mathematischen Wissenschaften, mit Einschiuss an threr Anwendung. vol 5 Physik,
Part 2 ed A Sommerfeld (Leipzig: Teubner) pp 539-775; 1958 Theory of Relativity trans] G Field (London:
Pergamon)

Post E J 1967 Delaware Seminar in the Foundations of Physics ed M Bunge (New York: Springer) pp 103-123

Prasanna A R 1971 Lectures on General Relativity and Cosmology, Matscience Report No 7] (Madras: Institute of
Mathematical Sciences)

Raine D I and Heller M 1981 The Science of Space-Time (Tucson, AZ: Pachart Publishing House)



General covariance and general relativity : 857

Rainich G Y 1950 Mathematics of Relativity (New York: Wiley)

Ray C 1987 The Evolution of Relativiry (Bristod and Philadelphia: Adam Hifger}

Reichenbach H 1924 Axiomatization of the Theory of Re!arw:zy trans] 1969 M Rclchenbach {Berkeley, CA:
University of California Press, 1969)

Reinhardt M Z Naturf 28a 529-37

Ricei G and Levi-Civita T 1901 Math. Ann. 54 125-201; reprinted in Levi-Civita 1954 Opere Matematiche, vol, |
(Bologna) pp 479-559

Rindler W 1969 Essential Relativity: Special, General, and Cosmological (New York: Van Nostrand-Reinhold)

Robertson H P and Noonan T W 1968 Relativity and Cosmology (Philadelphia, PA: Saunders)

Roll P G, Krotkov R and Dicke R H 1964 Ann. Phys. 26 442-517

Rosser W G V 1964 An Inroduction to the Theory of Relativiey (London: Butterworths)

Rovelli C 1991 Class. Quarntum Grav. 8 297316

Rynasiewicz R (forthcoming (a)) *Rings, Holes and Substantivalism: On the Program of Leibniz Algebra’ Phil. Sci.

Rynasiewicz R (forthcoming (b)) The Lessons of the Hole Argument

Ryckman T A 1992 Suud. History Phil. Sci. 23 471-497

Sachs R K and Wu H 1977 General Relativity for Mathematicians (New York: Springer)

Scheibe E 1981 Scientific Philosophy Teday eds J Agassi and R S Cohen (Dordrecht: Reidel) pp 311-31; reprinted
1983 Space, Time, and Mechanics ed D Mayr and G Siissman (Dordrecht: Reidet) pp 125-47

—— 1991 Causality, Methed, and Modality ed G G Brittan Jr (Kluwer-Academic) pp 23-40

Schild A 1967 Relativity Theory and Astrophysics Vol. I Relativity and Cosmology ed T Ehlers (Providence, RI:
American Mathematical Society) pp 1-116

Schlick M 1920 Space and Time in Contemporary Physics transl H L Brose {New York: Oxford University Press)

Schrédinger E 1950 Space-Time Structure (Cambridge: Cambridge University Press)

Schutz B F 1985 A First Course in General Relativity (Cambridge: Cambridge University Press)

Sesmat A 1937 Systémes de Référence et Mouvements (Physique Relativiste) (Paris: Hermann)

Sexl R U and Urbantke H K 1983 Gravitation und Kosmologie: Eine Einfihrung in die Allgemeine
Relarivitdtstheorie (Mannheim: Bibliographisches Institut)

Silberstein L 1922 The Theory of General Relativity and Gravitation (University of Toronto Press)

Skinner R 1969 Relasivity (Waltham, MA: Blaisdell Publishing Ca)

Sommerfeld A 1910 Ann. Phys. 32 T49=-776, Ann. Phys. 33 54989

Stachel J (forthcoming) Philosophical Problems of the Internal and External Worlds: Essays on the Philosophy of
Adolf Griinbaum eds J Earman, A Janis, G Massey and N Rescher (Pittsburgh, PA: University of
Pittsburgh/University of Konstanz}

—— 1980 ‘Einstein’s Search for General Covariance’ 9tk Int. Conf. on General Relativity and Gravitation, Jena;,
reprinted in Einstein and the History of General Relativity: Einstein Studies, vol, 1 eds D Howard and J
Stachel (Boston: Birkh&user, 1989) pp 63-100

—— 1980a General Relativity and Gravitation! A Hundred Years After the Birth of Einstein ed A Held (New
York: Plenum); reprinted in Einstein and the History of General Relativity: Einstein Studies, Vol. 1 D
Howard and J Stachel eds (Boston: Birkhauser, 1989) pp 4862

—— 1986 Proc, 4th Marcel Grossmann Meeting on General Relativity ed R Ruffini (Amsterdam: Elsevier) pp
1857-1862

—— 1992 Swudies in the History of General Relativity: Einstein Studies, Vol. 3 eds J Eisenstaedt and A Kox
(Boston: Birkhduser) pp 407418

Stephant H 1977 General Relarivity; An Introduction for the Theory of the Gravitationa! Field ed ] Stewart, transl
M Pollock and J Stewart (Cambridge: Cambridge University Press)

Stewart J 1990 Advanced General Relativity (Cambridge: Cambridge University Press)

Straumann N 1984 General Relativity and Astrophysics (Berlin: Springer)

Synge J L 1960 Relativity: The General Theory (Amsterdam; North-Holland)

—— 1964 Relativity, Groups and Topology eds C De Witt and B De Witt (New York: Gordon and Breach) pp
400

—— 1966 Perspectives in Geometry and Relativity ed B Hoffmann (Bloomington, IN: Indiana University Press)
pp 7-15

Szekeras G 1955 Phys. Rev. 97 212

Teller P (forthcoming) Substance, Relations and Argnments about the Nature of Space-Time Phil. Rev.

Thirring H 1922 Die Idee der Relativititstheorie (Berlin: Springer)

Thirring W 1979 A Course in Mathematical Physics Vol. 2 trans| E M Harrell (New York: Springer)

Tolman R C 1934 Relativity, Thermodynamics and Cosmology (New Yark: Dover)

Tonnelac M 1959 The Principles of Electromagnetic Theory and of Relarivity revised edn 1966, transl A J Knoede]
(Dordrecht: Reidel)



858 J D Norton

Taérnebohm H 1952 A Logical Analysis of the Theory of Relativity (Stockholm: Almqvist & Wiksell)

Toretti R 1983 Relativity and Geometry {Oxford: Pergamon)

——— 1984 British J. Phil. Sci. 35 280-292

Travtman A 1964 Lectures on General Relativity: Brandeis Swmmer Institute in Theoretical Physics Vol I 1964
{Englewood Cliffs, NJ: Prentice Hall, 1965) pp 1-248

—— 1966 Perspectives in Geometry and Relativiry: Essays in Honor of Véclav Higvary ed B Hoffmann
{Bloomington, IN: Indiana University Press) pp 413-23

——— 1973 The Physicist’s Conception of Nature ed ] Mehra (Dordrecht: Reidel) pp 178-98

Treder H-J, von Borzeszkowski H-H, van der Merwe A and Yourgrau W 1980 Fundamental Principles of General
Relativity Theories: Local and Global Aspeces of Gravitation and Cosmology (New York: Plenum, 1980)

Veblen O and Whitchead I H C 1932 The Foundations of Differential Geometry (Cambridge: Cambridge
University Press)

Viadimirov Yu, Mitsldevisch N and Horsky T 1987 Space, Time and Gravitation transl A G Zilberman, ed F [
Fedorov (Moscow; Mir)

Wald R 1984 General Relativiry (Chicago, IL: University of Chicago Press)

Wasserman R H 1992 Tensors and Manifolds with Applications 1o Mechanics and Relativity (New York: Oxford
University Press)

Weber J 1961 General Relativity and Gravitational Waves (New York: Interscience)

Weinberg 5 1972 Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity
(New York: Wiley)

Weyl H 1921 Space Time Matter wransl 1952 H L Brose (New York: Dover)

Whitakker E T 1951 A History of Theories of Aether and Electricity: Vol. I The Classical Theories, Vol, 2 The
Modern Theories 1900-1926 (New York: Dover)

Yilmaz H 1963 Introduction to the Theory of Relativity and Principles of Modern Physics New York: Blaidsdell)

Zahar E 1989 Einstein's Revolution: A Study in Heuristic (La Salle, IL.: Open Court)

Zatzkis H 1955 in Fundamental Formulas of Physics ed D H Menzel (New York: Dover, 1960) Vol, 2,¢h 7



