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Abstract: This review is dedicated to recent progress in the field of classical, in-

teracting, massive spin-2 theories, with a focus on ghost-free bimetric theory. We will

outline its history and its development as a nontrivial extension and generalisation of

nonlinear massive gravity. We present a detailed discussion of the consistency proofs of

both theories, before we review Einstein solutions to the bimetric equations of motion

in vacuum as well as the resulting mass spectrum. We introduce couplings to matter

and then discuss the general relativity and massive gravity limits of bimetric theory,

which correspond to decoupling the massive or the massless spin-2 field from the mat-

ter sector, respectively. More general classical solutions are reviewed and the present

status of bimetric cosmology is summarised. An interesting corner in the bimetric

parameter space which could potentially give rise to a nonlinear theory for partially

massless spin-2 fields is also discussed. Relations to higher-curvature theories of gravity

are explained and finally we give an overview of possible extensions of the theory and

review its formulation in terms of vielbeins.
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1 Introduction

1.1 Motivation

The Standard Model of particle physics contains massive and massless fields with spin

0, 1/2 and 1. Gravitational interactions are attributed to a spin-2 field which, in the

standard framework of General Relativity (GR), is massless and possesses nonlinear

self-interactions. Even though the Standard Model and GR are experimentally and

observationally well-tested, several phenomena still remain unexplained and motivate

the study of theories beyond the standard picture. In particular, two of the biggest

unresolved problems concern the presently unknown nature of dark matter and dark

energy and, in order to account for these constituents in a satisfactory way, introducing

new physics becomes unavoidable. Additional degrees of freedom could be of the same

type as the fields already present in the standard scenarios or, more interestingly, they

could arise from heretofore unknown field theories. While the field theories for spin

0, 1/2 and 1 are well-understood, the treatment of higher spins turns out to be much

more difficult. One of the simplest, or at least most natural, new ingredients that could

be added to the known models is a massive spin-2 field whose presence is expected to

mostly affect the gravitational sector. This may be desirable since modifying gravity is

motivated by the fact that the Standard Model of particle physics is based on the very

solid framework of a renormalisable quantum field theory, while a quantum theory of

gravity does not yet exist and hence GR is not expected to be complete. Moreover,

both the dark energy and the dark matter problems are intimately related to gravity

but cannot be solved in the context of GR without raising additional questions.

Interactions for massive spin-2 fields have long been thought to inevitably give rise

to ghost instabilities and only recently a ghost-free theory for nonlinear interactions

between massive and massless spin-2 fields has been found. Since the construction of

nonlinear massive gravity and its extension to bimetric theory there has been significant

progress in the field, both on the theoretical and the phenomenological side. Two long

review articles on the subject have already been written by Hinterbichler [1] and de

Rham [2]. While these references focus on massive gravity, its gauge invariant formu-

lation in terms of Stückelberg fields and its cosmology, this review is mostly dedicated

to the manifestly covariant and dynamical bimetric theory. We focus on theoretical

aspects and the structure of the theory (which is enforced by consistency) and mention

its application to cosmology only as an aside. Moreover, all our considerations in this

article will be at the classical level, although quantum corrections have been under

preliminary investigations and are discussed in more detail in de Rham’s review [2],
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mostly in the context of massive gravity.

The following subsection summarises the interesting historical developments that led

to the construction of consistent spin-2 interactions. It is no prerequisite for the sub-

sequent discussions and the reader more interested in the details of massive spin-2

theories may directly proceed to section 2.

1.2 Historical background

Since massive gravity and bimetric theory have a rather long history starting with the

work by Fierz and Pauli in 1939, it is impossible to give sufficient credit to all the groups

that have contributed to the field over the last 75 years. We try here to collect the

most important inputs towards the modern construction and pay attention to historical

accuracy to the best of our knowledge.

1.2.1 Early attempts

The program of investigating massive spin-2 fields was initiated by Fierz and Pauli,

who derived the unique classically consistent linearised theory of a free massive spin-

2 field hµν propagating in Minkowski space-time [3, 4]. They demonstrated that the

corresponding Lagrangian is of the form,

LFP = 1
4

(
− ∂µhαβ∂µhαβ − 2∂µh ∂νh

µν + 2∂µh
µν∂αhαν + ∂µh∂

µ h
)

− m2
FP

4

(
hµνh

µν − h2
)
, (1.1)

where h = ηµνhµν and mFP is the mass parameter. The first line here corresponds

exactly to the kinetic operator obtained by linearising the Einstein-Hilbert action of

GR around flat space, while the second line encodes the quadratic non-derivative self-

interactions of hµν that render it massive. The equations of motion derived from the

above Lagrangian are equivalent to the system of equations,(
�−m2

FP

)
hµν = 0 , ∂µhµν = 0 , h = 0 . (1.2)

The first of these is a massive wave equation, while the latter two are constraints on

components of hµν . In particular, Fierz and Pauli showed that if the relative coefficient

(−1) of the two parts in the mass term of (1.1) is changed in any way, the on-shell

condition of tracelessness is lost and a ghost-like scalar mode inside hµν becomes prop-

agating. At the classical level a ghost is a field with negative kinetic energy which gives

rise to an unbounded Hamiltonian and thus causes fatal instabilities; at the quantum
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level ghosts must be avoided in order to ensure unitarity. It is therefore crucial to work

with the above Lagrangian with correct relative coefficient in the mass term. In four

space-time dimensions, it describes the on-shell propagation of a traceless, transverse

and symmetric tensor field hµν with five massive degrees of freedom. This allows us

to identify hµν with a massive spin-2 field with helicities ±2,±1, 0. In all that follows,

when using the terms mass and spin, we refer to their correspondence to degrees of

freedom of relativistic field equations; we will rarely speak about the quantum nature

of these concepts. In a similar fashion, we will frequently employ the particle per-

spective when dealing conceptually with nonlinear generalisations of the Fierz-Pauli

Lagrangian, such as bimetric theory.

During the following years much of the efforts in field theory was directed elsewhere,

developing a firm understanding of GR and exploring the booming realm of particle

physics. Not much consideration was paid to Fierz and Pauli’s theory of massive spin-2

until the early 1970’s. We note however that related questions concerning bimetric

theories were raised early on by Rosen [5, 6] and later by Aragone & Deser in [7]

and by Isham, Salaam & Strathdee in [8]. A major development came about when

van Dam & Veltman [9] and Zakharov [10] (see also [11]) independently investigated

particular consequences of the Fierz-Pauli Lagrangian interpreted as a theory of a

massive graviton. They realised that, in the presence of matter sources, the zero-mass

limit of the theory is discontinuous, a property which is now referred to as the vDVZ

discontinuity. More precisely, this limit does not result in a theory for a single massless

spin-2 field like linearised GR, but also contains a propagating scalar field which couples

to the trace of the stress-energy source. The observational consequence would be an

inferred difference in the bending of light around massive sources which was so severe

that the theory would have been ruled out already at this time. Shortly thereafter,

however, Vainshtein recognised a loophole in this reasoning [12]. He argued that, due

to the presence of more scales in the theory when coupled to a source, a scalar mode

becomes strongly coupled below some distance rV (the Vainshtein radius). Hence the

linearised analysis breaks down in this regime and a nonlinear completion of the theory

is necessary in order to address any questions at distances within rV in a consistent

manner. In particular these findings made it possible again to recover GR at short

distances in the zero-mass limit. That this recovery can indeed be realised at the

nonlinear level was demonstrated in [13] for the case of ghost-free bimetric theory (for

a recent review on the Vainshtein mechanism see [14]).

As an immediate response to Vainshtein’s idea, Boulware and Deser studied the consis-

tency of a wide class of possible nonlinear extensions of the massive Fierz-Pauli theory.

They concluded that it was inevitable to introduce an extra propagating ghost-like
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scalar mode in any nonlinear extension of the theory [15]. In fact, this scalar mode,

the Boulware-Deser ghost, is the same mode that at the linear level was removed by

the trace constraint on hµν . The implication of this analysis was that no consistent

nonlinear theory of massive spin-2 fields could exist. As we now know this strong con-

clusion was incorrect for two reasons: (1) Boulware and Deser did not consider the

most general nonlinear extensions possible in their analysis. They considered only non-

derivative self-interactions of hµν that were given through a general analytic function

f(h2 − h2
µν), which naturally Taylor-expands to the Fierz-Pauli mass term at lowest

order. As we will see later, in the consistent theory the self-interactions are contained

in very specific scalar functions (the elementary symmetric polynomials) constructed

out of the matrix argument [
√

1 + η−1h]µν . The correct field dependence of the in-

teractions is therefore not of the form assumed in the proof by Boulware and Deser.

(2) In their Hamiltonian analysis, they expected one specific equation (the equation

of motion for the lapse variable of the metric) to provide the constraint that removes

the ghost. The analysis of the consistent theory reveals that, in fact, it is a different

equation (a rather contrived combination of lapse and shift equations) that gives the

constraint.

The conclusions of Boulware and Deser’s analysis were so widely accepted that no

further progress was made in the field for another 30 years and it would be almost 40

years until a consistent theory was fully developed. In hindsight this is unfortunate

since, in the meantime, some interesting ideas did not receive the deserved attention

due to the strong no-go theorem. For example, the correct structure of interactions

for massive spin-2 fields was in fact partly suggested very early on by Zumino and also

Chamseddine [16, 17], but without addressing the ghost problem (in fact it can be noted

that [16] actually predated the no-go theorem). Similarly, the correct structure in the

vielbein formulation was partly written down in [18], again failing to address the ghost

issue. It has also recently been pointed out in [19] that some attempts to construct a

theory of nonlinear massive spin-2 fields were made by Maheshwari [20] using ideas from

the works of Ogievetsky and Polubarinov [21, 22]. These constructions however went

largely unnoticed and did not contribute towards the modern ideas and understanding

of nonlinear massive gravity.

Another approach that has become popular in recent years and deserves mentioning

is the attempt to construct consistent spin-2 mass terms that break Lorentz invari-

ance [23–25]. Based on the experience gained from the recent progress made in con-

structing the Lorentz invariant theories, similar progress has also been made in con-

structing Lorentz-breaking theories of massive gravity [26–28]. In this review we will

however restrict ourselves to the class of theories that respects Lorentz invariance.
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1.2.2 A renewed interest

After the very precise confirmation of the accelerated expansion of the universe in 1998

[29, 30], a huge effort was devoted towards understanding better the underlying physics

of this discovery. Within the context of standard GR this observed accelerated expan-

sion of spacetime itself requires the addition of an additional source term with rather

strange behaviour as compared to standard matter sources. The main-stream philoso-

phy at this time was to hold firm in GR and not worry too much about the origin of

such a source but simply collectively call this mysterious source “dark energy”. The

simplest explanation for the acceleration is the presence of a constant source term in

Einstein’s equations. Adopting this view led to the celebrated ΛCDM (“Λ Cold Dark

Matter”) concordance model of cosmology, which is in excellent agreement with obser-

vational data thus far [31]. On the other hand, a growing community of theoretical

physicists with a particle physics oriented mind was now realising the pressing nature

of the cosmological constant problem [32]: the small value of the observed acceleration

does not fit in with expectations from a particle physics perspective, where a cosmolog-

ical constant is naturally associated with vacuum energy. Unless additional symmetries

(such as supersymmetry) are at work, a natural value for the vacuum energy scale is

the mass of the heaviest field in the theory, which in any scenario is many orders of

magnitude higher than the observed value for the cosmological constant.

In addition to the poorly understood nature of dark energy, cosmologists seek to ex-

plain the presence of an unidentified matter component, commonly referred to as “dark

matter”, which, in the context of GR, is required to account for the observational data

at distances ranging from galactic to cosmological scales [31, 33, 34].

Since quantum field theory is such a rigorous framework and both the nature of dark

matter and in particular dark energy seems so deeply connected with the large scale

behaviour of gravity, which was really only tested within the solar system, many theo-

rists started to look for an answer by modifying the gravitational sector of field theory.

In the beginning much attention was given to extra dimensional setups which were

mainly inspired by the additional dimensions arising in string theory and by the

braneworld scenarios geared towards addressing the Higgs hierarchy problem of the

Standard Model as well as supersymmetry breaking through anomaly mediation [35–

37]. With respect to the cosmological constant problem, a particular interest was paid

to models of brane induced gravity [38–40] and similar constructions (e.g. cascading

gravity [41, 42]). Brane induced gravity models, and in particular the codimension-one

DGP model [38, 43] (for related investigations see [44]), were historically very impor-

tant for a renewed interest in studying massive gravitons, since a generic feature of
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these models was the appearance of massive spin-2 resonance states on the brane that

makes up our Universe in these models (see e.g. [45]). Due to the generic Yukawa sup-

pression of the gravitational potential mediated by a massive field, a massive graviton

also became interesting in itself for addressing the cosmological constant problem. The

hope was that this exponential suppression could sufficiently weaken gravity at large

distance scales to screen out a large vacuum energy coming from the matter sector

and thus lead to a small effective cosmological constant. Even though this picture is

correct in linear Fierz-Pauli theory, it eventually turned out that it would not work in

the nonlinear theory without fine-tuning (as discussed in e.g. [46]).

In 2002 Arkani-Hamed, Georgi and Schwartz proposed a new perspective on studying

effective theories with explicitly broken general covariance, in close analogy to sym-

metry breaking in spin-1 theories and the associated emergence of Goldstone modes

[47]. These ideas were quite general but in particular provided a new language for

analysing the internal consistency of massive gravity. More explicitly, the setup was

based on intuition from the Goldstone boson equivalence theorem [48, 49], which relates

the physics of longitudinal modes of spin-1 gauge bosons to the physics of Goldstone

modes at high energies. The authors of [47] suggested a similar correspondence in

gravitational theories and that, in certain energy regimes, the complex problem of self-

interacting spin-2 fields could be simplified to studying only their scalar longitudinal

components.

In 2005 Creminelli, Nicolis, Papucci and Trincherini followed up on the ideas of Arkani-

Hamed, Georgi and Schwartz (further inspired by the results of [23, 24, 50]) and at-

tempted to explicitly construct a consistent theory of massive gravity using a bottom-

up approach [51].1 As a bitter irony of history (and humbling lesson in importance

of rigor), despite a very beautiful analysis they reached the erroneous conclusion that

the ghost problem of nonlinear massive gravity could not be resolved and found the

Boulware-Deser ghost reappearing again. This result was based on an unfortunate sign

mistake which arose from copying a basic equation of [47] (for which the sign was not

important). It is worth mentioning that without this sign mistake the discovery of a

consistent theory of massive gravity could have been made already in 2005.

1.2.3 Massive gravity rediscovered: dRGT theory

In 2009 the issue of massive gravitons was further pursued by Gabadadze who modified

GR by introducing an auxiliary extra dimension [53]. This work was shortly followed

1At the same time Deffayet and Rombouts independently used the same formalism to study the

ghost and its relation to the Vainshtein mechanism [52].
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up by (and with) de Rham in [54, 55]. Their approach was based on an interesting

field theoretical tool to generate a mass term for a vector (or scalar) field by imposing

boundary conditions in an auxiliary extra dimension. Even though introducing an

extra unphysical dimension and fixing boundary conditions by hand seems rather ad

hoc, the procedure itself straightforwardly extends to the spin-2 case. The massive

spin-2 model obtained in this way was demonstrated to be ghost-free to cubic order in

a “decoupling limit” analysis [55]. Although the same setup was subsequently shown

to be inconsistent in a fully nonlinear analysis by Hassan and Rosen [56], it provided

important inspiration that pushed developments further. The belief that the auxiliary-

dimension model was consistent motivated de Rham and Gabadadze to revisit the ghost

analysis of nonlinear massive gravity by Creminelli et al.

In 2010 de Rham and Gabadadze studied generic extensions of the Fierz-Pauli La-

grangian (1.1) by higher-order interactions of the massive spin-2 fluctuation hµν [57].

Their analysis went to quintic order in the longitudinal component of the massive spin-

2 field and demonstrated that its interactions could in fact be made ghost-free in a

decoupling limit, correcting the conclusions of [51]. The decoupling limit analysis relies

heavily on the aforementioned Goldstone boson analogy suggested by Arkani-Hamed,

Georgi and Schwartz and requires taking a double scaling limit in order to study the dy-

namics of the longitudinal mode separately. As a follow up to [57], de Rham, Gabadadze

and Tolley (henceforth dRGT) presented a nonlinear theory of massive gravity in whose

decoupling limit they proved the absence of ghost for all nonlinear self-interactions of

the longitudinal component [58]. The dRGT action is of the form,

SdRGT = m2
g

∫
d4x
√
g

(
R(g) +

m2

2

4∑
n=2

n!(4− n)!αnen(K)

)
, (1.3)

where the first term is the ordinary Einstein-Hilbert term of GR with Planck mass

mg and the second term is the interaction potential for the graviton whose mass is

set by the scale m. Furthermore, α2 = 1 while the two remaining αn are arbitrary

interaction parameters. The en(K) are the elementary symmetric polynomials (see

appendix A) constructed out of the matrix Kµν = δµν − [
√
g−1η]µν .

2 Expanding the

action in terms of hµν = mg(gµν − ηµν) indeed results in a nonlinear extension of the

Fierz-Pauli theory (1.1).

2It should be noted that Ref. [58] did actually not present the action precisely in the above form.

The interactions were resummed to give the square-root matrix structure, but it was not obvious

from [58] that the sum in (1.3) would terminate at n = 4. This fact was pointed out by Hassan &

Rosen in [46].
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The authors of [57, 58] also made the important observation of a loophole in the Hamil-

tonian analysis by Boulware and Deser [15] which had long been believed to forbid any

consistent theory of nonlinear massive spin-2 interactions.3 By avoiding the ghost in

the interactions of the longitudinal component, the dRGT model satisfied one of the

necessary requirements on the complete theory to be consistent and consequently be-

came the most promising candidate for a consistent theory of massive gravity. However,

as noted, the proof of absence of the Boulware-Deser ghost in [58] was not made for the

full theory since the analysis focused on self-interactions of one scalar component only.

One reason for the difficulty of conclusively proving the consistency was the complex-

ity of the nonlinear spin-2 interactions whose structure required better understanding

before a full Hamiltonian analysis could be performed.

1.2.4 Important generalisations

The dRGT formulation of massive gravity was constructed with a perturbative expan-

sion around a fixed flat background in mind. In 2011 Hassan and Rosen presented a

reformulation of the dRGT action, which clarified the non-perturbative structure of

the theory and identified consistent generalisations to more general backgrounds that

were not apparent in the original formulation. Using basic properties of the elementary

symmetric polynomials, they showed that the dRGT massive gravity action (4.7) can

be reformulated and then generalised to [46],

SHR = m2
g

∫
d4x
√
g

(
R(g)− 2m2

4∑
n=0

βnen

(√
g−1f

))
, (1.4)

where βn are five arbitrary parameters whose role will be explained in detail later.

Most notably, the new formulation involves an arbitrary (but fixed) reference metric

fµν , which in dRGT is strictly taken to be ηµν . It is worth to stress that even though

the structures of (1.4) and (1.3) are very similar, there is no obvious way of getting

to (1.4) from the original dRGT formulation in [58] (whereas obtaining (1.3) from

(1.4) is straightforward) and thus the new formulation truly represents an important

generalisation of the original massive gravity theory. In particular, the new formulation

is indispensable for addressing any question about massive spin-2 interactions on a

curved background. Even more importantly, as we will see, it suggests how to arrive

at a fully dynamical theory of interacting spin-2 fields.

Going beyond the decoupling limit analysis of [58], Hassan and Rosen quickly utilised

the formulation (1.4) to give a fully nonlinear consistency proof for dRGT massive

3In fact, to our knowledge, this caveat was first encountered in [53].
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gravity with flat reference metric [59]: In a Hamiltonian analysis based on the ADM

formalism [60], they showed that the complete nonlinear theory gives rise to a constraint

that removes the Boulware-Deser ghost. Shortly after this, the proof was generalised

to the case of an arbitrary reference metric fµν in [61]. These consistency proofs (see

also [62, 63] and [27, 64–69] for subsequent confirmations) for the massive gravity

action (1.4) essentially completed the program of finding a Lorentz-invariant theory for

a massive spin-2 field initiated by Fierz and Pauli in 1939.

1.2.5 Hassan-Rosen bimetric theory

A very important outcome of the generalised investigations of Hassan and Rosen laid in

obtaining an extension of the massive gravity theory in which the reference metric fµν
receives its own dynamics. As a consequence, the two metrics gµν and fµν are treated

on the same footing in this bimetric theory and all fields in the action are determined

dynamically. Bimetric theories of gravity have been subject of earlier investigations in,

for instance, [6–8, 17, 70–75] but, just as nonlinear massive gravity, they generically

suffer from the Boulware-Deser ghost instability.

Shortly after the nonlinear theory for massive gravity had been developed, the unique

ghost-free bimetric theory was presented by Hassan and Rosen in [76]. Its form is

reminiscent of the massive gravity action,

SHR = m2
g

∫
d4x
√
g R(g) +m2

f

∫
d4x
√
f R(f)

− 2m4

∫
d4x
√
g

4∑
n=0

βnen

(√
g−1f

)
, (1.5)

but it includes an Einstein-Hilbert term of fµν in which mf is the “Planck mass” for

the second metric. Most importantly, bimetric theory provides a covariant formulation

for massive spin-2 fields, in which now both metrics are dynamical and the structure

of the action is in fact symmetric with respect to the interchange of gµν and fµν . The

consistency of bimetric theory was first demonstrated in [62, 76] and, as we shall see

later, this established the first theory describing consistent nonlinear interactions of

massive spin-2 fields with massless ones.

1.3 Outline of the review

We have chosen the following structure for this review: Our starting point will be the

linear theories for massless and massive spin-2 fields in flat background in section 2. The
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possibility to generalise the massless theory to arbitrary backgrounds by constructing

the nonlinear theory of general relativity motivates us to look for a nonlinear completion

of the mass term. In section 3, after reviewing the ghost problem, we pursue this goal

by introducing a suitable set of ADM variables and provide a constructive proof for the

consistent spin-2 interaction potential. Section 4 summarises the main features of ghost-

free nonlinear massive gravity with general and flat reference metric, in both gauge fixed

and in gauge invariant form. We then move on to the fully dynamical bimetric theory

in section 5 where we write down its mass spectrum and also introduce couplings to

matter. Classical solutions to the bimetric equations are discussed in section 6, first in

general and then with a focus on black hole and cosmological solutions. In section 7 we

review the phenomenon of partially massless spin-2 fields on de Sitter space and present

the idea of realising partial masslessness at the nonlinear level. In this context, we also

reveal a connection between bimetric theory and certain higher-derivative theories of

gravity. Possible extensions of bimetric theory, including new kinetic terms in higher

dimensions as well as multiple spin-2 interactions, are discussed in section 8. Finally,

we conclude this review article with a list of several open questions in section 9.
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2 Spin-2 Fields on Fixed Backgrounds

Having outlined the history of massive gravity in the introduction, we now turn to the

detailed description of spin-2 field theories. In this section we first discuss the linear

theory for a massless spin-2 field in a flat background and see how the correct number of

physical degrees of freedom emerges due to gauge invariance. The nonlinear completion

of the corresponding Lagrangian is the Einstein-Hilbert action of GR from which one

can derive the linear theory around general curved backgrounds. Thereafter we review

the linear theory of massive spin-2 in flat space, where the presence of constraints lead

to the correct number of propagating modes. The quest for a generalisation to curved

backgrounds again requires a nonlinear completion of the spin-2 mass term and paves

the way towards nonlinear massive gravity.

2.1 Massless spin-2 field

2.1.1 Flat space

The Lagrangian for a massless spin-2 field hµν to quadratic order in the field in flat

space with Minkowski metric ηµν reads,

Llin = 1
2
hµνE ρσ

µν hρσ , (2.1)

where the structure of the kinetic terms is captured by the two-derivative operator,

E ρσ
µν = 1

2

(
η ρ
µ η

σ
ν ∂

2 − η σ
ν ∂µ∂

ρ − η σ
µ ∂ν∂

ρ + ηµν∂
σ∂ρ + ηρσ∂µ∂ν − ηµνηρσ∂2

)
. (2.2)

The corresponding equations of motion are,

E ρσ
µν hρσ = 0 . (2.3)

As can easily be verified, the Lagrangian and equations for the massless spin-2 particle

are invariant under the following gauge transformations,

hµν(x) 7−→ hµν(x) + ∂µξν(x) + ∂νξµ(x) , (2.4)

with vector gauge parameter ξµ(x). An equivalent manifestation of this gauge in-

variance is the linearised Bianchi identity: the divergence of the left-hand side of the

equations of motion (2.3) is identically zero, i.e. ∂µE ρσ
µν hρσ = 0.

As should be familiar from the spin-1 case (Maxwell’s theory), we can use the symmetry

transformation (2.4) to pick a convenient gauge. The de Donder gauge condition for
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the spin-2 field is ∂µhµν − 1
2
∂νh = 0. This is the analogue of the Lorenz gauge for

massless vectors and constrains four of the ten components in hµν . In this gauge the

equations of motion assume the simple form,

�hµν = 0 . (2.5)

After fixing the de Donder gauge there still exist residual transformations, namely those

with �ξµ = 0, that leave the de Donder gauge intact. Since the four residual gauge

parameters satisfy the same equation as the field, they can directly be invoked to remove

further redundant degrees of freedom. In total, gauge invariance therefore removes eight

of the ten components in the symmetric field hµν , and the only propagating modes are

the two degrees of freedom of a massless spin-2 particle.

It is also possible to couple the massless spin-2 field to other fields by introducing an

external source Tµν into the Lagrangian,

Llin = 1
2

(
hµνE ρσ

µν hρσ − κhµνTµν
)
, (2.6)

where κ is a coupling constant of mass dimension minus one (here hµν is taken to

have mass dimension one). The linearised Bianchi identity now implies ∂µTµν = 0,

i.e. conservation of the source.

2.1.2 Curved space

The graviton in GR is a massless spin-2 particle and should hence be described by the

Lagrangian (2.6). On the other hand, the equivalence principle tells us that the field

should couple to all kinds of energy in the same manner, including its own stress-energy

tensor. Implementing this requirement in (2.6) iteratively introduces nonlinearities in

hµν and eventually leads to the Einstein-Hilbert action for GR (see e.g. [77, 78]),

SGR = M2
Pl

∫
d4x
√
−g R +

∫
d4x
√
−g Lm , (2.7)

The corresponding equations of motion are Einstein’s equations,

Rµν −
1

2
gµνR =

1

M2
Pl

Tµν , (2.8)

where Rµν is the Ricci tensor with trace R and the stress-energy tensor is derived from

the matter Lagrangian Lm as,

Tµν ≡ −
1√
−g

∂(
√
−gLm)

∂gµν
. (2.9)
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The Einstein-Hilbert action is the gauge invariant nonlinear extension of (2.6). It

can be defined uniquely, as the field theory that describes nonlinear self-interactions

of a massless spin-2 particle. The gauge transformations (2.4) are linearised general

coordinate transformations (GCTs), under which the metric at the nonlinear level

transforms as,

gµν 7−→ gµν +∇µξν +∇νξµ . (2.10)

The presence of a gauge symmetry at the nonlinear level ensures that the full theory

propagates the same number of degrees of freedom as its linear version.

The Einstein equations (2.8) allow for flat space solutions, gµν = ηµν , in the case of

vanishing matter source. Linearising the action around this background in the pertur-

bation hµν = κ−1(gµν−ηµν) results in the linear theory for a massless spin-2 field (2.6).

On the other hand, a non-vanishing background value of the source will give rise to a

curved background metric ḡµν and around this solution the action can be linearised as,

L′lin = 1
2

(
hµν Ē ρσ

µν hρσ − κhµνδTµν
)
, (2.11)

where now the linearised Einstein operator takes the covariant form,

Ē ρσ
µν = 1

2

(
δρµδ

σ
ν∇̄2 − δσν∇̄µ∇̄ρ − δσµ∇̄ν∇̄ρ + ḡµν∇̄σ∇̄ρ

+ ḡρσ∇̄µ∇̄ν − ḡµν ḡρσ∇̄2 − ḡµνR̄ρσ + δρµδ
σ
νR̄
)
, (2.12)

where ∇̄µ and R̄ are defined with respect to ḡµν . At this stage let us make an important

remark on covariantisation of a theory whose form is known in flat space. Suppose

we were given only the flat space Lagrangian (2.6) and asked to derive its covariant

generalisation. Näıvely, one would replace all partial derivatives ∂µ by covariant ones

∇µ and all occurrences of the Minkowski metric ηµν by the more general background

ḡµν . This procedure works for lower spin-particles coupled to gravity and results in well-

known formulations of spin-0, spin-1/2 and spin-1 theories in curved space. For the

spin-2 field, however, the procedure fails because näıve covariantisation of (2.6) does

not result in the consistent form (2.12) obtained from linearising GR. In particular,

ambiguities arise because the covariant derivatives do not commute and since there

is no obvious guideline telling us which curvature terms to include in the linearised

Einstein operator. On the other hand, knowledge of the nonlinear theory (2.7) allows

us to straightforwardly arrive at the correct Lagrangian for a massless spin-2 field in

curved background.
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2.2 Massive spin-2 field in flat space

As has been known since the work of Fierz and Pauli from 1939 [3], the quadratic

Lagrangian for a massive spin-2 excitation in flat space has the form,

LFP =
1

2

(
hµνE ρσ

µν hρσ −
m2

FP

2
(hµνhµν − h2)− κhµνTµν

)
, (2.13)

where the kinetic operator is the same as in the massless case, given by (2.2), and we

have included a source term Tµν . The equations of motion obtained from the Lagrangian

for the massive particle are

E ρσ
µν hρσ −

m2
FP

2
(hµν − ηµνh) =

κ

2
Tµν . (2.14)

The mass term breaks the gauge invariance of the massless theory but, as a consequence

of the linearised Bianchi identity, the divergence and trace of these equations give rise

to five constraints,

∂µhµν − ∂νh = − κ

m2
FP

∂µTµν , (2.15a)

h =
κ

3m2
FP

T +
2κ

3m4
FP

∂ν∂µTµν . (2.15b)

The source is not necessarily conserved but, for simplicity, we shall anyway assume

∂µT
µν = 0. This assumption certainly holds for any source that is derived from a dif-

feomorphism invariant matter coupling. For vanishing sources, the constraint equations

imply that the massive spin-2 field is transverse and traceless.

Using (2.15) in the equations of motion, we can rewrite them as,

(�−m2
FP)hµν = κ

(
Tµν −

1

3

[
ηµν −

1

m2
FP

∂µ∂νT

])
, (2.16)

and see that the massive spin-2 field satisfies a sourced Klein-Gordon equation. The

constraints (2.15) remove five of the ten components in hµν , leaving us with the five

propagating degrees of freedom of a massive spin-2 particle.

An important observation made by Fierz and Pauli is that modifying the structure of

the mass term, i.e. changing the numerical factor in front of h2 in (2.13), introduces an

additional degree of freedom into the theory. This happens because the trace constraint

(2.15b) is lost and h satisfies a dynamical equation of motion instead. It can furthermore

be shown that the propagator corresponding to the extra degree of freedom comes with
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a residue of the wrong sign and therefore gives rise to a ghost instability [15].4 This

unwanted dynamical field is referred to as the Boulware-Deser ghost. It is this ghost

mode that complicates the construction of a nonlinear interaction potential for a spin-2

field because, even when banned from the linear theory, the ghost notoriously reappears

through the higher-order interactions.

On the other hand, tuning the linear mass potential to the Fierz-Pauli structure comes

with its own problems that threaten the phenomenological viability of the theory as

a modification of GR. Namely, as we already mentioned in the introduction, it was

shown by van Dam, Veltman and Zakharov (vDVZ) [9, 10] that the mFP → 0 limit of

linear massive gravity does not continuously approach linearised GR. Nonlinear self-

interactions for the spin-2 field may be able to cure this problem if they exhibit the

Vainshtein mechanism [12]. Historically, this was one of the main motivations for the

construction of a nonlinear theory of massive gravity. Another reason to search for

a completion of the Fierz-Pauli mass term is the existence of the nonlinear closed

form (2.7) in the massless theory.

Since consistency of linearised massive gravity in flat space requires tuning a coefficient

in the mass potential, one can expect that a consistent (i.e. ghost-free) nonlinear po-

tential cannot contain arbitrary interaction terms, but that the coefficients of certain

terms will be related to each other by demanding the absence of the extra degree of free-

dom. If the fully nonlinear theory for massive spin-2 was known, it could be linearised

around general backgrounds to give the covariantised version of (2.13). However, as

in the massless case, it would be a very difficult task to derive the linear theory on

arbitrary backgrounds by covariantising the flat-space Lagrangian. As we will see later

in section 4.3, the most general linear theory for massive spin-2 can also be derived

from a nonlinear action and has a rather complicated form.

4See [79] for a detailed analysis of the propagator in Fierz-Pauli theory and its deformed version

containing the ghost.
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3 Towards Nonlinear Spin-2 Interactions

In the previous chapter we considered massless and massive theories for a linear fluctu-

ation hµν in a fixed Minkowski background ηµν . In the nonlinear massless theory given

by the Einstein-Hilbert action of GR, it was possible to combine the background and

the fluctuation into a single nonlinear field gµν . We would now like to do something

similar in the massive case and construct a nonlinear self-interaction term without

derivatives for the metric.

3.1 General structure

Historically it was often assumed that any nonlinear theory for massive gravity must

give rise to flat space solutions and a Fierz-Pauli mass term in the linear theory. On the

other hand, it is well known that a consistent mass term may also be written down on

maximally symmetric backgrounds5 [80–86], or even more generally on homogeneous

and isotropic backgrounds [87–89]. This possibility motivates us to consider a general

nonlinear theory without reference to flat Minkowski solutions and only demand that

the correct number of degrees of freedom propagate at the nonlinear level (or, equiv-

alently, around any background). Of course, when restricting to certain backgrounds

the linearised version of the nonlinear theory must also reduce to the correct known

structure.

What we call a mass term for a rank-2 tensor gµν must be a scalar density, i.e. it has

to be a nontrivial scalar function V (g) multiplied by the scalar density
√
g. Obviously,

the scalar function V (g) cannot have any loose covariant indices and, by definition, it

should not contain any derivatives. But then, the only object at hand to contract the

indices of the metric tensor gµν is the metric itself which, since gρµgµν = δρν , leads to a

trivial cosmological constant contribution in the action. We conclude that there is no

possibility to construct a covariant nonlinear interaction term for a spin-2 field using

only one tensor field.6 Hence, we are forced to introduce another field in order to build

nonlinear contractions with gµν . In principle, this could be any object with sufficient

amount of indices, but the minimal choice is to work with a second rank-2 tensor which

we shall call fµν . The interaction potential will then be given by
√
g multiplying a

5Interestingly, the vDVZ discontinuity turns out to be absent on de-Sitter backgrounds [80].
6Note the difference to e.g. the vector example, where the metric gµν can be used to contract the

indices in nonlinear interaction terms for Aµ in a nontrivial way. Furthermore, in the massless spin-2

theory this problem did not occur because in the kinetic terms the indices of the metric could be

contracted with derivative operators.
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scalar function of gρµfµν . Note that, due to the existence of an additional tensor fµν ,

we could in principle consider densitising by using for example
√
f or g1/4f 1/4. Since it

is always possible to factor out
√
g (for instance, by writing

√
f =
√
g det

√
g−1f and

absorbing the second factor into the potential) we may use that as the scalar density

without any loss of generality.

In summary, we expect the nonlinear massive gravity action to be of the form,

SMG = m2
g

∫
d4x
√
g
[
R(g)−m2 V (g−1f)

]
, (3.1)

where m is an arbitrary energy scale that sets the mass of the spin-2 field. In this setup,

the second “metric” fµν is a fixed background field that needs to be put into the theory

by hand. From the viewpoint of field theory this is somewhat unusual because fµν is

not determined by an equation of motion. In fact, there is no need to worry about this,

since we will resolve this slightly confusing point later, when we introduce the fully

dynamical bimetric theory that treats gµν and fµν on the same footing. For now, let

us accept the possibility to work with a fixed reference metric fµν and investigate the

consistency of this class of theories.

A simple example for a possible interaction term would be V (g−1f) = Tr(g−1f). Inter-

estingly, the corresponding action is closely related to another modification of gravity

that goes under the name Eddington-inspired Born-Infeld theory [90]. Unfortunately,

having only this term in the action gives rise to the Boulware-Deser ghost and is thus

not a viable choice.

A necessary requirement on the interaction potential in (3.1) is that it reduces to the

Fierz-Pauli mass term for parameter choices that permit a linearisation around flat

space (i.e. when the reference metric fµν is flat and when flat background solutions

for gµν exist), otherwise it will certainly propagate the Boulware-Deser ghost. But

this requirement alone is not sufficient for consistency: A generic nonlinear interaction

potential, even if it incorporates the Fierz-Pauli structure around flat space, will rein-

troduce the extra degree of freedom which leads to instabilities at the nonlinear level.

This is anticipated from a simple degree-of-freedom counting in the full theory: The

introduction of the interaction potential breaks the diffeomorphism invariance of GR.

Therefore the four gauge symmetries are lost and the theory generically will propagate

four additional degrees of freedom. Since 2 + 4 = 6, this does not give the correct num-

ber for a massive spin-2 particle, but there is an extra degree of freedom in the theory.

This is the nonlinear Boulware-Deser ghost and a constraint is needed to remove it from

the spectrum of propagating modes. Tuning the linear mass term to the Fierz-Pauli

combination ensures the presence of this constraint only in the linear theory.
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We will see that, in order to obtain an additional constraint and thereby ensure the

absence of the ghost beyond the linear level, it is necessary to impose strong restrictions

on the structure of interactions. In fact, demanding the presence of a constraint will

fix all but three coefficients of all possible interaction terms.

3.2 The Boulware-Deser ghost

In the construction of the consistent theory, we will follow the approach of Boulware

and Deser who studied massive gravity in the Hamiltonian formulation [15, 91]. They

claimed that, even though it is possible to remove the ghost from the spectrum of prop-

agating modes at the linear level, it will return for any nonlinear interaction terms that

are added to the Lagrangian (2.13). In order to show that this result is in fact incor-

rect, we first need to familiarise ourselves with variables suitable for the Hamiltonian

formulation of GR.

3.2.1 ADM variables for general relativity

The Hamiltonian formulation of GR traces back to the work by Arnowitt, Deser, and

Misner (ADM) from 1962 [60]. The authors decomposed the metric gµν into a scalar

N (lapse), a three-dimensional metric γij, and a three-component vector Ni (shift) as

follows:

gµν =

(
−N2 +Niγ

ijNj Nj

Ni γij

)
, (3.2)

where γij denotes the inverse of γij. This parametrisation essentially splits the metric

into its time (0µ) and spatial (ij) components. From (3.2) we can also compute the

inverse of the metric,

gµν =
1

N2

(
−1 N j

N i N2γij −N iN j

)
. (3.3)

Here and in the following we raise the indices on the shift vector Ni using the inverse

spatial metric γij.

It turns out that, in any theory with kinetic structure given by the Einstein-Hilbert

term, the lapse N and shift Ni are non-dynamical gauge degrees of freedom because the

Ricci scalar of gµν contains no derivatives on those fields. Hence, all of the propagating

modes are contained in the spatial metric γij which has six independent components.

The gauge invariance of GR further reduces the number of propagating degrees of

freedom to two, along with the same number of corresponding canonical momenta.
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More explicitly, in terms of the ADM variables the Einstein-Hilbert action (2.7) in vac-

uum becomes (up to a boundary term which, although crucial for certain applications,

is not important for our considerations) [60]

SGR = M2
P

∫
d4x

(
πij∂tγij −NR0 −NiR

i
)
, (3.4)

where, in terms of the curvature scalar R(3) of the metric γij,

R0 = −√γ
[
R(3) + γ−1

(
1

2
(πii)

2 − πijπij
)]

,

Ri = −2∂jπ
ij. (3.5)

The conjugate momenta πij of the six metric components γij are computed from the

GR Lagrangian in the standard way which leads to expressions in terms of derivatives

of the four-dimensional metric.

It is now evident that the action (3.4) does not contain dynamical terms for the scalar N

nor for the vector N i. On top of that, these variables appear only linearly and therefore

act as Lagrange multipliers whose equations of motion do not contain N and N i them-

selves. This implies that these equations in fact correspond to four constraints Rµ = 0,

with Rµ = (R0, Ri), on the remaining twelve variables γij and πij.

According to the theory of constrained Hamiltonian systems,7 the presence of a gauge

symmetry can now be seen in the Poisson algebra of the constraints, {Rµ, Rν}. Here,

the Poisson bracket for functions A,B is defined as

{A(x), B(y)} ≡
∫

d3z

(
δA(x)

δγij(z)

δB(y)

δπij(z)
− δA(y)

δπij(z)

δB(x)

δγij(z)

)
. (3.6)

The result for the constraint algebra of GR reads [93, 94],

{R0(x), R0(y)} = Ri(y)
∂

∂yi
δ3(x− y)−Ri(x)

∂

∂xi
δ3(x− y) ,

{Ri(x), Rj(y)} = Ri(y)
∂

∂yj
δ3(x− y)−Rj(x)

∂

∂xi
δ3(x− y) ,

{R0(x), Ri(y)} = −R0(y)
∂

∂xi
δ3(x− y) . (3.7)

Since these brackets are proportional to the constraints themselves, they vanish on

the constraint surface, as they should in the presence of a gauge symmetry. In the

language of Dirac, non-trivial gauge symmetries generate first class constraints. All

7For a review of this subject see e.g. [92].
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four primary constraints will serve to put conditions on the remaining variables γij
and πij, while the Lagrange multipliers N and N i remain undetermined at this stage.

Since the Hamiltonian H is itself a linear combination of R and Ri, all constraints are

automatically preserved in time since the time-evolution of any quantity is determined

by d
dt
A(x) = {A(x), H}.

After imposing the four conditions on γij and πij, we can still use gauge transformations

to remove another four degrees of freedom whose equations of motion will eventually

determine N and N i. In total we therefore end up with four dynamical variables, cor-

responding to the two helicity states (±2) of the massless graviton and their canonical

momenta. This shows that, even nonlinearly, GR propagates the correct number of

degrees of freedom for describing a massless spin-2 particle.

Note that throughout the above discussion we never actually wrote down the Hamilto-

nian, but remained in the Lagrangian formulation. In order to investigate the positivity

of the energy8 this is naturally insufficient, but since here we were only interested in

counting degrees of freedom there was no need to work directly with the Hamiltonian,

which can trivially be obtained from (3.4).

3.2.2 The no-go theorem

The ADM variables turn out to be very useful for investigating the consistency of

massive gravity. We saw that at the linearised level the only consistent mass term

is the one proposed by Fierz and Pauli given in (2.13). In order to demonstrate the

presence of the ghost instability in the ADM formalism, in their paper [15] from 1972,

Boulware and Deser studied the more general “mass term” with arbitrary coefficient a,

LBD =
1

2

(
hµνE ρσ

µν hρσ −
m2

2
(hµνhµν − ah2)

)
. (3.8)

The trace constraint h = 0 which removes the ghost mode does not exist for a 6= 1.

Another way of seeing the additional mode is by noticing that, precisely for the Fierz-

Pauli choice a = 1, the mass term is linear in the component h00, which furthermore

appears without time derivatives in the linearised Einstein operator. Thus, for a = 1,

the equation of motion for h00 is a constraint which removes one dynamical variable.

For other values of a, the equation depends on h00 itself in which case it does not

constrain other components. As a direct consequence, a sixth degree of freedom is

propagating.

8The positivity of the Hamiltonian has not been proven in the bimetric theory or in massive gravity

in general, but has been studied for spherically symmetric configurations in [95].
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We can make this more explicit using the variables introduced for the Hamiltonian

analysis of GR in the previous subsection. From the ADM decomposition (3.2) we read

off the decomposition of the fluctuation,

hµν = gµν − ηµν =

(
1−N2 +Niγ

ijNj Nj

Ni hij

)
, (3.9)

where hij = γij − δij. Inserting this into the mass terms one finds,

m2

4

(
hµνhµν − ah2

)
= −m

2

4

(
hijhij − a(hii)

2 − 2NiNi + 2a(1−N2 +Niγ
ijNj)h

i
i

+ (1− a)(1−N2 +Niγ
ijNj)

2
)
. (3.10)

The last term gives rise to nonlinearities in h00 = 1−N2 +Niγ
ijNj and vanishes only

for a = 1. Moreover, when hµν = gµν − ηµν is viewed as a small perturbation of ηµν , its

ADM variables can be written as small fluctuations as well,

δN = N − 1 , δNi = Ni , hij = γij − δij , (3.11)

and we can study their appearance to quadratic order in the mass term. For a = 1, the

expression in (3.10) turns out to be linear in δN at the quadratic level, such that the

equation of motion of δN gives rise to a constraint. On the other hand, we also see that

the shift vector δNi does no longer appear only linearly which is of course consistent

with the breaking of diffeomorphism symmetry by the mass term. Together with its

associated secondary constraint, the δN equation removes two degrees of freedom, one

field plus its canonical momentum.9 We end up with 12 − 2 = 10 degrees of freedom,

describing the five polarisation states and corresponding conjugate momenta of the

massive graviton.

Contrarily, for a 6= 1, there is a term involving δN2 at the quadratic level. The

constraint arising from the equation of motion of δN is lost in that case because the

equation now determines δN itself instead of constraining other variables. There are

thus 12 degrees of freedom, describing six propagating modes, one of which is the

Boulware-Deser ghost.

The same situation occurs if we do not consider hµν as a small perturbation, i.e. look

at more general backgrounds than ηµν . In that case, the ADM variables of hµν are no

longer small fluctuations and we have to consider the theory beyond quadratic order.

Boulware and Deser studied a class of corrections to the Fierz-Pauli mass term and

9The Fierz-Pauli theory is known to give rise to a secondary constraint coming from requiring the

primary constraint to be preserved in time.
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found that those higher-order terms in hµν could never result in an expression that

is linear in the lapse N . From this they concluded that the constraint that removes

the ghost in the linear theory is destroyed and hence a theory of nonlinear spin-2

interactions can never be consistent [15, 91].

As pointed out in [57, 58] and as will be discussed in the next subsection, there exists

a loophole in this no-go theorem for nonlinear massive gravity and it turns out that a

consistent theory can be constructed.10 In the following, we will deviate from the his-

torical path and construct the consistent interaction potential directly in the redefined

ADM variables that were used in the consistency proof of [59, 61] instead of presenting

the derivation in the decoupling limit performed in [57, 58]. From our point of view

this construction is the most efficient way to arrive at the action for nonlinear massive

gravity and it has the further advantages that it (a) automatically ensures the absence

of ghost in the full theory (i.e. away from the decoupling limit) and (b) immediately

results in the generalised form of the action with arbitrary reference metric fµν .

3.3 ADM variables for massive gravity

Our aim is to arrive at a nonlinear theory for massive spin-2 fields of the form (3.1) and,

to this end, we shall discuss interactions in terms of ADM variables. For definiteness

we will work in four dimensions but all our considerations and conclusions generalise

straightforwardly to any dimension. Before we start, let us briefly recapitulate the

situation.

Since the kinetic term for the metric gµν in (3.1) is the same as in GR, the lapse and

shift functions N and N i will still appear without derivatives. However, the interaction

potential will in general no longer be linear in these functions. Therefore, their equa-

tions of motion, instead of imposing constraints on the remaining variables, will now

determine N and N i themselves. The four gauge constraints are lost and, as explained

in the previous subsection, the number of propagating modes will now generically be

six, plus their corresponding canonical momenta. These are two phase-space degrees

of freedom too many for the theory of a massive spin-2 field. Moreover, the Hamilto-

nian of a generic theory will not be positive definite [15, 91], signalling that the extra

propagating mode is a ghost. A necessary requirement on any consistent interaction po-

tential is therefore the presence of an additional constraint that removes the nonlinear

Boulware-Deser ghost.

10Note also that the arguments given by Boulware and Deser are of perturbative nature. An idea

that is rather different from everything we discuss here is that the negative norm states which plague

the general higher-order interactions could be avoided non-perturbatively [96, 97].
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Before we set out to construct the potential featuring the constraint it should be noted

that there are two other conditions which need to be fulfilled by a fully consistent theory.

Firstly, the preservation of this constraint in time must itself provide a constraint in

order to remove also the conjugate momentum and hence the full phase-space pair

associated with the pathological degree of freedom. Secondly, the resulting Hamiltonian

must be positive definite so that none of the surviving five spin-2 modes gives rise

to an instability. It should be emphasised that positivity of the Hamiltonian of the

nonlinear theories that we are about to discuss has never been proven in general and

in fact seems not to be true without additional physical assumptions, see e.g. [95]. For

instance, ghosts different from the Boulware-Deser mode may still propagate around

certain backgrounds, an example being the Higuchi instability of the helicity-zero mode

in de Sitter space [81]. In the literature, whenever massive gravity and bimetric theory

are labelled as “consistent” or “ghost-free”, one is usually referring only to the complete

removal of the Boulware-Deser mode and its conjugate momentum. Throughout this

review we frequently adhere to this conventional abuse of terminology.

3.3.1 The loophole in Boulware & Deser’s argument

In order to investigate whether a particular structure in the potential V (g−1f) can

give rise to a constraint and thus satisfy the first necessary condition on any consistent

theory, we first decompose the second rank-2 tensor fµν into its own ADM variables,11

fµν =

(
−L2 + Llφ

lkLk Lj
Li φij

)
. (3.12)

Here, φij denotes the inverse of the three-dimensional metric φij, Li is the shift-vector,

and L is the lapse of fµν . We furthermore express the measure factor
√
g in terms of

the lapse N and the determinant γ of γij,

√
g = N

√
γ . (3.13)

With these expressions at hand, we can write a generic interaction potential in terms

of ADM variables as,12

√
g V (g−1f) = N

√
γ V (γij, N,N

i;φij, L, L
i) . (3.14)

11In fact, it is not automatically guaranteed that a simultaneous ADM split for gµν and fµν exists

or, equivalently, that N2 and L2 are both positive definite. The assumption of simultaneous ADM

decompositions, which shall be made here and in the following, is related to the existence of intersecting

light cones for the two metrics. The details of this will be discussed in [98].
12We will often make use of the notations N i ≡ γijNj and Li ≡ φijLj .
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According to the argument by Boulware and Deser, the right-hand side of this equation

needs to be linear in the lapse N in order to provide a constraint that removes the ghost

mode. However, this is not entirely correct and this is exactly where the loophole lies: In

fact, the necessary condition on the potential is slightly weaker because the constraint

may be obtained after combining several of the equations for N and N i. In other

words, if there exists a particular combination of these equations that is independent

of N i and N , then this equation will constrain the remaining variables. At the level

of the action, this means that we should allow for a field-dependent redefinition of the

shift components, N i → ni, that renders the Lagrangian linear in the lapse N . Let us

explain this in a bit more detail. Suppose that a linear combination of the equations

for N and N i is independent of the lapse and thus corresponds to the constraint,

C =
δS(N,N j, . . .)

δN
+ Ci δS(N,N j, . . .)

δN i
= 0 , (3.15)

where the Ci are some functions of the ADM variables. We can now make a redefinition

of variables, N i(N, nj, . . .) ≡ Ci
k(N, n

j, . . .)nk, such that the variation of the action

with respect to the lapse becomes,

δS(N, nj, . . .)

δN
=

δS(N,N j, . . .)

δN

∣∣∣∣
N i

+
δS(N,N j, . . .)

δN i

∣∣∣∣
N

δN i(N, nk, . . .)

δN

=
δS(N,N j, . . .)

δN

∣∣∣∣
N i

+
δS(N,N j, . . .)

δN i

∣∣∣∣
N

δCi
k(N, . . .)

δN
nk . (3.16)

Here |N i means that the function N i is kept fixed when the functional derivative is

taken. From this we see that if we choose the redefined shift components nk such that

they satisfy δCik(N,...)
δN

nk = Ci then the variation of the action with respect to the lapse

gives precisely the constraint (3.15) which by assumption does not involve N . We shall

thus look for a redefinition of the shift vector that renders the action linear in the

lapse N .

Certainly, the redefinition, i.e. the matrix Ci
k(N, . . .), must be linear in N itself since

the N i appear linearly in the kinetic term. Furthermore, since the redefined shift

components ni are expected to appear in the constraint, they must be fully determined

by their own equation of motion which therefore must not depend on N . To summarise,

in order to fulfil the first necessary condition of obtaining a constraint we make two

requirements on the potential in terms of the redefined shift ni:

(i) linearity of the Lagrangian in N ,

(ii) absence of N in the ni equations of motion.
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For now, we focus on the first requirement and we will see later that the potential that

we construct by demanding only (i) automatically satisfies (ii).

3.3.2 Redefinition of ADM variables

We now observe that the full interaction potential density,
√
g V (g−1f) in (3.1), already

has a factor of N in front coming from the measure factor (3.13). Hence, in order to

satisfy requirement (i) listed above, the potential V (g−1f) written in redefined ADM

variables must be of the form,

V (g−1f) =
1

N
V1 + V2 , (3.17)

where V1 and V2 are functions only of (γij, n
i) (apart from the non-dynamical compo-

nents of fµν which we choose to omit here), i.e. they are independent of N .

Recalling the ADM decomposition (3.2) of gµν , we notice that gµν is quadratic in N and

in order to obtain inverse powers of N we need to consider the inverse metric (3.3). The

latter is quadratic in 1/N and the best we can achieve by a field redefinition which is

linear in N is to complete the dependence on N into a perfect square such that taking a

square-root can result in an expression linear in 1/N . In other words, the only quantity

that has a chance of giving something linear in 1/N after a linear redefinition of the

N i is an object whose square is proportional to the inverse metric (3.3). We are thus

led to consider a potential V that is a function of the matrix S ≡
√
g−1f , defined via

S2 = g−1f . This square-root matrix has a very nontrivial ADM decomposition and is

certainly highly nonlinear in 1/N before any redefinition. However, we will now make

use of the allowed redefinition of N i and demand that in terms of the new shift-vectors

ni the square-root matrix S is of the form [59, 61],

S =
1

N
A + B , (3.18)

where A and B are matrix-valued functions of (γij, n
i). The redefinition that leads to

(3.18) as well as the explicit expressions for A and B can be obtained straightforwardly

by the following method: Square the right-hand side of the ansatz (3.18) and equate

it with the ADM expression for g−1f obtained from (3.2) and (3.12), using the most

general ansatz for the redefinition, N i = ci + Ndi. Then compare the expressions

on both sides order by order in 1/N to determine the vectors ci and di in the shift

redefinition as well as the matrices A and B. This derivation was given in [61] and we

discuss it in more detail in appendix B; here we simply state the result. The redefinition
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that renders the square-root matrix S linear in 1/N takes a rather simple form [59, 61],

N i = Lni + Li +NDi
kn

k . (3.19)

The 3 × 3 matrix D on the right-hand side is a function of the variables (γij, n
i) and

the non-dynamical spatial metric φij. Explicitly, it can be written in matrix notation

as,

D =
√
γ−1φQQ−1 , (3.20)

where we have defined another matrix Q through,

Qi
j = xδij + ninkφkj , x = 1− niφijnj . (3.21)

Note that the definition (3.20) of the matrix D that enters the redefinition involves

a 3 × 3 square-root matrix. By introducing the shift vectors ni we have therefore

reduced the dimension of the square-root matrix that appears in S by one and, most

importantly, simplified the dependence on the lapse N which no longer appears under

any square-root in (3.18). One may worry that a real solution for the 3× 3 square-root

in (3.20) does not always exist. However, we will show now that the variables can be

further redefined to demonstrate the existence of real solutions for D and, in fact, to

remove the square-root matrix entirely.

3.3.3 On the existence of the redefinition

The form of the redefinition (3.19) is not entirely unique. In fact, the original papers [59,

61] on massive gravity mainly worked with a set of variables that slightly differs from

the one presented here, whereas the choice of variables we made above is more suitable

for application to bimetric theory [76]. Moreover, as was shown later in [99], it is

possible to arrive at simpler expressions which are also more symmetric between the

two metrics gµν and fµν . In order to see this, let us decompose the two spatial metrics

into “spatial dreibeins”,

γij = eaiδabe
b
j , φij = ϕaiδabϕ

b
j . (3.22)

These expressions are invariant under rotations of the dreibeins, which means that

ϕ̃ = Rϕ with RT = R−1 is an equivalent dreibein of φ and the rotations are a local

symmetry of the theory. This freedom can be used to resolve the square-root appearing

in D (c.f. (3.20)). Next, we redefine the shift vectors ni according to,

ni ≡ (ϕ̃−1)iaδ
abvb , (3.23)
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where the new shifts va carry a spatial Lorentz index and ϕ̃ = Rϕ is a gauge-fixed

dreibein. The rotation matrix is chosen such that it satisfies,[(
Î + 1

x+
√
x
vvT
)
Rϕe−1

]T

=
(
Î + 1

x+
√
x
vvT
)
Rϕe−1 , (3.24)

where Îab = δab. It is straightforward to obtain a solution for R from this equation

and this solution always exists, which follows directly from the polar decomposition

theorem stating that any matrix can be symmetrised by a rotation. Inserting the new

variables into (3.20) and using (3.24) to evaluate the square-root matrix, we find after

some algebraic manipulations that D takes the much simpler form,

D = 1√
x
e−1
(

1̂− 1
1+
√
x
Î−1vvT

)
ϕ̃ , (3.25)

where we are using matrix notation and 1̂ab = δab. Introducing the dreibeins and

the new shift vectors has thus enabled us to get rid of any matrix square-root in the

equations. The only square-root left is the scalar
√
x =

√
1− vTÎ−1v. This square-root

has real solutions provided that the metric components satisfy the bound vaδ
abvb < 1.

Interestingly, this bound has an interpretation connected with Lorentz transformations

and it turns out that the redefined shift vector va can be interpreted as a Lorentz

velocity. We will come back to this point at the end of section 8.2.2. For now, let us

assume that the bound is not violated and therefore the redefinition of shift vectors

exists. In terms of the new variables, it takes the following simple and symmetric

form [99],

N i = Li +
(
L(ϕ̃−1)ia +N(e−1)ia

)
δabvb . (3.26)

Even though the structure of this expression is a little less complicated than (3.19), in

order to stay closer to the conventions in the literature, we choose to continue using

the original redefinition.

3.4 Construction of the ghost-free potential

As we show in appendix B, the matrices A and B in
√
g−1f = 1

N
A + B depend on the

redefined ADM variables in the following way,

A =
1√
x

(
L+ nkLk nkφkj

−(L+ nkLk)(Ln
i + Li) − (Lni + Li)nkφkj

)
,

B =
√
x

(
0 0

Di
jL

j Di
j

)
, (3.27)
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in which x = 1− niφijnj as before and the index on the shift vector Li is raised using

the inverse spatial metric φij. Although the above expressions seem rather complicated,

what is essential for the construction of the ghost-free potential is the structure of the

matrices A and B. Most importantly, A is a matrix of rank one and it can be written

as the outer product of two vectors,

A = uwT , where u =

(
1

−ci

)
and w =

1√
x

(
a0

ai

)
. (3.28)

This will be the key property entering our constructive proof in the following. Having

obtained the ADM expression with the desired dependence on N for the square-root

matrix S =
√
g−1f = 1

N
A + B, we are ready to construct the interactions which give

rise to an additional constraint that removes the Boulware-Deser ghost.

As explained above, the mass potential has to be a function of the square-root matrix

S =
√
g−1f = 1

N
A + B, multiplied by

√
g = N

√
γ . We assume this function to be,

at least formally, expandable as a Taylor series in S. This commonly defines what

one means by a matrix valued function anyway so is not really a serious restriction.

Generically, this will give an expression that is nonlinear in the lapse N . The only

way to ensure linearity in N is to demand the absence of higher powers of 1
N

A in the

expansion. Obviously, the simplest possible term is
√
g Tr(S) =

√
γ Tr(A + NB). At

first sight it seems that all higher powers of S = 1
N

A + B will involve higher powers

of 1/N . However, due to the special structure of the matrix A in (3.28) this is not

quite correct and specific terms of higher order in S can still be linear in 1/N . Since

A has rank one, it is a projection operator on a one-dimensional subspace. Owing to

this property, there is a unique way of building polynomials of 1
N

A + B that are linear

in 1
N

A. Namely, only an antisymmetric product of A’s will automatically contain only

one power of A. Let us see how this works in detail by considering

V (S) =
4∑

n=0

bn ε
µ1µ2...µnλn+1...λ4εν1ν2...νnλn+1...λ4 S

ν1
µ1 . . . S

νn
µn , (3.29)

with arbitrary coefficients bn and totally antisymmetric tensors εµνρσ. Since the simul-

taneous exchange of µi, µj and νi, νj only changes the sign of both ε-tensors, it leaves

the whole term invariant. Therefore, at nth order, the product of S’s under the sum

can be written in the form,

n∑
l=0

(
n

l

)(
1

N

)l
Aν1µ1 . . .A

νl
µlB

νl+1
µl+1

. . .Bνnµn . (3.30)
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We insert this expression into (3.29) and obtain

V (S) =
4∑

n=0

bn

n∑
l=0

(
n

l

)(
1

N

)l
Vn(A,B) , (3.31)

with

Vn(A,B) = εµ1µ2...µnλn+1...λ4εν1ν2...νnλn+1...λ4

· Aν1µ1 . . .A
νl
µlB

νl+1
µl+1

. . .Bνnµn
= εµ1µ2...µnλn+1...λ4εν1ν2...νnλn+1...λ4

· uν1wµ1 . . . uνlwµlBνl+1
µl+1

. . .Bνnµn . (3.32)

Here we have used (3.28) in the second equality. Since all indices of the symmetric

products of either uνi or wµi are contracted with the totally antisymmetric indices of

the corresponding ε-tensors, we find that in Vn(A,B) only terms with at most one A
contribute. This implies that the sum over l in (3.31) actually terminates at l = 1 and

hence V (S) is linear in 1/N , which is precisely the property that we were looking for.

We therefore conclude that the most general form of the complete potential density

which is linear in N after the redefinition (3.19) is

√
g

4∑
n=0

bn ε
µ1µ2...µnλn+1...λ4εν1ν2...νnλn+1...λ4 S

ν1
µ1 . . . S

νn
µn , (3.33)

and thus satisfies criterion (i) that we wrote down in section 3.3.1. In order to give rise

to a constraint it needs to also meet criterion (ii), that the ni equations following from

the action with the above potential need to be independent of the lapse N . As one can

verify in a lengthy but straightforward computation, this second requirement does not

impose further restrictions on the form of the potential but is automatically satisfied

by (3.33). More explicitly, the ni equations are of the form [59, 61],

δS

δni
=

(
Lδji +N

δ
(
Dj

kn
k
)

δni

)
Ej = 0 , (3.34)

where Ej does not involve N . Since the matrix multiplying Ej is exactly equal to the

Jacobian δNj

δni
of the redefinition, it is invertible by assumption (because otherwise the

redefinition would not be well-defined). We can thus multiply the equations by its

inverse to arrive at the equivalent equations Ej = 0 which do not depend on N .

We have thus derived the unique form of the interaction potential which gives rise

to an additional constraint. Note in particular that there is only a finite number of
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terms giving a potential which is linear in N . Due to the antisymmetric structure of

the interactions, the possible terms are limited by the dimension of spacetime. Before

discussing their structure and properties in more detail in the next section, let us make

some final remarks on the existence of the associated secondary constraint which arises

from demanding the primary constraint to be preserved in time.

The secondary constraint: The above requirements that we used to construct

the consistent interaction potential were necessary but not sufficient: A secondary

constraint is crucial for the absence of the Boulware-Deser ghost because two constraints

are needed to remove both the ghost mode and its canonical momentum from the set

of dynamical variables.

It was already motivated in [59, 61] that there is in fact a secondary constraint arising

from demanding the primary constraint to be constant in time. In order to compute the

time evolution of the constraint one uses the Poisson bracket (3.6) and the Hamiltonian,

which for the massive gravity action (3.1) with potential (3.33) is of the form

H =

∫
d3y (H0 −NC) . (3.35)

HereH0 is independent of N and C is the Hamiltonian constraint obtained from varying

the action with respect to N . The time evolution of C then reads

dC(x)

dt
= {C(x), H} = 0 . (3.36)

As in the case of the primary constraint, this equation should be independent of N ,

because otherwise it would determine N instead of constraining γij and πij. Insert-

ing (3.36) into (3.35) gives∫
d3x

(
{C(x),H0(y)} −N{C(x), C(y)}

)
= 0 . (3.37)

Since C and H0 are independent of N , we need the Poisson bracket among the con-

straints {C(x), C(y)} to vanish. Before this was actually demonstrated to be the

case, there had been objections against the theory claiming that {C(x), C(y)} could

be nonzero [100]. The issue was resolved when the secondary constraint was eventually

shown to exist in a detailed calculation in [62]. We will not repeat this analysis here but

instead refer the interested reader to the original reference as well as other subsequent

independent confirmations of these results [27, 63, 67–69].
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4 Ghost-free Nonlinear Massive Gravity

In the previous section we derived the nonlinear interaction potential for massive gravity

equipped with an additional constraint that removes the Boulware-Deser ghost. Here

we will study its properties in more detail and discuss the subclass of dRGT models as

well as the gauge invariant Stückelberg formulation.

4.1 Most general action

For notational purposes, a more convenient way of writing the consistent potential in

(3.33) is to introduce the elementary symmetric polynomials en(S) of the matrix S.

These can be defined in terms of totally antisymmetric tensors (with unit weight),

en(S) =
1

n!(4− n)!
εµ1µ2...µnλn+1...λ4εν1ν2...νnλn+1...λ4 S

ν1
µ1 . . . S

νn
µn , (4.1)

with e0(S) ≡ 1. More properties of the elementary symmetric polynomials as well as

precise definitions of the ε-tensors as anti-symmetrisation operators are summarised in

appendix A. In terms of these the complete action for ghost-free massive gravity with

general reference metric takes the form,

SMG = m2
g

∫
d4x
√
g

[
R(g)− 2m2

4∑
n=0

βnen (S)

]
, (4.2)

with S =
√
g−1f , Planck mass mg and spin-2 mass scale m. Furthermore, we have

introduced the rescaled coefficients βn = bnn!(4 − n)!/2 for n = 0, . . . 4. Out of these

five parameters, only three are truly measuring interaction strengths: Since e0(S) = 1,

the β0-term is simply a cosmological constant for the dynamical metric gµν . Moreover,

the last term in the sum that is proportional to β4 is just a cosmological constant

term for fµν because e4(S) = detS and hence
√
g e4(S) =

√
f . This term is therefore

independent of gµν and does not contribute to the equations of motion. Nevertheless,

we choose to include it in the action because it will become relevant when we give

dynamics to fµν later on.

The above action is a nontrivial generalisation of the de-Rham-Gabadadze-Tolley (dRGT)

model [57, 58] which we shall discuss in the next subsection. Its above form (with gen-

eral reference metric fµν , finite sum over n and in terms of the elementary symmetric

polynomials) was first presented in [46].
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The equations of motion for gµν obtained from (4.2) are,

Rµν(g)− 1

2
gµνR(g) +m2V g

µν(g, f ; βn) = 0 , (4.3)

where the first two terms are the usual Einstein tensor while the contribution from the

interaction potential is,

V g
µν = gµρ

3∑
n=0

(−1)nβn(Y(n))
ρ
ν(S) , (4.4)

where we have defined the matrix functions,

(Y(n))
ρ
ν(S) ≡

n∑
k=0

(−1)kek(S) (Sn−k)ρν . (4.5)

There is no equation of motion for fµν whose form therefore needs to be put in by

hand.13 Taking the divergence of the above equations and using the Bianchi identity

∇µGµν = 0 satisfied by the Einstein tensor Gµν , we arrive at a set of Bianchi constraints,

∇µV g
µν = 0 . (4.6)

These remove four degrees of freedom while the remaining extra scalar (the Boulware-

Deser ghost) is eliminated by the additional constraint present in the special structure

of (4.2). A covariant expression for this scalar constraint is difficult, if not impossible,

to obtain in general. Its explicit form for certain regions in the parameter space is

provided in [101, 102] which make use of the vierbein formulation that we shall discuss

in section 8.2. For the same restricted parameter choices, it is also possible to identify a

covariant constraint in the linear theory around arbitrary backgrounds, see section 4.3.

4.2 dRGT theory

The theory first derived by de Rham, Gabadadze and Tolley (dRGT) in [57, 58] was

defined for flat reference metric fµν = ηµν . The original construction uses Stückelberg

fields (c.f. section 4.4) and its “ghost proof” is valid only in the scalar sector of a

decoupling limit that strongly relies on the flat reference metric.14 In contrast, the

13Imposing an equation of motion for the reference metric, one can integrate out fµν from the action

but in this case the theory becomes dynamically equivalent to GR.
14For the sake of historical accuracy, let us emphasise again, that [57, 58] also pointed out the

loophole in Boulware and Deser’s argument. Moreover, the lowest-order terms of the shift redefinition

in a perturbative expansion around flat space were computed, but the results do not agree with the

nonlinear result (3.19) derived in [59, 61].
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construction that we have presented here is based on the results of [59, 61] and is valid

for all reference metrics. It demonstrates the consistency of the full nonlinear theory

away from any limiting approximation.

It is worth discussing the dRGT model and its relation to the Hassan-Rosen formulation

in a bit more detail. Using the observation that the sum in the interaction potential

terminates and can be given in terms of elementary symmetric polynomials [46], the

dRGT action can be written in the form [57, 58] (using the conventions of [2]),

SdRGT = m2
g

∫
d4x
√
g

(
R(g) +

m2

2

4∑
n=0

n!(4− n)!αnen(K)

)
, (4.7)

where

Kµν = δµν −
(√

g−1η
)µ
ν
, α0 = α1 = 0 , α2 = 1 . (4.8)

We can arrive at this action starting from (4.2) by setting fµν = ηµν and taking,

βn = −(−1)n

4

4∑
k=n

(
4− n
k − n

)
k!(4− k)!αk . (4.9)

This follows from the identity (A.4) satisfied by the elementary symmetric polynomials.

Hence the consistency of massive gravity with general fµν implies the absence of ghost

in the dRGT action. In contrast, there is no obvious way of getting to (4.2) from (4.7)

and results obtained in the latter do not generalise automatically to the former.

Let us briefly explain why the lowest-order αn parameters in the dRGT action are

fixed while they remain arbitrary in the Hassan-Rosen formulation, since the exact

reason for this is sometimes obscured. For gµν = ηµν to be a solution to the equations

of motion following from (4.7), the cosmological constant for gµν must vanish. It is

straightforward to verify that this requires15 4α0 + α1 = 0, since this combination is

proportional to the effective cosmological constant for gµν . Next, in order to remove

terms linear in the perturbation hµν = gµν − ηµν in the quadratic action (so-called

“tadpoles”), one must enforce α1 = 0.16 Finally, the interaction parameters contain

a redundant overall scale that can be absorbed into m2. One way to get rid of this

15It should be noted that this first requirement can actually be avoided by demanding only that

gµν = c2ηµν is a solution. This is still flat of course and fixes c instead of a parameter of the action.
16From the bimetric perspective, this second requirement would mean that the effective cosmological

constant for fµν vanishes since the latter is proportional to α1 ∼ β1+3β2+3β3+β4, c.f. equation (5.11).

The first requirement of vanishing cosmological constant for gµν can also be written as 4α0 + α1 ∼
β0 + 3β1 + 3β2 + β3 = 0.
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redundancy is to demand that m2 corresponds to the squared Fierz-Pauli mass in the

quadratic action around flat space. This requirement finally fixes α2 = 1.

The above action (4.7) thus gives rise to Minkowski solutions for gµν and linearising the

theory around these backgrounds gives precisely the Fierz-Pauli Lagrangian (2.13) with

m2
FP = m2. In this sense the dRGT theory can be viewed as the consistent nonlinear

completion of the Lagrangian for a massive spin-2 field in flat space. In the following,

we will turn to the linear theory around arbitrary background solutions of the more

general theory (4.2).

4.3 Linear theory on arbitrary background

As we pointed out in section 2.2, näıvely covariantising the linear theory for a massive

spin-2 field in flat background does not result in a consistent action. Attempts to find

the correct equations describing five helicity states around any background were made

already before the ghost-free nonlinear theory was known. For instance, the authors

of [103] were able to write down the consistent linearised theory to first order in a

small-curvature expansion.

On the other hand, the knowledge of the full nonlinear action (4.2) that avoids the ghost

mode makes it possible to derive the linear theory around any background solution.17

This computation was first carried out in [104, 105] (see also [106–108]). The analysis

is complicated by the presence of the square-root matrix
√
g−1f whose perturbation

around general backgrounds is rather nontrivial due to the matrices gµν and fµν in

general being non-commuting. The full expression can however be obtained using the

Cayley-Hamilton theorem for matrices. An alternative way of arriving at the linearised

theory is to redefine the dynamical fluctuation variables in order to simplify the square-

root variation [108].

The general structure of the quadratic Lagrangian for perturbations δgµν around arbi-

trary backgrounds ḡµν is,

L = δgµνEµνρσδgρσ +
m4

m2
g

δgµνVµνρσδgρσ , (4.10)

17Note that in order to work with the most general backgrounds, we have to start from nonlinear

massive gravity in the generalised formulation (4.2) where fµν is entirely arbitrary. The set of solutions

for the metric gµν in the dRGT model (4.7) with flat reference metric is much smaller and hence does

not allow us to derive the most general form for the linearised theory. For instance, it is not possible

to obtain the quadratic action for massive spin-2 in de Sitter space from (4.7).
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where Eµνρσ is a function of the background metric ḡµν and quadratic in its associated

covariant derivative ∇̄µ, whereas Vµνρσ depends on the background metric, its curva-

tures and the reference metric fµν . The corresponding equations of motion for the

fluctuations read,

δEµν ≡ E ρσ
µν δgρσ +

m4

m2
g

V ρσ
µν δgρσ = 0 . (4.11)

Using the background equations (4.3), it is always possible to convert curvatures of ḡµν
into functions of the background and reference metric. Eliminating the reference metric

through the background equations is more difficult since the equations are nonlinear

in fµν . In general it is not possible to obtain a closed form for the solution. However,

quite remarkably, it turns out that if β2 = β3 = 0 a closed form solution exists and the

equations can be used to get rid of all appearances of the reference metric. Then (4.11)

describes five massive spin-2 degrees of freedom propagating in an arbitrary background

given solely by ḡµν and its curvature R̄µν . In the more general case it is still possible to

solve the background equations perturbatively in curvatures and reproduce the results

of [103].

The absence of the Boulware-Deser ghost in the linearised equations follows from the

existence of the additional constraint in the nonlinear theory from which (4.10) was

obtained. In order to bypass the ADM analysis and show explicitly that the above equa-

tions contain the same number of propagating degrees of freedom as in the Fierz-Pauli

case (2.14) in flat space, one needs to identify the analogues of the constraints (2.15).

The vector constraints, i.e. the generalisation of ∂µhµν − ∂νh = 0, are easily obtained

by taking the (covariant) divergence of the equations and using the linearised version

of the Bianchi identity. The additional scalar constraint which removes the ghost is

more difficult to identify. For models with β3 = 0, it has been found in [104, 105, 108].

It corresponds to the following combination of equations,

1

m2
(S−1)νρ∇ρ∇µδEµν +

β1

2
ḡµνδEµν + β2S

ν
ρḡ
ρµδEµν = 0 , (4.12)

in which all terms containing two derivatives on δgµν cancel out. This equation is the

analogue of h = 0, which it reduces to when the background is an Einstein spacetime.

When β3 6= 0, it seems to be impossible to obtain the constraint in a covariant way [102,

108] and the reason for that is not yet fully understood.

4.4 Gauge invariant massive gravity

A common perspective is to take the fixed reference metric fµν to be fully specified in

a given coordinate frame which implies that the invariance under general coordinate

– 36 –



transformations (GCTs) of GR is broken by the mass term for the graviton. This is

because the metric gµν itself transforms as a covariant rank-two tensor under GCTs

while the fixed background metric fµν does not if it is taken to be fixed in a given

coordinate system. Therefore, in this view, objects like gρµfµν do not transform as

tensors under diffeomorphisms. Of course covariance is not a true symmetry and it is

always possible to simply view fµν as a fixed reference geometry but still allow it to

transform as a tensor under GCTs, e.g. to be flat but not necessarily on the cartesian

Minkowski form. A constructive way of restoring any gauge symmetry in the action

is the so called Stückelberg trick: By introducing new gauge degrees of freedom, so-

called Stückelberg fields, that transform in a certain way under the gauge group, one

can rewrite the theory in a manifestly gauge invariant way whilst keeping track of the

thereby introduced redundant degrees of freedom. In turn, fixing the so-called physical

(or unitary) gauge will give back the original action.

4.4.1 The Stückelberg trick

One possibility to reintroduce diffeomorphism invariance in massive gravity is to per-

form a gauge transformation on the dynamical metric gµν and treat the gauge param-

eters as new fields in the action. Under a GCT, xα 7→ x′α(x), the metric transforms

as

gµν(x) 7−→ ∂x′α

∂xµ
∂x′β

∂xν
gαβ(x′) . (4.13)

After performing this GCT, one interprets the x′α as dynamical fields. Another equiv-

alent way, that turns out to be more convenient for studying massive gravity, is to

mimic this kind of transformation on the reference metric fµν , which is then taken to

not transform under GCTs. But since a simultaneous coordinate transformation of gµν
and fµν would be a symmetry of the massive gravity action, instead of transforming

gµν we can choose to perform the transformation on fµν . That is to say, we replace fµν
by its covariantised form,

fµν −→
∂ϕα

∂xµ
∂ϕβ

∂xν
f̄αβ . (4.14)

Here, f̄αβ is a new fixed background metric that does not transform under the gauge

group. The “coordinates” ϕα are promoted to dynamical fields that transform as scalars

under GCTs. Introducing these Stückelberg fields ensures that objects such as

Tr (g−1f) = gµν
∂ϕα

∂xµ
∂ϕβ

∂xν
f̄αβ (4.15)
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now are manifestly diffeomorphism invariant. In addition to the equations of motion

for the metric gµν , we now also consider the ϕα equations and, as we will see below,

this system of equations is equivalent to the original gµν equation without Stückelberg

fields. This method of restoring gauge invariance, in contrast to treating fµν as a fixed

geometry tensor, is particularly useful for considering so called decoupling limits of a

theory: Limits/regimes where certain operators become dominant and physical modes

decouple.

4.4.2 The decoupling limit

Let us take f̄αβ = ηαβ and expand the Stückelberg fields around the identity transfor-

mation, which corresponds to considering infinitesimal GCTs,

ϕα = xα − πα . (4.16)

Furthermore, let us decompose the perturbations into a transverse and a longitudinal

mode,

πα =
π̂α

mmg

+
∂απ

m2mg

, (4.17)

with ∂απ̂
α = 0. The ghost-free dRGT potential (4.7) was originally constructed using

the gauge invariant formulation and performing a scaling limit to separate the interac-

tions for the longitudinal component π.

The power of the Stückelberg formalism lies in a conjecture made in [47], stating that

the ghost instability of nonlinear massive gravity can be traced back to higher-derivative

interactions of the π fields in flat space, where f̄αβ = ηαβ. This assumption relies on an

analogy to the Goldstone equivalence theorem for spin-1 fields [49, 109]. In that case,

the longitudinal modes of the gauge fields have been shown to carry all information

needed for computing scattering processes at high energies. Although the theorem has

not been proven for the spin-2 case, it is reasonable to start with the assumption of its

validity in order to investigate the stability of massive gravity in a certain parameter

limit defined through,

mg −→∞ , m −→ 0 , Λ3 ≡ (m2mg)
1
3 = const. (4.18)

The metric is decomposed into flat background ηµν and fluctuations hµν according to

gµν = ηµν + hµν
mg

. The fields in the Stückelberg decomposition (4.17) already have the

correct normalisations and, in a first approach, the vector modes are set to zero. Then
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the decomposition of the tensor g−1f that appears in the interaction potential into flat

background and perturbation reads, in matrix notation,

g−1f =
(
1 + η−1h

mg

)−1(
1 + Π

Λ3
3

)2
, Πµ

ν ≡ ηµρ∂ρ∂νπ . (4.19)

The conjecture of [47] suggests now to construct the interaction potential in such a way

that there appear no higher-order interactions of the longitudinal modes. Since each of

these modes always comes with two derivatives, their interactions generically give rise

to higher-derivative terms. These can be shown to lead to ghost instabilities due to

the famous Ostrogradsky theorem [110] and must therefore be avoided in a consistent

theory (see [111] for a recent discussion of this theorem). De Rham, Gabadadze and

Tolley managed to tune the coefficients of the ∂µ∂νπ interaction terms in such a way

that the higher-derivative terms combined into total derivatives that could be dropped

from the action [57, 58]. Interestingly, the resulting action for the longitudinal modes

(after the kinetic terms have been diagonalised) resembles precisely the Galileon inter-

actions [112]. In fact, from (4.19) it is a trivial observation to see that by taking the

square-root the expression becomes linear in Πµν and then any antisymmetric products

of this square-root will at most carry two derivatives on any single π.

A few more comments are in order. It is sometimes argued (see e.g. [2, 113, 114]) that

any massive gravity theory can be described as a theory of GR plus four scalar fields.

In other words, this would imply that it is always possible to reduce the number of

degrees of freedom of the massive fluctuation hµν to two (corresponding to a massless

spin-2 mode) and let the remaining three reside in the Stückelberg fields. Let us briefly

clarify why this picture is not quite correct. Firstly, an equivalent statement would be

that it is always possible to render the background solution for gµν flat by performing a

coordinate transformation. As already pointed out in [115], this is obviously not correct

since the flat space action and equations are not equivalent to the ones in curved space.

Secondly, the counting of degrees of freedom in GR is an on-shell statement and only

holds for the massless equations of motion, e.g. �hµν = 0 on a flat background, which

do not arise in a massive gravity theory. Therefore, the number of degrees of freedom in

hµν cannot be reduced to two by simply performing a gauge transformation. Thirdly,

from the transformation properties of the πα fields in (4.16) under linearised coordinate

transformations (δξπ
α = −ξα), it is clear that these fields can only mix with the four

gauge modes of gµν . In other words, they are gauge trivial by construction. Physical

degrees of freedom can therefore not be fully transferred to the gauge modes because

otherwise they would not contribute to interactions between conserved sources (for

which ∇µT
µν = 0).
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Although these caveats cast some serious doubts on the conclusiveness of the consis-

tency analysis in the decoupling limit (other objections were raised in e.g. [116]), its

historical importance for the discovery of ghost-free massive gravity should of course not

be underestimated. The complete expression for the dRGT theory in the decoupling

limit, including the transverse vector modes in (4.17), was later worked out in [117].

The limit is furthermore useful for understanding the validity regime of the effective

field theory and the identification of the strong-coupling scale of massive gravity. We

refer the interested reader to the review [2] where these subjects are discussed in more

detail.

4.4.3 Absence of ghost in the Stückelberg formulation

While the proofs of absence of the Boulware-Deser ghost given in [59, 61] were for-

mulated in the gauge fixed version of Massive Gravity, i.e. without introducing the

Stückelberg fields, it is expected that restoring the gauge invariance does not alter the

dynamics of the theory. In fact, since gauge symmetry is merely a redundancy in the

description of the underlying physics, the two formulations are completely equivalent.

In particular, absence of ghost in the gauge fixed version of massive gravity implies

that the Stückelberg formulation cannot exhibit the instability either. Nevertheless, in

[118] it was claimed that the ghost generically reappears in the Stückelberg sector and

the author of [119, 120] could not find a constraint to remove the ghost. First attempts

to disprove these statements were made in [114, 121], before the absence of ghost was

conclusively shown in [63].

The fact that the dynamics remain unaltered in the gauge invariant theory can be

demonstrated by considering the equations of motions for the Stückelberg fields. After

making the replacement (4.14) for fµν , the mass potential V (g, f) becomes a function

of the scalar fields and their equations of motion read

δ

δϕα
V (g, ϕ) = 0 . (4.20)

However, this equation will not give rise to any new dynamics because it is, in fact,

already implied by the Bianchi constraint,

∇µVµν(g, ϕ) = 0 , (4.21)

where,

Vµν(g, ϕ) ≡ −2
√
g

δ

δgµν

(√
g V (g, ϕ)

)
. (4.22)
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In order to see the equivalence, consider a gauge transformation δxµ = ξµ of the action

(4.2) involving Stückelberg fields,

δS = m2
g

∫
d4x
√
g

[(
Gµν +m2Vµν

)
δgµν − 2m2 δV

δϕα
δϕα

]
, (4.23)

where Gµν is the Einstein tensor and the variations of the fields under the gauge trans-

formation are δgµν = 2∇(µξν) and δϕα = −ξµ∂µϕα. The action is now invariant under

GCTs, δS = 0. Thus integrating by parts and using the Bianchi identity, ∇µGµν = 0,

we can derive the following identity,

∇µVµν =
δV

δϕα
∂νϕ

α . (4.24)

Since the Stückelberg fields were introduced to mimic nonsingular coordinate transfor-

mations, the matrix ∂νϕ
A is invertible and hence the Bianchi constraint ∇µVµν = 0

is equivalent to the ϕα equations of motion (4.20). As expected, the redundant gauge

degrees of freedom ϕα therefore do not introduce new dynamics into the theory.

From these general arguments it is obvious that the consistency proof of [59, 61] has

to be valid for both the gauge fixed and the gauge invariant version of massive gravity.

This was eventually confirmed in a Hamiltonian analysis where the constraint was

shown to exist in the massive gravity action (with β2 = β3 = 0) including Stückelberg

fields [63].

4.5 Potential shortcomings of massive gravity

In order to conclude the presentation of nonlinear massive gravity, we list a few draw-

backs of the theory in its present form. These can be viewed as motivations to look for

possibilities of going beyond the setup with fixed reference metric.

• The reference metric fµν in the general massive gravity action (4.2), or ηµν in the

dRGT theory (4.7), is not dynamically determined. It is put into the theory by

hand and there is no obvious fundamental principle determining its form. From a

field theoretical point of view, this and the related fact that the theory (without

additional fields) breaks diffeomorphism invariance are rather undesirable features

and it is not entirely clear how to interpret the presence of the fixed reference

metric. The notion of a pre-geometric structure clearly goes against the main

spirit of GR.

– 41 –



• Possibly related to the above point is the occurrence of superluminal and in

particular acausal propagation in massive gravity [102, 122–126].18 This raises

serious questions for the physical viability of the theory, but see [2] for a discussion

of some counter-arguments.

• The equations of motion of massive gravity (with flat or general reference metric)

cannot give rise to homogeneous and isotropic solutions that lead to a viable

cosmology [127–133]. Lacking this feature, the model cannot serve as a serious

alternative to GR.

• More generally, in the parameter space of massive gravity there is no good limit

which brings the equations and their solutions close to those of GR, which are well-

tested. In principle, this issue could be resolved by the Vainshtein mechanism, but

this causes serious tension with the cosmological Higuchi bounds [132, 134]. The

underlying reason is that the metric that couples to matter contains additional

degrees of freedom with respect to GR. This generically changes the physics

significantly, as becomes apparent through the vDVZ discontinuity already at

the linearised level.

From our point of view, the above shortcomings strongly motivate the extension of the

ghost-free massive gravity action to a fully dynamical bimetric theory, which we shall

focus on in the remainder of this article.

18The analyses of these references do not extend to bimetric theory but in prinicple it is possible

that similar problems arise there as well.
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5 Ghost-Free Bimetric Theory

A natural question that arises within the formulation of massive gravity with general

reference metric fµν is whether this second metric could be dynamical on its own

without spoiling the consistency of the theory. The fact that one can extend the theory

by a kinetic term and an equation of motion for fµν without reintroducing the Boulware-

Deser ghost is not immediately evident from the consistency proofs of [59, 61, 63].

Nevertheless, Hassan and Rosen were able to show that one can indeed augment the

action by an Einstein-Hilbert term for the second metric and let it be determined

dynamically [76]. It has subsequently been confirmed that this also seems to be the

unique kinetic term which can be added to the nonlinear massive gravity action in order

to give dynamics for fµν [135–137].19 In this section we shall present the resulting ghost-

free bimetric theory, review its consistency proof and discuss some of its most important

features.

5.1 Action and equations of motion

The ghost-free action for Hassan-Rosen bimetric theory is given through [76]

SHR = m2
g

∫
d4x
√
g R(g) +m2

f

∫
d4x
√
f R(f)

− 2m4

∫
d4x
√
g

4∑
n=0

βnen

(√
g−1f

)
, (5.1)

where mf is the “Planck mass” for fµν . It corresponds to the massive gravity ac-

tion (4.2), extended by an Einstein-Hilbert term for the reference metric fµν which is

promoted to a dynamical field on the same footing as gµν . Consistency of the action

now of course requires the inverse fµν to exist which, in analogy with GR, we shall

always assume except perhaps at isolated physical singularities. The corresponding

equations of motion for the two metrics read,

Rµν(g)− 1

2
gµνR(g) +

m4

m2
g

V g
µν(g, f ; βn) = 0 , (5.2a)

Rµν(f)− 1

2
fµνR(f) +

m4

m2
f

V f
µν(g, f ; βn) = 0 , (5.2b)

19Note that uniqueness of course only holds up to field redefinitions. The precise statement should

therefore be that, assuming an Einstein-Hilbert term for gµν and a potential of the form given in (4.2),

the only possible kinetic term for fµν is also of the Einstein-Hilbert form. Here we do not discuss the

possibility of including additional non spin-2 degrees of freedom. For example, by adding extra scalar

degrees of freedom one can consider f(R) extensions of the theory (see e.g. [138–142]).
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in which the contributions from the interaction potential in terms of S =
√
g−1f are

of the form,

V g
µν(g, f ; βn) = gµρ

3∑
n=0

(−1)nβn(Y(n))
ρ
ν(S) , (5.3)

V f
µν(g, f ; βn) = fµρ

3∑
n=0

(−1)nβ4−n(Y(n))
ρ
ν(S

−1) . (5.4)

The matrix functions Y(n)(S) have already been defined in (4.5). Due to the overall

covariance of the interaction potential there is an identity between the divergences of

these interaction contributions [70] (note that this identity follows from covariance and

is otherwise independent of the form of the bimetric interactions),

√
g gµρ∇ρV

g
µν = −

√
f fµρ∇̃ρV

f
µν , (5.5)

where ∇̃ is the covariant derivative compatible with fµν . Due to this identity there

is only one set of independent Bianchi constraints just as in massive gravity. Two

important remarks are in order: Firstly, note that the β4-term
√
g e4(S) =

√
f is no

longer non-dynamical but now contributes to the fµν equations of motion. Secondly,

due to the more general symmetry property of the elementary symmetric polynomials

(which is just a rewriting of (A.8)),

√
g en

(√
g−1f

)
=
√
f e4−n

(√
f−1g

)
, (5.6)

the structure of the above action is symmetric in the two metrics. At the level of

equations, this symmetry manifests itself through the identity,

V f
µν(g, f ; βn) = V g

µν(f, g; β4−n) . (5.7)

The metrics are therefore treated on the same footing and in section 5.4 we will see how

a “physical metric” is selected only by the choice of matter couplings. Various further

aspects of the Hassan-Rosen action will be discussed in more detail in the remaining

parts of this review.

5.2 Absence of ghost

The interaction potential of bimetric theory breaks the two diffeomorphism invariances

of gµν and fµν down to their diagonal subgroup. In other words, the bimetric action

is not invariant under independent coordinate transformations of the two metrics but
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only under those δxµ = ξµ that transform both metrics simultaneously in the same

way: δξgµν = −2gρ(µ∇ν)ξ
ρ and δξfµν = −2fρ(µ∇̃ν)ξ

ρ, where ∇̃ is again the covariant

derivative compatible with fµν . For a general interaction potential, the degree of free-

dom counting therefore goes as follows: There are 2 × 10 = 20 components to start

with; 2 × 4 = 8 of these get removed by gauge constraints and gauge fixing. Just as

in the massive gravity case there is one set of Bianchi constraints, which can be taken

to be either ∇µV g
µν = 0 or ∇̃µV f

µν = 0, since these are related by the identity (5.5).

These vector constraints thus removes four additional degrees of freedom, leaving us

with a total number of eight propagating modes. These correspond to the two degrees

of freedom of a massless spin-2 field, five of a massive spin-2 and one additional scalar

which gives rise to the Boulware-Deser ghost instability. In a consistent bimetric theory

we therefore also need an additional constraint that eliminates the ghost mode.

In the ADM language, this means that we need the action to be linear in both lapses N

and L of the two metrics as well as one set of three-dimensional vectors. In total there

will then be five non-dynamical variables whose equations of motion become constraints:

four corresponding to the gauge constraints associated to the overall diffeomorphism

invariance and one extra constraint that removes the Boulware-Deser ghost.

Using the same variables as for massive gravity (c.f. section 3.4) resulting from the

redefinition (3.19), Hassan and Rosen were able to show that the bimetric action (5.1)

indeed assumes the form [76],

SHR =

∫
d4x

(
LiCi + LC̃ +NC

)
, (5.8)

in which the constraints Ci, C̃ and C are independent of the lapses N and L and the

shifts Li. As in the massive gravity case, the action is nonlinear in the redefined shift

vectors ni, which is a consequence of the breaking of one set of general coordinate trans-

formations. The scalar constraints C̃ and C contain terms coming from the interaction

potential, whereas the vector constraints Ci entirely originate from the Einstein-Hilbert

terms. Note that due to the redefinition of the form N i = Lni +Li +NDi
kn

k, all con-

straints receive contributions from the Einstein-Hilbert term for gµν which originally

contains a term NiR
i, c.f. (3.4).

These results have subsequently been confirmed by explicit calculations and indepen-

dently verified in various other approaches (see e.g. [63, 67–69]) which we shall not

review here. Instead we note that the key observation which motivated Hassan and

Rosen to study the fully dynamical extension of massive gravity was that due to the

symmetry property (5.6), linearity of the interaction potential in the lapse N implies
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that it must also be linear in L.20 The corresponding secondary constraint which

removes the canonical momentum of the ghost mode was also shown to exist [62].

Bimetric theory therefore gives rise to the correct amount of constraints in order to

propagate the 5 + 2 = 7 degrees of freedom, corresponding to a massive and a massless

spin-2 field.

At the nonlinear level there is no unique split of degrees of freedom into “massive”

and “massless” ones. As discussed in the following, the mass eigenstates can only be

properly defined in the linearised theory around particular backgrounds.

5.3 Mass spectrum

The notion of mass is intimately related to the isometries of space-time. Its definition

is most concise in Minkowski space where mass arises as a Casimir invariant of the

Poincaré isometry group and it is possible to generalise that concept to space-times

with the same amount of symmetries, i.e. Anti-de Sitter and de Sitter isometries. For

less symmetric spaces it becomes more difficult to obtain a clear identification of mass,

but one option is to classify a field as massless or massive depending on its number of

propagating degrees of freedom. More precisely, if there is a parameter which when

taken to zero increases the amount of gauge redundancy and thus reduces the number

of propagating degrees of freedom to that of a massless theory then that parameter can

loosely be identified with mass. This notion is implicit when we use the term “nonlin-

ear massive gravity” or when we speak of “massless” and “massive” degrees of freedom

in bimetric theory. Nevertheless, around their maximally symmetric background solu-

tions, we expect the nonlinear theories to give rise to a well-defined mass spectrum. In

bimetric theory, such backgrounds are most easily obtained by making a proportional

ansatz for the metrics.21

5.3.1 Proportional background solutions

Probably the simplest and yet remarkably important class of solutions to the bimetric

equations of motion in vacuum is obtained by making an ansatz that conformally

relates the two metrics, f̄µν = c(x)2ḡµν , where c(x) is a space-time dependent function.

20There could of course be terms proportional to NL, but a closer inspection of the structure of the

matrices A and B in (3.27) as well as the interactions in (3.33) reveals that such terms do not arise.
21For general parameter values, there can exist additional maximally symmetric solutions, c.f. sec-

tion 6.1, but since they do not correspond to proportional metrics, we do not expect the perturbations

to be diagonalisable into spin-2 mass eigenstates.
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Having plugged this ansatz into the equations of motion, we first note that the Bianchi

constraint, ∇µV g
µν = 0, immediately enforces c(x) = const. This is simply because this

equation reduces to a polynomial in c with constant coefficients that multiplies ∂νc.

This restricts our ansatz to proportional metrics,

f̄µν = c2ḡµν with c = const. (5.9)

Using this in the bimetric equation (5.2) we find that they simply reduce to two copies

of Einstein’s equations,

Gµν(ḡ) + Λgḡµν = 0 , Gµν(ḡ) + Λf ḡµν = 0 . (5.10)

In this we have defined the cosmological constant contributions arising from the inter-

action potential,

Λg(c) ≡
m4

m2
g

(
β0 + 3cβ1 + 3c2β2 + c3β3

)
,

Λf (c) ≡
m4

(mfc)2

(
cβ1 + +3c2β2 + 3c3β3 + c4β4

)
, (5.11)

and the Einstein tensors are the same in both equations since the Einstein tensor is

scale invariant, Gµν(c2ḡ) = Gµν(ḡ). Proportional backgrounds thus simply correspond

to solutions to Einstein’s equations in GR. Importantly, it means that this class of

solutions actually captures all the solutions of GR. The difference of the background

equations (5.10) implies that

Λg(c) = Λf (c) . (5.12)

From (5.11) it is clear that this equation is a polynomial in c with coefficients depending

on the βn parameters and α = mf/mg. In general, it serves to determine the propor-

tionality constant c of our ansatz in terms of the parameters of the theory and thereby

specifies the solution completely. An important exception to this generic situation is

the partially massless case, which we discuss in section 7.

Apart from being able to capture all solutions of GR, the proportional background

solutions are of particular interest because they allow for a definite mass spectrum

of fluctuations around them. In general, the linear perturbation equations have a

rather complicated structure because in order to derive them one needs to vary the

square-root matrix S =
√
g−1f . As we already discussed in section 4.3 for the massive

gravity setup, this is always possible but, for backgrounds giving rise to matrices ḡ−1f̄

that do not commute with the fluctuations, the resulting expressions are lengthy. In
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particular, the equations will not contain a mass term with Fierz-Pauli structure which

makes it difficult, if not impossible, to uniquely identify the massive field. In contrast,

for the proportional backgrounds we have ḡ−1f̄ = c21 which does commute with any

other matrix and hence drastically simplifies the perturbation equations which now will

exhibit the Fierz-Pauli structure.

5.3.2 Spectrum of linear mass eigenstates

We shall now consider small perturbations around the proportional backgrounds for

both of the metrics,

gµν = ḡµν + δgµν , fµν = c2ḡµν + δfµν . (5.13)

The variation of the square-root matrix is easily obtained as,

ḡµρδS
ρ
ν =

1

2c

(
δfµν − c2δgµν

)
. (5.14)

Plugging these into the bimetric equations (5.2), keeping only terms linear in the fluc-

tuations and using the background equations, we obtain,

Ē ρσ
µν δgρσ − Λ̄g

(
δgµν − 1

2
ḠµνḠ

ρσδgρσ
)
−NḠµρ (δSρν − δρνδSαα) = 0 , (5.15a)

Ē ρσ
µν δfρσ − Λ̄g

(
δfµν − 1

2
ḠµνḠ

ρσδfρσ
)

+ α−2NḠµρ (δSρν − δρνδSαα) = 0 . (5.15b)

Here N depends on α, c and the βn parameters and the explicit dependence can be

read off from the Fierz-Pauli mass below. Here, we have made use of the fact that

the background metric can be conveniently rescaled by a constant without changing

the structure of the linearised equations and expressed the equations with respect to a

redefined background metric,

Ḡµν ≡
(
1 + α2c2

)
ḡµν . (5.16)

We have also redefined the cosmological constant with respect to this background,

Λ̄g ≡
(
1 + α2c2

)−1
Λg , Rµν(Ḡ) = Λ̄gḠµν , (5.17)

and expressed the kinetic operator Ē ρσ
µν with respect to the Ḡµν background,

Ē ρσ
µν δGρσ = −1

2

[
δρµδ

σ
ν ∇̄2 + Ḡρσ∇̄µ∇̄ν − δρµ∇̄σ∇̄ν − δρν∇̄σ∇̄µ

− ḠµνḠ
ρσ∇̄2 + Ḡµν∇̄ρ∇̄σ

]
δGρσ , (5.18)
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in which ∇̄ is the covariant derivative compatible with Ḡµν .

The above equations can now easily be diagonalised into an equation for a massless

and a massive perturbation. To this end, consider the following combinations of metric

fluctuations,

δGµν ≡ δgµν + α2δfµν , δMµν ≡
1

2c

(
δfµν − c2δgµν

)
. (5.19)

Now, taking the appropriate linear combinations of the original fluctuation equations for

δgµν and δfµν decouples the massless from the massive mode. The resulting equations

read [115, 143],

Ē ρσ
µν δGρσ − Λ̄g

(
δGµν − 1

2
ḠµνδG

)
= 0 , (5.20a)

Ē ρσ
µν δMρσ − Λ̄g

(
δMµν − 1

2
ḠµνδM

)
+

m̄2
FP

2

(
δMµν − ḡµνδM

)
= 0 , (5.20b)

where δG = ḠµνδGµν and δM = ḠµνδMµν . The Fierz-Pauli mass in these equations is

given by,

m̄2
FP =

(1 + (αc)2)2

α2c
N =

m4

m2
g

1

α2c2

(
cβ1 + 2c2β2 + c3β3

)
. (5.21)

We remind that in all of the above expressions c is to be regarded as a function of

the Planck masses and the βn parameters, determined by the background equation

Λg = Λf .

As advertised, (5.20a) and (5.20b), respectively, describe a massless and a massive spin-

2 fluctuation in (Anti-) de Sitter background. At the linear level around proportional

backgrounds, one can therefore assign two degrees of freedom to a massless fluctuation

δGµν and the remaining five to a massive fluctuation δMµν . The linearised action in

terms of the mass eigenstates is [143],

SPB = 1
2

∫
d4x
[
δGµν ĒµνρσδGρσ − Λ̄g

(
δGµνδGµν − 1

2
δG2

)
+δMµν ĒµνρσδMρσ − Λ̄g

(
δMµνδMµν − 1

2
δM2

)
+

m̄2
FP

2

(
δMµνδMµν − ḡµνδM2

)]
. (5.22)

The main reason for choosing the new background Ḡµν was to render the final action

and equations as simple as possible. Alternatively, we could have written all of the

above expressions with respect to the original background ḡµν , in terms of Λg in (5.11)

and a properly rescaled Fierz-Pauli mass, m2
FP ≡

(
1 + α2c2

)
m̄2

FP.
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5.4 Couplings to Matter

So far we have been dealing with theories involving only spin-2 degrees of freedom. In

order to be accessible to any type of observations or experiments, the fields need to

interact with ordinary matter. It may not come as a surprise that the set of allowed

matter couplings which do not reintroduce the Boulware-Deser ghost is very restricted.

5.4.1 Ghost-free matter couplings

The only known couplings which can be added to the bimetric action (5.1) without

exciting the ghost are,

Sm =

∫
d4x
√
g Lm(g,Φg) +

∫
d4x

√
f L̃m(f,Φf ) , (5.23)

where Lm and L̃m are standard minimally coupled matter Lagrangians of the same

form as in GR. Φg and Φf schematically stand for sets of matter fields of any kind.

Importantly, it was shown in [144, 145] that it is not possible to couple the same

(dynamical) matter field to both metrics using minimal couplings, and hence Φg and

Φf must be entirely independent. That coupling a field to both gµν and fµν reintroduces

the Boulware-Deser ghost can be understood as follows: In GR with only one metric,

the matter action becomes linear in the lapse N when written in the canonical variables

for the metric and the matter fields. A simple calculation in an example with a free

scalar field ϕ shows that this happens because the variation of the action with respect

to ϕ̇ and hence also the canonical momentum of the scalar depend on N . This N -

dependence is such that the action in terms of canonical variables is linear in N . In the

bimetric case, however, when the free scalar is coupled to both gµν and fµν , its canonical

momentum will depend on N and L in a more complicated way and the action will not

become linear in both of the lapses. As a consequence, the constraint which removes

the Boulware-Deser ghost is lost. Note that this argument does not exclude coupling

pure interaction terms (without appearance of time derivatives) to both of the metrics.

This possibility seems quite contrived, however, and we do not discuss it any further

but instead focus on couplings to two entirely independent matter sectors.

In the equations of motion the matter couplings enter in the form of stress-energy

tensors,

T gµν ≡ −
1
√
g

δ
(√

g Lm(g,Φg)
)

δgµν
, T fµν ≡ −

1√
f

δ
(√

f Lm(f,Φf )
)

δfµν
. (5.24)
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The bimetric equations (5.2) in the presence of matter sources thus become

Gµν(g) +
m4

m2
g

V g
µν(g, f ; βn) =

1

m2
g

T gµν , (5.25a)

Gµν(f) +
m4

m2
f

V f
µν(g, f ; βn) =

1

m2
f

T fµν . (5.25b)

We will comment on other matter couplings that have been studied in the literature

below but first we shall discuss two important limits in the parameter space of bimetric

theory which take it close to either general relativity or nonlinear massive gravity.

5.4.2 General relativity limit

As we pointed out in section 4.5, the parameter space of massive gravity with a fixed

reference metric does not include any region which is obviously close to GR. In the

following we will see that, in contrast, a well-defined GR limit does exist for the bimetric

theory. Since the structure of the bimetric action is completely symmetric in gµν and

fµν , either of the two metrics can play the role of the physical metric whose solutions

will become similar to those of GR. We choose this metric to be gµν here but note that

everything can analogously be derived with the roles of the metrics interchanged.

It is straightforward to verify that the contributions from the interaction potential V

to the bimetric equations of motion (5.25) satisfy the following identity [146, 147],22

√
g gµρV g

ρν +
√
f fµρV f

ρν −
√
g V δµν = 0 . (5.26)

Making use of this observation, the equations can be combined to give,

gµρGρν(g) + α2 det
(√

g−1f
)
fµρGρν(f) +

m4

m2
g

V δµν =
1

m2
g

(
gµρT gρν + fµρT fρν

)
. (5.27)

This particular set of equations has interesting implications on classical solutions in

bimetric theory which we shall come back to in section 6. For our purposes here

it suffices to consider the dependence on the parameter α ≡ mf/mg in (5.27). In

particular we note that in the limit α→ 0, the equations reduce to [146, 147],

gµρGρν(g) +
m4

m2
g

V δµν =
1

m2
g

(
gµρT gρν + fµρT fρν

)
. (5.28)

22In fact, this identity can be derived for any form of covariant potential V and does therefore not

rely on the specific structure of the ghost-free bimetric action.
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When T fµν = 0, i.e. when there is no matter sector for the metric fµν , we can use the

covariant derivative compatible with gµν to take the divergence of the equations which

for a covariantly conserved source then gives V = constant on-shell. In this case, the

equations thus reduce to Einstein’s equations for the physical metric gµν with Planck

mass mg and cosmological constant m4

m2
g
V ,

Gµν(g) +
m4

m2
g

V gµν =
1

m2
g

T gµν . (5.29)

Hence, the GR limit of bimetric theory is defined by,

α ≡ mf

mg

−→ 0 , mg = const. , T fµν = 0 , (5.30)

in which case the solutions for the physical metric gµν coincide with those of GR.23

Interestingly, a large value for the physical Planck mass mg automatically implies that

bimetric theory is close to its GR limit, provided that mf is of reasonable size compared

to other relevant scales (such as the electroweak scale, for instance).

The effect of taking the above limit on the fµν equation (5.25b) is that it becomes

purely algebraical, V f
µν = 0. The generic solutions to this equation are proportional

backgrounds fµν = c2gµν with c determined by the condition Λf (c) = 0, where the

function Λf is the same as in (5.11). Then the cosmological constant in (5.29) is given

by,

m4

m2
g

V =
m4

m2
g

(
β0 + 4β1c+ 6β2c

2 + 4β3c
3 + β4c

4
)
. (5.31)

We further observe that, in the GR limit, the fluctuation of the physical metric gµν
becomes massless as expected. This can be seen from (5.19), which for α → 0 gives

δGµν → δgµν . It is an important feature because, at least to our present knowledge,

only the couplings of the original metrics to matter are ghost-free, whereas on the

other hand the gravitational metric needs to behave like a massless spin-2 field for

phenomenological reasons. In particular, since the massive mode decouples from the

source, bimetric theory in the GR limit does not suffer from the vDVZ discontinuity

and hence does not need to rely on the Vainshtein mechanism, a requirement which

usually challenges the phenomenological viability of massive gravity models.

23One may be worried about occurrences of strong coupling for small values of α. However, as has

been discussed in detail in [148], the strong coupling scale of the massive spin-2 mode in fact grows

with decreasing α.
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To summarise, in the limit of small α, bimetric theory can be viewed as a smooth

deformation of GR because the massive mode decouples in the limit. In particular,

the gravitational metric satisfies Einstein’s equations modified by a small correction

and its fluctuations are dominated by the massless spin-2 mode. The dynamics of the

massive field essentially decouple from the observable matter sector and its presence

manifests itself only through the constant term in (5.29) which for a sufficiently small

spin-2 mass could give rise to cosmic self-acceleration [148]. On the other hand, one

can tune the βn parameters such that large contributions to the effective cosmological

constant cancel (at the cost of giving up technical naturalness à la ’t Hooft) and thus,

even for a very large spin-2 mass, its observable effects could remain small.

Note also that, in this setup, the massive spin-2 field could potentially be a suitable

dark matter candidate: It interacts with the Standard Model fields only very weakly,

but couples non-minimally to the gravitational metric. A remarkable feature of this

scenario would be that the closeness of the theory to GR goes hand in hand with the

decoupling of the dark matter field, and both get related to the largeness of the Planck

scale mg. For related approaches in the context of bimetric theory, where not the spin-2

field itself is considered as the dark matter candidate but additional fields are invoked,

see [149–152].

5.4.3 Massive gravity limit

Let us now consider the limit opposite to the one above, namely α→∞. In this limit,

bimetric theory reduces to massive gravity with a GR reference metric, i.e. fµν solves

the standard sourced Einstein equations [153–156]. To see this, consider once more the

bimetric equations of motion (5.25), this time along with the following scalings,

α ≡ mf

mg

−→∞ , mg = const. ,
1

M2
T̃µν ≡

1

m2
f

T fµν = const. ,

β′4 ≡
m2
g

m2
f

β4 = const. , βn = const. for n ≤ 3 . (5.32)

Note that we introduced a new mass scale M and stress-energy T̃ here because now we

also require a scaling of the matter fields in the fµν sector in order to be able to treat

solutions for fµν that solve Einstein’s equations in the presence of matter (for more on

this see e.g. discussions in [115, 146, 154]). Similarly, the scaling of β4 is required to

keep a cosmological constant term for fµν . The remaining βn are not allowed to scale

since this would destroy interactions in the gµν equations (recall that β4 only appear

in the fµν equations). The gµν equations (5.25a) are then unaffected but in the fµν
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equations (5.25b) all bimetric interaction terms drop out. Thus, fµν is now determined

by,

Gµν(f) +
m4

m2
g

β′4fµν =
1

M2
T̃µν , (5.33)

which is an Einstein equation with cosmological constant m4

m2
g
β′4 and Planck mass M .

The exact limit thus decouples the dynamics of fµν which is now determined by equa-

tions that do not involve gµν . We can obtain a solution to these equations and use

it to replace fµν in the gµν equations. Effectively, the gµν equations are therefore the

same as the ones obtained from varying the massive gravity action (4.2), in which fµν
is taken to be a fixed reference metric that solves Einstein’s equations (5.33). This pic-

ture explains the emergence of the fixed reference metric in massive gravity since the

latter can be viewed as a particular point in the parameter space of the fully dynamical

bimetric theory.

From the existence of the above limit we can infer that the solution space of bimetric

theory is richer than that of massive gravity. Solutions (g, f) to the bimetric equations

of motion can be of the form (g′ + O(α−1), f ′ + O(α−1)), with (g′, f ′) taken to be α-

independent. Only for such solutions is the limit α → ∞ well-defined and result in

the massive gravity configurations (g′, f ′). Other bimetric solutions, however, do not

possess a well-defined massive gravity limit, i.e. they become singular for α→∞. Such

configurations for the metrics are known to exist and have no massive gravity coun-

terpart, but rather constitute a distinct feature of bimetric theory. Simple examples

of proportional solutions that become singular in the limit have been found in [147].

Moreover, see [157] for a study of Hawking-Moss instanton solutions in bimetric theory

which do not seem to allow for a well-defined massive gravity limit.

To summarise, all solutions of massive gravity can be viewed as arisen from bimetric

theory, whereas it is quite easy to find solutions of the bimetric theory which does not

have any massive gravity counterpart. Therefore, since the limit is singular, care has

to be taken when arguing that results which hold in the massive gravity limit also hold

in the full theory.

It has occasionally been argued that the above limiting procedure is somehow inferior

and that the limit should instead be taken in the action. But, in fact, the two procedures

of taking the limit in the equations or in the action are fully compatible when treated

correctly. To see this let us briefly review the limiting procedure at the level of the

action, as discussed, for instance, in [2]. In this case one starts by expanding the
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bimetric action (5.1) around, e.g., a constant curvature solution,24

fµν → fE
µν +

δfµν
mf

, (5.34)

and then considers the limit mf →∞. Since fE
µν is assumed to be a constant curvature

metric the kinetic term for fµν simply reduces to the quadratic action for canonically

normalised fluctuations on this background, i.e.

m2
f

√
f R(f)→ 1

2
δfµν Ēµνρσδfρσ , (5.35)

where Ēµνρσ is the operator defined in (2.12), written in terms of the metric fE
µν and

its curvatures. In the interaction potential on the other hand, all the δfµν fluctuations

decouple in the limit and, assuming an appropriate scaling of β4, only a cosmological

term for the fluctuations remains. One then ends up with a non-covariant action in

terms of a decoupled linear spin-2 field δfµν and a nonlinear spin-2 field gµν whose

interaction potential contains the fixed reference metric fEµν . Now varying with respect

to the dynamical fields gµν and δfµν results in the massive gravity equations for gµν
(containing gµν and fEµν), supplemented with a completely decoupled linear equation for

δfµν . Of course, this procedure is only self-consistent provided that fE
µν is really a finite

constant curvature background solution in the limit. Ensuring this leads exactly to the

limiting procedure of the equations we have discussed above. It is also straightforward

to see that if we express our equations (5.25a) and (5.33) in the limit in terms of gµν ,

δfµν and fEµν , then we end up with exactly the same result as that obtained from the

action (the reason being that, if δfµν/(αmg) is assumed subdominant to δgµν/mg in

the action, the same will of course hold in the equations). Therefore taking the limit

in the equations is equivalent to doing it in the action, but the former procedure deals

more directly with solutions and the requirements for these to exist.

5.4.4 Other matter couplings

Matter couplings differing from the consistent ones in (5.23) have also been studied

in the literature. Particular attention has been paid to the “doubly coupled” theory

for which the matter sectors of gµν and fµν contain the same fields [158, 159] but, as

explained above, these couplings reintroduce the Boulware-Deser ghost [144, 145]. On

the other hand, it turns out that a certain combination of the two metrics can be coupled

24More generally one can couple appropriately scaled matter fields to the fµν metric and consider

expanding around a solution of (5.33), but this does not change the main arguments.
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to matter without exciting the ghost in the low-energy effective field theory [145]. This

“effective metric” contains two arbitrary parameters a and b and is of the form,

Geff
µν = a2gµν + 2ab gµρ

(√
g−1f

)ρ
ν

+ b2fµν , (5.36)

whose “uniqueness”25 has been discussed in [161, 162]. The reason this metric is special

is because it can be written, in matrix notation, Geff = a2 g (1 + (b/a)S)2, and hence√
det(Geff) = a4√g det(1 + (b/a)S). The identity (A.5) then reveals that any vacuum

contribution generated by matter coupled to such a Geff will not alter the ghost-free

form of the bimetric interaction potential. Interestingly, this metric can be written

as a Finsler metric [159] and therefore provides a situation where the geometric inter-

pretation is shifted from the standard (pseudo) Riemannian description to an effective

Finsler geometry.26 Since our main interest here lies in working with the full bimetric

action and not in the effective field theory picture, we will not discuss phenomenological

implications of such a matter coupling in this review. The interested reader is referred

to the large variety of references [99, 151, 152, 165–174] in which the effective coupling

has been studied further, mostly in the context of cosmology.

25More precisely, the metric (5.36) is unique up to multiplication of the right-hand side by an

arbitrary matrix of unit determinant. When it is expressed in terms of vierbeins more ambiguities

arise [160].
26A Finsler geometry departs from the pseudo Riemannian geometry in that it characterises a

manifold with a norm but it is not necessarily infinitesimally Minkowski [163, 164].
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6 Classical Solutions

Despite the fact that the consistent theories have only been known for a few years,

there already exists an extensive literature on classical solutions in ghost-free massive

gravity and bimetric theory. Here we focus on bimetric theory whose solution spectrum

is richer than that of massive gravity (c.f. section 5.4.3). Perhaps most interesting is

the class of spherically symmetric solutions, which can potentially be used to study

stars, galaxies, black holes and cosmology. An immediate problem that arises in this

context is that the bimetric theory has no known analogue of Birkhoff’s theorem27 and

therefore many of the valuable uniqueness theorems of GR do not apply. This means

that in many situations several solutions may exist for the same problem and one is left

with the task of sorting out the most relevant one. A strong physically motivated guide

here is to explore the stability of solutions under perturbations. Another complication

is the analytical complexity of the nonlinear equations of motion, and in many cases

only numerical solutions are known as of yet. In this review we have mainly kept our

attention towards analytically tractable problems and will continue this practice. We

will therefore restrict our discussion mainly to black hole and cosmological solutions,

discuss features of these which can clearly be discerned analytically and only comment

briefly on some phenomenological issues. For the spherically symmetric solutions and

in particular their applications to black hole studies there already exist a few good

reviews on the current status [176–178]. We refer the interested reader to these for

additional details. Before discussing particular features of the spherically symmetric

solutions, we make some general remarks.

6.1 General properties

Recall the form of the bimetric equations of motion in the presence of matter sources,

Gµν(g) +
m4

m2
g

V g
µν(g, f ; βn) =

1

m2
g

T gµν , (6.1a)

Gµν(f) +
m4

m2
f

V f
µν(g, f ; βn) =

1

m2
f

T fµν , (6.1b)

with the contributions from the interaction potential given in (5.3). It is clear that

due to the presence of these additional interaction terms, in general, the solutions

to the bimetric equations will significantly differ from those obtained in GR. From a

27Which implies absence of monopole radiation in GR. See e.g. [175] for a nice GR oriented discussion

which also gives appropriate credit to earlier independent findings of this important theorem.
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phenomenological point of view, such large new effects are not desirable since Einstein’s

theory is well-tested over a wide range of distance scales. In order not to be ruled out

immediately, any modification of gravity needs to give rise to solutions that do not

deviate too much from those of GR. As we already saw in section 5.4.2, in the limit

of small α ≡ mf/mg and a vanishing source for fµν , all equations for the physical

metric gµν will smoothly approach the form of the GR equations and so will their

linear perturbations. This is already good news for the viability of bimetric theory. On

the other hand, it may also render the theory less interesting because if all solutions are

(almost) indistinguishable from those of GR in the weak-field limit then there is little

room for predicting new signatures that could be observed. It is therefore interesting

to see if the above equations, away from the GR limit, can still give rise to solutions

that behave similarly to those of Einstein’s theory.

In section 5.3.1 we already encountered the proportional backgrounds as an example of

GR solutions in bimetric theory. However, in the presence of matter, these backgrounds

only exist if the stress-energy tensors satisfy the rather strict constraint T fµν = α2T gµν .

As we will see below, the bimetric equations can also reduce to Einstein equations

after inserting ansätze for the metrics which possess particular symmetry properties

(e.g. spherical symmetry). In these cases, although the background solutions repro-

duce exactly the predictions of GR, differences will generically occur at the level of

perturbations and the theory can in principle make testable predictions.

In this context, it is important to notice one more feature of bimetric theory: If ei-

ther gµν or fµν is assumed to be an exact solution to the Einstein equations, then the

bimetric equations will force the second metric to also solve (a different set of) Ein-

stein’s equations [147].28 In vacuum this can be seen as follows: Recall that using the

identity (5.26), we were able to combine the bimetric equations into,

gµρGρν(g) + α2 det
(√

g−1f
)
fµρGρν(f) +

m4

m2
g

V δµν = 0 . (6.2)

If in this equation we assume that, for instance, fµν is a GR solution with cosmological

constant Λ̃,

Gµν(f) = −Λ̃fµν , (6.3)

then (6.2) takes the form,

gµρGρν(g)− α2 det
(√

g−1f
)
Λ̃ δµν +

m4

m2
g

V δµν = 0 . (6.4)

28In fact, this statement does not depend on the ghost-free structure but holds for any covariant

bimetric interaction potential.
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Taking the covariant divergence of this equation implies that the terms proportional to

δµν are constant and hence the equation reduces to an Einstein equation for gµν ,

Gµν(g) = −Λgµν , Λ ≡ −α2 det
(√

g−1f
)
Λ̃ +

m4

m2
g

V . (6.5)

This proof can straightforwardly be generalised to the equations including matter

sources. However, in this case GR solutions do not exist unless the sources for gµν
and fµν are related in a particular way [147]. Solutions of this type (with stress-energy

tensors assumed to resemble perfect fluids) have been found in [179].

Another interesting general feature of the bimetric solutions was noticed in [180]. There

it was found that the effective stress-energy tensors that the bimetric interactions gen-

erate, i.e. the negative of V g
µν and V f

µν , never satisfy the null-energy condition simul-

taneously unless the two metrics are proportional. In more detail, Ref. [180] found

that if kµ is a null-vector with respect to gµν , i.e. gµνk
µkν = 0, then one can al-

ways define k̄µ = (S−1)µρk
ρ which turns out to be a null-vector with respect to fµν ,

i.e. fµν k̄
µk̄ν = gµνk

µkν = 0. This follows since fµν = gµρS
ρ
σS

σ
ν = gσρS

ρ
µS

σ
ν and can

be used to demonstrate that if e.g. V g
µν satisfy the null-energy condition V g

µνk
µkν ≤ 0

(where the direction of the inequality follows from our sign convention in defining V g
µν)

then V f
µν will satisfy an opposite inequality V f

µν k̄
µk̄ν ≥ 0. Furthermore the inequalities

only saturate for proportional solutions, when the interactions reduce to pure cosmo-

logical constant contributions (c.f. section 5.3.1). Of course the null-energy condition

is usually applied to the matter sector within the context of GR so it is not completely

obvious what a violation actually means physically in this case. For example, if we

consider the case where only gµν couples to a matter source T gµν and take it that V f
µν

does not (does) satisfy the null-energy condition. Then generically V g
µν will (will not)

satisfy it which implies that the standard physical interpretation of the null-energy con-

dition on the source term T gµν may change. This interesting observation is something

which deserves further study. One immediate consequence however was the prediction

of worm-hole solutions in the theory, which were subsequently found and analysed in

[181].

6.2 Black hole solutions

Spherically symmetric solutions were first discussed in [182, 183] and have since then

received considerable attention [184–193]. As already mentioned in the introduction of

this section, there is no known analogue of Birkhoff’s theorem in bimetric theory and

therefore many of the uniqueness theorems of GR fail straight away. In fact, for spher-

ically symmetric ansätze, it is fairly straightforward to make an initial separation into
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two classes of general solutions, the so-called bidiagonal and non-bidiagonal solutions.

These labels are not that imaginative but they do keep to the point: The bidiagonal

solutions are solutions for which both metrics can be brought to a simultaneously diag-

onal form while the non-bidiagonal solutions are those solutions which cannot. Another

important class of solutions are the proportional solutions discussed in section 5.3.1.

Now, we can always use the isometries to choose coordinates such that at least one of

the metrics is diagonal and therefore the proportional solutions fall into the broader

class of bidiagonal solutions.

The most general spherically symmetric ansätze can be written in the form,

gµνdx
µdxν = −U2dt2 + V 2dr2 + r2dΩ2 ,

fµνdx
µdxν = −A2dt2 +B2dr2 + C2dtdr +D2dΩ2 , (6.6)

where U, V,A,B,C,D are all functions of the radial (r) and temporal (t) coordinates.

We have made use of the spherical isometry to fix the angular and radial coordinates

such that the angular measure dΩ2 = dθ2 +sin2 θdϕ2 is in the standard form and comes

with the standard factor of r2 for gµν , which also puts gµν in diagonal form. This form

has been heavily used in the literature and serves to simplify parts of our discussions,

but it should be noted that in some situations, concerning in particular black hole

solutions, it is preferable to work with coordinates that are regular at the horizon, such

as the advanced Eddington-Finkelstein coordinates (see e.g. [178, 190]). Since gµν is

diagonal it follows from the equations of motion,

gρµGµν +
m4

m2
g

gρµV g
µν = 0 , (6.7)

that gρµV g
µν must be diagonal on the solution. The only off-diagonal terms in gρµV g

µν

that do not vanish identically are,

gtµV g
µr ∼ grµV g

µt ∼ C

(
β1 + 2β2

D

r
+ β3

D2

r2

)
. (6.8)

This can vanish either if C = 0, which characterises the bidiagonal solutions, or if

D = ωr with ω being a solution of,

β1 + 2β2ω + β3ω
2 = 0 . (6.9)

Notice that the second option, which characterises the non-bidiagonal solutions, does

not exist if two of the βn parameters with n = 1, 2, 3 are zero. Furthermore, the

condition forces ω to be a constant. We will now discuss the two classes of solutions in

some more detail.
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6.2.1 Bidiagonal black hole solutions

We start by discussing the bidiagonal solutions, which are obtained from (6.6) with

C = 0. As a simple but interesting and illustrative warmup we recall the proportional

background solutions of section 5.3.1, with fµν = c2gµν . If either metric is diagonal,

then these are obviously bidiagonal. It should also be clear that any vacuum solutions

of the standard GR equations will in fact also be solutions of the bimetric equations

for the proportional backgrounds (with appropriate restrictions on the constant of pro-

portionality). In particular we may now consider bidiagonal black hole metrics. Since

these are proportional vacuum solutions the linearisation around these solutions follows

the analysis of section 5.3.2 and the fluctuations obey the massless equations,

δE0
µν = E ρσ

µν δGρσ − Λ

(
δGµν −

1

2
gµνg

ρσδGρσ

)
= 0 , (6.10)

and the massive equations,

δEM
µν = E ρσ

µν δMρσ − Λ

(
δMµν −

1

2
gµνg

ρσδMρσ

)
+
m2

FP

2
(δMµν − gµνgρσδMρσ) = 0 ,

(6.11)

where, in terms of the original fluctuations δgµν and δfµν , the massless field is given by

δGµν = δgµν + α2δfµν , and the massive field is obtained from 2c δMµν = δfµν − c2δgµν .

We also recall that (with ∇µ associated to the background field gµν),

E ρσ
µν δMρσ ≡ −1

2

[
δρµδ

σ
ν∇2 + gρσ∇µ∇ν − δρµ∇σ∇ν − δρν∇σ∇µ

− gµνgρσ∇2 + gµν∇ρ∇σ
]
δMρσ . (6.12)

The massless equations (6.10) are precisely those of linearised GR and a standard

treatment shows that they propagate the two (±2) helicity states of a massless spin-2

field. Let us therefore focus on the massive field equations (6.11). Due to the Bianchi

identities obeyed by the Einstein tensor (including the Λ terms) a covariant divergence

of these yields,

∇µδEM
µν =

m2
FP

2
(∇µδMµν − gρσ∇νδMρσ) , ∇µδMµν = gρσ∇νδMρσ , (6.13)

where the last equality follows on-shell and provides four non-dynamical constraint

equations for δMµν . A second covariant divergence of these equations yields,

∇µ∇νδEM
µν =

m2
FP

2

(
∇µ∇νδMµν − gρσ∇2δMρσ

)
. (6.14)
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Tracing instead the field equations (6.11) we get,

gµνδEM
µν = gµν∇2δMµν −∇µ∇νδMµν +

(
Λ− 3m2

FP

2

)
gµνδMµν . (6.15)

It then follows that the particular linear combination,

2∇µ∇νδEM
µν +m2

FPg
µνδEM

µν =
m2

FP

2

(
2Λ− 3m2

FP

)
gµνδMµν , (6.16)

constitutes another on-shell scalar constraint,29 gµνδMµν = 0, which then also implies

∇µδMµν = 0. Together these equations correspond to five constraints that can be used

to remove five degrees of freedom from the original 10 components of the symmetric

tensor perturbations δMµν . Enforcing these constraints, the equations of motion for

the massive spin-2 fluctuations can therefore be reduced to the following system,(
∇2 −m2

FP

)
δMµν + 2R ρ σ

µ ν δMρσ = 0 , ∇µδMµν = 0 , gµνδMµν = 0 . (6.17)

This brief discussion provides a generalisation of the constraint analysis of section 2.2,

when augmented to the case of constant curvature backgrounds, and also complements

the analysis of section 5.3.2. Moreover, as first recognised in [195], the dynamical

equations for δMµν in the above form are actually identical to the equations of a 5D

black string when projected down onto its 4D sub-manifold, namely,(
∇2 − k2

)
δMµν + 2R ρ σ

µ ν δMρσ = 0 , (6.18)

where k2 denotes the wave number of the transverse Fourier mode. This equation

is identical to (6.17) with the replacement mFP → k. It has immediate and inter-

esting implications since it is well known that the solution of (6.18) exhibits the so

called Gregory-Laflamme instability [196] (for a broad review on this subject see [197]).

Namely, the solution is unstable in the parameter region 0 < k < kc, where kc is of

the order of the inverse Schwarzschild radius. In the case of the 5D black string this

instability concerns the mode longitudinal to the 5th direction along the black string

and the end point of the instability is known to result in a sort of “pinching” of the

black string into an open necklace with beads of 4D Schwarzschild black holes strung

on it. In the case of the bidiagonal bimetric solution when the metrics are proportional

29An exceptional situation occurs when the parameters satisfy 2Λ = 3m2
FP, saturating the so called

Higuchi bound [81]. In this case the left-hand side of (6.16) vanishes identically, such that a new linear

scalar gauge symmetry emerges and the theory propagates a partially massless spin-2 field with only

four degrees of freedom [85, 194]. We will get back to this in section 7.

– 62 –



Schwarzschild (or Schwarzschild-de Sitter) metrics it follows that it too will have a sim-

ilar instability.30 But since there is no 5th dimension, no such interpretation is available

and the status of the end point is presently unknown (one possibility is mentioned be-

low). It is clear however that the instability only manifests itself over a characteristic

time-scale comparable to the Hubble time H−1
0 for a small enough mass parameter

mFP ∼ H0 and it would therefore be hard to detect any signature connected with this.

A similar study of the bidiagonal Kerr solutions have revealed that these additionally

suffer from a super-radiant instability [187]. For more details and discussions on this

we refer the interested reader to the reviews [176–178] and references therein.

Another simple and illustrative example is to consider the metric ansätze (6.6) as a

static perturbation of proportional Minkowski backgrounds, i.e. f̄µν = c2ḡµν = c2ηµν .
31

Thus we consider the functions in (6.6), with C = 0 and no temporal dependence, as

given by

U = 1 + δU , V = 1 + δV ,

A = c(1 + δA) , B = c(1 + δB) , D = c(r + δD) . (6.19)

The equations of motion for the perturbations can then be solved perturbatively to

give (see e.g. [182, 184]),

δU = −M1

r
+
M2

r
e−rmFP ,

δV =
M1

r
− M2(1 + rmFP)

2r
e−rmFP ,

δA = −M1

r
− M2

α2c2r
e−rmFP ,

δB =
M1

r
− (1 + rmFP)[α2c2r2m2

FP + 2(1 + α2c2)]
M2

2α2c2m2
FPr

3
e−rmFP ,

δD = (1 + α2c2)[1 + rmFP + r2m2
FP]

M2

2α2c2m2
FPr

2
e−rmFP , (6.20)

where M1 and M2 are integration constants and we recall that the Fierz-Pauli mass

mFP is given by,

m2
FP =

m4

m2
g

1 + α2c2

α2c2
(cβ1 + 2c2β2 + c3β3) . (6.21)

30An interesting exception is the Schwarzschild-de Sitter case with parameters fixed to the partially

massless model discussed in section 7. For that case the instability is absent [185].
31Note that these backgrounds do not solve the bimetric equations in general, but the existence of

such solutions requires fixing either c or one of the βn parameters in terms of the others.
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The above expressions in (6.20) clearly have the form of Yukawa suppressed GR so-

lutions for spherically symmetric perturbations of flat space-time. They exhibit the

vDVZ discontinuity since, in the small mass limit mFP → 0, the combination,

δU + δV =
M2(1− rmFP)

2r
e−rmFP → M2

2r
, (6.22)

does not vanish as it would in GR. On the other hand, we also see that both δB and

δD diverge for mFP → 0, so this limit is in fact not well-defined on the solution. These

divergences in the small-mass limit are remedied via the Vainshtein mechanism when

going to higher orders in perturbation theory. Although the full nonlinear forms of

these solutions are not known analytically their perturbative and numerical existence

provides some initial hope of such a completion. The perturbative form, going up

to second order, has been used for initial studies of e.g. strong lensing [184] and in

confirming the Vainshtein mechanism in bimetric theory [13, 183, 192]. Making a

full perturbative ansatz has also allowed to find numerical solutions to the nonlinear

equations which are asymptotically flat and have massive hair. It has been conjectured

that these solutions are the end point of the linear bidiagonal Schwarzschild instability

discussed above [186]. Matching these solutions however requires the black hole to be

of cosmological size and they are therefore unlikely to be of astrophysical interest.

In more general setups, away from proportional backgrounds, all known analytical

solutions correspond to both metrics being of standard GR form and do not have

massive hair. On the other hand, it is known that the bidiagonal class allows also for

numerical solutions which are of non-GR form and do contain massive hair, typically

with anti-de Sitter asymptotics. So far these more exotic solutions have only been

studied numerically and we refer the reader to [177, 178] for more discussions of their

explicit behaviour.

6.2.2 Non-bidiagonal black hole solutions

The non-bidiagonal solutions have C 6= 0 and D = ωr in (6.6), with ω being a constant

solution of (6.9). Furthermore, the Bianchi constraint ∇µV g
µν = 0 implies that (see

e.g. [177]),

(β2 + β3ω)

[
(ω − Stt)(ω − Srr) +

(
U

V
Str

)2
]

= 0 , (6.23)

where Sρν are components of the square-root matrix S =
√
g−1f . This condition to-

gether with (6.9) suggests that the non-bidiagonal solutions are a very non-generic class

in the sense that the metric coefficients are forced to have a quite peculiar dependence
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on the βn parameters of the action. If we assume that ω is a solution of (6.9) and

that (6.23) is satisfied, we find that the equations of motion decouple into two separate

Einstein equations,

Gµν +
m4

m2
g

λggµν = 0 , G̃µν +
m2

α2
λffµν = 0 , (6.24)

where the cosmological terms are given by,

λg = β0 + 2β1ω + β2ω
2 , λf =

1

ω2

(
β2 + 2β3ω + β4ω

2
)
. (6.25)

Therefore, this peculiar way of fixing the metric functions in terms of the βn parameters

is an alternative and more complicated way of tuning the interactions to be purely

cosmological, as opposed to the more obvious proportional solutions. In this context,

recall the results of section 6.1, showing that whenever one metric is a solution to

Einstein’s equations, the other one must be an Einstein solution as well. That such

solutions (both Einstein, but with different cosmological constants) exist could perhaps

have been anticipated by the complicated matrix structure of the interaction terms.

All black hole solutions in the non-bidiagonal class are therefore of standard GR type.

An initial treatment of perturbations around these solutions can be found in [191].

For radial modes the analysis simplifies drastically and it is possible to get analytical

expressions for the perturbations. It turns out that, while these are regular at the

horizon, they are not regular at infinity. This implies that unstable radial modes are

not allowed on physical grounds and that the corresponding black holes may in fact be

stable, at least in the perturbative sense. For a detailed discussion on the current status

of perturbations of various known black hole solutions we refer the reader to [178].

6.3 Cosmological solutions

On small scales GR makes very good predictions and, from a phenomenological point

of view, there is no need to look for a modification of the theory. On cosmological

scales, however, it seems that either quantum field theory or gravity (or both) have to

be modified in order to explain the observed value of the cosmic acceleration in a sat-

isfactory way. In order for this review to be self-contained and to set up some notation

we have provided a condensed summary of standard GR cosmology in appendix C.

Due to the conceptual problems of explaining the observed cosmic acceleration within

GR, the implications of a consistent theory of modified gravity for cosmology are of

immediate interest. Unfortunately, the original idea that a large vacuum energy contri-

bution from the matter sector could be screened out simply by a non-zero graviton mass
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that weakens gravity at large scales turned out not to be realisable without fine tuning,

as discussed in [46]. Nevertheless, one can take a less ambitious approach and assume

that another, as of yet unknown, mechanism (such as supersymmetry, if it was realised

at low energies) is at work and removes all vacuum energy. In this case, ordinary

GR would predict a universe without cosmic acceleration, while in modified gravity

theories, “self-accelerating” solutions certainly exist in various forms. Massive gravity

is a particularly interesting candidate for this purpose since its interaction potential

breaks diffeomorphism invariance and therefore the spin-2 mass scale is expected to be

protected from receiving large quantum corrections. The hope would therefore be that

the interactions of the graviton could give rise to a small rate of cosmic acceleration,

which, unlike the pure cosmological constant, can be regarded as being “technically

natural” in the sense of ’t Hooft [198] (see e.g. [199] for a recent review on naturalness

in the context of cosmology). Of course, it should be pointed out that although the

guide of naturalness is philosophically appealing, in the end it may turn out that nature

does not follow that principle. Nevertheless, like Occam’s razor, it is a useful tool in

discriminating between alternative hypotheses.

Shortly after the construction of the ghost-free potential, it was discovered that the

dRGT model of massive gravity (with flat or even with general reference metric) does

not possess stable homogeneous and isotropic solutions [127]. For more work on cos-

mology in massive gravity with fixed fµν , see [128–133, 200]. On the other hand, in

bimetric theory with dynamical reference metric the desired class of solutions does ex-

ist [153–155]. The simplest examples are the proportional backgrounds considered in

section 5.3.1 which, however, only solve the equations with proportional sources. In

this case, the effective cosmological constant in (5.11) receives contributions not only

through vacuum energy from the matter sector (as captured by β0) but also from all

terms in the interaction potential. Even in the absence of vacuum energy (i.e., for

β0 = 0), cosmological backgrounds can be accelerating and the scale of acceleration is

proportional to the technically natural mass scale m (see e.g. [201]).

In the following we provide a brief summary of results in bimetric cosmology. For a

more detailed discussion, we refer the reader to [202].

6.3.1 Homogeneous & isotropic backgrounds in bimetric theory

We will outline the derivation of cosmological solutions in bimetric theory, following

mainly [154]. For simplicity, the source T fµν of the fµν sector is set to zero, which allows

us to interpret gµν as the physical metric in the usual way, provided that it has standard
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matter couplings. In other analyses, the second source term is kept nonzero [158, 203,

204], which in principle can serve to mimic a dark matter component [149–152].

To keep the comparison of the bimetric solutions to those of GR as simple as possible, it

is convenient to make the usual Friedmann-Lemâıtre-Robertson-Walker (FLRW) ansatz

for the metric gµν which is coupled to matter,32

gµνdx
µdxν = −dt2 + a(t)2

(
1

1− kr2
dr2 + r2dΩ

)
. (6.26)

It is now important to notice that, in order to arrive at this form, we have used time

reparametrisations to remove one time dependent function in the most general ho-

mogeneous and isotropic ansatz. We have therefore fixed the entire diffeomorphism

invariance and there is no gauge symmetry left to do the same to fµν . As a result,

the most general homogeneous and isotropic, bi-diagonal ansatz for the second metric

reads,

fµνdx
µdxν = −X(t)2dt2 + Y (t)2

(
1

1− kr2
dr2 + r2dΩ

)
, (6.27)

involving two time dependent functions X(t) and Y (t). Note that we have assumed

the curvatures k of the two metrics to be the same. This does not constitute a loss

of generality because, starting with two different values for k, one can show that the

Bianchi constraint forces them to be equal [205].

Furthermore, as in GR, we use the perfect fluid form (T g)µν = diag(−ρ, p, p, p) for the

stress-energy tensor T gµν of matter coupled to gµν . In GR any source is automatically

covariantly conserved as a consequence of the Bianchi identity whereas in bimetric

theory the sources for gµν and fµν are not necessarily conserved. We therefore need to

make the additional assumption of diffeomorphism invariance of the matter coupling

which gives ∇µ
gT

g
µν = 0. This in turn implies that the continuity equation for matter

(see equation (C.4)) is also valid in the model under consideration.

Next, we consider the bimetric equations of motion in (6.1), with T fµν = 0 and with

one index raised by the respective inverse metrics. In what follows we shall refer to

their 00-components simply as the gµν and fµν equation. Plugging the ansätze of the

previous section into (6.1a) we can make use of known GR results to straightforwardly

obtain the gµν equation,(
ȧ
a

)2
+ k

a2
− µ2

3

[
β0 + 3β1

Y
a

+ 3β2

(
Y
a

)2
+ β3

(
Y
a

)3
]

= ρ
3m2

g
, (6.28)

32More general non-bidiagonal ansätze for the metrics have been studied in [153]. As we discussed

in section 6.2.2 these are identical to GR backgrounds.
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where µ2 = m4/m2
g. The first two terms are the same as in the ordinary Friedmann

equation of GR, c.f. (C.5). In order to determine how the source ρ influences the

cosmological evolution of the scale factor a(t), we need to determine the function Y (t)

from the other equations. We start with the Bianchi constraint ∇µV g
µν = 0, which,

when evaluated on the homogeneous and isotropic ansatz, reduces to,

3µ2

a

[
β1 + 2β2

Y
a

+ β3

(
Y
a

)2
] (
Ẏ − ȧX

)
= 0 . (6.29)

In addition to these, we have to consider the fµν background equation whose form is

slightly more complicated than (6.28) due to the presence of the additional function

X(t) in the ansatz for fµν . Instead of presenting its complete form here, we first replace

X(t) = Ẏ /ȧ, which is the dynamical solution to the Bianchi constraint above.33 Then

the fµν equation becomes,(
ȧ
Y

)2
+ k

Y 2 − µ2

3α2

[
β1

(
a
Y

)3
+ 3β2

(
a
Y

)2
+ 3β3

a
Y

+ β4

]
= 0 , (6.30)

where, as usual, α ≡ mf/mg Multiplying this equation by Y 2/a2 and subtracting it

from the gµν equation (6.28) yields an algebraic equation,

β3

3
Υ4 +

(
β2 − β4

3α2

)
Υ3 +

(
β1 − β3

α2

)
Υ2

+
(
ρ∗ + β0

3
− β2

α2

)
Υ− β1

3α2 = 0 , (6.31)

which we have expressed in terms of the dimensionless quantities,

Υ =
Y

a
, ρ∗ =

ρ

3m4
. (6.32)

From the quartic polynomial equation (6.31) one can obtain a solution for Υ which can

be inserted into the gµν equation (6.28). After that, the latter will only contain a(t),

ȧ(t) and ρ(t), and thus becomes a modified Friedmann equation.

6.3.2 Classification of solutions

In general, the cosmological evolution equations derived above allow for several branches

of solutions which have been categorised and studied in detail [148, 153–155, 201, 206–

211]. Here we summarise the main results.

To start with, there are two options to satisfy the Bianchi constraint equation (6.29);

either the first or the second bracket must vanish.
33The other algebraic solution, obtained from setting the first bracket in (6.29) to zero, will be

discussed below.
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(I) The non-dynamical (algebraic) branch: If at least two out of β1, β2 and β3

are non-vanishing, then a constant b can be chosen such that β1 +2bβ2 +b2β3 = 0.

In this case, an algebraic solution to the Bianchi constraint is Y (t) = b a(t). Even

though in this case the 00-components of the two metrics are not necessarily

proportional, the contribution from the interaction potential in (6.28) reduces

to a cosmological constant term. The gµν equation hence simply becomes the

ordinary Friedmann equation (C.5) with a cosmological constant Λ = m2(β0 +

3bβ1 +3b2β2 +b3β3) and thus the background solutions for gµν are degenerate with

those of GR. At the level of linear perturbations, several degrees of freedom appear

without kinetic terms and are thus expected to be strongly coupled [129, 203, 212].

On top of that, this branch seems to give rise to a non-perturbative ghost [131]

and a late-time instability for the tensor modes [107]. Due to these pathologies,

most of the literature focusses on branch II solutions. Note also that branch I

does not exist if two out of β1, β2 and β3 are equal to zero.

(II) The dynamical branch: The alternative solution to the Bianchi constraint is

X(t) = Ẏ /ȧ. In contrast to branch I, this is an evolution equation and allows for

much more general solutions that can be very different from GR. In particular, Υ

is not constant on this branch but a function of the matter density ρ, determined

by (6.31).

The second branch further splits up into several subbranches, corresponding to different

solutions of the quartic polynomial equation (6.31). These can be classified according

to the evolution of the ratio of scale factors, Υ = Y/a [207].

(IIa) Infinite branch: This branch is characterised by an Υ that becomes infinitely

large at early times and whose value decreases when moving forward in time.

(IIb) Finite branch: The solution is such that the ratio of scale factors Υ evolves

towards a finite asymptotic value in the infinite past. This branch cannot be

obtained in models with β1 = 0 (assuming β0 = 0) [207] .

(IIc) Exotic branches: These are all other branches which generically lead to bounc-

ing cosmologies or static universes in the asymptotic past or future [210]. Even

though it is not impossible to make such scenarios compatible with observations,

these branches correspond to rather unconventional cosmologies and have not

been studied in great detail so far.

Using phenomenologically inspired requirements, one can immediately rule out a set of

bimetric models based on their cosmological background evolutions. For instance, out

of the models with only one non-vanishing βn, only the β0- and the β1-model can give
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rise to a viable cosmology at the background level. Allowing for two non-vanishing βn,

one can generically discard models with β0 = β1 = 0. More details on the viability

conditions and exclusion of bimetric models based on background cosmology can be

found in [201, 207].

6.3.3 Self-acceleration & technical naturalness of the Hubble scale

In view of the dark energy problem, it is of particular interest to investigate whether

bimetric theory can give rise to an expansion history compatible with observations even

when there is no vacuum energy arising from the matter sector. If a background solu-

tion can mimic the behaviour of vacuum energy, it is referred to as “self-accelerating”.

Clearly, it would be even more interesting if it was possible to include a large vac-

uum energy contribution and still obtain a small acceleration rate. This can indeed be

achieved in bimetric theory by (fine-)tuning the βn parameters to cancel terms from the

interaction potential against the vacuum contribution. However, there is no mechanism

(or symmetry) protecting the tiny difference of these two contributions and thus a con-

figuration with small effective cosmological constant cannot be regarded as technically

natural in this setup. At this stage bimetric theory is therefore in no better position

than GR to solve the old cosmological constant problem.

Nevertheless, it is still possible to view the spin-2 interaction potential as the source

of dynamical dark energy, much in the same spirit as in quintessence models [213].

To this end one assumes that all vacuum contributions in the source T gµν vanish and

furthermore sets the bare cosmological constant term to zero by fixing β0 = 0. A

thorough comparison to observational data of the whole bimetric parameter space but

with vanishing β0 was performed in [201]. Self-accelerating solutions are found for

many different combinations of nonzero βn parameters, and the fits to data are just

as good as for the ordinary ΛCDM model of GR. As could have been anticipated, the

best fit value for the mass of the massive spin-2 field is on the order of the Hubble

scale H0. This tiny mass scale creates the hierarchy problem in GR with an ordinary

cosmological constant which is not protected against large quantum corrections by any

symmetry. The situation is different in bimetric theory where in the zero-mass limit the

full diffeomorphism symmetry that transforms the two metrics separately is restored.

This symmetry protects the spin-2 mass scale against large corrections and renders the

small Hubble scale technically natural. For explicit calculations confirming this last

statement, we refer the reader to [170, 214].
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6.3.4 Perturbations

In order to further study the viability of bimetric cosmology, one derives the linear

equations for perturbations around the above cosmological backgrounds. In contrast

to what we encountered for the proportional backgrounds in section 5.3.1, it is not

possible to diagonalise the fluctuations into spin-2 mass eigenstates around more general

solutions. For the homogeneous and isotropic backgrounds, the best one can do is to

perform a decomposition into tensor, vector and scalar modes and try to decouple their

dynamics as much as possible. Rather general analyses of the spectrum were already

performed in [212, 215] (and later in [216]), but since the resulting differential equations

are not always easy to handle, developing a complete understanding of cosmological

perturbation theory is still an ongoing process.

As already mentioned in section 6.3.2, branch I solutions are plagued by pathologies

such as strong coupling behaviour and a non-perturbative ghost instability. Let us

therefore focus on linear perturbations in the dynamical subbranches.

Infinite branch IIa: While specific infinite branch solutions for models with β2 =

β3 = 0 are free of scalar instabilities [208], in general the perturbations around this

class of FLRW backgrounds suffer from ghosts in both the scalar and tensor sec-

tors [209, 210, 217]. Due to these pathologies, branch IIa solutions do not correspond

to consistent backgrounds and must be discarded on theoretical grounds. Neverthe-

less, for an interesting study of the integrated Sachs-Wolfe-effect in this branch which

appeared before its problems were established, see [218].

Finite branch IIb: Around this branch linear perturbations are generically ghost-

free and well-behaved, except for a scalar gradient instability which occurs at early

times [208, 212, 217, 219]. While, from a theoretical point of view, this growing scalar

mode is not a consistency problem, it does invalidate the use of linear perturbation the-

ory. For generic parameters, the instability sets in at recent times and, as a consequence,

bimetric theory cannot be invoked to predict phenomena in the early universe, at least

not with standard perturbative techniques. However, it was demonstrated in [148] that,

in the GR limit (c.f. section 5.4.2), the scalar instability is pushed backwards to arbi-

trarily early times. Hence, for small enough α = mf/mg, linear perturbation theory

around the finite branches remains valid and the predictions for cosmology automati-

cally resemble those made by GR. Another suggestion is that nonlinear effects related

to the Vainshtein mechanism may render the instability irrelevant [220].
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Exotic branches IIc: As already mentioned, the background evolution on these

branches is rather unusual and hence this type of solutions has not received much at-

tention. The perturbations around these backgrounds generically seem to have patholo-

gies [210].

To summarise, the only well-studied models that give rise to viable cosmological back-

grounds and perturbations lie on the finite branch. In order to maintain the predictivity

of cosmological perturbation theory, it is furthermore necessary to bring bimetric theory

close to GR, either by requiring a sufficiently small value of α = mf/mg or by invoking

the Vainshtein mechanism. The advantage of the bimetric setup is the occurrence of a

technically natural dark energy scale set by the spin-2 mass. However, eventually all of

this will be useful only if one finds an explanation for the absence of the large vacuum

energy contribution coming from the matter sector.
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7 Partial Masslessness

A massive spin-2 field in de Sitter (dS) background exhibits several interesting features

that are shared neither by lower-spin particles nor by spin-2 excitations in flat space.

For a special value of the Fierz-Pauli mass in units of the background curvature, the

linear theory possesses an additional gauge symmetry which removes one of the spin-

2 helicity components. In this case, where the field loses one propagating degree of

freedom, it is referred to as partially massless (PM). The particular mass value for

which this situation occurs is called Higuchi bound and it divides the parameter region

into unitary and non-unitary sub-sectors [81]. Below the Higuchi bound the helicity-

zero mode of the spin-2 particle develops a ghost instability, whereas above the bound

all helicity states are well-behaved.

The existence of a nonlinear theory that involves a massive spin-2 field enables us

to address the question whether the concept of partial masslessness is restricted to

the linear theory around de Sitter backgrounds or whether it may be extended to the

nonlinear level. By definition, the demand on a nonlinear PM theory is the presence of

an extra gauge symmetry, even away from de Sitter backgrounds.

7.1 Partially massless spin-2 field on de Sitter background

Let us begin by reviewing the linear theory of a PM spin-2 particle in a de Sitter

background, as first discussed in a sequence of papers by Deser et.al. [84–86, 194, 221–

223]. Consider a de Sitter background metric Ḡµν whose curvature satisfies Rµν(Ḡ) =

ΛḠµν with positive cosmological constant Λ. The linearised action for a massive spin-2

fluctuation propagating on this background is,

SdS = 1
2

∫
d4x

[
hµν Ēµνρσhρσ − Λ

(
hµνhµν − 1

2
h2
)

+
m2

FP

2

(
hµνhµν − h2

)]
, (7.1)

where the linearised Einstein operator Ēρσµν is the same as in (5.18). The corresponding

equations of motion for hµν reads,

Ē ρσ
µν hρσ − Λ

(
hµν − 1

2
Ḡµνh

)
+

m2
FP

2

(
hµν − Ḡµνh

)
= 0 . (7.2)

For general values of the Fierz-Pauli mass, this equation possesses no gauge symmetries.

As we showed in section 6.2.1, it gives rise to five constraint equations that reduce the

number of propagating degrees of freedom to five, as appropriate for a massive spin-2

particle.
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A remarkable feature of (7.2) without any analogue in flat space is that if the Fierz-

Pauli mass saturates the Higuchi bound, m2
FP = 2

3
Λ, the equation is invariant under a

new gauge symmetry. The corresponding linear gauge transformation reads,

∆(hµν) = ∇̄µ∂νξ(x) + Λ
3
Ḡµν ξ(x) , (7.3)

in which ξ(x) is a local gauge parameter.

Besides computing the variation of (7.2) under the gauge transformation explicitly,

there is another straightforward way to see the existence of a gauge symmetry in the

equation for the massive spin-2 field with mass at the Higuchi bound. First take the

double divergence of (7.2) to arrive at,

m2
FP

2

(
ḠµρḠνσ − ḠµνḠρσ

)
∇̄ν∇̄µhρσ = 0 . (7.4)

The kinetic terms have dropped out after using the linearised Bianchi identity. Fur-

thermore, the trace of (7.2) is given by,(
ḠµνḠρσ − ḠµρḠνσ

)
∇̄ν∇̄µhρσ +

(
Λ− 3

2
m2

FP

)
h = 0 . (7.5)

If the mass is at the Higuchi bound, the terms without derivatives in this equation

vanish identically, while the derivative terms are identical to those in (7.4). Hence we

find that for m2
FP = 2

3
Λ the traced equations of motion are identical to their double

divergence or, in other words, the sum of the double divergence and the (correctly

normalised) trace is identically zero. A gauge identity of this type even implies that

the linearised action (7.1) is invariant under the corresponding gauge transformation.

This can be seen by noticing that invariance of the action under (7.3) requires,

∆SdS =
δSdS

δhµν
∆(hµν) =

δSdS

δhµν

(
∇̄µ∂νξ(x) + Λ

3
Ḡµν ξ(x)

)
= 0 . (7.6)

Since δS
δhµν

is nothing else than the equation of motion for hµν , after integrating by

parts, we find that ∆S indeed vanishes due to the gauge identity.

The conclusion is that, owing to the gauge redundancy, the spin-2 field described by

(7.2) with mass at the Higuchi bound has only four dynamical degrees of freedom, one

less than is the case for an ordinary massive spin-2 mode. The existence of the addi-

tional gauge symmetry around de Sitter background is in agreement with the represen-

tation theory of the de Sitter group SO(1, 4), which allows for “short” representations

of higher-spin fields. These representations contain less degrees of freedom than the

massive ones and have been dubbed partially massless (PM). For a discussion of this

topic, consult e.g. [224].
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An interesting feature of PM fields is that the enhanced symmetry could potentially

improve the quantum behaviour of spin-2 theories. For instance, the gauge invariance

protects the difference of cosmological constant and spin-2 mass against receiving large

quantum corrections. Since the spin-2 mass scale itself is protected by diffeomorphism

invariance of the massless theory, this could render a small value for the cosmological

constant technically natural. Unfortunately, matter couplings of hµν destroy the gauge

symmetry already at the linear level, unless the matter source is conformally invariant.

An idea how to avoid this problem is presented in [225]. It is also worth mentioning

that the linear PM theory possesses interesting properties similar to the electromagnetic

duality in Maxwell’s theory [226, 227].

7.2 The search for a nonlinear PM theory

After the linear PM theory for spin-2 fields on de Sitter background had been discov-

ered, it was soon attempted to construct higher-order interactions for the perturbation

hµν that would leave the gauge symmetry intact. At cubic order in hµν around dS

backgrounds such a construction turned out to be possible in d = 4 space-time di-

mensions [228–230]. On the other hand, in d > 4, it was found that gauge invariant

cubic vertices can only exist if one also includes higher-derivative terms into the theory

[228]. The construction of a fully nonlinear action with a PM gauge symmetry remains

an open task. Many recent findings point towards the fact that such a theory cannot

exist, in particular not as a theory involving nothing but a partially massless spin-2

field [134, 231–237]. We will summarise these arguments in section 7.4.

It is natural to expect the nonlinear PM theory (if it exists) to be found within the

family of ghost-free nonlinear theories for massive spin-2 fields. A first investigation of

this possibility was carried out in [238] where the authors aimed to identify a PM theory

in nonlinear massive gravity with the reference metric taken to be a fixed de Sitter

background. Their construction used Stückelberg fields in a generalised decoupling

limit and showed that, for a certain choice of the βn parameters in the potential, a scalar

degree of freedom is not propagating. Here we will follow the slightly simpler strategy

of [239] which derived the parameters for the PM candidate theory in bimetric theory.34

As it turns out, this particular bimetric model possesses several rather unexpected

properties which could be of interest even if the no-go results against a nonlinear PM

34Note that the parameters of the PM model in massive gravity obtained in [238] are different from

those first derived in [239] and later confirmed by [233, 235]. The reason for this mismatch can be

traced back to a wrong choice of background, and correcting for this one can use the method of [238]

to arrive at the parameters that are consistent with the other references.
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theory cannot be evaded. It is also possible that the nonlinear PM theory requires

the input of additional degrees of freedom (e.g. higher-spin fields) and the framework

of bimetric theory allows us to study merely the remnants of the enhanced symmetry

present in the unknown extended setup.

All our considerations here will be in four space-time dimensions. It is possible to

generalise some of the results to higher dimensions if the bimetric action is augmented

by the Lanczos-Lovelock terms, which we shall come back to in section 8.1.

7.2.1 Identifying PM candidates

Our first observation is that, in bimetric theory, the equation of motion (5.20b) for the

massive fluctuation δMµν around proportional backgrounds is of the same form as (7.2)

with Λ = Λ̄g. As a consequence, if the cosmological constant is assumed to be positive

and if the Fierz-Pauli mass in (5.21) is on the Higuchi bound, a gauge symmetry of

the form (7.3) is present in the linear theory around proportional backgrounds. In

bimetric notation, the corresponding infinitesimal gauge transformation of the massive

fluctuation reads

∆(δMµν) = ∇̄µ∂νξ(x) + Λ̄g
3
Ḡµν ξ(x) . (7.7)

On the other hand, the massless fluctuation transforms under the PM symmetry at

most by a term that resembles a coordinate transformation, ∆(δGµν) ∼ ∇̄µ∂νξ(x).

This follows from the fact that its equation of motion (5.20a) does not have any extra

gauge symmetry besides the usual linearised diffeomorphism invariance. Hence, we can

always undo the PM transformation of δGµν by a coordinate transformation. Modulo

GCTs, we can therefore demand ∆(δGµν) = 0.

The question is now under what conditions the above symmetry transformations for

the fluctuations around dS background have a chance to be extendable to the nonlinear

level. Since the nonlinear theory is formulated in terms of the variables gµν and fµν , we

first need to translate the transformations of mass eigenstates at the linear level into

transformations of the fluctuations of the metrics. Assuming that we simultaneously

perform a GCT to achieve ∆(δGµν) = 0, this translation can be obtained uniquely

using the expressions for the massive and massless fluctuations given in (5.19). The

result is

∆(δgµν) = −α2 ∆(δfµν) = −2(αc)2

c(1+(αc)2)
∆(δMµν) . (7.8)

The crucial observation now is that, in a theory with a gauge symmetry at the nonlinear

level, it must be possible to shift these transformations of the fluctuations δgµν and
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δfµν to the backgrounds ḡµν and f̄µν . This follows simply from the fact that the split

into background and fluctuations is not unique and one can always take out part of

the fluctuation to redefine the background. Therefore we demand that the symmetry

transformations (7.8) should also leave the background equations invariant. But since

we are dealing with the proportional solutions, on which the background equations are

reduced to an Einstein equation for ḡµν along with Λg = Λf , c.f. (5.12), we restrict

ourselves to constant gauge transformations ∆̄ with ξ(x) = ξ0 = const., such that

∆(δMµν) = ξ0Λ̄g
3
Ḡµν . In this way we ensure that the transformation does not take

us away from the proportional backgrounds and avoid unnecessary complication. The

restriction to constant gauge transformations is a strong simplification, but as we will

see now, demanding the background equation to be invariant under these is constraining

enough to identify the PM candidate theory. Namely, it should be evident from (7.8)

that shifting the constant transformations to the backgrounds ḡµν and f̄µν = c2ḡµν
results in a shift in c2,

ḡµν∆̄(c2) = ∆̄(f̄µν)− c2∆̄(ḡµν) = ḡµν
2

3
Λg c ξ0 . (7.9)

In general this cannot lead to an integrable35 symmetry of the background equations

because c is determined by Λg = Λf and can therefore not be shifted. If this is the case,

then a nonlinear PM symmetry cannot exist. The only possibility to avoid this immedi-

ate no-go statement is to demand that c is not fixed by the background equation. Then,

the equation Λg = Λf that is automatically satisfied in this case (i.e. without fixing

c) can be thought of as the gauge identity evaluated on the proportional backgrounds.

Since the proportional ansatz for the two metrics partly fixes the gauge, only constant

scalings are left as residual transformations.

7.2.2 PM candidate theory

In four space-time dimensions, the explicit expressions (5.11) for the cosmological con-

stants in terms of the βn parameters, the ratio of Planck masses α and the proportion-

ality constant c can be used to write the background condition Λg = Λf as a polynomial

equation for c,

β1 + (3β2 − α2β0)c+ 3(β3 − α2β1)c2

+ (β4 − 3α2β2)c3 − α2β3c
4 = 0 . (7.10)

35Integrability of the symmetry transformation means that it can be performed more than once and

still leave the equations invariant. This is a natural requirement on any gauge symmetry. Without

the integrability condition it is sufficient to set the mass to the Higuchi bound in order to have an

invariant background.
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This equation clearly fixes c unless all coefficients of different powers of c vanish sepa-

rately. A proportionality constant c that is undetermined by the background equation

therefore requires the following parameter choices in the bimetric interaction potential,

β1 = β3 = 0 , α2β0 = 3β2 = α−2β4 . (7.11)

We will frequently refer to these values as the PM parameters. Note that our require-

ment on the βn parameters fixes all but one of them uniquely in terms of the others

and α. The one remaining parameter is of course degenerate with the scale m4 in the

interaction potential and sets the scale for the Fierz-Pauli mass and the cosmological

constant. Moreover, it is easy to check using the expressions (5.21) and (5.17) for m̄2
FP

and Λ̄g, that the parameter choice (7.11) automatically puts the mass on the Higuchi

bound. Therefore the theory of linear perturbations around the backgrounds at hand

exhibits the usual PM gauge symmetry. It is worth emphasising that we did not de-

mand this in any way; it followed from an independent requirement on the background

equations.36 Starting from the proportional backgrounds the finite form of the scaling

symmetry is given, for any constant a, by [239],

c→ c+ a , ḡµν →
1 + (αc)2

1 + α2(a+ c)2
ḡµν . (7.12)

By restricting to constant gauge transformations, clearly, we are not dealing with the

full PM symmetry at the nonlinear level. Note, however, that since the set of constant

transformations is a subset of the full gauge group, the theory we obtain by requiring

invariance under this subset must contain the theory with the full gauge group (if it

exists). Moreover, since in four dimensions the restriction to constant gauge transfor-

mations is sufficient to uniquely determine the βn parameters, we conclude that the

resulting theory is already the unique candidate for having the full PM symmetry.

The scale invariance of the equations of motion for proportional backgrounds is not

the only interesting property of the theory specified by the PM parameters. The PM

candidate exhibits additional astonishing features that further support the existence of

a gauge symmetry at the nonlinear level. For instance, consider again the homogeneous

and isotropic solutions which we presented in section 6.3.1. We saw that, after solving

the Bianchi constraint, it was possible to arrive at (6.31), an algebraic equation for the

36 On the other hand, note that if we assume that there is a unique PM theory, then requiring

m̄2
FP = 2

3 Λ̄g is sufficient to determine its parameters. Namely, in this case, the symmetry (5.6) of the

interaction potential enforces α4−nβn = αnβ4−n because otherwise the theory obtained from replacing

α4−nβn → αnβ4−n would also be PM, contradicting the uniqueness requirement. It is easy to see that

this constraint on the βn parameters together with the Higuchi bound condition already implies (7.11).
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ratio of the two scale factors, Y (t)/a(t). Inserting the PM parameters (7.11) into this

equation in vacuum, we find that it becomes an identity. Clearly, it is the analogue

of the equation Λg = Λf for proportional backgrounds. But instead of a constant, the

equations evaluated on the cosmological ansatz now leave a time-dependent function

undetermined. This shows that the cosmological evolution equations of PM bimetric

theory are invariant under a symmetry that is local in time.

Since, in four dimensions, the proportional backgrounds correspond to maximally sym-

metric spacetimes with ten independent Killing vectors and the homogeneous and

isotropic solutions still possess six isometries, one might speculate that the presence of

a symmetry on these solutions could somehow be related to the amount of symmetry

of the underlying geometry. To obtain more general results, it is therefore important

to investigate the structure of our PM candidate theory beyond the proportional and

cosmological backgrounds. We shall come back to this point in the next subsection

where we show that the equations in the PM theory are Weyl invariant to lowest order

in a derivative expansion.

Massive gravity limit. Let us comment briefly on the massive gravity limit. The

PM parameters (7.11) in four space-time dimensions provide an example for a theory in

which the coefficients in the interaction potential depend on the ratio α = mf/mg that

is taken to infinity in the massive gravity limit which we discussed in section 5.4.3. In

this case, we have to be more careful when taking the limit because the βn parameters

will scale as well. The conditions (7.11) fix the relative scale among them but their

absolute scale may still be chosen freely. Suppose that β2 does not scale when the limit

α = mf/mg →∞ is taken. Then β0 → 0 and β4 →∞, whereas Λ = β4m
4/m2

f = const.

In the massive gravity limit, the equations of motion for the PM theory thus reduce to

Gµν(g) +
Λ

3
gµλ
(
Y (2)

)λ
ν
(S) = 0 , Gµν(f) + Λfµν = 0 . (7.13)

These are exactly the equations singled out in [233, 235] which investigated the possi-

bility of realising nonlinear partial masslessness in massive gravity with fixed reference

metric. The methods invoked in those references are completely different from ours and

could provide independent support for the existence of a nonlinear PM symmetry. On

the other hand, as we already mentioned previously, references [233, 235] also provided

evidence for the absence of an additional gauge symmetry present in (7.13). These

results may extend to the bimetric case but such a generalisation is not obvious due to

the singular nature of the massive gravity limit [147].
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7.3 Connection to conformal gravity

As shown in [240], the PM candidate model is closely related to the well-known theory

of conformal gravity whose action is invariant under Weyl transformations of the metric.

In the following we will briefly review conformal gravity and then summarise the steps

that establish its connection to the PM bimetric model.

7.3.1 Review of conformal gravity

In four space-time dimensions, there exists a particular higher-derivative action with

an additional gauge symmetry [241],

SCG = −σ
∫

d4x
√
g

(
RµνRµν −

1

3
R2

)
, (7.14)

with dimensionless coefficient σ. This action is invariant under Weyl transformations

of the metric,

gµν 7−→ ξ2(x)gµν , (7.15)

where ξ(x) is a local gauge parameter. The cosmological constant and the Einstein-

Hilbert term are not invariant under the transformation (7.15); hence they do not

appear in the above conformal gravity action.

The equations of motions that follow from variation of the conformal gravity action

(7.14) imply the vanishing of the Bach tensor for gµν [242],

Bµν ≡ −∇2Pµν +∇ρ∇(µPν)ρ +WρµνσP
ρσ = 0 . (7.16)

Here, we have given the definition of Bµν in terms of the Schouten tensor,

Pµν ≡ Rµν −
1

6
gµνR , (7.17)

as well as the Weyl tensor,37

Wρµνσ ≡ Rρµνσ + gµ[νRσ]ρ − gρ[νRσ]µ +
1

3
gρ[νgσ]µR . (7.18)

The Bach equation (7.16) is also invariant under Weyl transformations in four space-

time dimensions.

37The conformal gravity action (7.14) can also be expressed, modulo the Euler invariant, as the

square of the Weyl tensor, LCG ∝
√
gWρµνσW

ρµνσ.
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The conformal gravity action is closely related to the linear theory for a partially

massless spin-2 field discussed in section 7.1. In order to see this, one can introduce an

auxiliary field ϕµν and a parameter Λ to write down an equivalent action [243],

S
(2)
CG = 4σΛ

∫
d4x
√
g
[

1
6
(R− 2Λ) + ϕµνGµν

+ Λϕ+ Λ(ϕµνϕµν − ϕ2)
]
. (7.19)

Linearisation around a constant curvature background and diagonalisation into mass

eigenstates shows that, for σ > 0, the theory propagates a healthy massless and a ghost-

like massive spin-2 particle. Moreover, the Fierz-Pauli mass of the massive fluctuation

has the value corresponding to the Higuchi bound, m2
FP = 2

3
Λ, which implies the

presence of the PM gauge symmetry (7.3) for ϕµν . The massless fluctuation does not

transform under this symmetry. In fact, it is a simple exercise to check that, in addition

to the obvious diffeomorphism invariance, the full nonlinear auxiliary action (7.19) is

invariant under the following linear gauge transformations [231],

δgµν = 2ξ(x)gµν , δϕµν = (∇µ∂ν + Λ
3
gµν)ξ(x) . (7.20)

Note that the nonlinear field gµν transforms under the conformal part of the PM sym-

metry because its fluctuation does not correspond to the massless mode but is a linear

superposition of mass eigenstates. Its transformation is of course nothing but the linear

version of the Weyl transformation (7.15).

Conformal gravity, or its equivalent form (7.19), therefore describes only six propa-

gating degrees of freedom instead of seven that would correspond to a massless and a

massive spin-2 field. For more detailed discussions of its spectrum we refer the reader

to [244–247]. Like any other Weyl invariant theory, SCG does not contain any dimen-

sionful couplings and therefore avoids the non-renormalisibility problem of GR. Being a

renormalisable field theory, conformal gravity has been suggested as a quantum theory

for gravity. It has also been shown to allow for viable cosmological solutions and even

fit galaxy rotation curves, providing a possible solution for at least part of the dark

matter problem [248].

Unfortunately, all of its features remain irrelevant unless a cure for the ghost problem

in conformal gravity is found. Suggestions for altering the theory in order to make

it healthy include, for instance, a modification of quantum mechanics [249] and the

addition of specific boundary conditions [247], but none of these have been sufficiently

convincing for the theory to be accepted as a consistent alternative to GR. In order to

avoid the inconsistencies that plague theories with a finite number of higher derivatives,
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another possible solution is to complete the equations of motion (7.16) of conformal

gravity with an infinite number of derivatives for which Ostrodgradski’s theorem does

not hold. Higher-derivative terms will, of course, break the conformal symmetry be-

cause they necessarily enter with a suppressing mass scale. On the other hand, one

could imagine that the symmetry transformation needs to be completed with an infinite

number of higher-derivative terms as well, in order to be a gauge symmetry of the full

theory. In that case, both the equations of motion and the symmetry transformation

could be thought of as a perturbative expansion in derivatives. Order by order, the

equations would be invariant under the gauge symmetry, starting with the Bach tensor

and its Weyl invariance at lowest order. Although this idea sounds promising, without

any further input it is difficult to guess the form of the higher-derivative corrections to

the Bach equation that could give rise to such a gauge symmetry. It would therefore

be helpful to have a guideline telling us how to construct these terms. This is where

the PM candidate of bimetric theory comes into play.

7.3.2 Perturbative solution to the gµν equation

We review here the results of [240]. Our aim is to combine the bimetric equations of

motion to eliminate one of the metrics and derive an effective equation involving only

the other. To this end, we will solve the gµν equation algebraically for the square-

root matrix Sµν as a perturbation series in curvatures of gµν . From this we deduce a

perturbative solution for fµν that can be used to eliminate fµν from its own equation of

motion, resulting in a perturbative equation for gµν . We will derive the lowest orders

of this equation for general βn parameters and then see that it exhibits remarkable

features when we restrict to the PM parameters (7.11) in the subsequent subsection.

Of course, we could switch the roles of the metrics and in a similar manner derive an

effective equation for fµν .

It will prove convenient to first rewrite the Einstein tensor in terms of the Schouten

tensor defined in (7.17) and raise one index with gµν . This gives,38

TrP δµν − P µ
ν = µ2

3∑
n=0

(−1)nβn(Y (n))µν(S) , µ2 ≡ m4

m2
g
. (7.21)

38Mainly for the sake of notational simplicity, we have set the source for gµν to zero. This simpli-

fication constitutes no loss of generality because in the final results of our computation it can always

be reinstated by making the replacement, Pµν → Pµν −m−2
g

(
T gµν − 1

3TrT g δµν
)
.
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Then we make the following perturbative ansatz for the square-root matrix S =
√
g−1f ,

Sµν = aδµν + 1
µ2

(
b1P

µ
ν + b2TrP δµν

)
+ 1

µ4

(
c1(P 2)µν + c2TrP P µ

ν + c3TrP 2δµν + c4(TrP )2δµν

)
+O

(
P 3

m6

)
,

(7.22)

with arbitrary complex coefficients a, bi, ci, . . . Allowing the parameters to assume com-

plex values is reasonable as long as the coefficients that will finally appear in the effective

equation for gµν remain real.

In the model where only β0, β1 and β4 are non-vanishing, the solution takes the very

simple closed form,

Sµν = − β0

3β1

δµν +
1

β1µ2
P µ

ν(g) , if β2 = β3 = 0 . (7.23)

For more general parameters, the expansion does not terminate and we can only de-

termine the coefficients in the ansatz order by order in curvatures. As a side-remark:

The existence of this exact solution in the β1 model is rather remarkable. For example,

linearising the equations of motion in this model we can use the above relation to fully

remove any occurrence of fµν in the linearised equations. In particular, in the massive

gravity limit this means that it is possible to obtain equations for a massive spin-2 field

propagating on any background without any reference to a second metric [104, 105].

In order to simplify the expressions in the following, we introduce a new set of linear

combinations of the βn parameters,

sn ≡
3∑

k=n

(
3− n
k − n

)
akβk , (7.24)

Note that on proportional backgrounds, fµν = c2gµν and s0 is proportional to the

cosmological constant Λg defined in (5.11) if in that expression one replaces c by a.

The lowest orders in the solution for S are determined to be of the following form,

Sµν = aδµν + a
s1µ2

P µ
ν + as2

s31µ
4

[
(P 2)µν − TrP P µ

ν + 1
3
e2(P )δµν

]
+O

(
P 3

µ6

)
. (7.25)

We can then use fµν = gµρ(S
2)ρν to arrive at,

fµν = a2gµν + 2a2

s1µ2
Pµν + a2(s1+2s2)

s31µ
4 (P 2)µν + 2a2s2

s31µ
4

[
1
3
e2(P )δµν − TrP P µ

ν

]
+O

(
P 3

µ6

)
. (7.26)
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This is the most general covariant solution for fµν obtained from the gµν equation. An

immediate consequence of equation (7.26) is that if the solution for gµν has constant

curvature, Pµν ∝ gµν , then fµν ∝ gµν , i.e. the two metrics are proportional to each

other. But, as we already mentioned in section 6.1, there exist solutions for which both

metrics have constant curvature while not being proportional to each other. This class

of (non-covariant) solutions is therefore not captured by our ansatz for S in (7.22).

Next we use the solution (7.26) for fµν to eliminate it in its own equation of motion.

This will lead to a set of effective equations for gµν containing an infinite number of

derivatives, due to the presence of the inverse fµν in these equations. Inserting (7.26)

into the Einstein tensor for fµν we find,

Gµν(f) = Gµν(g)− 1
s1µ2

(
∇2Pµν +∇µ∇νP −∇ρ∇µPρν −∇ρ∇νPρµ

+ 3PPµν − gµν
[
PαβPαβ + 1

2
P 2
] )

+O
(
P 3

µ4

)
. (7.27)

The contributions from the interaction potential to the fµν equation evaluated on (7.26)

become,

µ2

α2 Ṽµν = µ2Ω
a2α2 gµν + 1

a2α2Gµν + 2Ω
a2α2s1

Pµν

+ 1
a2α2s31µ

2

[
c1P

ρ
µPρν + c2PPµν + 1

6
gµν(c3P

αβPαβ − c2P
2)
]

+O
(
P 3

µ4

)
, (7.28)

in which the expansion coefficients are given by,

c1 = 2s2
1 + Ω(s1 + 2s2) , c2 = −3s2

1 − 2s2Ω , c3 = 3s2
1 − 2s2Ω , (7.29)

where we have defined,

Ω = aβ1 + 3a2β2 + 3a3β3 + a4β4 . (7.30)

Note that this would be proportional to Λf in (5.11) if fµν = a2gµν . Combining the

kinetic and potential terms, we can write the entire fµν equation of motion as a higher-

derivative equation for gµν ,

Ω
a2α2 gµν + 1

µ2

[
1 + 1

a2α2

]
Gµν + 2Ω

a2α2s1µ2
Pµν

+ 1
µ4s1

Bµν + Ω
a2α2s31µ

4

[
(s1 + 2s2)P ρ

µ Pρν − 2s2PPµν − s2
3
gµν
(
PρσP

ρσ − P 2
) ]

− 1
s1µ4

(1 +
1

α2a2
)

[
3PPµν − 2P ρ

µ Pρν −
1

2
gµν(P

2 − PαβPαβ)

]
+O

(
P 3

µ6

)
= 0 , (7.31)

where we have collected some of the terms with four derivatives into the Bach tensor

defined in (7.16). We have thus arrived at an effective equation involving only gµν
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in which the terms with more than four derivatives can be computed order by order

following the same procedure as outlined above. The terms in the first line of (7.31)

are the cosmological constant, the Einstein tensor and a correction proportional to the

Schouten tensor. The equation hence reduces to GR in the small curvature limit only

if (Ω/a2α2)(1/s1µ
2) → 0. Note that the first of these brackets directly sets the size of

the observed cosmological constant. The phenomenological relevance of this equation

for weak gravitational fields has not been studied so far, but doing so would require

adding a source in accordance with our remark in footnote 38.

Before coming to the partially massless case, let us make one more remark: Plugging

the perturbative solution (7.26) back into the bimetric action results in an effective

action of the form,

SHD = m2
g

∫
d4x
√
g
[
cΛ + cRR(g)− cRR

m2

(
RµνRµν −

1

3
R2
)]

+ O
(
P 3

m6

)
, (7.32)

where cΛ, cR and cRR are functions of the bimetric parameters. We recognise the confor-

mal gravity combination at fourth order in derivatives and notice that the above action,

at quadratic order in curvatures, represents the generalisation of three-dimensional New

Massive Gravity [250] to four dimensions which is also known to propagate seven de-

grees of freedom [241, 251]. However, the action (7.32) is not equivalent to the original

bimetric action since we have used the equation for gµν instead of the one for fµν to

obtain a solution for fµν . The equations derived from the above action differ from the

bimetric equations by the product of a differential operator. Only by restricting to

solutions where the zero modes of this operator are absent will the equations give the

same solutions. The additional terms that would arise using the correct procedure,

i.e. integrating out fµν by its own equations of motion, are nonlocal because a deriva-

tive operator needs to be inverted in order to solve the fµν equation for fµν . This is

discussed in detail in [240, 252]. In the following, we will not work with any effective

action but restrict ourselves to the equations of motion where this ambiguity does not

arise.

7.3.3 Partially massless case

Let us determine the set of parameter values for which the higher-derivative equa-

tion (7.31) obtained from bimetric theory reduces to the Bach equation (7.16) at lowest

order in derivatives. This means that we require,

Ω = 0 , a2 = −α−2 . (7.33)

– 85 –



In addition to this, satisfying the gµν equation at lowest order in curvatures requires that

the combination s0 defined in (7.24) vanishes. Using a2 = −α−2 in the expressions for

Ω and s0, it is easy to see that these requirements combine into two complex equations,

β0 +
3i

α
β1 −

3

α2
β2 −

i

α3
β3 = 0 ,

β0 +
4i

α
β1 −

6

α2
β2 −

4i

α3
β3 +

1

α4
β4 = 0 , (7.34)

which need to be solved for the βn parameters. The real and imaginary parts must

vanish separately and the unique solution is,

β1 = β3 = 0 , α2β0 = 3β2 = α−2β4 . (7.35)

Remarkably, these values precisely corresponds to the PM parameter choice in (7.11).

We conclude that the PM candidate is the unique member of the family of bimetric

theories with the feature that to lowest order in a derivative expansion the effective

equation for gµν is identical to the Weyl invariant equation of conformal gravity,

Bµν +O
(
P 3

m6

)
= 0 . (7.36)

Moreover, it is straightforward to show that the method that we used here to arrive at

an effective equation for gµν can yield a similar result for fµν : The effective equation

for fµν , obtained from solving the fµν equation for gµν and plugging the solution into

the gµν equation, also sets the Bach tensor for fµν to zero at lowest order in derivatives.

This can directly be deduced from the symmetry property (5.7) of the equations of

motion and the invariance of the PM parameter choice under α4−nβn → αnβ4−n.

In this way, the nonlinear PM bimetric theory proposes a ghost-free completion of

conformal gravity. The presence of a gauge symmetry to lowest order in a derivative

expansion can be regarded as further support of the existence of an additional gauge

symmetry in the theory. In particular, note that the above analysis is not based on de

Sitter (nor FLRW) background.

If existent, the PM symmetry could be viewed as the generalisation of the gauge invari-

ance of conformal gravity to higher orders in derivatives. In principle, it is possible to

explicitly demonstrate the invariance of the equations under symmetry transformations

that are extended to higher orders in derivatives. Using the perturbative solution to the

gµν equation together with the analogous expression obtained from the fµν equation,

the gauge invariance has been shown to exist up to sixth order in derivatives [253].
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7.4 Arguments against a nonlinear PM theory

As mentioned before, the literature contains a large variety of no-go theorems that

forbid the existence of a nonlinear theory for partially massless spin-2 fields. Most

of these counter arguments refer to an action involving no other degrees of freedom

besides the PM field but some of them may eventually also apply to bimetric theory.

Let us summarise them briefly:

• In the massive gravity limit of the PM bimetric model, first obstructions were

already encountered by the authors of [235] and it was shown in [232, 233] that

the equations of motion do not satisfy the nonlinear Bianchi identity which is

expected in a PM theory. More explicitly, the authors showed that the nonlinear

covariant constraint which removes the Boulware-Deser ghost does not identically

vanish. This result was argued to extend to bimetric theory [234] where, however,

the situation is less clear since the nonlinear version of the constraint is not

known. In fact, a covariant constraint does not even seem to exist for general

backgrounds [108].

• The linear spectrum of conformal gravity always contains a ghost [231]. Although

the full nonlinear bimetric theory is ghost-free, it is possible that the appearance

of the Weyl invariant Bach tensor (7.36) in our perturbative approach is inti-

mately related to the fact that we are expanding in small curvatures, i.e. around

flat solutions which suffer from the same pathology as conformal gravity. Flat

backgrounds in the PM theory require choosing c2 = −1, which renders the kinetic

term of the massive perturbation ghost-like [253]. Hence, the Weyl invariance at

lowest order in the equations of motion (7.36) seems to be obtainable only at the

cost of giving up unitarity.

• The authors of [134] argued that, in order to give rise to a nonlinear PM symmetry,

the scalar mode of the massive field needs to disappear entirely from a “decoupling

limit” of bimetric theory. It was then demonstrated that, even though the pure

scalar interactions are indeed absent, the mode reappears in interactions with the

vectors.39 The fact that the vectors vanish on maximally symmetric backgrounds

explains why one sees a PM gauge symmetry to linear order around dS space but

not beyond.

39From our point of view, it is not obvious if this analysis is actually able to rule out the gauge sym-

metry because, firstly, the backgrounds that [134] assumed for the metrics do not solve the equations

of motion and, secondly, the constraint that removes the ghost is not imposed. As a consequence of

the latter, the vector-scalar interactions involve higher-derivative terms of the scalar mode that are

known to disappear after accounting for the constraint.
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• Imposing a closure condition on the PM transformations, the authors of [237]

showed that no nonlinear Lagrangian involving at most two derivatives on the

fields can realise the required symmetry for a single spin-2 field in a gravitational

background. The setup is more general than ghost-free massive gravity but it

still does not include the bimetric case.

• More group theoretical evidence against a nonlinear PM symmetry for spin-2

fields coupled to gravity was provided in [236] where it was shown that no unitary

theory exists and the unique non-unitary example is conformal gravity. However,

for technical reasons which are discussed in [253], these arguments do not directly

carry over to bimetric theory.

• In [254] the authors provide arguments against the existence of a partially massless

theory with a non-abelian Yang-Mills like extension. Again, these arguments

cannot directly be applied to the bimetric setup.

If the above results eventually turn out to also be extendable to bimetric theory, this

would imply that the PM symmetry can indeed not be realised as a nonlinear the-

ory involving only spin-2 fields. But even in this case, the bimetric candidate model

seems to possess interesting properties that could pave the way towards understand-

ing partial masslessness from a background-independent point of view. A promising

future direction could be the combination of bimetric theory with higher-spin degrees

of freedom. Finally, let us point out that finding an additional scalar symmetry is not

merely an interesting exercise but could indeed prove to be very useful from several

perspectives. First of all, it would guarantee that the helicity-zero mode is absent even

nonlinearly. This will have an enormous effect on the phenomenology since the scalar

mode is usually responsible for various instability issues and causes the most tension

with observations. Secondly it would provide an argument for why a small cosmological

constant is technically natural since its value is tied to the mass of the spin-2 field via

a symmetry, whilst a small mass is itself technically natural since its vanishing restores

full diffeomorphism invariance. Thirdly, the absence of the scalar mode may lead to

improved quantum behaviour of the theory. Indeed, since the symmetry if it exists is

given by Weyl scalings to lowest order in a derivative expansion, the theory may have

much better renormalisation properties than GR.
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8 Extensions of Bimetric Theory

Extensions of massive gravity have been proposed mainly by introducing new scalar

degrees of freedom and in the context of cosmology. For instance, a scenario in which

the spin-2 mass is obtained through a scalar condensate has been suggested in [127] and

a quasi-dilaton extension of the massive gravity action was constructed in [255, 256].

Similarly f(R) extensions have been studied in e.g. [138–142] and other scalar fields with

non-minimal coupling terms have also been added to the bimetric action, as in [257].

In the following we shall focus on more direct generalisations which preserves the struc-

ture of the bimetric theory itself without adding additional degrees of freedom, ex-

cept the most natural generalisation to include interactions of multiple massive spin-2

fields.40 First, we discuss its generalisation to higher-dimensions, where new kinetic

terms satisfy the requirement of classical consistency. Then we shall review interactions

of multiple spin-2 fields and, in the same context, also present the vierbein formulation

of bimetric theory.

8.1 Higher derivative Lanczos-Lovelock extension

According to the constructive consistency proof in section 3.4, the interaction poten-

tial of the Hassan-Rosen bimetric theory includes all ghost-free non-derivative terms.

Therefore, the only option to obtain an extended version of the theory is to add more

derivative terms to the action. The literature contains several no-go theorems on gen-

eralising the kinetic structure of the spin-2 fields in four dimensions to anything beyond

the Einstein-Hilbert term [135, 136, 259].41 On the other hand, in dimensions greater

than four, the Lanczos-Lovelock (LL) invariants, which either vanish or are topological

in d = 4, are expected not to reintroduce the Boulware-Deser ghost [263–267]. These

are defined as totally antisymmetric contractions of Riemann tensors Rαβ
µν ,

L(n) =
1

2nn!
δµ1[α1

δν1β1 . . . δ
µn
αnδ

νn
βn]

n∏
k=1

Rαkβk
µkνk

. (8.1)

The definition of the antisymmetric product and relations to analogue expressions in

terms of Levi-Civita symbols is given in appendix A. In spite of being higher-derivative

operators, the LL invariants are believed to avoid inconsistencies that are usually intro-

duced by such terms. This is due to the antisymmetric structure in (8.1) which ensures

40Interactions between multiple massless spin-2 fields are forbidden on quite general grounds [258].
41See, however, [260–262]. Moreover, note that the structure of the kinetic terms is of course only

determined up to field redefinitions.
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the absence of more than two time derivatives acting on one field in the action. It is

interesting that the same structure appears in the interaction potential of ghost-free bi-

metric theory, but of course this is not a complete coincidence: In the decoupling limit

of nonlinear massive gravity it can be seen that the antisymmetric structure removes

higher time derivatives from the longitudinal modes of the Stückelberg fields [57, 58].

8.1.1 Extended action and equations of motion

In order to extend ghost-free bimetric theory to d dimensions, we first write the Hassan-

Rosen bimetric action in the more general form,

SHR = md−2
g

∫
ddx
√
g R(g) +md−2

f

∫
ddx
√
f R(f)

− 2md

∫
ddx
√
g

d∑
n=0

βnen

(√
g−1f

)
, (8.2)

where the elementary symmetric polynomials are still defined through the same recur-

sion formula (A.2). The consistency proof of [76], as outlined in sections 3.4 and 5.2,

generalises straightforwardly to the higher-dimensional case. It has also been shown

that the mass spectrum is very similar to the four-dimensional case and contains a

massless and massive excitation [143].

Next, guided by the above considerations, we extend the Hassan-Rosen action by the

following terms, as done in [143, 268],

SLL = md−2
g

∫
ddx

bd/2c∑
n=2

√
−g lgn L(n)(g)

+ md−2
f

∫
ddx

bd/2c∑
n=2

√
−f lfn L(n)(f) , (8.3)

where we have introduced two sets of couplings, lgn and lfn, of mass dimension 2(1− n).

It is well known that the LL invariant L(n) is topological in d = 2n and vanishes for

2n > d which is why the sums in (8.3) terminate at integer part of d/2.

The equations of motion for gµν and fµν that follow from the LL extended bimetric
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action are

Gµν(g) +

bd/2c∑
n=2

lgnG(n)
µν (g) +

md

md−2
g

V g
µν = 0 ,

Gµν(f) +

bd/2c∑
n=2

lfnG(n)
µν (f) +

md

md−2
g

V f
µν = 0 . (8.4)

Here, G(n)
µν are the Lovelock tensors that follow from variation of (8.3) and V g

µν and V f
µν

are the contributions from the interaction potential which were defined in (5.3) and in

which the summations now run from 0 to d. We will not need the explicit expressions

for the Lovelock tensors, but let us note the important property,

gµνG(n)
µν (g) =

2n− d
2
L(n)(g) , (8.5)

which will be useful later on.

8.1.2 Proportional backgrounds

As in pure bimetric theory in d = 4 we are interested in finding the proportional

background solutions to (8.4) and study perturbations around those. Again, these

backgrounds correspond to maximally symmetric spacetimes, for which the curvatures

satisfy

Rµνρσ(ḡ) =
2λ

(d− 1)(d− 2)
(ḡµρḡνσ − ḡνρḡµσ) ,

Rµν(ḡ) =
2λ

d− 2
ḡµν , R(ḡ) =

2d λ

d− 2
, (8.6)

with cosmological constant λ. On such backgrounds with constant curvature, the n-th

order LL invariant is proportional to λn,

L(n) = Nn(d)λn , with Nn(d) ≡ 2nd!

(d− 1)n(d− 2)n(d− 2n)!
. (8.7)

Next, we trace the equations of motion (8.4) in order to obtain two scalar equations

and insert (8.6) for the curvatures. Furthermore, we make use of the identity (8.5) and

plug in the proportional ansatz, f̄µν = c2ḡµν . Finally, in the equation for fµν , we use

L(n)(c
2ḡ) = c−2nL(n)(ḡ). The resulting two equations read

λ+

bd/2c∑
n=2

lgn
d− 2n

2d
Nn(d)λn − Λg = 0 ,

λ+

bd/2c∑
n=2

c2−2nlfn
d− 2n

2d
Nn(d)λn − Λf = 0 . (8.8)
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Here, Λg and Λf are the contributions from the potential evaluated on the proportional

backgrounds which were defined earlier in (5.11). Note, however, that these no longer

correspond to the physical cosmological constants and are not necessarily equal.

For general parameters βn, lgn, and lfn, the two algebraic equations in (8.8) serve to

determine the background curvature λ as well as the proportionality constant c2. Note

also that in the absence of the LL contributions, i.e. for lgn = lfn = 0, we re-arrive at the

bimetric background equations, R(ḡ) = 2d
d−2

Λg and Λg = Λf .

8.1.3 Mass spectrum

Computing the linearised equations of motion around general background solutions

to (8.4) is quite involved, even when the potential contributions vanish. However, as

has been observed in [267], around constant curvature backgrounds with cosmological

constant λ, the fluctuation equations of GR augmented by the LL terms with couplings

lgn assume the same form as the ones obtained from Einstein’s equations. The only

difference is that, in the linearised equations of the LL extended theory, the Planck

mass mg needs to be replaced by an effective mass parameter m̃g defined through

m̃d−2
g

md−2
g

= 1 + (d− 3)!

bd/2c∑
n=2

n(d− 2n)lgn
(d− 2n)!

(
2λ

(d− 1)(d− 2)

)n−1

. (8.9)

It is a remarkable feature of the Lovelock invariants that, in spite of being higher-

derivative operators in the nonlinear theory, they give rise to linearised equations that

are only second order in derivatives.

For the bimetric case the above result implies that the linear equations for the theory

with LL terms are the same as in pure bimetric theory if one replaces mg by m̃g as

above and mf by m̃f given by

m̃d−2
f

md−2
f

= 1 + (d− 3)!

bd/2c∑
n=2

n(d− 2n)c2−2nlfn
(d− 2n)!

(
2λ

(d− 1)(d− 2)

)n−1

. (8.10)

Hence, using the results of [267], without any further computation we can conclude that

the linear equations in a maximally symmetric background with cosmological constant

λ will again diagonalise into a massless and massive equation, where in the latter the

Fierz-Pauli mass (5.21) is now given in terms of m̃g and m̃f .
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8.1.4 Partial masslessness in d > 4

To conclude the discussion of the Lanczos-Lovelock extension of bimetric theory, let

us comment on the possibility to extend the linear symmetry of partially massless

(PM) fields to the nonlinear level within this generalised setup. Since the proportional

backgrounds and their perturbations possess the same structure as in pure bimetric

theory in d = 4, the linear equations are again invariant under a PM symmetry if the

mass is on the Higuchi bound which in d dimensions corresponds to the value m2
FP =

2
d−1

λ. The arguments given in section 7.2.1 leading to a PM candidate theory can

straightforwardly be applied to the higher-dimensional case. The criterion of leaving

the proportionality constant c undetermined by the background equations (8.8) singles

out unique PM candidate theories which have been identified in [143] up to d = 8. All

the interaction parameters are fixed with respect to each other in these models and, in

particular, the Lanczos-Lovelock coefficients lgn and lfn are nonzero. This result confirms

earlier findings [228] which revealed that the linear PM symmetry cannot be extended

in d > 4 unless higher-derivative terms are included into the action.

8.2 Multiple interacting spin-2 fields

Ghost-free bimetric theory contains the correct number of degrees of freedom for a

massless and a massive spin-2 mode. While no-go theorems forbid consistent interac-

tions among more than one massless spin-2 field [258], it is possible to extend bimetric

theory by additional massive spin-2 degrees of freedom. Hinterbichler and Rosen first

wrote down these ghost-free interactions using vierbeins instead of metrics [269].42 In

the following we will derive the consistent multi-spin-2 interactions in the metric for-

mulation and then review their formulation in terms of vierbeins. More work on the

vierbein formulation of massive gravity, bimetric and multimetric theory can be found

in [68, 101, 102, 136, 270–282].

8.2.1 Multiple bimetric couplings

When constructing a theory for more than two spin-2 fields, of course, the main re-

quirement on its structure remains the absence of the Boulware-Deser ghosts. The

interaction potential for N fields therefore has to be chosen such that the action in

Hamiltonian formulation gives rise to (4 + N − 1) constraints. Out of these, four

42The formulation of the full ghost-free bimetric potential in terms of vierbeins first appeared in [153].
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should be first class constraints, generating the group of general coordinate transfor-

mations, while the remaining (N − 1) are expected to be second class and serve to

remove all Boulware-Deser ghosts from the spectrum.

An obvious way to satisfy these requirements is to simply add up several copies of the

Hassan-Rosen action (5.1) for fields fµν and gµν(I) with I = 1, . . . ,N − 1, to obtain a

theory in which one of the metrics is coupled to all the others,

Scentre

[
f, {g(I)}

]
=
N−1∑
I=1

SHR

[
g(I), f

]
. (8.11)

This will be consistent because in every interaction potential one can redefine the ADM

variables for gµν(I) to make it linear in the lapse and shift of fµν as well as the lapse

of gµν(I), such that one obtains the desired (4 +N − 1) constraints.

The left panel of Figure 1 shows how such a coupling can be visualised in a graph [269].

Each solid dot represents a different spin-2 field and the lines stand for standard Hassan-

Rosen bimetric couplings between them. Fields corresponding to dots that are not

connected by a line do not directly interact. Due to the corresponding picture with

one metric in the centre, we shall refer to interactions of the form (8.11) as “centre

couplings”.

Another option to obtain consistent multiple bimetric interactions is to build a “chain”

of N coupled spin-2 fields gµν(I) where I = 1, . . . ,N . That is to say, we take an action

of the form,

Schain

[
{g(I)}

]
=
N−1∑
I=1

SHR

[
g(I), g(I + 1)

]
, (8.12)

for which the corresponding graph is depicted in the right panel of Figure 1. This

construction works because in the first term one can redefine the ADM variables for

g(1) such that it becomes linear in the lapse and shift of g(2) as well as the lapse of

g(1). In the second term one performs a similar redefinition for the shift of g(2) which,

since the redefinition is linear in the lapses, does not destroy the linearity in the lapse

of g(2) in the first term. Note however that the second term will no longer be linear in

the shift of g(2). Continuing with this procedure in all the terms results in an action

that is linear in the lapse and shift of g(N ) and in all the other lapses.

In fact, it is also possible to combine the two above constructions in the following

manner: First introduce a chain coupling for fields f(K), K = 1, . . . ,K, and then to
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Figure 1. The centre couplings (left) and the chain couplings (right).

each f(K) attach IK fields g(K)(IK), IK = 1, . . . IK , in a centre coupling. This gives

rise to the most general ghost-free multimetric action,

Smulti = Schain

[
{f(K)}

]
+

K∑
K=1

Scentre

[
f(K), {g(K)(IK)}

]
. (8.13)

In this theory the total number of fields is N = K+
∑K

K=1 Ik. An example for a graph

is shown in the left panel of Figure 2. Note that the action Smulti still consists purely of

Figure 2. The combined chain and centre couplings (left) and a forbidden loop coupling

(right).

multiple copies of the Hassan-Rosen bimetric action; we have not introduced any type

of new interaction term. Of course, in the above construction, it is also possible to add

further chain or centre couplings to each of the g(K)(IK). However, it is important to

realise that not all possible bimetric couplings are allowed. In particular, one may not

couple the metrics in a “loop”, which means adding terms such as SHR

[
f(K), f(K+2)

]
or SHR

[
f(K + 1), g(K)(IK)

]
to (8.13). To see why this fails, consider a simple loop

coupling among three metrics,

Sloop(g, f, h) = SHR(g, f) + SHR(f, h) + SHR(h, g) , (8.14)

whose graph is depicted in the right panel of Figure 2. Now imagine that in the first

term one redefines the shift of g to render it linear in the lapse and shift of f and the

lapse of g. Then, in the second term redefine the shift of f such that the first two terms

afterwards are linear in the lapse and shift of h and the lapses of g and f . In the third
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term, one would now have to redefine the shift of h, but from the particular form (3.19)

of the redefinition it is clear that afterwards, the action will again contain the original

shift variable for g which cannot be expressed in terms of the redefined variables only.

Therefore there is at least no obvious consistent redefinition of ADM variables that

renders (8.14) linear in all the lapses and we conclude that the loop couplings most

likely give rise to Boulware-Deser ghosts. This is in agreement with results of a similar

analysis performed in [283].

8.2.2 Vierbein formulation

The multimetric action (8.13) consists of several copies of the Hassan-Rosen action (5.1).

It is possible to rewrite the latter in terms of different variables which avoid the appear-

ance of the square-root matrix.43 To this end, let us introduce the tetrads or vierbeins

defined for each metric,

gµν(I) = Ea
µ(I)ηabE

b
ν(I) , (8.15)

or in matrix notation, g(I) = ET(I)ηE(I). The expression for the metric in terms

of vierbeins is invariant under local Lorentz transformations Λa
b(I) that act on the

upper index of Eb
µ(I) according to E(I) → Λ(I)E(I) with ΛTηΛ = η. Associated to

each vierbein, there are thus six gauge invariances which serve to reduce the number of

physically relevant components from 16 to 10. Any metric theory that is reformulated

in terms of vierbeins is automatically invariant under these transformations and, in

particular, the Einstein-Hilbert terms SEH(I), in which the metric g(I) is replaced by

the vierbein, are Lorentz invariant.

In terms of the respective vierbeins, the square-root matrix
√
g(1)−1g(2) built out of

two metrics g(1) and g(2) becomes,

S =
√
g(1)−1g(2) =

√
E(1)−1η−1(E(1)T)−1E(2)TηE(2) . (8.16)

It is now convenient to fix the Lorentz gauge for one of the vierbeins such that

E(2)E(1)−1η−1 is a symmetric matrix. We thus impose the so-called “symmetric”

gauge (or Deser-van Nieuwenhuizen gauge [285]),

η−1(E(1)T)−1E(2)T = E(2)E(1)−1η−1 . (8.17)

In this particular Lorentz frame, we can easily evaluate the square-root as,

S =
√
E(1)−1E(2)E(1)−1E(2) = E(1)−1E(2) . (8.18)

43For suggestions to remove the square-root matrix by introducing auxiliary fields, see [64, 284].
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Using the identity,

εc1...cd =
(

detE
)
εν1ν2ν3ν4(E

−1)ν1c1(E
−1)ν2c2(E

−1)ν3c3(E
−1)ν4c4 , (8.19)

we can then write the bimetric action in the form

SHR = SEH(1) + SEH(2)− Sint , Sint ≡ 2m4

∫
d4x

4∑
n=0

Vn , (8.20)

where SEH(I) are the standard Einstein-Hilbert actions for E(I) and

Vn = bnε
µ1...µnµn+1...µ4εa1...anan+1...a4E

a1
µ1(1) . . . Ean

µn(1)Ean+1
µn+1(2)Ea4

µ4(2) , (8.21)

where bn = 2βn
n!(4−n)!

are the same parameters as in (3.33). Since we have only fixed one

of the two Lorentz gauges, this interaction potential still has one overall local Lorentz

invariance under which both vierbeins transform in the same way.

It is important to note that the vierbeins in (8.21) must satisfy the symmetrisation con-

dition (8.17), otherwise the vierbein formulation is not equivalent to bimetric theory

for general values of bn. More precisely, if we started from (8.21) without imposing the

condition by hand, then the dynamics of the vierbein theory would allow for configura-

tions that do not give back the ghost-free bimetric formulation. As discussed in [269],

for each vielbein there exist six combinations of its equations of motion that do not

contain any derivatives. These read,

δSint

δEa
µ(I)

Ec
µ(I)ηcb −

δSint

δEb
µ(I)

Ec
µ(I)ηca = 0 . (8.22)

For models with b2 = b3 = 0 or b1 = b2 = 0, these equations imply the symmetrisation

condition (8.17) and the equivalence to bimetric theory is dynamically guaranteed.

For more general parameters, the symmetrised vierbeins still solve the equations but

other solutions also exist [286, 287]. These disconnected branches give rise to different

theories which contain the Boulware-Deser ghost instability [288].

Another important aspect, first pointed out in [286], is that one cannot always arrive

at the symmetrised form (8.17) by acting with a Lorentz transformation on general

vierbeins. For configurations that do not allow this, the square-root cannot be evaluated

as in (8.18). In fact, the condition on the combination of vierbeins to be symmetrisable

by a Lorentz transformation is exactly the same as the one we derived in section 3.3.3 on

the metric components by requiring that the square-root exists [99]: Ensuring that the

Lorentz boost velocity va satisfies vaδ
abvb < 1 is equivalent to requiring the existence of

a real solution to the scalar square-root
√
x that appears in the ADM decomposition

of
√
g−1f in (3.27). This condition in turn ensures that one can always impose the

“symmetric” gauge by a Lorentz transformation.
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8.2.3 More general interactions?

So far we have used the earlier results of the bimetric ADM analysis in order to couple

several spin-2 fields to each other using only bimetric interactions. The next question

is whether there exist more general couplings than the bimetric vertex. We introduce

graphs for two examples of such n-point vertices in Figure 3. A priori, such couplings

Figure 3. A three- and a four-point vertex.

could be very different from the bimetric ones and the ADM analysis has to be redone

from the start.

In [269] it was proposed that the interactions of vierbeins could be generalised to,

Sint =
m4

4

∑
{I}

∫
d4x T I1I2I3I4UI1I2I3I4 ,

with UI1...I4 = εµ1µ2µ3µ4εa1a2a3a4E
a1
µ1(I1)Ea2

µ2(I2)Ea3
µ3(I3)Ea4

µ4(I4) , (8.23)

where T I1I2I3I4 are coupling constants symmetric in all the indices In ∈ {I} which run

from 1 to N . The total multivielbein action would then be given by

Smulti =
N∑
I=1

SEH(I) + Sint . (8.24)

Note that the antisymmetric structure of (8.23) ensures that there cannot be more than

four vierbeins (or in d dimensions, not more than d vielbeins) interacting in one vertex.

However, the results obtained in [288] severely constrain the structure of the “tensor”

of coupling constants T I1...I4 and only diagrams of the type displayed in Figure 1 are

allowed. The more general couplings displayed in Figure 3 which would arise from an

unconstrained T I1...I4 and give rise to diagrams with at most 4 lines ending in one vertex

are excluded. The same holds for the loop couplings in the right panel of Figure 2.

Although these forbidden terms have been shown to possess a ghost-free decoupling

limit, they do spoil the consistency of the full theory [136, 288] and the reason can be

traced back to the fact that the corresponding equations of motion are incompatible

with the symmetrisation condition (8.17). In summary, the only consistent vierbein

couplings are those that give rise to a metric formulation of the type (8.13).
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9 Discussion and Outlook

In this article we summarised the recent developments of nonlinear theories involving

massive spin-2 fields. It was shown how to construct the unique ghost-free interaction

potential of nonlinear massive gravity with fixed reference metric, which we afterwards

generalised to the fully dynamical bimetric theory. The latter describes the interactions

of a massless spin-2 field with a massive one and, when coupled to matter, captures

the behaviour of gravity in the presence of an additional tensor field. We have seen

that there exists a limit in the parameter space of bimetric theory which takes the

theory arbitrarily close to general relativity. In this limit, viable cosmological solutions

can be found where, in the absence of vacuum energy, the dark energy scale is set by

the spin-2 mass which is protected against receiving large quantum corrections. We

have discussed the idea of nonlinear theories for partially massless spin-2 fields and in

the process established a connection between bimetric theory and conformal gravity.

Finally, we have reviewed the extension of bimetric theory to dimensions greater than

four and to couplings between more than two spin-2 fields.

On the phenomenological side, one of the most interesting open questions is what

possible implications the existence of a massive spin-2 field in nature could have on the

dark matter problem. Several scenarios where dark matter components are attributed

to the matter sector of the second metric fµν have already been considered in [149–

152]. From our point of view, however, the more interesting option is to regard the

second metric as the dark matter field. Since the spin of the dark matter particle is

unknown, such a scenario is not immediately excluded and, as we already discussed

in section 5.4.2, the largeness of the physical Planck mass automatically weakens the

interactions of the massive spin-2 field with all Standard Model particles.

On the theoretical side, it would be of great importance to understand the origin of

the mass term for the spin-2 field at a fundamental level. For spin-1 fields, it is well-

known that the consistent picture at the quantum level is to generate their mass via

spontaneous breaking of the gauge symmetry in the massless theory. To this end, it is

necessary to invoke additional (Higgs) fields whose vacuum expectation values break

gauge invariance and set the spin-1 mass scale. Since aspects of field theories generically

do not become simpler with increasing spin, it is natural to expect an underlying

mechanism that generates the mass term also for spin-2 fields. Such a ”spin-2 Higgs

mechanism” should break the two independent copies of diffeomorphism invariance in

the gµν and fµν sectors down to their diagonal subgroup, which is the residual gauge

symmetry of bimetric theory. The precise nature of the fields that are needed to trigger
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this symmetry breaking spontaneously is still unknown; a realisation on anti-de-Sitter

space has been suggested in [289, 290]. For a more detailed discussion of the topic, we

refer the reader to the recent article [291].

Related to the origin of the mass term is the behaviour of bimetric theory at the

quantum level. Quantum corrections at one-loop order in the effective field theory

picture have been computed in massive gravity [214] and bimetric theory [170] and the

results confirmed the stability of the spin-2 mass scale. On the other hand, without

knowing the underlying mechanism that generates the interaction potential for the two

metrics, it is difficult to tell to what extend these results can be trusted.

Theories with extended symmetries are known to generically exhibit an improved quan-

tum behaviour. An example for the spin-2 case is the action for conformal gravity with

its Weyl symmetry. Unfortunately, this theory suffers from a ghost but we have seen

that bimetric theory contains a ghost-free model which seems to be closely related

to the Weyl invariant action. Understanding its properties further and investigating

possibilities to realise the gauge symmetry for partially massless at the nonlinear level

(most likely by invoking additional degrees of freedom) could give us important new

insights on the nature of quantum gravity.

Since consistent theories involving spin-2 fields are so rare, we do not expect to en-

counter a large variety of possibilities to extend them further. As it stands now, it does

not seem to be possible to extend the kinetic sector in four dimensions [135, 136, 259]

and the interaction potential is the only consistent one by construction. Up to field

redefinitions, the structure of the ghost-free bimetric action is therefore unique. On

the other hand, it is of course worth studying couplings to fields with different and, in

particular, higher spins. The spectrum of presently known higher-spin theories contains

only massless spin-2 fields (see, for instance, [292–294]). It would be interesting to see

whether bimetric theory can give hints on the form of more general interactions includ-

ing massive spin-2 degrees of freedom. At this stage, we can only hope that one day

we will be able to write down the most general interactions for massless and massive

spin-2 fields.
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A Technical details of interaction potential

In the text, for notational simplicity, we frequently write the interactions in terms of

elementary symmetric polynomials en(S). These can be defined in various equivalent

ways, for example via the following commonly used equalities which hold for any square

d× d matrix S,

en(S) = Sµ1[µ1 · · ·S
µn
µn] =

1

n!
δµ1···µnν1···νn S

ν1
µ1
· · ·Sνnµn

=
1

n!(d− n)!
εµ1µ2...µnλn+1...λdεν1ν2...νnλn+1...λd S

ν1
µ1
· · ·Sνnµn . (A.1)

Here we have expressed them in terms of antisymmetrisation, the generalised Kronecker

delta and the Levi-Civita symbol respectively, all normalised by unit weight. Obviously

the last equality only makes sense when d is the dimension spanned by the indices. They

can also be defined through a dimension-independent recursion formula,

en(S) =
(−1)n+1

n

n−1∑
k=0

(−1)kTr(Sn−k)ek(S) , with e0(S) = 1 . (A.2)

In d dimensions, they satisfy ed(S) = det(S) and en(S) = 0 for n > d. Their explicit

expressions for n ≤ 4 read,

e0(S) = 1 , e1(S) = [S] , e2(S) = 1
2

(
[S]2 − [S2]

)
,

e3(S) = 1
6

(
[S]3 − 3[S][S2] + 2[S3]

)
e4(S) = 1

24

(
[S]4 − 6[S]2[S2] + 3[S2]2 + 8[S][S3]− 6[S4]

)
, (A.3)

where square brackets denote a matrix trace. Moreover, the en obey the following

useful identity for any matrix S and parameter λ,

en(1 + λS) =
n∑
k=0

(
d− k
n− k

)
λkek(S) . (A.4)

A special case (n = d) of this is,

det(1 + λS) =
d∑

n=0

λn en(S) . (A.5)

This means that the consistent interaction potential can be regarded as a deformed

determinant [46]. The variation of the en(S) can be computed from e.g. (A.2) and is
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given by,44

δen(S) = −
n∑
k=1

(−1)kTr[Sk−1δS] en−k(S) , n ≥ 1 , (A.6)

with δe0(S) = 0 (since e0(S) = 1). Together with 2Tr[Sk−1δS] = Tr[Sk−2δS2] and

δS2 = −g−1δgS2 + g−1δf (which follows from S2 = g−1f) it is then straightforward to

derive the field equations of the theory. Explicitly, the contributions from the interac-

tion potential to the equations of motion in (5.3) are,

(Y(n))
µ
ν(S) ≡

n∑
k=0

(−1)k(Sn−k)µν ek(S) . (A.7)

In d dimensions, they satisfy Y(n) = 0 for n ≥ d. In particular, Y(d) = 0 is simply the

statement of the Cayley-Hamilton theorem, that any square matrix satisfies its own

characteristic (or secular) equation.

Finally we note that all of the above expressions can easily be rewritten in terms of the

inverse S−1 by using the identity,

en(S−1) =
ed−n(S)

ed(S)
. (A.8)

B Derivation of redefined shift vector

Here we derive the expressions for the redefinition (3.19) of the ADM shift vector

N i = γijNj and the matrices A and B in (3.27), following [61]. We start from the most

general ansatz for the redefinition,

N i = ci +Ndi , (B.1)

where ci and di are functions of γij, the new shift vector ni and the ADM components

of fµν . They will be determined in what follows. Recall that the redefinition has to be

linear in the lapse N in order not to introduce nonlinearities into the Einstein-Hilbert

term (3.4). Next we turn to equation (3.18) and take the square of both sides to arrive

at,

g−1f =
1

N2
A2 +

1

N
(AB + BA) + B2 . (B.2)

44See e.g. [105] for an explicit derivation.
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The left-hand side of this equation can be expressed in terms of ADM variables using

(3.3) and (3.12). We get,

gµρfρν

=
1

N2

(
L2 − LlφlkLk +Nlγ

lkLk − Lj +Nlγ
lkφkj

N2γikLk −N i(L2 − LlφlkLk +Nlγ
lkLk) N2γikφkj +N i(Nkφkj − Lj)

)
.

(B.3)

In this expression we replace N i in terms of ni using our ansatz (B.1). Next, we collect

the pieces according to their order in 1/N , which gives,

g−1f =
1

N2
E0 +

1

N
E1 + E2 , (B.4)

where, in terms of a0 ≡ L2 − LlφlkLk + clLl and ai ≡ −Li + clφli, we have defined the

matrices,

E0 =

(
a0 aj
−a0c

i − ciaj

)
, E1 =

(
dlLl dlφlj

−(dlLlc
i + a0d

i) − (cidlφlj + diaj)

)
E2 =

(
0 0

(γil − didl)Ll (γil − didl)φlj

)
. (B.5)

Comparing this to the right-hand side of (B.2) and equating the coefficients in front of

equal powers of 1/N , we see that,

A2 = E0 , B2 = E2 , AB + BA = E1 . (B.6)

Since E0 is a projector on a one-dimensional subspace, its square-root can easily be

evaluated, resulting in,

A =
√

E0 =
1

L
√
x

(
a0 aj
−a0c

i − ciaj

)
, x ≡ 1

L2
(a0 − clal) . (B.7)

The special structure of E2 also allows us to evaluate its square-root which gives,

B =
√

E2 =
√
x

(
0 0

Di
kL

k Di
j

)
, Di

j ≡
1√
x

√
(γil − didl)φlj . (B.8)

Using these expressions for A and B in the third equation of (B.6), we obtain,

AB + BA = E1 ⇒ di =
1

L
Di

k

(
ck − φklLl

)
, (B.9)
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where we have also made use of the symmetry property φikD
k
j = φjkD

k
i which follows

directly from the definition of D in (B.8). This equation determines a particular com-

bination of the unknown functions di and ci in the redefinition. The redefinition is thus

not uniquely determined. One simple option to fix the ambiguity is to choose the new

shift vectors as nk = 1
L

(ck − φklLl). Then the above condition reduces to di = Di
kn

k

and the redefinition becomes,

N i = ci +Ndi = Li + Lni +NDi
kn

k , (B.10)

where Li ≡ φijLj. The definition of the matrix D in (B.8) depends on di and therefore

gives rise to the following matrix equation that needs to be solved for D,
√
xD =

√
(γ−1 −Dn(Dn)T)φ , x ≡ 1− nlφlknk . (B.11)

As shown in [61], the solution to this equation is given by (3.20).

C Short summary of standard GR cosmology

Here we very briefly recapitulate the derivation of the cosmological evolution equations

in GR. Consider Einstein’s equations of motions for gµν ,

Rµν −
1

2
gµνR =

1

M2
Pl

(Tµν − ρΛ gµν) , (C.1)

where Tµν is the stress-energy tensor obtained from variation of the matter Lagrangian

and we have defined the constant energy density ρΛ ≡ ΛM2
Pl. When looking for homoge-

neous and isotropic solutions in General Relativity, one makes a Friedmann-Robertson-

Walker ansatz for the metric,

gµνdx
µdxν = −dt2 + a(t)2

(
1

1− kr2
dr2 + r2dΩ

)
, (C.2)

in which k = 0,−1,+1 parameterises the curvature of the universe (flat, open, closed),

a(t) is the scale factor, and dΩ = dθ2 + sin2 θ dϕ2. In accordance with homogeneity

and isotropy, the stress-energy tensor is taken to be that of a perfect fluid,

(T g)µν = diag(−ρ, p, p, p) , (C.3)

where ρ(t) and p(t) are the time dependent energy density and pressure of the fluid,

respectively. As a consequence of the Bianchi identity, the source is automatically

covariantly conserved which implies the continuity equation,

ρ̇+ 3
ȧ

a

(
ρ+ p

)
= 0 , (C.4)
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where dots denote time derivatives. Plugging the diagonal ansätze (C.2) and (C.3)

into Einstein’s equations (C.1) gives a set of four equations. The 00-component is

Friedmann’s equation, (
ȧ

a

)2

+
k

a2
=
ρ+ ρΛ

3M2
Pl

, (C.5)

which is often expressed in terms of the Hubble function H ≡ ȧ/a. Due to the isotropic

ansatz, the ii-components of the equations are all equivalent and therefore provide only

one additional independent equation. The most common way to present it is by taking

the traced Einstein equations and using (C.5) to arrive at the acceleration equation,

ä

a
= − 1

6M2
Pl

(ρ+ ρΛ + 3p) . (C.6)

In order to characterise different components of the cosmological fluid, one introduces

the equation of state parameter w defined as the ratio of pressure and energy density,

p = wρ. One can then rewrite the continuity equation (C.4) as

dρ

da
+ 3(1 + w)

ρ

a
= 0 , (C.7)

which is solved by

ρ = ρ0 a
−3(1+w) . (C.8)

Here, ρ0 is a constant to be determined by boundary conditions. Inserting this solution

into the Friedmann equation (C.5) with k = 0 and ρΛ = 0 gives the following evolution

of the scale factor for w 6= −1,

a ∝ t
2

3(1+w) . (C.9)

The behaviour for w = −1 is

a ∝ eHt , H ≡ ȧ

a
= const. (C.10)

Moreover, from the acceleration equation (C.6) we infer that, in the absence of a bare

cosmological constant, the expansion of the universe accelerates for w < −1/3 and

decelerates for w > −1/3. Three cases are of particular interest: w = 0 characterises

non-relativistic matter, w = 1/3 corresponds to relativistic matter (“radiation”), and

w = −1 describes a cosmological constant. The energy density for non-relativistic mat-

ter therefore scales as a−3, i.e. inversely proportional to the volume. Non-relativistic
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matter experiences an additional redshift and its energy density goes as a−4. None

of these can explain an accelerated expansion of the universe. In contrast, a cosmo-

logical constant which of course has constant energy density leads to an exponentially

accelerated expansion.

It is common to measure the contributions of different fluid components in terms of

their density parameters,

Ωi =
ρi

3M2
PLH

2
0

, (C.11)

where i stands for either radiation, non-relativistic matter or the cosmological constant

and H0 denotes the Hubble parameter at the present time. One also defines a curvature

contribution, Ωk = − k
a2H2

0
, and in terms of these the Friedmann equation becomes

Ωrad + Ωmat + ΩΛ + Ωk =
H2

H2
0

. (C.12)

In particular, at the present time the density parameters add up to one. Latest ob-

servational data [31] suggest the following (approximate) values for the cosmological

parameters at the present time,

H0 ∼ 70 km/s/Mpc , Ωrad ∼ 10−5 , Ωmat ∼ 0.3 ,

ΩΛ ∼ 0.7 , Ωk < 10−3 . (C.13)

These values imply that our universe is flat and dominated by a cosmological constant

component. As already discussed above, the energy density corresponding to this

cosmological constant is extremely small compared to energy scales of the Standard

Model of Particle Physics. Since so far we lack an explanation for this small value,

the curious energy component ρΛ is often referred to as dark energy. On top of that,

observations also show that the matter component Ωm is not dominated by familiar

baryonic matter, but rather mainly consists of an unknown dark matter component.

Consequently, under the assumption that GR is indeed the theory of gravity, we must

accept that 95% of the universe’s energy content is not at all understood. Nevertheless,

when this obscurity is ignored, the so-called ΛCDM model (GR with a cosmological

constant and cold dark matter) fits the observational data very well.
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[131] A. De Felice, A. E. Gümrükçüoğlu and S. Mukohyama, Phys. Rev. Lett. 109 (2012)

171101 doi:10.1103/PhysRevLett.109.171101 [arXiv:1206.2080 [hep-th]].

[132] M. Fasiello and A. J. Tolley, JCAP 1211 (2012) 035 [arXiv:1206.3852 [hep-th]].

– 113 –
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