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Observing Geometric Torsion
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Dynamical (propagating) torsion can be observed by using conventional gravitational wave

detectors such as LIGO, Virgo, LISA and bar detectors. We discuss specific signatures of

different types of torsion, in particular those of vector and mixed symmetric torsion (skew

symmetric torsion cannot be detected in this way). These signatures are specific to torsion

and therefore they can be unambiguously distinguished from those of gravitational waves.

PACS numbers: 04.30.w,04.50.Kd,04.80.Cc,04.80.Nn

I. INTRODUCTION

Cartan-Einstein (CE) theory is a very old topic (for reviews that are still actual see [1, 2]), and yet as far as

we are aware of there has been no proposal to detect (dynamical) torsion via instruments such as gravitational

wave detectors. In this letter we argue that conventional gravitational wave detectors can be used to detect

propagating (dynamical) torsion. The probable reasons why this has not been proposed before are (a) skew

symmetric torsion (which is typically what one means by torsion in Cartan-Einstein theory) does not imprint

any signal on gravitational wave detectors and (b) torsion is not dynamical in Cartan-Einstein theory.

If Weyl symmetry is realized at the classical level then torsion trace vector couples to scalar fields, implying

that scalars source torsion trace [3], modifying thus the original Cartan-Einstein theory. Furthermore, in the

original CE theory torsion figures as a constraint (non-dynamical) field, which exists locally where the source

is, but does not propagate. However, when matter is quantized, one can show that (when one integrates out

matter fields) already at the one-loop level, both torsion trace and skew symmetric torsion become dynamical [2,

4], such that they can propagate through space in form of torsion waves and carry energy and information

throughout our universe just as gravitational waves do. We do not know whether this is realized in nature,

but if true the possibilities are exciting enough to deserve a closer attention of both theorists and observers.

Torsion has been used in literature for various purposes. For example, torsion was proposed as a way of

avoiding the Big Bang singularity [5–7], to drive inflation [8–10] and create perturbations [11] or primordial
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magnetic fields [12], to generate dark matter [13] or dark energy [14, 15]. Apart from being detectable by

gravitational wave detectors, torsion might be also detectable at the LHC [16].

II. DETECTION

Just like in general relativity, where gravitational waves induce a change in distance between two test

bodies described by the Jacobi equation, in a more general geometric theory that contains geometric torsion

the suitably generalized Jacobi equation [3] governs the distance between two test bodies. In Ref. [3] we have

shown that the Jacobi equation reads,

∇γ̇∇γ̇J + 2∇γ̇T (γ̇, J) = R(γ̇, J)γ̇ , (1)

where T (·, ·) and R(·, ·) denote the torsion and curvature tensors, respectively, and∇γ̇ is the covariant derivative

in the direction of the tangent vector γ̇. Usually Jacobi vector fields J are taken to be orthogonal to γ̇

(g(J, γ̇) = 0, where g(·, ·) is the metric tensor), but that in fact is not necessary. In Appendix A we present

details on how torsion enters Eq. (1). Here it is important to keep in mind that - according to the Young

classification of tensors - the torsion tensor T can be decomposed into three distinct tensors,

1. torsion trace vector T ;

2. skew symmetric torsion Σ;

3. mixed torsion tensor Q.

The precise relation is given by Eq. (14) in Appendix A. When this decomposition and Eqs. (11–12) are used

in (1), one gets how different torsion components contribute to the Jacobi field acceleration. In particular, for

torsion trace contributes as (16), skew symmetric torsion as (17) and finally mixed torsion as (18). In what

follows we analyze how different torsion components influence the distance J between neighboring geodesics.

For completeness we first present the well known result for gravitational waves.

In current earthly measurements (and planned measurements in space) any perturbations of spacetime can

be viewed as a small perturbation away from Minkowski metric, ηµν = diag(−1, 1, 1, 1). Throughout this

work we assume that both gravitational metric perturbations hµν(x) = gµν(x)− ηµν and torsion perturbations

Tα
µν(x) are small such that we can linearize in hµν and in Tα

µν . In this linear approximation, to the required

accuracy one can set, γ̇µ = (1, 0, 0, 0)T and γ̇µ = (−1, 0, 0, 0).

Gravitational waves. To detect gravitational waves it is convenient to work in traceless, transverse (TT)

gauge, in which hµ0 = 0, δijhij = 0 and ∂ihij = 0. This is also known as the physical gauge because in this



3

gauge hij is (gauge) invariant to linear coordinate shifts ξµ, i.e. Lξhij = 0, such that in this gauge hij is a

physical (measurable) quantity. From Eqs. (1) and (13) we know that only
◦

Ri
00j components of the Riemann

tensor contribute. Next, in TT gauge
◦

Ri
00j = (1/2)ḧij(t, ~x) and γ̇µγ̇ν

◦

∇µ

◦

∇νJ
i can be approximated by d2J i/dt2

(because the Levi-Civita connection contributes at second order), such that we have,

d2J i

dt2
=

1

2
ḧij(t, ~x)J

j . (2)

Gravitational waves are built from spin two massless gravitons, which come in two polarizations, known as the

plus (+) and cross (×) polarization. For example, if the axes are chosen such that a plane gravitational wave

is moving in the z-direction, then hzz = 0 and,

A) Plus polarization: hxx = −hyy = h+ cos(ωt− kz);

B) Cross polarization: hxy = hyx = h× cos(ωt− kz);

where ω = ck (k = ‖~k ‖) is the frequency of the wave and h+ and h× denote the amplitude of the + and

×−polarized wave, respectively. By making the Ansatz, J i(t, ~x) = J i
(0) + ∆J i

(0) cos(ωt − kz), one can easily

show that to leading order in h+ (h×) equation (2) is solved by:

A) Plus polarization: Jx(t, z) = Jx
(0)

[

1 + (h+/2) cos(ωt− kz)
]

, Jy(t, z) = Jy

(0)

[

1− (h+/2)× cos(ωt− kz)
]

;

B) Cross polarization: Jx(t, z) = Jx
(0)+(h×/2)J

y

(0) cos(ωt−kz)
]

, Jy(t, z) = Jy

(0)+(h×/2)×Jx
(0) cos(ωt−kz)

]

.

These solutions show that the response displacements ∆J i
(0) are in phase with the original wave and that A)

for the plus polarization the relative displacement: ∆L/L = ∆Jx
(0)/J

x
(0) = ∆Jy

(0)/J
y

(0) = h+/2 is given by

one half of the wave amplitude, while for B) for the cross polarization the relative displacement: ∆L/L =

∆Jx
(0)/J

y

(0) = ∆Jy

(0)/J
x
(0) = h+/2 is also given by one half of the wave amplitude but with the axes x and y

switched (explaining the name cross polarization).

Torsion trace. The contributions to the Jacobi field acceleration from the torsion trace vector is given

by (16). Analogous to the contributions of Christoffel connection, the terms in the second line of (16) contribute

at second order and thus can be neglected (this is because J̇α is already of the first order in torsion field), such

that we have,

J̈0 = 0 , J̈ i = J0Ṫ i + J j∂jT
i . (3)

Now from g(J, γ̇) = γ̇ · J = 0 and γ̇µ = δµ0 it follows that (to this order) J0 = 0 (which is consistent with the

first equation in (3)) and the second equation in (3) simplifies to,

J̈ i = J j∂jT
i . (4)
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To facilitate comparison with gravitational waves, we assume that T i can be written as a plane wave moving

in the z-direction,

T i = T i
(0) cos(ωt− kz) . (5)

It is reasonable to assume that torsion wave constitutes a wave of an almost massless field, in which case

ω ≈ ck and the waves are to good approximation transverse, meaning that T i = (T x,T y,T z) with |T z| ≪ |T x,y|

in Eq. (5). [17] Inserting the Ansatz,

J i(t, z) = J i
(0) +∆J i

(0) sin(ωt− kz) , (6)

into the Jacobi equation (4) and making use of (5) results in,

∆J i
(0) = −

c2k

ω2
T i
(0)J

z
(0) ≈ −

c

ω
T i
(0)J

z
(0) . (7)

Let us now pause to discuss this result. Notice first that the phase of the response (7) is shifted by π/2 with

respect to the phase of the original wave (this is to be contrasted with no phase shift in the case of gravitational

waves). This phase shift may be difficult to observe, especially because there may be other sources of phase

shift (such as dispersivity of the medium through which the waves propagate and the massive nature of the

torsion trace). However, if we have some confidence that gravitational wave and torsion wave come from the

same source (which can be established by having a directional information) and that dispersive effects of the

propagating medium are negligible, then this phase shift might be observable. A second difference is geometric:

while gravitational waves induce a response in the relative length along the same transverse direction (for plus

polarization) or along the opposite, but still transverse, direction (for cross polarization), torsion trace induces

a response along the transverse direction which is proportional to the longitudinal direction of the instrument.

Finally third (and probably the most important) difference between the gravitational waves and torsion trace

vector signature is in that the relative displacement (7) is inversely proportional to the frequency/wave vector

(while no frequency dependence is present in the gravitational wave response). This difference may be crucial

when distinguishing torsion wave signatures from those of gravitational waves.

Skew symmetric torsion. From Eq. (17) it follows that, J̈ i = 0 , which immediately implies that skew

symmetric torsion cannot be observed by gravitational wave detectors [18].

Torsion with mixed symmetry. From Eq. (18) we see that,

J̈ i = −2Q̇i
0jJ

j , (8)

where we have assumed that J0 = 0. Since we do not know any mechanism by which dynamical Q can be

generated, [19] we cannot be sure how the wave equation for Q looks like. Therefore the analysis presented in
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what follows represents an educated guess. It is reasonable to assume that – just as any massless waves – the

Q waves are transverse, motivating the following Ansatz,

Qi
0j = Qij(0) cos(ωt− kz) , δijQij(0) = 0 , ω = ck (9)

where Qij(0) is a real traceless 3 × 3 matrix. It is convenient to decompose Qij(0)) into its symmetric and

traceless (SQ

ij(0)) and antisymmetric (AQ

ij(0)) parts, Qij(0) = SQ

ij(0)+AQ

ij(0) . Inserting this into (8) and assuming

the form for J i as in (7) results in,

∆J i
(0) = −

2c

ω

[

SQ

ij(0) +AQ

ij(0)

]

J j

(0) . (10)

We thus see that the response to a passing Q wave is much richer than that of a gravitational wave. To get

a better feeling on what (10) tells us, let us assume that Q is an almost massless field, in which case we have

approximately, Qzi(0) = 0 = Qiz(0) and the only non-vanishing components in (10) are SQ

xx(0) = −SQ

yy(0), S
Q

xy(0)

and AQ

xy(0), implying that SQ resembles gravitational wave, and AQ has no gravitational analogue. However,

there are important differences: (A) a phase shift of π/2 characterizes the Q wave response (10) and (B) the

response to a Q wave is inversely proportional to frequency.

III. SUMMARY AND DISCUSSION

In this letter we show that dynamical (propagating) torsion can be observed by conventional gravitational

wave detectors. More precisely, torsion trace and torsion of mixed symmetry can be observed, while skew

symmetric torsion cannot. Roughly speaking, the relative amplitude change due to passage of a torsion wave

is, ∆L/L ∼ T/k ∼ cT/ω, where T is the torsion wave amplitude and ω and k denote its frequency and wave

number, respectively (more precise results are given in Eqs. (7) and (10)). This is to be contrasted with the

response to gravitational waves of amplitude h, which is of the form, ∆L/L ∼ h. This difference suggests that

torsion waves of larger wave length (smaller frequency) will be easier observed, and hence instruments in space

such as LISA, pulsar timing arrays and measurements of cosmic microwave background are generally more

sensitive to torsion waves. Furthermore, torsion waves induce a response that is delayed by a quarter period,

while no such phase shift is present for gravitational waves. Finally, torsion polarization differs from that of

gravitational waves, see Eqs. (7) and (10).

In this letter we do not discuss production of torsion waves. Since we assume torsion to be dynamical, the

usual suspects – inflation, preheating, phase transitions and violent astrophysical events (such as black hole

collisions, collisions of other compact stellar objects, supernovae, etc.) – can be invoked to be responsible for

production. Because the response is more sensitive at low frequencies, one does not need to produce in inflation
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a (nearly) scale invariant spectrum to make it observable, implying that a blue spectrum of torsion waves from

inflation could be also observable.

Acknowledgements. We acknowledge financial support from an NWO-Graduate Program grant and by

the D-ITP consortium, a program of the Netherlands Organization for Scientific Research (NWO) that is

funded by the Dutch Ministry of Education, Culture and Science (OCW).

Appendix A

In this appendix we present some details on how to analyze the Jacobi equation (1). Jacobi field J represents

a space-time vector field that can be used to characterize the distance between neighboring geodesics in a

congruence of geodesics and it is therefore useful in determining how gravitational wave detectors respond to

a passing (gravitational or torsion) wave.

In a space-time with geometric torsion, metric compatibility condition, ∇µgαβ = 0 implies that the connec-

tion associated with the covariant derivative ∇ can be written as,

Γα
µν =

◦

Γα
µν +Kα

µν (11)

where
◦

Γα
µν is the Christoffel connection (Levi-Civita symbol) and Kα

µν denotes the contorsion tensor defined

as,

Kα
µν = Tα

µν + T α
µν + T α

νµ (12)

where torsion tensor Tα
µν is defined as the antisymmetric part of the connection, Tα

µν = Γα
[µν]. The curvature

tensor R(·, ·) in (1) can be conveniently written in terms of the Riemann curvature tensor,
◦

Rα
µρν = ∂ρ

◦

Γα
µν −

∂ν
◦

Γα
µρ +

◦

Γα
σρ

◦

Γσ
µν −

◦

Γα
σν

◦

Γσ
µρ, and the contorsion tensor K as,

Rα
µρν =

◦

Rα
µρν +

◦

∇ρK
α
µν −

◦

∇νK
α
µρ +Kα

σρK
σ
µν −Kα

σνK
σ
µρ , (13)

where
◦

∇ represents the (general relativistic) covariant derivative taken with respect to the Christoffel connection
◦

Γ.

A 3-indexed tensor such as the torsion tensor T can be decomposed into its trace part T , a skew symmetric

part Σ (which is antisymmetric in all indices) and a mixed part Q (which is symmetric in the first two indices

and antisymmetric in its latter two indices),

Tα
νγ = δα[νTγ] +Σα

νγ +Qα
νγ , (14)

where Qα
αγ = 0, Q[ανγ] = 0. From (12) and (14) it follows that the contorsion tensor can be decomposed as,

Kανγ = 2gγ[νTα] +Σανγ +Qανγ . (15)
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When (14) and (15) are inserted into (1) one obtains contributions from various components of the torsion

tensor to acceleration of the Jacobi field along γ. To leading order in torsion these read,

(

γ̇µγ̇ν
◦

∇µ

◦

∇νJ
α

)

T

=
( ◦

∇JT
α
)

+ γ̇α
( ◦

∇JTγ̇

)

(16)

−2T α
(

◦

D

Dτ
Jγ̇

)

−
( ◦

∇T J
α
)

+ γ̇αTρ

(

◦

D

Dτ
Jρ

)

,
(

γ̇µγ̇ν
◦

∇µ

◦

∇νJ
α

)

Σ

= 0 , (17)

(

γ̇µγ̇ν
◦

∇µ

◦

∇νJ
α

)

Q

= −2γ̇µ
(

◦

D

Dτ
Qα

µρ

)

Jρ , (18)

where Jγ̇ = γ̇µJµ, Tγ̇ = γ̇µTµ,
◦

∇J = Jµ
◦

∇µ and
◦

D/Dτ ≡ γ̇µ
◦

∇µ. These results are used in the main text to

investigate how one can detect torsion waves induced by the torsion trace T , skew symmetric torsion Σ or

mixed torsion Q.

Appendix B

In this appendix we discuss propagation of torsion trace, as it is implied by the effective gravitational action

obtained upon integrating out scalar matter [4]. We shall not discuss here skew symmetric torsion, since it

is not detectable by standard gravitational wave instruments. The equation of motion for dynamical torsion

trace is of the form [4],

θ∇µTµν +∇ν

(

αR + ξφ2
)

= 0 , (19)

where θ, α and ξ are (dimensionless) coupling constants, R is the curvature scalar, φ is the (dilaton) scalar

and Tµν = ∂µTν − ∂νTµ is the torsion trace field strength. To study propagation in the late universe one can

replace covariant derivatives with partial derivatives and the metric tensor with Minkowski metric ηµν . The

linear form of (21) then becomes,

∂2Tµ −
(

1 +
6α

θ

)

∂µ
(

∂αTα
)

+
2M2

P

θ
Tµ = 0 , ∂2 = ηµν∂µ∂ν , (20)

where we wrote ξφ2 = M2
P is the reduces Planck mass squared and we assumed R ≈ 0. From (20) we see that

Tµ is very massive, unless θ is very large, which is what we ought to assume (in order for Tµ to be able to

propagate to large distances). That also means that one expects typically, 6|α/θ| ≪ 1. In Ref. [2] it was argued

that T must be heavy in order to prevent matter fields to excessively decay into torsion. In our model however,

a large value of θ (needed to make T light) also implies a weak coupling (∼ 1/θ ≪ 1) to matter fields. Eq. (20)

resembles that of a massive photon, but with a covariant gauge term added a la Stückelberg. To analyze (20)
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it is convenient to break Tµ into transverse and longitudinal components, Tµ = T T
µ +T L

µ ,T L
µ = (∂µ/∂

2)
(

∂αTα
)

such that (20) becomes,

∂2TL
µ −

M2
P

3α
T L
µ = 0 , ∂2T T

µ +
2M2

P

θ
T T
µ = 0 . (21)

That means that, even though the longitudinal field propagates, it is very heavy and it does not propagate

very far. On the other hand, if θ ≫ 1 the transverse field is light and can propagate far. This is what was

assumed when we analyzed detection of torsion trace in (3–7). While the analysis presented in this appendix

(based on Ref. [4]) illustrates what kind of equation might govern propagation of torsion trace, our analysis of

detection is general and thus not limited to the model presented here.
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