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of the Poincaré gauge theory of gravity. It is shown that by certain restrictions on indefinite

parameters of gravitational Lagrangian the cosmological equations at asymptotics contain

an effective cosmological constant that can explain observable acceleration of cosmological

expansion. The behavior of inflationary cosmological solutions at extremely high energy

densities is analyzed, regular bouncing solutions are obtained. The role of the space-time

torsion provoking the acceleration of cosmological expansion is discussed.
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1. Introduction

The discovery of the acceleration of cosmological expansion at present epoch is the most

principal achievement of observational cosmology at last time [1]. By using Friedmann

cosmological equations of General Relativity theory (GR) in order to explain accelerating

cosmological expansion, the notion of dark energy (or quintessence) was introduced in

cosmology. According to obtained estimations, approximately 70% of energy in our Universe

is related with some hypothetical form of gravitating matter with negative pressure — “dark

energy” — of unknown nature. Previously a number of investigations devoted to dark

energy problem were carried out (see review [2]). According to widely known opinion, the

dark energy is associated with cosmological term. If the cosmological term is related to the

vacuum energy density, it is necessary to explain, why it has the value close to critical energy

density at present epoch (see for example [3]).

http://arxiv.org/abs/0706.1157v2
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The present paper is devoted to investigation of the “dark energy” problem in the

framework of the Poincaré gauge theory of gravity (PGTG), which is a natural generalization

of Einsteinian GR by applying the gauge approach to the theory of gravitational interaction

(see for example [11]). In fact the generalization of GR leading to PGTG is necessary,

if one supposes that the Lorentz gauge field corresponding to fundamental group in

physics – the Lorentz group – exists in the nature (see [4]). According to PGTG the

physical space-time possesses the structure of Riemann-Cartan continuum with curvature

and torsion. The investigation of isotropic cosmology built in the framework of PGTG (see

[4-6] and references herein) shows that the gravitational interaction in PGTG, unlike GR

and Newton’s gravitation theory, can have the repulsion character in the case of gravitating

systems with positive energy densities and pressures satisfying energy dominance condition.

So, the gravitational repulsion effect takes place at extreme conditions (extremely high

energy densities and pressures) preventing the appearance of cosmological singularity in

homogeneous isotropic models (HIM) [5]. According to generalized cosmological Friedmann

equations (GCFE) for HIM deduced in the framework of PGTG, all cosmological solutions

including inflationary solutions are regular in metrics, Hubble parameter, its time derivative

and have bouncing character. Properties of discussed HIM in PGTG coincide practically

with that of GR at sufficiently small energy densities, which are much less in comparison

with limiting (maximum) energy density for such models. By including cosmological term of

corresponding value to GCFE, we can obtain regular cosmological solutions with observable

accelerating expansion stage. However, like GR, the problem of dark energy in such theory

is not solved.

From geometrical point of view, the structure of HIM in PGTG can be more complicated

in comparison with models describing by GCFE. In fact in the case of homogeneous isotropic

models the torsion tensor Sλ
µν = −Sλ

νµ can have the following non-vanishing components

[7, 8]: S1
10 = S2

20 = S3
30 = S1(t), S123 = S231 = S312 = S2(t)

R3r2

√
1 − kr2

sin θ, where S1 and

S2 are two torsion functions of time, spatial spherical coordinates are used. The functions S1

and S2 have different properties with respect to transformations of spatial inversions, namely,

the function S2(t) has pseudoscalar character. The GCFE follow from gravitational equations

of PGTG for HIM together with S2 = 0. Obtained physical consequences of GCFE have

principal character. However, it is necessary to note that gravitational equations of PGTG

for HIM have also other solution with non-vanishing function S2.

The HIM with two torsion functions filled with scalar fields and usual gravitating matter

are studied below in the frame of PGTG in connection with the dark energy problem.

Following to [9], in Section 2 cosmological equations for such HIM are introduced. In Section

3 the solutions asymptotics of cosmological equations is analyzed. In Section 4 the bouncing

character of inflationary cosmological solutions is examined.
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2. Cosmological equations for HIM with two torsion functions in PGTG

At first, let us mention some general relations of the PGTG. Gravitational field is described

in the frame of PGTG by means of the orthonormalized tetrad hi
µ and anholonomic Lorentz

connection Aik
µ (tetrad and holonomic indices are denoted by latin and greek respectively);

corresponding field strengths are torsion Si
µν and curvature F ik

µν tensors defined as

Si
µ ν = ∂[ν hi

µ] − hk[µA
ik

ν] ,

F ik
µν = 2∂[µA

ik
ν] + 2Ail

[µA
k
|l |ν] .

We will consider the PGTG based on the following general form of gravitational Lagrangian

LG = h
[

f0 F + F αβµν (f1 Fαβµν + f2 Fαµβν + f3 Fµναβ) + F µν (f4 Fµν + f5 Fνµ) + f6 F 2

+Sαµν (a1 Sαµν + a2 Sνµα) + a3 Sα
µαSβ

µβ
]

, (1)

where h = det (hi
µ), Fµν = F α

µαν , F = F µ
µ, fi (i = 1, 2, . . . , 6), ak (k = 1, 2, 3) are indefinite

parameters, f0 = (16πG)−1, G is Newton’s gravitational constant. Gravitational equations

of PGTG obtained from the action integral I =
∫

(Lg + Lm) d4x, where Lm is the Lagrangian

of matter, contain the system of 16+24 equations corresponding to gravitational variables

hi
µ and Aik

µ.

Any homogeneous isotropic gravitating system in PGTG is characterized in general case

by three functions of time: the scale factor of Robertson-Walker metrics R and two torsion

functions S1 and S2. Below the spherical coordinate system is used and the tetrad is taken in

diagonal form. Then the curvature tensor has the following non-vanishing tetrad components

denoted by means of the sign ˆ :

F 0̂1̂
0̂1̂ = F 0̂2̂

0̂2̂ = F 0̂3̂
0̂3̂ ≡ A1, F 1̂2̂

1̂2̂ = F 1̂3̂
1̂3̂ = F 2̂3̂

2̂3̂ ≡ A2,

F 0̂1̂
2̂3̂ = F 0̂2̂

3̂1̂ = F 0̂3̂
1̂2̂ ≡ A3, F 3̂2̂

0̂1̂ = F 1̂3̂
0̂2̂ = F 2̂1̂

0̂3̂ ≡ A4

with

A1 = Ḣ + H2 − 2HS1 − 2Ṡ1,

A2 =
k

R2
+ (H − 2S1)

2 − S2
2 ,

A3 = 2 (H − 2S1) S2,

A4 = Ṡ2 + HS2,

(2)

where H = Ṙ/R is the Hubble parameter and a dot denotes the differentiation with respect

to time.

The Bianchi identities in this case are reduced to two following relations:

Ȧ2 + 2H (A2 − A1) + 4S1A1 + 2S2A4 = 0,

Ȧ3 + 2H (A3 − A4) + 4S1A4 − 2S2A1 = 0.
(3)
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The system of gravitational equations for HIM corresponding to gravitational Lagrangian

(1) has the following form

a (H − S1) S1 − 2bS2
2 − 2f0A2 + 4f

(

A2
1 − A2

2

)

+ 2q2

(

A2
3 − A2

4

)

= −ρ

3
, (4)

a
(

Ṡ1 + 2HS1 − S2
1

)

− 2bS2
2 − 2f0 (2A1 + A2) − 4f

(

A2
1 − A2

2

)

− 2q2

(

A2
3 − A2

4

)

= p, (5)

f
[

Ȧ1 + 2H (A1 − A2) + 4S1A2

]

+ q2S2A3 − q1S2A4 +
(

f0 +
a

8

)

S1 = 0, (6)

q2

[

Ȧ4 + 2H (A4 − A3) + 4S1A3

]

− 4f S2A2 − 2q1S2A1 − (f0 − b) S2 = 0, (7)

where

a = 2a1 + a2 + 3a3, b = a2 − a1,

f = f1 +
f2

2
+ f3 + f4 + f5 + 3f6 ,

q1 = f2 − 2f3 + f4 + f5 + 6f6, q2 = 2f1 − f2,

ρ is the energy density, p is the pressure and the average of spin distribution of gravitating

matter is supposed to be equal to zero. Equations (4)–(5) lead to generalization of Friedmann

cosmological equations of GR, which does not contain high derivatives for the scale factor R,

if a = 0 (see below). Moreover, equations (6)–(7) take more symmetric form, if 2f = q1 + q2.

Then by using the Bianchi identities (3), the system of gravitational equations for HIM take

the following form:

− 2b S2
2 − 2f0A2 + 4f

(

A2
1 − A2

2

)

+ 2q2

(

A2
3 − A2

4

)

= −1

3
ρ, (8)

− 2b S2
2 − 2f0 (2A1 + A2) − 4f

(

A2
1 − A2

2

)

− 2q2

(

A2
3 − A2

4

)

= p, (9)

f
[(

Ȧ1 + Ȧ2

)

+ 4S1 (A1 + A2)
]

+ q2 S2 (A3 + A4) + f0S1 = 0, (10)

q2

[(

Ȧ3 + Ȧ4

)

+ 4S1 (A3 + A4)
]

− 4f S2 (A1 + A2) − (f0 − b) S2 = 0. (11)

The system of equations (8)–(11) together with definition of curvature functions (2) is the

base of our investigation of HIM below. Note also that the conservation law for spinless

matter has the usual form:

ρ̇ + 3H (ρ + p) = 0. (12)

In order to investigate inflationary cosmological models we will consider below HIM filled

with non-interacting scalar field φ minimally coupled with gravitation and gravitating matter

with equation of state in the form pm = pm(ρm) (values of gravitating matter are denoted

by means of index “m”). Then the energy density ρ and the pressure p take the form

ρ =
1

2
φ̇2 + V + ρm (ρ > 0), p =

1

2
φ̇2 − V + pm, (13)
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where V = V (φ) is a scalar field potential. By using the scalar field equation in homogeneous

isotropic space

φ̈ + 3Hφ̇ = −∂V

∂φ
(14)

we obtain from (12)–(13) the conservation law for gravitating matter

ρ̇m + 3H (ρm + pm) = 0. (15)

From (8)–(9) follows that

A1 + A2 =
1

12f0

(ρ − 3p) − b

f0

S2
2 . (16)

By using (16) and the formula following from definition of curvature functions A3 and A4

A2
3 − A2

4 = 4A2 S2
2 − 4

(

k

R2
− S2

2

)

S2
2 −

(

Ṡ2 + HS2

)2

,

we find from gravitational equations (8)–(9) the following expressions for A1 and A2:

A1 = − 1

12f0Z

[

ρ + 3p − α

2

(

ρ − 3p − 12bS2
2

)2
]

−αε

Z

(

ρ − 3p − 12bS2
2

)

S2
2 +

3αεf0

Z

[

(

HS2 + Ṡ2

)2

+ 4

(

k

R2
− S2

2

)

S2
2

]

, (17)

A2 =
1

6f0Z

[

ρ − 6bS2
2 +

α

4

(

ρ − 3p − 12bS2
2

)2
]

−3αεf0

Z

[

(

HS2 + Ṡ2

)2

+ 4

(

k

R2
− S2

2

)

S2
2

]

, (18)

where Z ≡ 1+α (ρ − 3p − 12 (b + εf0)S2
2) = 1+α

(

4V − φ̇2 + ρm − 3pm − 12 (b + εf0) S2
2

)

,

α ≡ f/(3f 2
0 ), ε ≡ q2/f (hence, q2 = 3α εf 2

0 ). By using (13)–(16) and the following relation

obtained from definition of A3 and A4

A3 + A4 = Ṡ2 + 3HS2 − 4S1S2, (19)

we find for the torsion function S1 from (10) the following expression:

S1 = − 3α

4Z

[

∂V

∂φ
φ̇ + H

(

Y + 2φ̇2
)

− 4 (2b − εf0) S2 Ṡ2

]

, (20)

where

Y ≡ (ρm + pm)

(

3
dpm

dρm
− 1

)

+ 12εf0S
2
2 .

Then by using formulas (16) and (19) we find from (11) the following second order differential

equation for the torsion function S2:

ε
[

S̈2 + 3HṠ2 + 3ḢS2 − 4
(

Ṡ1 − 3HS1 + 4S2
1

)

S2

]

− 1

3f0

(

ρ − 3p − 12bS2
2

)

S2 −
(f0 − b)

f
S2 = 0 . (21)
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The obtained expressions (17)–(18) for curvature functions A2 and A1 together with their

definition (2) give the generalization of cosmological Friedmann equations for HIM:

k

R2
+ (H − 2S1)

2 =
1

6f0Z

[

ρ + 6 (f0Z − b) S2
2 +

α

4

(

ρ − 3p − 12bS2
2

)2
]

−3αεf0

Z

[

(

HS2 + Ṡ2

)2

+ 4

(

k

R2
− S2

2

)

S2
2

]

, (22)

Ḣ + H2 − 2HS1 − 2Ṡ1 = − 1

12f0Z

[

ρ + 3p − α

2

(

ρ − 3p − 12bS2
2

)2
]

−αε

Z

(

ρ − 3p − 12bS2
2

)

S2
2 +

3αεf0

Z

[

(

HS2 + Ṡ2

)2

+ 4

(

k

R2
− S2

2

)

S2
2

]

. (23)

These equations contain the torsion function S1 determined by (20) and the torsion function

S2, satisfying the equation (21). Obtained equations contain three indefinite parameters:

indefinite parameter α determining the scale of extremely high energy densities [4], parameter

b with dimension of parameter f0 and the parameter ε without dimension. We have to

analyze all these equations in order to investigate HIM with pseudoscalar torsion function

in the frame of PGTG.

3. Asymptotics of cosmological solutions for HIM with pseudoscalar torsion

function

The structure of obtained equations (20)–(23) describing HIM with two torsion functions is

essentially more complicated in comparison with the case of HIM with vanishing function

S2. Note that if S2 = 0 the equation (21) vanishes and the cosmological equations (22)–(23)

are transformed to GCFE containing the only indefinite parameter α [4,5].

Now we will analyze the following question: by what restrictions on indefinite parameters

the cosmological solutions for HIM with pseudoscalar torsion function have the asymptotics

in agreement with actual observations. By taking into account that various parameters of

HIM have to be small at asymptotics, when values of energy density are sufficiently small,

we see from (21), that if |ε| ≪ 1, the pseudoscalar torsion function has at asymptotics the

following value:

S2
2 =

f0(f0 − b)

4fb
+

ρ − 3p

12b
. (24)

Then we have at asymptotics: Z → (b/f0), S1 → 0 and the cosmological equations (22)–

(23) at asymptotics take the form of cosmological Friedmann equations with cosmological

constant:

k

R2
+ H2 =

1

6b

[

ρ +
3 (f0 − b)2

4f

]

, (25)
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Ḣ + H2 = − 1

12b

[

ρ + 3p − 3 (f0 − b)2

2f

]

. (26)

From equations (25)–(26) we see, that parameter b has to be very close to f0, but smaller

than f0. The value of b leading to observable acceleration of cosmological expansion depends

on the scale of extremely high energy density defined by α−1. If we take into account that

the value of 3
4
(f0 − b)2/f = 1

4
α−1(1 − b/f0)

2 is equal approximately to 0.7ρcr (the critical

energy density is ρcr = 6f0H
2
0 , where H0 is the value of the Hubble parameter at present

epoch), then we obtain that b = [1−(2.8ρcrα)1/2]f0. If we suppose that the scale of extremely

high energy densities is larger than the energy density for quark-gluon matter, but less than

the Planckian energy density, then we obtain the corresponding estimation for b, which

is very close to f0. Obtained restrictions on indefinite parameters will be used below for

investigation of inflationary cosmological solutions.

4. Regular inflationary cosmological solutions with two torsion functions

To obtain cosmological solution by integrating cosmological equations we have to use the

equation of state of gravitating matter, which is different at different stages of cosmological

evolution. So, at asymptotics one uses usually equation of state for dust matter (ρ = 0). At

the same time, in order to obtain cosmological solution for inflationary HIM, we will use at

the beginning of cosmological expansion the expressions (13) for energy density and pressure

by including scalar field as one component of gravitating matter. Like GR, the inflationary

stage appears, if the value of scalar fields at the beginning of cosmological expansion is

sufficiently large (φ > 1 Mp, Mp is Planckian mass) [10].

In order to investigate inflationary cosmological solutions at extremely high energy

densities, by using (13)–(15) and (20) we transform cosmological equations (22)–(23) and

equation (21) for S2-function to the following form

H2

{

[

Z +
3

2
α

(

Y + 2φ̇
)

]2

+ 3αεf0S
2
2Z

}

+6αH

{[

Z +
3

2
α

(

Y + 2φ̇2
)

]

×
[

∂V

∂φ
φ̇ − 2 (2b − εf0) S2Ṡ2

]

+ εf0S2Ṡ2Z

}

+9α2

[

∂V

∂φ
φ̇ − 2 (2b − εf0) S2Ṡ2

]2

+ 3αεf0

[

Ṡ2
2 + 4

(

k

R2
− S2

2

)

S2
2

]

Z

− 1

6f0

[

ρm +
1

2
φ̇ + V − 6bS2

2 +
1

4
α

(

ρm − 3pm + 4V − φ̇2 − 12bS2
2

)2
]

Z

+

(

k

R2
− S2

2

)

Z2 = 0, (27)
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Ḣ

[

1 +
3α

2Z

(

Y + 2φ̇2
)

]

+ H2

{

1 +
3α

2Z

(

Y + 2φ̇2
)

− 9α2

2Z2

(

Y + 2φ̇2
)(

Y + 2φ̇2 − 12εf0S
2
2

)

− 9α

2Z

[

3
d2pm

dρ2
m

(ρm + pm)2 +

(

3
dpm

dρm

− 1

) (

1 +
dpm

dρm

)

(ρm + pm) + 4φ̇2

]}

−3α

Z
H

{[

4
∂V

∂φ
φ̇ + 2 (2b − 7εf0) S2Ṡ2

]

+
3α

Z

[(

∂V

∂φ
φ̇ − 2 (2b − εf0)S2Ṡ2

)

×
(

Y + 2φ̇2 − 12εf0S2Ṡ2

)

+
(

Y + 2φ̇2
)

×
(

∂V

∂φ
φ̇ − 4 (b + εf0) S2Ṡ2

)]}

+
3α

Z

{

∂2V

∂φ2
φ̇2 −

(

∂V

∂φ

)2

−6α

Z

(

∂V

∂φ
φ̇ − 2 (2b − εf0)S2Ṡ2

)

×
(

∂V

∂φ
φ̇ − 4 (b + εf0)S2Ṡ2

)

−2 (2b − εf0)
(

Ṡ2
2 + S2S̈2

)}

= − 1

12f0Z

[

ρm + 3pm − 2
(

V − φ̇2
)

− 1

2
α

(

ρm − 3pm + 4V − φ̇2 − 12bS2
2

)2
]

−αε

Z

(

ρm − 3pm + 4V − φ̇2 − 12bS2
2

)

S2
2

+3
αεf0

Z

[

(

HS2
2 + Ṡ2

)2

+ 4

(

k

R2
− S2

2

)

S2
2

]

, (28)

S̈2

[

1 − 12α

Z
(2b − εf0) S2

2

]

+ 3ḢS2

[

1 +
α

Z

(

Y + 2φ̇2
)]

−9
α

Z
H2S2

[

Y + 6φ̇2 + 3
d2pm

dρ2
m

(ρm + pm)2

+

(

3
dpm

dρm

− 1

) (

1 +
dpm

dρm

)

(ρm + pm) +
α

Z

(

Y + 2φ̇2
)

×
(

Y + 2φ̇2 − 12εf0S
2
2

)

]

+ 3HS2

{

1 − 4
α

Z

(

4
∂V

∂φ
φ̇ − 3 (2b + εf0) S2Ṡ2

)

−6
α2

Z2

[(

∂V

∂φ
φ̇ − 2 (2b − εf0) S2Ṡ2

)

(

Y + 2φ̇2 − 12εf0S2Ṡ2

)

+
(

Y + 2φ̇2
)

(

∂V

∂φ
φ̇ − 4 (b + εf0) S2Ṡ2

)]}

−9
α2

Z2
S2

[

H
(

Y + 2φ̇2
)

+ 2

(

∂V

∂φ
φ̇ − 2 (2b − εf0)S2Ṡ2

)]2

−6
α

Z
S2

[

(

∂V

∂φ

)2

− ∂2V

∂φ2
φ̇2 + 2 (2b − εf0) Ṡ2

2
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+
6α

Z

(

∂V

∂φ
φ̇ − 2 (2b − εf0) S2Ṡ2

) (

∂V

∂φ
φ̇ − 4 (b + εf0) S2Ṡ2

)]

−1

ε

[

1

3f0

(

ρm − 3pm + 4V − φ̇2 − 12bS2
2

)

+
f0 − b

f

]

S2 = 0. (29)

Equation (27) can be written as

AH2 + 2BH + C = 0, (30)

where

A =

[

Z +
3

2
α

(

Y + 2φ̇2
)

]2

+ 3αεf0S
2
2Z,

B = 3α

{[

Z +
3

2
α

(

Y + 2φ̇2
)

] [

∂V

∂φ
φ̇ − 2 (2b − 2εf0) S2Ṡ2

]

+ εf0S2Ṡ2Z

}

,

C = 9α2

[

∂V

∂φ
φ̇ − 2 (2b − εf0)S2Ṡ2

]2

+ 3αεf0

[

Ṡ2
2 + 4

(

k

R2
− S2

2

)

S2
2

]

Z

− 1

6f0

[

ρm +
1

2
φ̇2 + V − 6bS2

2 +
1

4
α

(

ρm − 3pm + 4V − φ̇2 − 12bS2
2

)2
]

Z

+

(

k

R2
− S2

2

)

Z2.

From (30) we obtain two H±-solutions for the Hubble parameter

H± =
−B ±

√
D

A
, (31)

where D = B2 − 4AC.

At asymptotics H−-solutions and H+-solutions describe the stages of cosmological

compression and expansion respectively [4]. The transition from H−-solution to H+-solution

takes place when D = 0.

Now we will analyze extremum surfaces in space of independent variables φ, φ̇, S2, Ṡ2,

ρm, in the points of which the Hubble parameter vanishes H = 0. Extremum surfaces depend

on indefinite parameters α, ε, b and in the case of open and closed models also on the scale

factor R. By denoting values of variables on extremum surfaces by means of index 0, we

obtain from (30) the following equation for such surfaces

1

6f0

[

ρm0 +
1

2
φ̇2

0 + V0 − 6bS2
20 +

1

4
α

(

ρm0 − 3pm0 + 4V0 − φ̇2
0 − 12bS2

20

)2
]

Z0

−9α2

[(

∂V

∂φ

)

0

φ̇0 − 2 (2b − εf0) S20Ṡ20

]2

−3αεf0

[

Ṡ2
20 + 4

(

k

R2
0

− S2
20

)

S2
20

]

Z0 −
(

k

R2
0

− S2
20

)

Z2
0 = 0, (32)
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where

Z0 = 1 + α
[

ρm0 − 3pm0 + 4V0 − φ̇2
0 − 12 (b + εf0)S2

20

]

.

The derivative of the Hubble parameter on extremum surfaces obtained from (28)–(29)

is determined as

Ḣ0Z
2
0

{

1 + α

[

ρm0 − 3pm0 +
3

2

(

3

(

dpm

dρm

)

0

− 1

)

(ρm0 + pm0) + 4V0 + 2φ̇2
0

]}

=
[

1 + α
(

ρm0 − 3pm0 + 4V0 − φ̇2
0 − 36bS2

20

)]

×
{

Z0

2f0

[

1

2
(ρm0 − pm0) + V0

−4bS2
20 +

1

4
α

(

ρm0 − 3pm0 + 4V0 − φ̇2
0 − 12bS2

20

)2
]

+3αZ0

[

(

∂V

∂φ

)2

0

−
(

∂2V

∂φ2

)

0

φ̇2
0 + (4b − 3εf0) Ṡ2

20 − 4εf0

(

k

R2
0

− S2
20

)

S2
20

−1

3
ε
(

ρm0 − 3pm0 + 4V0 − φ̇2
0 − 12bS2

20

)

S2
20

]

− 2

(

k

R2
0

− S2
20

)

Z2
0

−108α2εf0S20Ṡ20

[(

∂V

∂φ

)

0

φ̇0 − 2 (2b − εf0) S20Ṡ20

]}

+6α (2b − εf0)S2
20

{

72α2

[(

∂V

∂φ

)

0

φ̇0 − 2 (2b − εf0) S20Ṡ20

]

×
[(

∂V

∂φ

)

0

φ̇0 − (4b + εf0) S20Ṡ20

]

+ 6αZ0

[

(

∂V

∂φ

)2

0

−
(

∂2V

∂φ2

)

0

φ̇2
0

+2 (2b − εf0) Ṡ2
20

]

+
1

ε
Z2

0

[

1

3f0

(

ρm0 − 3pm0 + 4V0 − φ̇2
0 − 12bS2

20

)

+
f0 − b

f

]}

. (33)

In the case of HIM without pseudoscalar torsion function S2 the equation (32) and the

formula (33) simplify and take the form obtained in ref. [4]. As it was noted in [4,6], in

this case the most part of extremum surfaces play the role of bounce surfaces (Ḣ0 > 0)

for scalar field potentials applying in theory of chaotic inflation. The different situation

is in considering case of extremum surfaces (32). By given values of parameters α and ε‡
the bounce (Ḣ0 > 0) takes place only in limited domain of extremum surfaces (32) with

negligibly small values of S20. In the case S20 = 0 the equation of extremum surface (32)

and the expression (33) of derivative Ḣ0 are simplified and take the following form

1

6f0

[

ρm0 +
1

2
φ̇2

0 + V0 +
1

4
α

(

ρm0 − 3pm0 + 4V0 − φ̇2
0

)2
]

Z0

‡ According to the conclusion obtained in Section 3 the parameter b is very close to f0. As result we put

below for numerical calculations b = f0.
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−9α2

(

∂V

∂φ

)2

0

φ̇2
0 −

k

R2
0

Z2
0 = 3αεf0Ṡ

2
20Z0, (34)

Ḣ0 =

{

1

2f0

[

1

2
(ρm0 − pm0) + V0 +

1

4
α

(

ρm0 − 3pm0 + 4V0 − φ̇2
0

)2
]

+3α

[

(

∂V

∂φ

)2

0

−
(

∂2V

∂φ2

)

0

φ̇2
0 + (4b − 3εf0) Ṡ2

20

]

− 2k

R2
0

Z0

}

(35)

×
{

1 + α

[

ρm0 − 3pm0 +
3

2

(

3

(

dpm

dρm

)

0

− 1

)

(ρm0 + pm0) + 4V0 + 2φ̇2
0

]}−1

.

We see from (35) that the presence of Ṡ20 in this expression does not prevent from the bounce

realization. Moreover, if we put φ = 0 and k = 0, from (34) follows that ε > 0.

As an example of inflationary cosmological solutions we will consider below flat HIM

filled with ultrarelativistic matter pm = 1
3
ρm and scalar field with quadratic potential

V = 1
2
m2φ2. For numerical calculations we will use m = 10−6MP and α−1 = 1.2× 10−13M4

P.

To perform the numerical integration of equations (14)–(15), (28)–(29) it is convenient

to transform all variables and parameters entering these equations to dimensionless units

marked by tilde

t → t̃ = t/
√

f0α, R → R̃ = R/
√

f0α,

ρ → ρ̃ = α ρ, p → p̃ = α p,

φ → φ̃ = φ/
√

f0, m → m̃ = m
√

f0α,

H → H̃ = H
√

f0α, S1,2 → S̃1,2 = S1,2

√
f0α.

(36)

The explicit form of equations (14)–(15), (28)–(29) after this transformation is similar to

original form except the fact that parameters α and f0 are cancelled in obtained equations.

Particular numerical solution was found under the following value of indefinite parameter

ε = 10−4. Initial conditions for H̃, φ̃, S̃2, S̃ ′
2, ρ̃m were taken at a bounce as follows

H̃0 = 0, φ̃0 = 25, S̃20 = 0, S̃ ′
20 = 0.001, ρ̃m0 = 0.4,

where the prime denotes the differentiation with respect to t̃. Initial condition for φ̃′
0 was

taken to satisfy (34). Obtained solution is given in figure 1 – figure 4 and includes four

stages: the compression stage (figure 1), the transition stage from compression to expansion

(figure 2), the inflationary stage (figure 3) and the postinflationary stage (figure 4). The

distinguishing features of obtained solution are its completely regular character. Note, that

during inflationary stage number of e-folds for the scale factor is equal approximately to 76.

Similar to GR, the transition to radiation dominated stage can be realized by

transformation of oscillating scalar fields (see figure 4) into particles [11]. Details of such

transition in considered theory require further investigation. In particular, the presence of the

oscillations of the Hubble parameter H (figure 4) can lead to some distinguishing features
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Figure 1. Compression stage.

of the inflationary scenario in the considered theory in comparison with the inflationary

scenario in GR.

After transition to matter dominated stage the further evolution of the Universe in this

theory is the same as in the frame of standard cosmological scenario. The transition to

the accelerating expansion takes place, when the value of effective cosmological constant is

greater than the matter energy density.

5. Conclusion

As it was shown, in the framework of PGTG the gravitational interaction in the case of usual

gravitating systems can have the repulsion character not only at extreme conditions [4,5], but

also at sufficiently small energy densities. The pseudoscalar torsion function in HIM provokes

the appearance of effective cosmological constant at asymptotics of cosmological solutions

that can lead to observable accelerating cosmological expansion. Quantitative agreement

of the obtained result with observations depends on corresponding restrictions on indefinite

parameters α, b and ε from Section 3. Numerical solution for inflationary cosmological model
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Figure 2. Transition stage.

presented at Figures 1–4 conserves its qualitative behaviour by relatively small variations of

indefinite parameters and initial conditions.

The effect of acceleration of cosmological expansion in PGTG has the geometrical nature

and is connected with geometrical structure of physical space-time. Hence, from the point

of view of considered theory hypothetical form of gravitating matter — dark energy — is

fiction.
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Figure 4. Postinflationary stage.
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