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. INTRODUCTION

In a modern theory of quantum gravity (LQG) the Wilson loojeypcrucial role in the con-
struction of the auxiliar Hilbert space. In the euclideamsi@ kinematical space is given by
s = LA(X, du), whereX is the space of classes of Ashtekar-Barbero-Immirzi catimeap to
gauge transformation of fieomosphisms and loc&0(3). Since the LQG works with partially
solved gauge freedom only partial Dirac observables carubatized on the spac#iqs. This
may produce several, perhaps hypothetical, problems bkerece of the crucial geometrical and
physically measurable objects like metric tensor, (co)@&a, or curvature in a final picture. Of
course they can not be represented on the physical Hilbagesgiven by solution of all con-
strains, but the question is whether such representatistseand if the answer idfirmative how
it is related to the standard Lorentztdnop approach. The construction of such representation
is the key point of this article, the question of the relatiith standard LQG is kept for future
research at this moment, but if there is any relation with L.§®n one may expect that it should
be found after solving spatialfi@omorphism plus Lorentz constrains.

The article is organizes as follows. In the secfidn Il theultssof previous work&® are sum-
marized. The point version of the phase space is quantizéteisection IV. These results are
used with help of ideas of von Neumann construction of infilitnensional tensorial product

(summarized in sectidn]V) in construction of wanted repmégt#on in sectiof Ml.

II. PHASE SPACE OF EINSTEIN-CARTAN THEORY

Einstein-Cartan theory is a gauge theory where local Pangeoup plays a role of gauge
symmetry>8. Full configuration space of Einstein-Cartan theory is gibg orthonormal coframe
e (ab,... = 0,1,2 3) and metric-compatible connectidi® = —AP2. The hat oveA?® means
that associated covariant derivative operapris acting on the spacetime manifdidl. Similar
for d. "Hat-free” objectsA?, d, D are reserved for objects acting on the spatial se@idive are
assuming thak is compact orientable manifold, e.g. torus, and variabtendA2® are globally
defined. The second assumption is motivated by the Geroonditior? which guarantees the

existence of the global spinor structure over the manifblf Let fiab be the curvature of the
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connectiond then action of the Einstein-Cartan theory can be writteménform

S= f ——sabcdnbbRa AE A€, (1)

wherex is Newton’s constant (1). We are using spatial negative signature of the metec, i.

(nan) = diag+1, -1, -1, —1). Equations of the motion given by the actidh (1) are

1 . 1

0= o—cance A D = 5 (TS, + Toa0p — T80%) 3. )
1 . 1 . .

0= —— R A= ———G° 3., 3

1617r1<€aIOCd 8mk ¢ (3)

where the torsion components are given by
- Ta 1 Ta eb c
D =T = ETbc A €,

3-volume forms

A

1
Ea €abcueb /\ e /\ e

3!
andG3, is the Einstein tensor
éa _ @ca _}@cd 52
b — cd”b>
R""b N

Equation [2) implies that connectidh is torsion-free and together with metricity 8f we have
that®D is geometrical connection. Equatiofis (3) are Einstein topsof General Relativity.

Let us summarize the results given by previous Wdok the Dirac-Hamiltonian formulation.
(3+1)-decomposition of basic variables are given by expressi@,s,... = 1,2,3 are spatial
coordinate indices)

et = 2%t + E* = 2%t + E3dx?, 4)
Azb= gt 4 AP, (5)

It is useful for our purposes to decompose even the vectordg into tangential and time parts
% = /laat + Ea = /],aat + Egaa. (6)

It should be noted that, # na42. We hope that this notation is not confusing since if we need

to in/de-crease indices then it will be explicitly written usingtmc tensor. Variableg?, 1,, E?
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andE, are not independent and we can express vectdficiamts by using the covectors via well

known formula for inverse matrix

e
ety = —, 7
A= (7)

oe
ek = (9_Eg’ (8)

where
1

e= —capct™ PELESES 9)

3!
is determinant of matrixA®, E2). It is easy to see thaf'1, or E2 = E#(Ey) are projections to time
or spatial subspaces ©EM, respectively.

The HamiltoniarH is given by sum of the first class constraints

w(N)= fﬂ'aNa, (10)

1
R(u) = f m.eatmuaFabcAEd = f 1Ra, (11)
) )

16rk

1 1 1
T(A)= f —%sabch)Aab/\ ECAEY = f ———£abcdA® A EC A DEY = f EAabTab,(12)
) z >

whereN?, 12, A% play role of Lagrange multipliersr, is a conjugate momentum @, D is
SO(n) connecion oveE defined for all vector-forms? via
DV = dv® + A% A VA (13)
andR?® = dA? + 5,4A%° A A% is a curvature ofD.
Symplectic structure is given by Dirac brackets
(E(Q).G(K)) = [QaAK?,
z

(14)
(W), w(N) ) = [WaN?
z

where only the non-trivial brackets are explicitly writtaiWe have used smeared variablegin (14)

given by
E(Q)= | QanE%
I

1
G(K):fGa/\Ka:f—ﬂsabcha/\Abc/\Ed
>

>

W(L)= f W12,



whereQ,, K2, W, are smearing forms ard, is a canonical momentum conjugatedd®d Since
G, has only twelve degrees of freedom(DOFs) per a point theofest® with eighteen DOFs per

point should be established by the second class constran gy Hamilton-Dirac procedure
1
SP= _—ECED A DE° = 0. (15)
8k

In addition let us assume that the orthonormal cofrahis future and righthand oriented, then

the configuration space is given by the infinity-dimensionahifold
Conf = {(1%, E?); > 0, apd®1® >0, 21°> 0, q < 0},

whereq = 7.,E2 ® EP is a spatial metric tensor. The cotangent buritii&onf forms our phase
space with symplectic structure given byl(14).
Here our overview of classical results is finished and we tamn ® build the quantum formu-

lation.

1. QUANTUM PRELIMINARIES

Before we start to construct Hilbert space of Einstein-@&atheory let us focus our attention
to the following simple excersice well known from the quantmechanics of the particle moving
on the half line. Canonical variables of this system ar@nd p, wherex is a position of the
particle on the half linex > 0 andp is its canonical momentum. We can naively represent them
onsZ = L2(R*, dx) aso(X) = X, o(p) = —idyx. The operatorg(x) ando(p) are symmetric but(p)
can not be extended into the selfadjoint operatorz6h In order to see this let us compute its

deficiency indices, wheres = +1. Equations
— 0 —iy® =0
have solutions
WO = ADgex,

Solutiony™Y belongs to the spade€(R*, dx) while ¢ is not square integrable function &1.
Sincen, = 1 andn_ = 0 we haven, # n_. Thus we can not construct the selfadjoint extenstion
of the operatoridy. Hence if one wants to describe the quantum particle on tliditathen one

has to choose fferent set of basic variables. The first observation isktas a groupGL *(R).
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Invariant measure o6L*(R) iS weL+@) = d—)f hence the good candidate for the "momentum

operator is given by(xp) = —ixdy. Indeed, the operat@i(xp) is symmetric orL?(R*, d—;‘).

aX—, . aX—
(W2lo(Xp)yr1) = f%(l/’z)(—lxaxl/’l) = f;x(—lxaxl/’z)l/’l = (o(XP)r2l1)
R+ R*

and its deficiency indices are determined by the followingetipns
—ixdh® —igy® = 0
with solutions
W = ADxe

which do not belong ta.2(R*, &) if A® # 0. Hencen, = n_ = 0 and the operatas(xp) is es-
sentially selfadjoint. The algebra of the basic variabses $pace spanned on operatgrg, o(Xp)

with nontrivial commutator

[o(X). o(xP)] = ie ({x, xp}) = io(X).

As we have seen on this simple exercise the choice of the basables plays the crucial role
in the context of quantization. In the next section we wil to understand a point version of

Einstein-Cartan phase space.

V. POINT ALGEBRA OF BASIC VARIABLES

Let us focus in this section on the introduction of a Hilb@dse 7 associated with an arbitrary

pointx in the spatial sectioll. We will define a point representation of the basic variabétsted
to the canonical coordinates on the phase sfia€enf. Let us mention that all canonical variables
A3(X), E&(x), ma(X), Ga(x) are local functions of the point. No derivatives, no complicated
integrals or any kind of dislocation are presented, henceameexplore them in the single point
x. Before we start, we will introduce spacetime notadion

€ = (e =1%¢ =E),

Pa = (Ph = ma; P = G,
Point version of cannonical momenta are given by

7ta(X") = madxx»

Gg(x’) = G5 0xx»
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wherem, = 7,d°x andG, = %Ggsaﬁydxﬁ A dx’. Since we are working with the point variables,

their canonical relations are given by

{€5, Py} = p0,,

U

and the phase space is defined in accordance to the Eindeim@hase space @sonf, where
conf = {(€}); e = det€}) > 0, 7yl > 0, & > 0, ape’e) < 0.

Thanks to the positivity of the determinamive can see thavnf ¢ GL*(R*) = GL*, anyway the
subsetonf is not a group. Now we will try to construct a representatibthe basic variables. Let

us define a Hilbert spac#; = .77 as a space of square integrable functions ower
de
=12 — 1
Y 4 (conf, 64), (16)

Where‘?g? is left/right-invarianf Haar's measure on ti8L *, which is unique up to the multiplica-
tive constant. d = delde}. .. deJde} is Lebesgue measure on the coordinag} ¢ R* of the

spaceoni. The representationof € is given by trivial multiplication

o€ (€) = gy (e).

It is well known fact that such operators can be extended tiikoselfadjoint operators. The
problems occure with variablgs, since the action af(pg) = —ide given by the "unitary” trans-

formation
ey (&) = y(€, + I;)

maps vectors fron#7 out of this space, therefore the operatofs,) are not selfadjoint (they are
neither symmetric). What we can do with that? We know, thaokihe Stone’s theorem, that
every one-parametric strongly continuous unitary grouglated to the selfadjoint operator and
vice versa. This implies that if we wish to find the selfadj@perators for the momenta or their
functions, we need to find certain groups acting on the spade Indeed, a following statement

is valid.

Let X ¢ R" and &k be the Lebesgue measure BA If U(t) is one-parametric unitary group
acting on the Hilbert space? = L? (X, gdx), whereg > 0 is locally integrable function o, and

if @, is a continuous flow o associated withJ(t), thenU(t) is strongly continuous.
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A proof of the statement is based on the fact that fundt{ion: R — R, defined as

I(t) = f falx,

@7 (K)
is continuous, wher@; : X x R — X is continous mappingK is compact subset o€ and f
is locally integrable function. It is ghicient to prove thafji(1 — U(t))y] is continuous it = 0
for all y € D, where® is some dense subset lif (¥, gdx), since for any convergent sequence
Yn € D — Yo € L? (X, gdx) we have

I(1 = U®))oll < II(L - U)o — ¢n)ll + I(1 = UO)nll < 2lkbo — vl + 1I(1 — U©)ll.

The set of simple functions is denselifi(X, gdx), hence for the general simple function

m
f=) fo.

i=1
wherem € N, f; are complex constant&; c X are compacts an{® = K \ dK; are mutually

disjoint, we have

m
(1 - U(t))f||2=Z fgdx fi f; (XKiXKj + Xp (K) Xy (Kj) — Ay (K)XK; — XK1X<1>;*(K1))

i,j=1
m n

:Z fgdx|fi|2 (XKi + X@;(Ki)) - Z fgdx ﬁfj (X@;(Ki)nKJ + XKiﬂCDt*(Kj)),
i=1 ij=1

what is continuous ih. HenceU (t) is strongly continuous.

Now we can try to find group(s) acting on the spac&. The positive linear groueL " is
not a good candidate, since, as before in the cag®,adhere exists transformatiapfrom GL™*
which does not preserve the spaoef, e.g. rotation in a plane spaned €h e! mapse? — —€°
ande! — —el. The problem is caused by the fact that gr&ip* ignores a metrig,,. Indeed, if
we consider a Lorentz group acting ehvia

a
e - (eA”)beB, (17)
where An)2 = A%, and A% = —AP?3 then we have that*é(conf) c conf and even more the

transformation[(17) is continuous. We can define an operator
a
U-(A)(€) = v ((¢), &) (18)
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which is, thanks to the invariance of the measg’l:eunitary. LetA?® be arbitrary, but fixed, then
Ua(t) = US(tA™)

is the one-parametric strongly continuous unitary grough dne to the Stone’s theorem, we have
that its generator is a selfadjoint operator. We have fixédrary A2, hence we have for every
A? jts own generatorA® has six degrees of freedom, thus there are six independeetajers

L. and we can write
U (Aab) 1AabLab

Lety(€)) € CZ(conf) € 727, whereCg (conf) is the set of albo-times diferentiable functions with

compact support oronf, which is dense iZ’, then we can use Taylor expansion

U@ () = (& + () - ) -
(&) + tA* e deair(€) + to(t, €) (19)

whereo(t, €) is someC~-function onR x conf with compact support oronf for everyt given
by Taylor's expansion remainder. The remaindgre;) can be restricted fdt| < ¢ as|o(t, €))| <

My, where
Ks = Up<sKs,

K: is a support ofo(t, €%) in conf for givent. Since the closure abjs{t} x K; is compact in
R x conf we have that closur; is also compact inonf. Now we can compute the generator
L(A®) = 3A® L, as a limitt — 0
_UHtA®) -1
|L(Aab)l// = Itlng %lﬁ

If we use expansio_(19), then we have
1 L ab ab ac 2 aby , |2 de
- H(u (tA™) — 1)y — itL(A )¢H tA*nebagy + Colt. &) — LA

conf

de

2 —

<M f ,
Ks

1 . . .
L(A®) = EAabLab = —IA®npcelde = —IAnpcd®0s — IAPNESdEs. (20)



Thus we have as a final conclusion that the operataf®), given by previous expression, with
domainD(L(A%)) = CZ(conf) is essentially selfadjoint for every®.

This is not everything what the Lorentz group can show usuketse again 81)-decomposition
€ = (4%, EY). As we already know® are components of vectdy in the framee,. Since the time
vector can be choosen arbitrary there is no reason to halredreablest?, EZ together. Hence we

can work withA?, E2 independently. Let us consider Lorentz group actingdwia flow
O}(A) 1 (A%, E%) — (1, E) = (€20, ), (21)
then the unitary group corresponding to this flow is
D) WL E) - (@ B, @)

whereeis a determinant of transformed variab(ég5 Ea). The corresponding selfadjoint generator

is given by
LD(A) = —iAPnped®d e + 21A%n,c1a15. (23)
The Lorentz action oit? via flow
OF(A) 1 (A%, E%) - (1 E) = (22, (¢M)iEY) (24)
gives unitary group
UF(A) : w(4,E) — (4, e‘A”E)g, (25)
whereeis again a determinant of transformed variables. The geordasa
LE(A) = —iA®npcESdga + 2iA%nncES. (26)
Let us compare these results withl(20), we can see that
Lap =LY + LY

as one expected. Generatof8, L&) play an important role, since, as we will see in a while, their

classical analogues can be used as coordinates on the plaase s
Lorentz group does not change lengths of the vectors, whian be arbitrary long. We need
to cover this feature a¥;. Let us define a following transformation

-, B2 ER
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Let U™(N) be its unitary operator defined via
UT(N)y (A%, E) = y(e" 2% ES
and its selfadjoint generator is
= —i1%0,a. (27)
A final transformation acting on the spaae:f is given by groupGL *(R3) = GL** acting on the
spatial indicesr. Let 65 be an arbitrary real matrix, then the transformation given b

- 22 E:- (eo)i E; (28)

a

represents the change of spatial fraige— (eo)ﬁc’)ﬁ. Since the transformation does not change a

signature ofy,; = nabEf;Eg, we have that®onf c conf and operators
UA(0)y (1%, E2) = (/la, (&) E;)
are unitary and their selfadjoint generators are
A = —iE30¢s.
Let us summarize our situation. We have constructed fanfilyngary transformation with action
in the spaceonf. Now it is a time to find classical variables associated wigirtgenerator. Let
us focus on the last four families of the generators. We have
LO(A) = A1ppod’ma,
m(N) = NA%r,,
LE(A) = A%y, ESGY,
A(B) = 6 ESGs.
Quantum commutators and their classical analogues are
[A(K), ¢(N)] = iA(NK) & {A(K), w(N)} = A(NK)
|40, LO(A)| = idkAn) & {A(K), LD(A)} = A(kan),
[LD(A), LOA)] = —iLD(ARA = A'pA) & (LD(A), LO(A)) = ~LD(ARA’ = A'pA),
[E(h), A(B)] = iE(B(h)) < {E(h),A(6)} = E(6(h)),
[E(h).LOA)| = iE(Ah) & {E(h), LO(A)} = E(Anh),
[LEA), LOQ)] = iLBAnA" - A'gA) & (LOA), LO@N)} = -LEO(ARA’ - A'pA),
[A(B), A(0')] = —IA(B8’ — 6'8) « {A(B), A()} = —A(BO’ — 6'6),
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wherei(K) = ka1?, E(h) = h?E? and(e(h)): = 03HL.

As we can see we have constructed a selfadjoint represamtatithe variables on the space
A = L2(conf, ®). The question is whether these variables seperate poiriteeqfhase space.
Now, we will show that the answer istamative. The variableg?, E? are clear, so let us turn our

attention orLy), m, L), A3. We have

ng/laEg = _(ﬂ)zﬂaEg + /laﬂ'anbc/lCEg,
T = ﬂa/la,
LOAED = q,4GhA° — nap*ESGEED,
Ag = E;Gg,

where @)? = 7.0121°. As we can see, we can invert these equations and we can gxjrasnical
momentar,, GZ as functions of new variables. The projected variabl@&2ED, LEEZED are not

independent. They play similar roles like angular momemtgLiantum mechanincs. So, we have

found representation of algebra of new variables.

V. TENSOR PRODUCT HILBERT SPACE

In the previous section we have constructed the Hilbertesg&cassociated with the point
X € X as#; = L2 (cony, ¢,), Wheree = ‘f;? andx means that it is taken at the pomtA main goal
of this section is to briefly summarize ideas of von Neumaartiele on tensor product of family
of Hilbert spaces labeled by index set of arbitrary cardipgtietails can be found #). In our

case we can formally write
% = ®xe2%<-

We have a selt77; )« of Hilbert spaces’s labeled by points bf A sequence of the stat@g, }xes
belongs to the Cartesian produ#f* = x,s.7%, but this space is too large, we need to pick up a

certain subset ofZ*. Let us call{yy}x.s a C-sequencefi a product

Mscheesll = | | lhosdis (29)

XeX

converges. LeCs = {{yxlxes: C-sequencebe a set of alC-sequences. A value of the product
limit (29) can be positive or zero. We need some criteria onergence of such limits. They can
be found in {9).
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Citation(a - index and is an index set with arbitrary cardinality):
Lemma2.4.1.(p.13):

If all z, are real an@ 0, then
(D T1.e Z. converges if and only if eithey, ., Max(z, — 1, 0) converges, or song = 0
(I [T,e z. converges and ig O if and only if Y., |z, — 1| converges and afi, # O.

Lemma2.4.2.(p.15):

If the z, are arbitrary complex numbers, thghz, converges if and only if
() either[],¢ 1z.| converges and its value is O,

(1) or [, 1zl converges and its value 0, andy’,, |arcusz,| converge¥
Definition2.5.1.(p.18):

[T.e Zo is quasi-convergent if and only [ .., |1z,| is convergent. Its value is
(D) the value of[],, z, if it is even convergent

(I 0, if it is not convergent.
End of citation.

The reason why we need a notion of quasi-convergence isftfig}ics, {#xlxez € Cs then
product]],.s(¥«lmx)x iS Only quasi-convergent in general.

Now we can define a functiongk associated withi/, }xes 0N the seCs of all C-sequences as

Us((phes) = | @l

XeX

where{¢ylxes € Cs and product is taken in the sence of quasi-convergence.oltldhbe noted
thaty, does not imply thafyx = O}yes, €.9. forC-sequencéyy, = O, {xlxex\ixo)} ItS @ssociated

functional vanishes on wholg;. Let us define a complex linear spag&? of such functionals,
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where

(al/’z + b¢2)({wx}xe2) = a‘ﬁE({wx}er) + b¢2({wx}xe2)'

We can define an inner product 6 as follows

Wslgs) = | [Wnldx. (30)

XeX

The closures = ?”ZO in the topology defined via inner produ€t {30) is a Hilberteapand we
call it as a tensor product of the sequefég }y.s

I = By I, (31)

We wish to characterize the spagg& is some way. In order to do so we need to introduce a
notion of Cy-sequence and classes of equivalence on them. A sequgnee is aCy-sequence
iff Yyes |||¢x||X - 1| converges. Evergy,-sequence is €-sequence and eversequenceéyy yes
is a Cp-sequencefi its functionalys # 0. We will say that twoCy-sequences are equivalent
{Undxes ~ {Bxdxes Iff Txex [(Unldn)x — 1] converges, what is equivalent to the mutual convergence of
both series,cs [[¥x— /%, Tes | I (Wxldx)x)|, whereJ(2) is the imaginary part a. Hence we see
immediately that iffyy}xes, {dx}xes differ in finite number of points af then they are equivalent.
Let us label equivalence classesybgind a set of all equivalence classesihby C(74).

Now we can finish this bries summary:dfvith the following statement. If tw&€,-sequences
{Uxixes, {dx)xes OF their functionalys, ¢x belong to two equivalence classg¥s) # y(¢s), then

(Wslgs) = 0. If y(¥s) = y(¢x) and(yslgs) = O then there existgy where(yy,|éx,)x, = 0. Hence
we see thav#. can be decomposed as

G = Byes(i) (32)

where.7Z; is a Hilbert space associated with
We will use a following example later. L&tz = {K,}x.z be sequence of compact sets where
Ky c conf,. Ky can be identified with Cartesian productsKy. Let us define a sets of all

sequences of compact sets with unit measure as
Jl((&mf) = {KZ = {Kilxez 1 VX € X5 ex(Ky) = 1}
We can associate witky € J'(Conf) an element i via

Yks = (XK Ixez- (33)
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Let Ky, K € JY(Conf) ando c X be a set of alk whereK, # K;. We will use a notatior = (€9),
& = (eﬁ|x). Lete € Ks \ K;. If we suppose that fo¥x € o exists an open neighbourhood of

& € Uy, with propertyU, c K, \ K} ande,(U,) > 6 € (0, 1) ando is not a finite set then

i) = [ Je(KenKp) =0,

XeX

since 1> 1— 6 > 1 — e (Ky \ K) = ex(Ky N KY).

VI. QUANTUM ALGEBRA OF BASIC VARIABLES

Now it is time to construct a representation of the basicaldes of the Einstein-Cartan theory.
Inspired by the point version of the phase space we will nakwath canonical variables, but we

will construct a representation of the following variables

AK) = f Kad?,

Mm:fﬁ%w%

>

ﬂ(N):fN/laﬂ'a,

>

E(H) = fHa A E?,

>

L(E)(A) — anbanEC A Ga,

>

A@®) = f 0(E?) A Ga.

>
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where 6(E?) = E202dx?, with similar algebra as in the point version (trivial bratk are not

written)

{a), =(N)
{a00, Lo
{L(»(A), Lw(Ar)}*
(EH), A@)}
(EH).LOW)
(LOQ), O = -LOAnA" - A'5A),

A(NK),

A(kAn),

—LW(ARA’ — A'gA),

E(6(H)).

E(AnH),

(A(0).A(0)) = -A(00" - 0'0)

Before we start to costruct a representation of this algefeaneed to discuss properties of a
certain family of operators. L&, be a selfadjoint operator with action o#; with dense domain
D(Ay). We wish to represent it on the spag&. Sincesss ~ J4 ® 76, We can use theory of
finite tensor product of bounded operator and we see thaession

Us(t)ys = {Ux()yy; {l/’y}y#x}’ (34)

whereys is C-sequence, defines an unitary operator on wh@e which is strongly continuous
att. Us(t)yy determines a generatds associated with it an@®(Asz) > Do(Ax) = Spanyy ®

Us\ixs Ux € DAL, Us\(x € %@C\){x}}- Restricted operatotkz| is essentially selfadjoint and acts

Do(Ax)
onC-sequencegs € Dy(Ay) as

Az|30(AX)l/’z = {Axtrx Wy evx -

Let us start with variables, (k) = 1*(x)k*(x), Ex(h) = E2(x)hZ(x). Both of them are acting on
the space’;, hence we can represent them via previous constructioneospidceszs. by formula

for C-sequencé@s € Cs
Q(/lx(k))lﬁz = {ﬂx(k)'ﬁx(e); {Wy}yeZ\{x}},
(Ex())vs = {Ex(h)un(®); (Wylyer\a)-

We have used the actions of the gro§i3" (i) for 42, SO*() for E2, R* andGL "3 on the
spaceconf. Now, we wish to generalize this idea to Einstein-Cartaothelet G, be one, same

for all x, of the previous groups acting on the spacef, and let®} be flow associated with
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some one parametric subgroup®f. Then we have a group* = x,.sGy acting on the space
Conf = Xyesconf, by the flow®Z(e) = {®}(e)lxest2 Letys be aC-sequence, then an operator
defined for any¥ € J#?°

melN ) melN )
US(t)¥ = Z ¢ Uty = Z cilua@e))
j=1 j=1
whereV = ZTﬂ"I cjwé and Wé are C-sequences, can be extended to the one-parametric unitary
grup acting on whole’z. We know nothing about its continuity at the moment.
Let Ky € J}(Conf) be a constant sequence of compact setsyke&K, = K, and letdf = @, for

VX € o c Xand®} =id for Vx € X \ 0. Let us explore an expression

u) = | (1 - V) ||

It is clear by definition, thati(0) = 0. Lett # 0, then we can write

u(®) = (e | (L= UZ) (1= UF) o) = 2 = (s | UZs) = e [ U )

The last two terms are zero in the case whrég not finite due to the arguments from the end of the
previous section. Hence we have, as a consequence, thatamr(t) is not strongly continuous
in the general case. Therefore there does not exist seifiagdjenerator olU*(t) in the general
case.

What we can do is to explore the case when the gi@tcts onConf nontrivially only on
some finite subset c X. Let us start witho- = {x}. This case were explored few rows above
and point generatofB, of such action were found in section 2.2. Generalizatioméodase when
o = {Xy,...,Xn} is clear and the resulting generatomis= } s Tx.

Now we can write explicitly the generators of our groupsragton theConf. They are

a(N) = > =iNX)A2(X)3,000,

XeX

L(/l)(A) = Z —iAab(X)ch/lC(X)aﬂa(X)’

Xex

A(0) = Z —i6 () EZ(X)e(0)»

Xex

LE@) = " -iA(X)m0cE2(X)Ies0-

XeX
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where N(x), A2°(x), 62(x) has support on a finite set. Commutator algebra of basictgman

observables is generated by

(%K), 7(N) | = ie(4x(NK)),
|o(4(). LYA) | = io(ax(kan)),
[LOA). LOA)] = —ILD(ARA" - A'nA),
|o(Ex(n)). A©)] = io(Ex(0(h))),
|o(Ex(M). LO@)|=  io(Ex(Anh)),
[LOQ). LOW)|= -iLEOAnA - A'A).

Hence we see that we found representation of classicablesiaf Einstein-Cartan theory.
Really? This statement needs some additional explanafibe.first thing which should be
taken into account is given by the fact that on classicall lexewere working with smooth vari-
ables @Q3(x), E3(x)) as is usual. Since on the quantum level we were lookingdprasentation
by von Neumann infinity-dimensional tensor product of pdiitbert spaces where all points are
independend the spagenf is no longer space of smooth variables but rather the spazzatakian
productConf = Xycsconf,. Tangent spac&Conf in e € Conf is isomorphic taF (T, R16) = (Rlﬁ)2
what is the space of all function ahvalued inR*®. SpaceConf andF(Z, R*®) are equipped with

standard Tychonov topology. Topological dual of spatE, R) is given by linear mappings

a(f) = ) oA f2(X), (35)
Xex
whereajs(x) has support on finite subset Bf We can write formally instead of (85) a following
expression
a(f) = f Zag(x’)éxx, flf‘(x)dg’x = f ag A &+ f ay A T2, (36)
Y X'ex Y 5
where

aa = Z ag(x/)éxxl d3 X,

x'ex

1
aa: Z Ea(al(xl)dxx’gaﬁryd)(ﬁ /\ dxy’
X' €X

fa= fa

fa= fagye
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Since the spack*(Z, R1®) isomorphic taT;Conf we can identify

Tra: Z ﬂ-a(x/)6xxl d3X,

x'ex

Ga= Z G (X )Sxx Eapy X A dX.

X'€x
Now, let us explore a reducibility of this representatiors We already know, the spacé:
can be decomposed into the mutually orthogonal subspdgelethby classes of equivalences of
Co-sequencef(.7#). Our representation does not mix this decomposition h@nsaeducible.
Number of irreducible representationsiff is equal to the number of equivalence classes8n
what is "huge” infinite, e.g. for every elementlozf(conf, ‘f??) there exists its own equivalence class,
etc. One may partially save the situation by using unitargie@ of basic variables and represents
operatorsuéz(g), whereg = N for R*, etc., instead of its generatorgs), with action on whole
Conf which mix orthogonal decomposition o#. Anyway for K, K2 € J'(Conf), whereK! is
built by simple connected sets aid is built by union of two simple connected sets, there is no
element ofGy which mixes their equivalence classes and reducibilityrofary representation is

still too huge.

VII. COMMENTS

We have defined a point version of the phase space of EinGmitan theory. Basic variables
of the point phase space were successfully quantized. Tassks were used for construction of
field variables representation via von Neumann constractianfinity dimensional tensor product
of point Hilbert spaces.

The problem of the presented construction lies in the fduat the canonical momenta,
does not transform as a tensor under local Lorentz transfttomsince it is linear funcional of
connection potentiah?. Dirac bracket betweef, and Lorentz generatdr® generates the
tensor type transformation @,. In other words Lorentz transformation generatedly is
not physical transformation but rather only the transfdramaon the absract phase space. The
way how to go throught this obstacle is to find a tensorial c&za momentum let saf?,. In
the second paper of the miniseries started by wark be shown know how looks the physical
Lorentz generators. They are given by torsion contraigs Which can be formally written as
T ~ EAdE + E A G. The basic idea of construction of tensorial momenta is wifim a formal

form P ~ AdE + G, whereA depends only oi, E.
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Another open problem is given by the question how does loekgtiantum representation
of the first class constraints. This should be explored adye$ince our quantum configuration
spaceConf is the space of all orthonormal coframes o¥eand it does not look that the exterior
derivative operator d can be defined on such space. Perhapetigpe ideas can be used here.

Problem of the huge reducibility is familiar for field theesi If we recall the quantization of
scalar (Dirac, Standard model,...) fields then the simitabjfgm was occured there and it was
solved by finding the correct vacuum by superselection rivergby condition that the vacuum
should be invariant under Poincaré group. Of course quamxavity has no Lorentz invariant
backround or something like that since we are working withtheory where the geometry of
the spacetime is dynamical quantity. But we are alreadymasguthat the final physical Hilbert
space is invariant under local Poincaré transformatisinse the constrains generating such gauge
symmetry are driven by EOM to vanish. So the question is wérdtie condition of vanishing the
local Poincaré generators will pick up the correct repmnést@on subspace of general Hilbert space

as itis in the case of usual quantum field theory on Minkowskioound.
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