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ABSTRACT

The dynamics of a massive, relativistic spinning particle could be described either by the Dirac

equation or by the Kerr solution of Einstein equations. However, one does not know a priori as

to which of the two systems of equations should be used in a given situation, and the choice is

dictated by experiments. It is expected that the Dirac equation holds for microscopic masses, and

the Kerr solution for macroscopic masses. This suggests that Einstein gravity and the Dirac theory

are limiting cases of a common underlying theoretical framework. Here we propose that such a

framework is provided by a geometric theory of gravity on a Riemann-Cartan spacetime, which

includes torsion. The Dirac equation emerges as the torsion dominated, gravity-free limit of this

framework.
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The dynamics of a relativistic spinning elementary ‘particle‘ of mass m is described by the Dirac

equation. Or (keeping in view also the spacetime geometry) it could be described by the Kerr

solution of Einstein equations. Which of the two? We do not know a priori, except through

results of experiments and astronomical observations. We naively expect the answer to be Dirac

equation if m ≪ mP l and Kerr geometry if m ≫ mP l, where mP l is Planck mass ∼ 10−5 grams.

However, the scale mP l appears neither in Einstein equations nor in the Dirac equation, strongly

suggesting that there should be an underlying theory which does involve mP l, and to which the

Dirac equation/Einstein equations are the small mass/large mass approximation, respectively. The

purpose of the present essay is to propose the idea for such an underlying framework, in the form

of a (gravity + torsion) theory on a Riemann-Cartan spacetime. Quantum theory in the form of

Dirac equation emerges from the underlying theory when torsion dominates gravity. The Dirac

quantum state is identified with a complex torsion [1].

A significant motivation for this specific form of the underlying theory comes from noting the

following contrast amongst the symmetry groups that underlie the Dirac equation and Einstein

equations. Elementary quantum particles are represented by irreducible unitary representations

of the Poincare group (which includes both Lorentz boosts and translations), and are labeled

by mass and spin. On the other hand, in general relativity, the structure group acting on the

tangent space of a manifold is the Lorentz group, and translations are not included. This intriguing

disparity is resolved by introducing torsion, which restores the Poincare group in relativistic gravity,

because torsion bears a relation to translations similar to the relation between curvature and

linear homogeneous transformations [2]. Bringing quantum theory and gravity into a common

framework seems more tangible then, if the gravity theory includes torsion. However, torsion tends

to get ignored in theoretical investigations, and naturally so, because there is little observational

evidence for it. Our essay sheds new insight on how torsion can be retained, and used to provide

a bridge from the Dirac equation to Einstein gravity.

Einstein gravity, treated as a metric theory of gravity, and expressed as

Gµν + Λgµν =
8πG

c4
Tµν (1)

looks very different from the Dirac equation

i~γµ∂µψ = mcψ (2)

However the two theories start to look strikingly similar in the Newman-Penrose tetrad formal-

ism [3, 4], in which the fundamental quantities are not the metric, but a tetrad of four null vectors,

l, n, m and m̄, where the former two are real, and the latter two are complex conjugates of each

other. The directional derivatives associated with the tetrads are denoted by the special symbols

(equality stands for corresponding derivative)

D = l, ∆ = n, δ = m, δ∗ = m (3)

Via the definitions of the covariant derivatives of the tetrads, there arise in the formalism twelve

important complex quantities, known as spin-coefficients, and denoted by the symbols [5]

κ, σ, λ, ν, ρ, µ, τ, π, ǫ, γ, α, β (4)
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The twenty independent components of the Riemann tensor include the ten Ricci tensor compo-

nents, described by the four real and three complex quantities

Φ00,Φ11,Φ22,Λ,Φ02,Φ20,Φ01,Φ10,Φ12,Φ21 (5)

and the ten Weyl tensor components described by the five complex quantities

Ψ0,Ψ1,Ψ2,Ψ3,Ψ4 (6)

The Riemann tensor can now be elegantly expressed in terms of the spin-coefficients and their

derivatives, via eighteen complex first order equations, known as the Ricci identities. These equa-

tions typically take the form [5]

Dρ− δ∗κ = (ρ2 + σσ∗) + ρ(ǫ+ ǫ∗)− κ∗τ − κ(3α + β∗ − π) + Φ00 (7)

with every equation involving a pair of derivatives of the spin-coefficients, products of spin-

coefficient pairs, and components of the Ricci / Weyl tensor. There being thirty-six such real

equations, and there being only twenty independent components of Riemann, the eighteen Ricci

identities obey sixteen constraints, known as eliminant conditions. The Ricci components in these

equations are provided by the chosen field theory of gravity, for instance, Einstein gravity.

Let us now compare the Ricci identities with the Dirac equations in a curved spacetime, written

as four equations for the pairs of spinors F1, F2, G1 and G2, in the Newman-Penrose formalism [5]

(D + ǫ− ρ)F1 + (δ∗ + π − α)F2 = iµ∗G1 (8)

(∆ + µ− γ)F2 + (δ + β − τ)F1 = iµ∗G2 (9)

(D + ǫ∗ − ρ∗)G2 − (δ + π∗ − α∗)G1 = iµ∗F2 (10)

(∆ + µ∗ − γ∗)G1 − (δ∗ + β∗ − τ∗)G2 = iµ∗F1 (11)

where µ∗ = mc/
√
2~. If the four spinor components were to be suitably identified with four of the

spin-coefficients, and if the mass terms on the right hand side of the Dirac equations are taken to

be proportional to suitable components of the Ricci and Weyl, the formal structure of the Dirac

equations becomes identical to the Ricci identities. Thus we propose the identification [1]

F1 =
1

√

lp
λ, F2 = −

1
√

lp
σ, G1 =

1
√

lp
κ∗, G2 =

1
√

lp
ν∗ (12)

and since we are interested in recovering the flat spacetime limit of the Dirac equations from the

Ricci identities, we set the remaining eight spin cefficients to zero:

ρ = µ = τ = π = ǫ = γ = α = β = 0 (13)

These are precisely the eight coefficients which appear explicitly in the Dirac equations (8) - (11). It
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is remarkable that there is a complementarity with general relativity [GR]: all black hole solutions

in GR belong to Petrov type D and can be constructed in a tetrad frame in which these eight

spin-coefficients are non-zero, whereas those of (12) vanish [5].

By taking appropriate combinations of pairs of Ricci identities, using the correspondence (12),

and identifying the Riemann components with the right hand sides of the four Dirac equations

one can recover the Dirac equations from the Ricci identities. However, the sixteen eliminant

conditions which constrain the Ricci identities must be accounted for, and this results in undesirable

constraints on the Dirac spinor components, thereby rendering this first attempt unsuccessful [1].

However, there is a physical situation when the Riemann tensor has exactly thirty-six indepen-

dent components, and there are no eliminant conditions to be imposed on the Ricci identities. This

is when spacetime has torsion [Riemann-Cartan spacetime], torsion being the antisymmetric part

of the connection. This ties well with there being eighteen complex Ricci identities, and now the

recovery of Dirac equations from the Ricci identities proceeds smoothly.

The connection is now given by the general form

Γ λ
µν =

{

λ
µν

}

−K λ
µν (14)

where
{

λ
µν

}

is the Christoffel symbol of the second kind, and K λ
µν is the contortion tensor sig-

nifying the presence of torsion. The Ricci tensor is not symmetric, and has six additional com-

ponents, described by the three complex quantities (Φ0,Φ1 and Φ2). The Weyl tensor has ten

additional components, described by the real quantities (Θ00,Θ11,Θ22, χ) and the complex quan-

tities (Θ01,Θ02,Θ12) [6].

Moreover, the spin coefficients now have an additional term due to torsion, which we denote as

κ = κ◦ + κ1, ρ = ρ◦ + ρ1, etc. (15)

where the first term corresponds to the torsion free part and the second term corresponds to the

torsion component of the spin coefficients. The Ricci identities are also modified when torsion is

included, and a typical example is [6]

Dρ− δ∗κ = ρ(ρ+ ǫ+ ǫ∗) + σσ∗ − τκ∗ − κ(3α + β∗ − π) + Φ00

− ρ(ρ1 − ǫ1 + ǫ∗1)− σσ∗1 + τκ∗1 + κ(α1 + β∗1 − π1) + iΘ00 (16)

Working under the conditions (13) the Ricci identities can be solved for the components of the

Riemann in terms of the four non-vanishing spin-coefficients and their derivatives, and in particular

they can be solved when the torsion-free (symmetric) part is exactly zero. We call this the gravity-

free, torsion dominated limit. This is the Minkowski flat Rieman-Cartan spacetime with torsion

and the one of interest to us here. Now the connection equals the contortion tensor, i.e. κ = κ1,

σ = σ1, λ = λ1 and ν = ν1 are the only non-zero spin-coefficients. Assuming the correspondence

(12) and using appropriate pairwise combinations of Ricci identities, the Dirac equations follow

from the identities, provided the Riemann tensor satisfies the following four conditions [1] :

Φ20 + iΘ20 +Φ01 + iΘ01 −Ψ1 − Φ0 = iµ∗κ
∗ (17)
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Φ21 + iΘ21 +Φ2 −Ψ3 +Φ02 + iΘ02 = iµ∗ν
∗ (18)

iΘ12 − Φ12 + iΘ00 −Φ00 +Φ∗
2 −Ψ∗

3 = iµ∗σ (19)

iΘ10 − Φ10 − Φ∗
0 −Ψ∗

1 + iΘ22 − Φ22 = iµ∗λ (20)

By virtue of the solutions of the Ricci identities, these in fact are the same as the Dirac equations (8)

- (11). What they amount to is a new set of field equations, different from Einstein gravity, wherein

the Riemann is determined by a mass term proportional to a complex torsion on a Minkowski flat

spacetime, and the complex torsion is conceptually the same object as the Dirac quantum state.

What have we achieved thus? We are proposing that a Riemann-Cartan geometry which in-

cludes gravity as well as torsion is more fundamental than both Einstein gravity and Dirac theory.

It restores the fundamental status of the Poincare group across the board. Through the Ricci iden-

tities, the Riemann tensor is expressed in terms of the spin-coefficients and their derivatives, and

the Ricci and Weyl are to be determined by a choice of equations of motion. One extreme is the

torsion-free, gravity dominated limit, namely Einstein gravity, which presumably is the m ≫ mP l

case, which involves G but no ~. The other extreme is the gravity-free, torsion dominated limit,

namely the Dirac limit [Eqns. (17) - (20)], presumably the case m ≪ mP l, which involves ~ but

not G. Thus, once we accept to identify a complex torsion with the Dirac quantum state, the Ricci

identities for a Riemann-Cartan spacetime become a common source for Einstein gravity and Dirac

equations. The Dirac equation, and in this sense quantum theory itself, is seen as an emergent

geometry where complex torsion lives on a Minkowski flat spacetime.

In the domain between Einstein gravity and Dirac theory, lies unchartered territory, where

m ∼ mP l, and both G and ~ make their appearance. The source for the Riemann tensor is a

combination of the matter energy-momentum tensor and the complex torsion term of the type

imcκ/~, with the latter being possibly related to intrinsic spin. The theory bears resemblance to

the Einstein-Cartan-Sciama-Kibble theory (for a review see [7]), with one important difference: ~

is now explicitly present in the field equations, and torsion is complex. It is possible that the non-

relativistic limit of the theory is a non-linear Schrodinger equation which might help verify/rule

out the hypothesis that the collapse of the wave-function during a quantum measurement is caused

by gravity. This particular feature is amenable to currently ongoing experimental tests [8] and its

experimental investigation serves also as a test for the idea proposed in this essay.

During the last century, many eminent physicists have emphasized the highly restrictive nature

of a symmetric connection, and the possible fundamental significance that the skew-symmetric part

of the connection (torsion) might hold. Noteworthy amongst them is Schrodinger, who highlights

this aspect essentially throughout his insightful book Space-time structure [9] and in particular

suggests on p. 115-16 the possibility of a geometric, torsion-oriented description of matter (see also

Sciama [10]). Where we have added a new aspect is in suggesting a complex torsion, cast in the

modern language of the Newman-Penrose formalism, and this complex feature permits emergence

of quantum theory in a manner not quite feasible for a real (fully classical) geometric theory. In

the light of current ongoing experiments on gravity induced wave-function collapse, this family of

ideas is worth revisiting.

The work of TPS is supported by a grant from the John Templeton Foundation [# 39530].
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