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In this paper, we consider the generalized Gauss-Bonnet action in 4-dimensional Weyl-Cartan
space-time. In this space-time, the presence of torsion tensor and Weyl vector implies that the
generalised Gauss-Bonnet action will not be a total derivative in four dimension space-time. It will
be shown that the higher than two time derivatives can be removed from the action by choosing
suitable set of parameters. In the special case where only the trace part of the torsion remains, the
model reduces to GR plus two vector fields. One of which is massless and the other is massive. We
will show that there exists a region in parameter space where the model is free from tachyon and

Ostrogradski instabilities.

PACS numbers: 04.50.Kd, 04.20.Fy

I. INTRODUCTION

In 1918 Weyl proposed a new geometry to unify elec-
tromagnetism with Einstein’s general relativity [1]. In
Riemanian geometry one has a priori condition that the
length of a vector should not change during the parallel
transportation. In the Weyl geometry, this assumption is
dropped and so a parallel transported vector has different
length and direction with respect to the original vector.
The gravitational theory which is built on the Weyl ge-
ometry is known as the Einstein-Weyl gravity [1]. In
Einstein-Weyl gravity the connection is no longer metric
compatible, so, the covariant derivative of the metric is
not zero. Instead one has the relation

v,ugvp = Q,uvpa (1)
where the tensor )., is symmetric with respect to its
last two indices. Weyl proposed the special case @,
Wugy, for his theory where w,, is the Weyl vector. One
of the important consequences of this geometry is that
the unit vector changes through parallel transportation.
Suppose that the length of an arbitrary vector field A* is
[. During the parallel transportation, the variation of the
length of A* can be written in terms of the Weyl vector
as

dl = lwydz". (2)

For a closed curve, the length of the vector A* changes
as

l—1— / W, dS", (3)
s
where S is the area of the closed curve, dS*” is the in-

finitesimal element of the surface, and

Wuu = auwu - auw;u (4)
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is called the Weyl’s length curvature which is the same as
the electromagnetic field strength. This implies that one
has the freedom to choose the unit length at each point,
which is the Weyl gauge freedom [1]. A variety of works
have been done in the Weyl geometry including the cos-
mology [2], relations to scalar-tensor [3] and teleparallel
theories [4].

One can also restrict the form of Weyl vector to be a
derivative of a scalar as w, = 0,¢ [5]. In this case the
length curvature W), vanishes and one can then define
a fixed unit length at each point. We note that the unit
length varies at different points. The resulting theory is
known as the Weyl integrable theory [6].

Another generalization of Einstein gravity can be pro-
posed by assuming existence of an assymetric connection
on the space-time manifold. The first attempt for this
purpose is due to Eddington in 1921 in order to general-
ize the Einstein’s general relativity to get some insights
about microscopic Physics [7]. The major attempt in this
way was done by Cartan in 1922 where he defined the
torsion tensor as the antisymmetric part of the general
connection [8]. The theory based on this assumption is
called the Einstein-Cartan theory. Cartan believed that
the torsion tensor should be related in some way to the
angular momentum of the matter content of the universe.
So, the torsion should vanish in the absence of matter [8].
In Einstein-Cartan theory the metric and torsion tensors
are considered as independent dynamical variables. The
energy-momentum tensor of a massive spin particle is in
general asymmetric. So, one can not consider the spin
massive particle as a source in Einstein’s general relativ-
ity. This is the main motivation for the use of Einstein-
Cartan theory to consider the gravity theory of a mas-
sive spin particle [9]. Many works have been done in
the context of torsion theories, including the teleparallel
theories [10], and the combinations of Weyl and Cartan
space-times [11, 12].

There is another way to generalize the Einstein’s gen-
eral relativity, by adding to the Ricci scalar, some other
higher order combinations of the Riemann tensor and its
contractions, as in f(R) gravity theories [13, 15]. An-
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other attempt was done by Kretschmann [14] in 1917 by
introducing the action of the form

Sx = / d*a/=g R po R*P (5)

instead of the Einstein-Hilbert action. The above action
has higher than second order time derivatives of the met-
ric in its field equation and hence contains ghost insta-
bilities. It turns out that the unique combination of two
Riemann tensors and its contractions which leads to at
most second order time derivatives in the field equation
is of the form

SGB = /d4xv _Q(RHVPURMUPU - 4RHVRMU + R2)7 (6)

which is called the Gauss-Bonnet term. In four space-
time dimensions, this term can be written as a total
derivative, and can be dropped from the field equations
[15]. This leads to the conclusion that in 4D, the Rie-
manian geometry together with the condition of stability
has a unique candidate for the gravitational action, which
is the Einstein-Hilbert action.

In non-Riemanian geometries such as Weyl and Cartan
geometries, the above conclusion is no longer true and
the Gauss-Bonnet term will not become total derivative.
In [16] the Gauss-Bonnet combination was obtained in
the context of Weyl geometry, and it turns out that the
remaining term in 4D is the Weyl vector kinetic term

Sap x /d4x\/—ng,F‘“’. (7)

It is the aim of the present paper to generalize the above
argument to the case of Weyl-Cartan space-time. Simi-
lar to the Einstein-Weyl space-time, in the Weyl-Cartan
space-time the Gauss-Bonnet term will not be a total
derivative. The theory is not in general Ostrogradski
stable. In order to have a stable theory one should con-
strain the parameter space of the model as we will do in
the next section.

The Weyl-Cartan model has also been considered in
the context of Weitzenboch gravity in [11]. The authors
have added the kinetic terms for the Weyl vector and the
torsion tensor by hand, using the trace of torsion tensor.
We will see in this paper that considering the Gauss-
Bonnet action can produce automatically all the kinetic
terms of [11]. Tt is worth mentioning that the theory
[11] has a potential ghost, noting that in the Weitzen-
boch gravity the torsion has some relation to the Ricci
scalar, and as a result the torsion kinetic term has more
than second time derivatives. However, the present pa-
per is free from the aforementioned instability due to
the absence of the Weitzenboch condition. One should
note that the torsion self-interaction term V,T'V*T with
T =T+, and T, =T",,, in [11] can not be produced in
the present context, because it is fourth order in the tor-
sion and second order in derivatives. In order to produce
such term one should consider the higher order Lovelock
terms in the action.

The present theory in general may have some tachyon
instabilities but the analysis is very complicated because
of the appearance of the torsion tensor. In section IT the
generalized Gauss-Bonnet action in Weyl-Cartan space-
time is introduced and shown that the higher than two
time derivatives are removed in the action. In section ITI
we will consider a restricted form for the torsion tensor
and obtain the healthy region of the parameter space in
which all instabilities are removed.

II. THE MODEL

The Weyl geometry proposal induces a new vector
which results in non-metricity of the connection i.e.
V,ugas # 0 where V,, is the covariant derivative with
respect to Weyl connection. Mathematically, the Weyl

geometry has a special form of non-metricity i.e.

Vygw = 2w,uguaa (8)

where w,, is the Weyl vector. So the Weyl connection can
be obtained as

D =10+ Qs ©)
where

Awu (10)

b = g — 8, — 8}
and { #Al, } is the Christoffel symbol. In addition one may
generalize the above connection by adding the effects of
the torsion into it as

r,={ N +Q+Ch. (11)

Note that the third term is named contorsion tensor de-
fined as

A A A A
c v — T,uu -9 BQG’#T%V -9 ﬂgUUT%#v (12)
where we have defined the torsion tensor T’)w as

1
T3, = 5 (TA, =T, (13)
It is easy to show that the additional torsion does not
affect the non-metricity relation i.e. the relation (8) is
still valid. By using the metric one can build Cy,, =
9roC7,, which is antisymmetric with respect to its two
first indices by having in mind that the torsion tensor is
antisymmetric with respect to its down indices in T°,,,.
We define the curvature tensor as

A . A A « A « A
KWU =9, wo — 0,1 o +T HUF o — I WF o
(14)

One can decompose the curvature tensor into four parts
as
KXo =R, +C o+ QY + 1

pro pro pro pro prod

(15)



where the first term in the right hand side of the above
relation is the Riemann curvature tensor defined by the
Christoffel symbol and we have defined

Ck;u/cr = VVO):U,U - VUC}\;U/ + Ca,ua'ckocu - Oa,uuckacn

(16)
Q)\,U.I/U = VVQX,U,U - VUQ)\}LU + Qa,ucr >\au - a,uu )\occﬁ

(17)
I)\HVO' = Cauo' )\ozl/ + QQHGCAOW - Oauu )\aa - auuc)\oza’

(18)

where V,, is covariant derivative with respect to the
Christoffel symbol and I AWU represents interaction be-
tween non-metricity and torsion parts. It is possible to

rewrite the purely non-metricity part (17) as

1
5@ e = = Vo] = 5o Vot = gy Vo’

+ 5[Al,wg]w# + gu[,jég]w2 + gu[,,w,,]wA (19)
and the interaction part (18) as

lp

« A A
5 Lo = —Ww Ca#[g(sy] —w*C a[UgV]#

- ’LUAOM[VU] - ’LU#CA[UU]. (20)

In order to construct a higher order gravity models e.g.
Gauss-Bonnet action, one should multiply the curvature
tensor to itself. There are seven different ways to do this

Apvo Avo VoA
K)\,LLVUK " ;K)\,LLVUK# 7K)\,uua'K #a

Avpo ViAO oAV
K)\HVO'K K 7K)\HVO'K K 7K>\MU<TK# )

Ko KO, (21)

One should note that if the Weyl vector and torsion ten-
sor be zero, only the first three of the above terms reduce
to the combination similar to Gauss-Bonnet term, which
we will only use them in the following. As is well-known,
the Riemann tensor has only one independent contrac-
tion.

The Weyl part of the above curvature tensor has two
independent contractions

A
Q Ay — =AW,
Q)\uku = _v,u.wu + 3V,,w# + gWVAw)‘

+ 2w, w, — QQWUJ?, (22)
where we have defined
W = Vyw, — Vyw,. (23)

The contortion part of the curvature tensor has only one
independent contraction

CXA#U = 0,
Caw = VaCh, + V.0, (24)

where we have defined C* = C*,.
The interaction part has also one independent contrac-
tion which can be written as
A
I Ay — 07
IAMV = —w*(Copv + Cupa)- (25)

For the Riemann curvature tensor, we have RA/\W =0

and R’\MU = R,, where R, is the standard Ricci tensor.
For the contracted curvature tensor, the two independent
contractions are

K, = K\

— 1A
Apvs ’C#V =K DY

There are four independent combinations of them as fol-
lows

K K" K KM K KM K K7E. (26)

All the above terms are proportional to R* R, in the
case of zero torsion tensor and Weyl vector.

There is only one independent curvature scalar of the
tensor K* _ which can be defined by contracting the

pro
tensor K, with the metric

K = R+ 6V, w" — 6w? 4+ 2V,C* — C“C,,
+ Copn CM — 4w C,. (27)

Let us propose the following action

1
S —

=53 d*z/—gK + Sg, (28)

where S¢ is the Gauss-Bonnet action defined as

1
2K2

— 3K K5 — 481K 3, KPY — 482K 5, K77

Sa = d4.’L'\/ —g [041 Kaﬁ'yéKaﬁryé + CYQKO‘&Y&K,Y(;QIQ

— 483K 0 KP — 4B, K 0 K*P + K2|. (29)

To get the standard Gauss-Bonnet terms in the absence
of torsion and non-metricity we need to impose the fol-
lowing constraints on the coefficients

(30a)
(30b)

a] +as +ag =1,
B1+ B2+ B3+ Bs=1.

We should note that the above action is the most general
action for the second order higher gravity in the Weyl-
Cartan theory which reduces to the standard Gauss-
Bonnet action in the limit of zero Weyl and torsion.

In general the above action has some terms with higher
than second time derivatives. These terms can poten-
tially produce some instabilities which are known as the
Ostrogradski ghosts. These potentially dangerous terms
can be collected as



Se D4 / d4x\/_—g{ ( - 2R, V*C” + RV*C,, — 2R, V"W + RV*w, — 2R, V*C, " + Ramvacm‘?)

+2(83 + Ba) {RWV“C” + 2R, V'w” + RV w, + R,,V*C, “”} }

= 8/d4x\/—g(ﬂ3 + B4) {RWV“C” + R, V*C ", (31)

where we have dropped total derivatives in the second
equality. In the above we have used integration by parts
and contracted second Bianchi identity. Note that we
have eliminated a; and f; using the relations (30). As
one can see, demanding absence of Ostrogradski ghosts
imposes a constraint on the coefficients as

B3+ 1= 0. (32)

It means the five-dimensional space for coefficients in Sg
reduces to a four-dimensional space by demanding ab-
sence of instabilities.

In order to write the action S in detail, we decompose

the action into three parts. The terms which involve only
the Weyl vector can be collected as

Sw =p / d* /= gW,, WH (33)
with
p=—4(34 2as + 23 — 864 — 832),
and we have dropped the total derivative terms. The

terms which involves the contortion tensor can be written
as

Sc = / d4x\/_—g[ — 4RO,V Chus — 8 R¥PCTCoryp +8 R CL 70 Clsp + 2 RCPIC, 5 + 4GP C,Ch

+(2-2as) <va0W VaCsrs — VO V5Chye — AVCP Cp Y ,Crys + CPC, ° ,C5 " Csyy,

— o0, gt UOM> + 40 VOV 5Chsy — 8aVACP O ¥ 5Cs0n + 202CP1CL O CL 1 5C s

—20C*P1C, VO 5Cy s + (4 — 4 52) (vaca PYVOCssy +2VCP VT Cho —2VC, 7 COCps,,

+2VC, P Cp % Cpy — 2V*CP CVCpy + 2VCP Cp 70 Cl50 — C¥CPCH 10 Clys — 20°Co P7C3 %" Ciyry

1
+ C*P1C,, ' C " Cy s — EOO‘BCag ) +4BoV*C, PY VO Clsp +8B2VYCP VT Clyp — 8 BaV*CP CVClyp

—8BaVCo T COC, 55 + 8 B2VCo PV C. % Csp + 8 B2V CP Co 2 Clhsp — 4 B2CCPC, 0 Cisy
—8B2CCo PIC, %" Crp + 4 B2CPVCy °Cs " Crpp — 4 C?VCy + 4V Co, CPYCsy + C* — 202 CP° O,

+ Caﬂvcavﬂ C6uu Céul/:| )

where we have defined C? = C,,C* and
Cpw = V,.C,y — ¥, C. (35)

One should note that the tensor C}, is proportional to
the tensor T}, constructed similarly with the torsion ten-
sor. One can see that the term 7}, T"" is produced natu-

(34)

rally in this model, which is also the kinetic term assumed
in [11].

The remaining terms of the action contain a variety
of possible interactions between the Weyl vector and the
contortion tensor we can be simplified as



/d4:1:\/_{ 8 R0 C o pws + (8 B2 — 82) (VCo P71 Cp ° yws — CP Co 7 gwny — C*Co P10 ° w5

—vee, By C’Y 5 sws + coc, ,G’VCV g
+2VeCPY Cpsqwsy, + 2C°P7C, 0

BWs — CO"@VCO[V 605“310”) +
vCs# 5wy + w2 C g — w?CP1Chpy — CP1° Cpsy Vw4
+ (16 B — 8 B — 4o — 8) (CPWop — 2V*Co Y Wy + 2WPC7Cp,,

(4 — 4ao) (2VCP Copsws

o = 2WPCL 7 gw., + 2W P Chwpg)

+ (4 — 4 B2) (C*CPwgws — w?C? + w?CC, ° , — 2V C, 77 Chwg — 2V*CP Cowg
+2C°Cy PV Cgy Ows +20°CPC, 7 gwy + 20,CsVCP +20°CPY ,Cp° Jws) —8V*Co P Vw,

+ 8V w, Co, P ws + (8 — 16 az + 8 B2)CP1C,, °Cp ¥ 5w, + 8 Vw0 Cp
(=8 — 8 + 16 B2)CPVC,y, Pwpws + 8 aaVECPY° Cpws

+ (16 + 8 ay — 24 £2)C*Cp, P wgw,, +

+ (=8 +4ag +46)CC,° Jwpws + (124 8 oz 4 16 B4 — 32 Bo) WP s T,

050 — 8V WP CVClorp

—86:,VC, 7 Cpuw,

+ (=8 ag — 8 + 16 B2)CPTC,, °Cs Hw,, + (=8 + 16 B2) VA Co P71 Cpy Pws + (8 — 16 B2) VO CP Cup Tw

+ (=8ag — 8 — 16 B4 + 32 Bo) W C,, 7 Clrsp + (4 g — 4 + 8 B2) CPV Co g Pwyws | (36)

It is worth mentioning that the term VQCO‘MWM con-
tains an interaction term between Weyl vector and tor-
sion tensor which was assumed in [12].

Finally, the full action of the theory can be written as

1
S=55 d4x\/_{R 6w? — C2 + Coyn CM

— 4w°‘Ca] + Sw + Sc + Sr. (37)

The torsion tensor can be decomposed irreducibly into

2

1 o
g(twp —tupw) + §(QV9#P = Q) + €uvpa ST,

(38)

Tovp =

where @), and S* are two vector fields. The vector @,
is actually the trace of torsion over its first and third
indices. The tensor ¢,,, is symmetric with respect to
and v and has the following properties

t,uup + tl/pp + tp;w =0, g,uvtwjp =0= g,uptwjp' (39)

One can decompose the contortion tensor according to
the above relation as

4

Cp;w = g(t;wr) - tpvu)

2
+ E(ngw) - nguu) + Gp;wasaa

(40)

IIT. SPECIAL CASE FOR CONTORSTION
TENSOR

Let us assume that the contortion tensor has the fol-
lowin simple form

p,uv Q,ugvp ng,uuv (41)

where we have assumed that ¢,,, = 0 and S? = 0, and

we define the vector Qu = %Qu'
The action can then be expanded as

S = 22 d4x\/_{R 6w” — 6Q° + 120" Qq

—4(1 + as — 2)Q,, Q"
+ 8(2 + (6%} + 2[‘34 — 4ﬂ2)Q#yWW’

—4(3+ 200 + 203 — 862 — 8B)W,, WH | (42)

In general the above action may have some ghost and or
tachyon instabilities. In order to examine this issue, we
first diagonalise the kinetic and potential terms for @,
and w,, with the result

v 1 v
XWX“ — Y, Y

S = d*zv/—g|R { 1

2K 9.2
1

- §m2XHX“], (43)

where X, and Y,,,, are strength tensors respectively ac-
cording to vectors X, and Y,, which will be defined below.
As one can see from the above action, the theory contains
one massless and one massive vector field with mass

2 3(A+2B+0)

44
m 212 (44)
where we have defined
A=—4— 40[2 + 8[’32, (45&)
B =8+ 8034 + 4ag — 1635, (45Db)
C = —12+ 3284 — 8ay + 32835 — 8ag. (45c¢)



The new fileds can be related to the original fields Qu
and w, as

2 ~
u = —_—— « — — - 052 2 - "
X T [( BAL — A /(1 )(B% —1)Q

+ (BA VI —a? +al_ /(2 — 1)%] ; (16)

—\/% |:(BA V 1-— O[Q + O[A+\/ ﬁQ — 1)62#

(aBr — A (1—a2)(62—1))wu]7 (47)

Y, =

where we have defined

1
2

1 A-C
0‘:[§<1+ 4B2+(A—C)2> ’ (48)
5|1 (Ax2BH0)/ABTETA=CR :
T |2\ 4B24+(A-C)2+2B(A+0) + ’
(49)
and

22— —% (A+C+ VAT (A-CF).  (s50)

In order to have a ghost and tachyon free theory we
should have m? > 0 and the new fields (46) and (47)
should be meaningful. We thus conclude that the pa-
rameters aws, ag, B2 and [4 should satisfy the relations

2

m2 >0, A >0, (51)

together with reality of square roots. In general, the
above conditions can not be solved analytically in full
four dimensional parameter space. In the following, we
will concentrate our attention to some special cases.

A. Casel: fa=0=a3 and az =1

In this case the the action Sg reduces to

1
Sc :ﬁ d4x\/—_g [KO"BWSK,W;QIQ — 4/(:571(:’8V
+4B4(Kap K*P — Ko5K*P) + Kﬂ , (52)

and the constraints (51) satisfy if

—g<ﬂ4<%(5\/§—7). (53)

B. Casell: o =0=a3 and 84 =0

In this case the the action Sg reduces to

1
Sa :ﬁ d4x\/—g [(1 - ag)Ka'BvéKaﬁrw
+ KPR 505 — 4Ks, KPY + K2, (54)

and the constraints (51) satisfy if

2
— <2 <2 95
<o (55)

C. Caselll: 5o =0= a3

In this case the the action S¢g reduces to

1 «
53 d*z\/—g [(1 —a9)K ﬁ'y‘;Kaﬁ,ﬂ;

+ agKaﬁ'yéKwsalg —4 x IC,@VIC&Y

Sa =

+484(Koap K*? — KogK*?) + K2|,  (56)
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FIG1: Allowed range of 84 and a2 for the action (56) to
become ghost and tachyon free theory.

In the figure we have plotted the allowed region of param-
eter space (asg,B4) in order to have a ghost and tachyon
free bi-vector theory.

IV. CONCLUSION

In this paper, we have introduced a ghost and tachyon
free modified theory of gravity by generalizing the ge-
ometry to be the Weyl-Cartan space-time. Using the
standard Einstein-Hilbert term for this geometry, the ac-
tion reduces to the Ricci scalar, plus possible mass terms
for Weyl vector and the torsion tensor. In this case no



kinetic terms for these two new fields can be produced.
In order to make the Weyl vector and the torsion ten-
sor dynamical, one can add some kinetic terms by hand,
which was done in [11].

In this paper, in order to produce kinetic terms for the
Weyl and torsion fields, we have generalized the action to
be of Gauss-Bonnet type. In 4D Riemannian geometry
the Gauss-Bonnet term becomes a total derivative and
dropped from the action. However in the Weyl-Cartan
geometry, this term produces a bunch of interaction and
kinetic terms for Weyl and torsion fields. In the Weyl-
Cartan geometry the curvature tensor has less symme-
tries than the Riemann tensor. So one can write more
than three quadratic terms according to the curvature.
In general, the resulting action does not reduce to the

standard Gauss-Bonnet action and may have some higher
derivative instabilities. Removing the above difficulties,
one can obtain a 4-parameter family of theories, which
has no Ostrogradski instability.

For further considerations, we have studied a special
case of the theory where only the trace part of the torsion
tensor is non-zero. In this case, the theory is reduced to
general relativity plus one massive and one massless vec-
tor fields. The absence of ghost and tachyon instabilities
will reduce the parameter space of the theory which we
have obtained them for some special cases. One should
note that in the full theory one can not specify the vi-
able values of the parameter space. In this paper, we
have proved that such region exists.
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