arXiv:1701.04136v1 [gr-gc] 16 Jan 2017

Spinning and Spinning Deviation Equations for Special Types of Gauge
Theories of Gravity
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Abstract

The problem of spinning and spin deviation equations for particles as defined by
their microscopic effect has led many authors to revisit non-Riemannian geometry
for being described torsion and its relation with the spin of elementary particles. We
obtain a new method to detect the existence of torsion by deriving the equations of
spin deviations in different classes of non-Riemannian geometries, using a modified
Bazanski method. We find that translational gauge potentials and rotational gauge
potentials regulate the spin deviation equation in the presence of Poincare gauge
field theory of gravity.

Introduction

Einstein’s legacy has bestowed geodesics and null geodesics to examine the trajectory
massive and massless particles respectively, introducing the notation of a test particle
which ignores the interaction associated with its intrinsic properties. Such a problem may
be assigned to measure the behavior of a certain gravitational field. Yet, the concept of test
particle is counted to be existed relatively rather than absolutely. From this principle, the
problem of spinning objects is necessary to be examined using the Mathissson-Pappetrou
equation [1].

Due to extending the geometry to become a non-Riemanian, torsion is expressed in
some theories of gravity to be interacting with the spin of elementary particle, this is
vital to examine the internal symmetry of some gauge theories of gravity with the flavor
of Yang-Mills for this issue, one introduces its own corresponding building blocks which
mainly related to the tetrad space , in order to relate it with some properties of elementary
particles [3-5]. Such theories are developed in different stages from Utyima (1956), Kibble
(1961), Sciama (1962), Hehl et al (1976) [3-6]and finally crowned with MAG in 1995.[7]
The main theme of these theories is centered on its description in the presence of the
tetrad field following same mechanism of Yang-Mills gauge theory of spaces admitting
non vanishing curvature and torsion represented as gauge theories of gravity [8].

This approach has led many authors to consider a wide spectrum of theories of grav-
ity possessing gauge formulation such as Teleparallel-gravity [9], gauge version of GR in
tetrad space (torsion-less)[10], and most general one is the Poincare gauge field theory of
gravity [11].
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1 The Papapertrou Equation in General Relativity:
Lagrangian formalism

The Lagrangian formalism of a spinning and precessing object and their corresponding
deviation equation in Riemanian geometry is derived by the following Lagrangian [18]

DB DyeB
L=g,P"— + S, F,U% + M, z0" 1.1
9as P + Sap Ds T + Mag (1.1)
where Do
P =mU” .
mU —|—U5 DS

Taking the variation with respect to U# and U* simultaneously we obtain

DPr
DS

F* (1.2)

= M, (1.3)

I

. def . .
where P* is the momentum vector, F* = %Ry 050 PUY and Rj,, is the Riemann curvature,
D

= 1s the covariant derivative with respect to a parameter S .5 is the spin tensor, M* =

PrUY — PYU*, and U = % is the unit tangent vector to the geodesic.

Using the following identity on both equations (1) and (2)

Al — Ah =Rl AP (1.4)

Brp

where A* is an arbitrary vector. Multiplying both sides with arbitrary vectors, UPW¥" as
well as using the following condition [Heydri-Fard et al (2005)]

USwr = U Ue, (1.5)

and U is its deviation vector associated to the unit vector tangent U®. Also in a similar
way:

ap\yp — Hab
STV = o7PUP, (1.6)
one obtains the corresponding deviation equations [19]
D>+ 5 v
Do Ry, PPUPVT 4+ FEUP, (1.7)
and Do
g = SR UTY 4 ML, (1.8)

Equations (1.7), (1.8) are essentially vital to solve the problem of stability for different
celestial objects in various gravitational fields. This will examined in detail in our future
work.



2 The Papapertrou Equation in Rieman-Cartan The-
ory of Gravity: Lagrangian formalism

The Mathisson-Papapetrou equation in non-Riemanian geometry are generalized forms
of both (1.7)and(1.8), as a result of existence of a torsion tensor A§ , which is considered
as a propagating field defined in the following manner,

a def 1 « o
NG, (050, — 056,5) (2.9)
where ¢ is a scalar quantity.
Yet, there are two different visions of admitting torsion in path and spinning equations, one
is considering it acting analogously as a Lorentz force, which led some authors to utilize
the concept of torsion force [20]. Others may involve torsion in the affine connection by

replacing the Christoffel symbol with the non-symmetric affine connection [21].

2.1 Path and Path deviation equations having Torsion Force

We suggest the following modified Bazanski Lagrangian to obtain the path and path
deviation equations for non-Riemannian geometry using the notion of torsion force
« D\Ilﬁ arrf

Thus by taking the variation with respect to W* provided that

Yo = 0,
we obtain,
% + {:;}U”U” = —A S UU” (2.11)
Using the following commutation relation
Apvp — Appw = R0 A (2.12)
on equations (2.11) provided that
bue b o1

we obtain the corresponding deviation equations

V2
vz RY G USUPTY + (A 5", 07 (2.14)



2.2 Path and Path Deviation having torsion in a non-symmetric
affine connection

Path equations and path deviation equations are obtained its corresponding Bazanski

approach as follows A
AVAVLg

LY g, Ut — 2.15
g,u VS ) ( )
where, R )
AYAUZE A L A
= e, we 2.16
VS T s (2.16)
where
I S Y 2.17
.Bo {60} + .Bo ( )
By taking the variation with respect to ¥, provided that
Guvlp = 07 (218)
we obtain R
VU«
=0 2.19
e =0 (219)
ie. a
“w
— + { “ }U“U“ = —A U U".
ds 1% :
Using the following commutation relation
Al = Aullpw = B0 Ao + A5 Ayys, (2.20)
and vUE VU
= 2.21
s vSs ( )
on equation (2.17) we obtain
V2\I]Ao¢ P TTVUIOT QT TV
W - RupcrU \I] Up + AZVUmU‘u\II . (222)

Thus, we found that equations (2.11) and (2.17) describe the same path equation but
their corresponding path deviation equations (2.13) and (2.20) are different due to the
building blocks of the each type of geometry.

2.3 Spin and spin deviation equations having a torsion force

For a spinning object, we suggest the following modified Bazanski Lagrangian, to derive
both spin and spin deviation equations simultaneously.

DY DU 1
=g T A PPUYY + S, t = Ryupe SPPUMY + (P,U, — P,U,) U™,

L= g,,P" D
I DS 2
(2.23)



Taking the variation with respect to U® and W respectively we obtain

D P« N , 1
DS = _A(ﬂV) P'LLU + §Rp/JI/S“ Up, (224)
and DS*B
= (P*U” — P°U"). 2.2
b = (PTU” = PPU?) (2.25)

The associated deviation equations are obtained by considering the following commutation

relation
D D . D D

A LAY — R ABUPC 2.2
DS Dt Dt DS sos AU (2:26)
and pU® Dy
— 2.97
DS Dt ’ ( )
we get
D2\I]a 167 g 1 167 v e
D5 = 5, U U7 + (5 R 5" U’ — A, )pw (2.28)
and
Dyos R T o arrB Brrey \pp
—— = SVRUUUMY + (PYUP — PPU),, ", (2.29)

DS

2.4 Spin and spin deviation equations having torsion in a non-
symmetric affine connection
If we replace the covariant derivative in Riemanian geometry by the absolute derivative in

Einstein-Cartan geometry, we suggest the following Lagrangian of spinning and spinning
deviation objects with precession

-, VI VA ZZS U . . 3}
L =guwP' oo+ Swgg T 5RuwpeS7U V! + (BU, = PU, )W, (2.30)
such that o gas
Pr e 4 U 2.31
et (2:31)
regarding that, o
SHU, =0 (2.32)
then taking the variation with respect to o and Wos,
Thus, we obtain R
VP> 1., 4
— _po poTTV
VS QRupoS v, (2.33)
and s
VS« A ;
= (P*U" — P°U"). 2.34
v ) (2.34)



Using the commutation relation (2.22) and equation (2.27) on (2.33) and (2.34), we obtain
the following set of deviation equations viz,

v2\11a Do ) o\ PO 1 Do o€
gz = [ PTUTY + AGUTOPT )+ S (R, S7UT), WP (2.35)
and
V\IIOCB &8 P ) § qap v HaTTh DBT T
W - Sp Rp,ﬂ;UFY\I] ‘l— Auus\é UM\II ‘l— (P U - P U )‘p\:[/p. (236)

We can find that there is a link between spin deviation tensor and torsion of space time.
While, the spinning motion has no explicit relation with the same torsion tensor which
confirms Hehl’s point of view [22]. This result has led to find out its detailed description
in case of taking into account the microstructure of any system. Such a trend can reach
to define its contents with in the context of tetrad space.

3 Tetrad Spaces and Gauge Theories of Gravity

The concept of torsion of space time may give rise to revisit its existence in a tetrad
space, which may give rise to express space-time as a system of two different coordinate
systems. At each point of space-time is defined by the vector x* |, u = 0,1,2,3 and its
metric tensor is g,,. each point is associated with tangent space becoming a fiber of its
corresponding tangent bundle given by Minkowski space whose metric tensor is defined
by e & dig(1,—-1,—1,-1) .

Accordingly, this type of description may be analogous to explain the underlying
geometry associated with some gauge theories e.g. it is analogous to internal gauge
theories, in which gravity becomes as a special gauge theory [12]. Thus, as a result of
similarity between the above mentioned space-time and gauge theory, it is of interest to
derive the gauge approach of equations of motion for different particles.

From this perspective, the problem of invariance of any quantities must be a covariant
derivative invariant under general coordinate transformation (GCT) and Local Lorentz
transformation (LLT) that are expressible in terms of gauge potential of translation and
rotation in the following way .

The building blocks of the space is two quantities, one represents the tetrad vector (ez,
and the other is the generalized spin connection ij) The tangent space is raised and
lowered by the Minkowski space, while the space-time indices are raised and lowered by
the Riemannain metric

g,ul/ déf 626277@, (337)
def 4
G = euegnab. (3.38)
This type of geometry defined its curvature tensor R; L [25] s defined as follows
i def i i koo koo
ij - ij,u - quw + iju kp — ij kv (3.39)
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and its corresponding torsion tensor A}, is becoming as

a def a a a a
A/u/ = (6u,u —Cuu + Qbu Ili - bl/ei),t) (340)
, provided that
V,er =0, (3.41)
ie.
6:7“V =0

Due to the following condition [23],

Guv|lo = O>

which becomes
en, Ffwei + Qf’byez =0,

and
Iy.en = e%(ei’?u + Qﬂ”fﬁeﬁ).

Consequently, the relationship between the generalized spin connection and contortion
of space time can be obtained as

Q"= —e;(ey"f“ + FZL)

comparing with (2.17) one obtains that, one gets
Q7 =w KT
where w,,™ . spin connection associated with Christoffel symbol, and
K70 = ened Ko,

Special cases:

i Tele-parallelism: Q; p=0- w;- =K ; ., gives that the spin connection is equivalent to
Ricci coefficient of rotation?.

(ii) General Relativity in a gauge form: K} =0 — Q) = w! gives that the genealized
spin connection is equivalent to Ricci coefficient of rotation.

3.1 The Need for Gauge Theories in Gravity

The study of microscopic structure of particles gives rise to utilize the richness Yang-Mills
guage theory to express gravity as a gauge theory having internal gauge invariance. This
can be done by involving two different types of coordinate system one for GCT and the
other for internal gauge invariance such as LLT. Consequently, it is worth mentioning
that local Poincare gauge theory is an appropriate theory to explain gravity at this level.
This approach was achieved by Hehl after a long process of versions by, Utimama, Kibble,

- . . def ;
*Ricci coefficient of rotation A7, = efe!,,
;



Sciama, and others [11].

The advantage of importing Yang-Mills gauge field concept is the existence of two field
strength tensors for translational and rotational in such a way that they are defined
by two different vector potentials acting independently. It is well known the analogy
between gauge field and space time one can consider translational gauge f2 is equivalent
to e, and the rotational gauge ng is equivalent to QZZ’. This may give rise to find another
similarity between the gauge field strength Fﬁfj and curvature of space time admitting the
anholonomic coordinates RZ?, [24]. to be added for Poincare gauge theory Translational
gauge potential e}, and rotational gauge potential I fjb in which the commutation derivative
operators[11]. As in gauge theories the commutation relation is defined as with respect
to the gauge field strength

&7

[Da, D] = [y (Fo ™% = Fiyg "Dn), (3.42)

which becomes is equivalent to

[V, Vo] = egebB(R&'B st — Ny V). (3.43)

3.2 Teleparalellism: Translational Gauge Theory

In this case, 2, = 0 the conventional absolute parallelism geometry: a pure gauge theory
for translations [9],[12].
Using Acros and Pirra method[12], one can find out that

pa  def o

v = Ly — Loy + 15,16 — Tsl'e, = 0,

P P o
F,uz/ = €. (e,u,u eu,u)?
a _ o o
By — " Bp Fpp'
. . . . .. . . def
As, in GR the spin connection is equal to Ricci coefficient of rotation wp, = efef

thus,

a def 4q a
bu — “top T ’}/b;u

where Kj, its contortion defined as
a 1 c a a a
Kbu = §€u(Ac.b + Ab.c e )

Consequently, one obtains,

c D c
dpy — LWy Kd,uw

where
c def ¢ c c Aa c .a
Kd/u/ - fydl/;u - fydu;l/ + fyaufydu - fyal/’ydu



3.3 General Relativity: A Tetrad Version of Gravitational Gauge
Theory

Collins et al (1989)[10] described GR as a gauge theory of gravity subject to the follow-
ing gauge potential vectors e}, and W ., to represent translational and rotational gauge
potentials respectively.

The equations of physics will contain derivatives of tensor fields and it is therefore nec-
essary to define the covariant derivatives of tensor fields under the transformations GCT
and LLT, one must need to define two types of connection fields to be associated with
each of them. Accordingly the Christoffel symbol {:;} is referred to GCT while the spin
connection wyp, as related to LLT.

which is considered a torsion less condition of Poincare gauge theory

m def m «Q m m . n
Dyey' = e, — {I/,u}eo‘ +w, " e (3.44)
provided that
D,D,e;' = D, D,e;'. (3.45)

Using this concept it turns out that GR may be expressed in terms of connecting e” ,
Wape and ¢ ¢ together
/”’ ;,LV

v e eZe?,nab, (3.46)
such that,
a | qef 1
= —g" vo,o oca,v — Yav,o 3.47
{W} 59 (voa + Goaw = Javo) (3.47)

. Thus, the curvature tensor may be defined ,due to gauge approach, in terms of spin

connection wy,

c def ¢ c c  .a c ,.a
duv wdu,,u - wdu,u + wa,u,wdu - wauwd,u'

Using this concept it turns out that GR may be expressed in terms of connecting e , wap,

and {:;} together. Accordingly where R ;. the curvature tensor may be defined ,due to

. i ! “
gauge approach, in terms of spin connection wy,

def
c def ¢ c ¢, .a c  a
dw = Wav — Wapw + WapWdy — WarWay, -

4 Motion of Special Classes for Gauge Theories

4.1 Path and Path Deviation Equations of Gauge Theories of
Torsion Force
We suggest the following Lagrangian to derive both path and path deviation equation for
gauge theories having a torsion force.
b

DV
L= egegUaD—S + €2 Mo, PUPDY, (4.48)



to obtain its corresponding path equations by applying the Bazanski approach to

become,
DU*

DS
Applying the following commutation relations of equation (2.20) and following (2.21),
we obtain after some manipulation its corresponding path deviation equations

= _€ZA(B,Y)OCUBUFY (449)

Do
= el K!

D5 = Ol U U R + A a g U, @ (4.50)

4.2 Spin and Spin Deviation Equations of Gauge Theories of
Torsion Force

Thus spinning and spinning equations are obtained from taking the variation with respect
to U#* and U* simultaneously, for the following Lagrangian

WV aD\Ilb ar7B\TY 1 wrrha Dab ab
L:eaeb D—S—FACL&/P U\ _QKab’wS U +SabD—S+(Pan—PbUa)\I/ (451)
to obtain
Dpe 1
D5~ —iK,‘jpéS”‘sU” +A. . ag,PU. (4.52)
and
De? bSab
% — (PoUP — PPU9), (4.53)
and Dge
D = (PU* — PU). (4.54)

Using the commutation relations as mentioned above, we obtain;

Do

-5 = Ko PPU D7 + (R}, S* U + A. . a3, P U"),, 0, (4.55)
and
Dy [d Hel s crrd dyre
Do = SR U + (PU* — PU°),, 0. (4.56)

4.3 Path and Path Deviation Equation of Gauge Theories of
Torsion-less

The Lagrangian formalism of path and path deviation equation of gauge theories of
torsion-less is given as
, Db

L erery .
“%” DS

a

(4.57)
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Applying the Bazanski approach , taking the variation with respect to U“, we obtain

De2Ue
DS

=0, (4.58)

provided that
Def 0
DS 7

we get
DU*

DS
Applying the following commutation relation

—0. (4.59)

def Ae
AaHl’p - AGHPV = bpo'Ab7 (460)
on equation (4.59) and using (2.13) we obtain
D?ye
gz p L UIU” (4.61)

Substituting with the path equation in the deviation equation we get

D?*We

e ¢ UTTIUP. (4.62)

4.4 Spin and spin deviation equation of gauge theories of torsion-
less

Thus spinning and spinning equations are obtained from taking the variation with respect
to U#* and U* simultaneously, for the following Lagrangian

anpb 1 S D
L=ejefP"—o + (Rabw)S“ UPT® + etel Sup——o 53

to obtain its corresponding path equation using the Bazanski approach to get

+ elel (P,U, — PU) U™, (4.63)

Dp* 1

D—S = 2( b,uu)SijV (464)
and
Dsab
D = (PoUP — PPU®), (4.65)
D ab D(e® b
etel DSS Sab (C:qﬁ) (P*UP — PPU"). (4.66)
Multiplying both sides by eaeﬁ
C a DSab C al D(egeb) C (6% (6%
et etel el —— 53 +etets stﬁ = eCed(PUP — PPU9), (4.67)
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such that

D(etel) 0
DS 7
Consequently, one obtains
DSCd crrd drre
= (P°U® — P°U°). (4.68)

DS

Accordingly, the deviation equation is obtained by applying the commutation relation
and (2.27) on (4.52) and (4.54);

Do+

D5 = R, POU®7 + (RL,SU* + N *PUP),, 07, (4.69)
and
DU old pel ST crrd d1 e P
DS =5 R ;UM + (PU® — PU°),,V". (4.70)

4.5 Path and Path Deviation Poincare Gauge Theory

Path equations and path deviation equations are obtained its corresponding Bazanski
approach as follows

VU
LE eleyUt——. 471
€aCb VS ( )

By taking the variation with respect to W, we obtain

Veale B
Vs

0, (4.72)

provided that
Veg _ 0
vs 7

we get
vUe
vSs
Thus, the spin deviation equations are obtained by applying the commutation relation
and (2.17) on both

0. (4.73)

V2\I;C pc TrbJ o TP SAD
W = RprU AU +€bAVpUaH5 (474)
Substituting with the path equation in the deviation equation we get
V2Ue .
v - Ry ,UMVU? (4.75)
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4.6 Spin and Spin Deviation Equation Poincare Gauge Theory

We suggest the following Lagrangian of spinning and spinning deviation objects with
precession by replacing the covariant derivative in (1.1) by the absolute derivative as
described in (2.15) to get

Vb Ve 1. . )
L = elel P? + S, — Ry SPUYU* + (P, U, — BU,) U, 4.76
6 VS b VS + 2 bu + ( b b ) ( )
such that v gas
P e + U 4.77
+Us g (4.77)
Taking the variation with respect to ¥e and WoB and after some manipulations,
we obtain
vV Pe -
<5 = RbmS” U, (4.78)
and -
AV . A
= (PU" — P°U). 4.79
= ) (.79

And their corresponding deviation equations are obtained by applying the commuta-
tion relation (2.20) and (2.21) on both (4.79) and (4.79) to get

V2o ) . L1 -
v = Ry PPUPDY + el A UPU7 P o +§( R o S” U’),,v (4.80)
and
V\I,ab QS8 13 Y0 6Ac ATV DayTh pbrTa P
ST = ehes SV RY U0 4 ef e SYUMYY + (PUUY — PPUY) 07, (4.81)

Thus, we see clearly the interaction between spin deviation tensor and torsion of space

time is expressed in terms of curvature (rotational) and torsion (translational) strength
fields.

5 Discussion and Concluding Remarks

In our present work, we have developed he Bazanski approach to obtain spin and spin
deviation equations in non-Riemanian geometry. This approach was applied for obtain-
ing path equations for some geometries admitting non vanishing curvature and torsion
simultaneously. [26-28]

Due to the resultant equations (2.35),(2.36), we have figured out that torsion is explicitly
mentioned in spin deviation equations ,even if one puts P* = mU*,. Such a result is
in favor of Hehl’s argument falsifying the measurement of torsion from identifying the
spin tensor, for a spinning object in an orbit. This result is an alternative approach to
measure torsion from spinning equations using non-minimal coupling without introducing
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micro-structure[29].

Accordingly, we have obtained (2.35) and (2.36) of Poincare gauge theory of gravity as
described within a tetrad space. Consequently, using the analogy between tetrads and
gauge theories, we obtained equations (4.82), (4.83) that show how a tetrad vector el is
equivalent to gauge translational potential explicitly mentioned in the equation while the
generalized spin tensor ij, which is equivalent to gauge rotational potentials as men-
tioned implicitly in the presence of curvature and torsion of space-time simultaneously.
These equations are considered to be the generalized cases for some special classes of
gauge theory of gravity of path and spin deviation equations (4.55) and (4.56) having a
torsion force, as well as their counterpart of (4.69) and (4.70) for a gauge theory of gravity
having a torsion free.

Thus, we conclude that torsion of space time can be tested for any spinning object in any
type of gravitational fields by examining its spin deviation equations.

Acknowledgement

The author would like to thank Professor T.Harko his remarks and comments.

References

[1] A.Papapetrou , Proceedings of Royal Society London A 209 , 248(1951).

[2]E. Corinaldesi and A. Papapetrou Proceedings of Royal Society London A 209, 259
(1951)

[3]Utyiama, R.(1956) Phys Rev. 101 1597

[4]Kibble, T.W. (1960) J. Math Phys., 2, 212

[5]Hehl,F. W., von der Heyde, P. Kerlik, G.D. and Nester, J.M. (1976) Rev Mod Phys 48,
393-416

[6] Hehl, F.W. (1979),1, Proceedings of the 6th Course of the International School of
Cosmology and Gravitation on ”Spin, Torsion and Supergravity” de ed. P.G. Bergamann
and V. de Sabatta , held at Erice .

[7] Hehl,F.W., McCrea, J.D. Mielke, E.W. and Ne’eman, Y.(1995)Phys Reports 1-171
[8]Ali, S.A., Carfao, C. , Capozziello, S. and Corda, Ch. (2009) arXiv:0907.0934
[9]Hayashi, K. and Shirifuji, T. (1979) Phys. Rev. D, 19, 3524.

[10] Collins, P., Martin, A. and Squires, E. ” Particle Physics and Cosmology”, John Wiley
and Sons, New York.(1989)

[11]Hammond, R. (2002) Rep. Prog. Phys, 65, 599-449

[12]Acros, H. I. and Pereira, J.G. (2004) International Journal of Modern Physics D 13,
2193

[13]Mao, Y, Tegmark, M., Guth, A. and Cabi, S. (2007) Phys. Rev. D 76, 104029 ;
arXiv:gr-qc,/060812

[14] Hehl, F.W. (1971) Phys. Lett.36A, 225.

[15] Hojman, S.(1978) Physical Rev. D 18, 2741.

([16])Yasskin, P.H. and Stoeger, W.R. (1980) Phys. Rev. D 21, 2081

[17]Bazanski, S.L. (1989) J. Math. Phys., 30, 1018 ;

14



Kahil, M.E. (2006) , J. Math. Physics 47,052501.

[18) Kahil, M.E. (2015) Odessa Astronomical Publications, vol 28/2, 126.

[19] Mohseni, M. (2010), Gen. Rel. Grav., 42, 2477 .

20 Acros, H. 1., Andrade, V.C. and Pereira, J.G. (2004) arXiv;gr-qc/0403074

[21] Hojman, S., Rosenbaum, M. and Ryan, M.P.(1979) Physical Rev. D 19, 430
22]Hehl, F.W., Obukhov, Yu, N. and Puetzfeld, D. (2013) A 377 1775; arXiv:1304.2769
3] Yisi, D. and Jiang, Y. (1999) Gen Rel. Grav. 31, 99 .

4] Cianfani, F., Montani, G. and Scopelliiti, V. (2015) arXiv: 1505.00943

5]Fabbri, L. and Vignolo, S. (2011) arXiv:1201.286

6] Wanas, M.I., Melek, M. and Kahil, M.E. (2000) Grav. Cosmol., 6 , 319.

7] Wanas, M.I. and Kahil, M.E.(1999) Gen. Rel. Grav., 31, 1921. ;

Wanas, M.I., Melek, M. and Kahil, M.E. (2002) Proc. MG IX, part B, p.1100, Eds.

V.G. Gurzadyan et al. (World Scientific Pub.); gr-qc/0306086.

[28] Wanas, M.I., Kahil, M.E. and Kamal, Mona. (2016) Grav. Cosmol., 22 , 345 .
[29]Puetzfeld,D. and Obukhov, Yu, N. (2013) AriXv:1308-2269

r—vl—|l—|r—vr—vr—v

2
2
2
2
2

15



