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Abstract. The Dirac equation for charged fermions interacting with an electromagnetic

field can be algebraically inverted, so as to obtain an explicit rational expression of the

four-vector potential of the gauge field in terms of the spinors. Substitution of this

expression into Maxwell’s equations yields the tensor form of the self-interactive Maxwell-

Dirac equations. We demonstrate here, how an analogous inversion can be performed on

the Dirac equation in curved space-time to obtain two four-vector expressions which are

gravitational analogues of the electromagnetic vector potential. These potentials appear

as irreducible summand components of the spin connection, along with a traceless residual

term of mixed symmetry. When taking the torsion field equation into account, the residual

term can be written as a function of the object of anholonomity. The vector potentials

are comprised from Dirac bilinears, which are interrelated via a rich set of Fierz identities.

Furthermore, a local vierbein frame can be chosen in terms of a set of four Dirac bilinear

vector fields, normalized by two scalar fields. A corollary of this local frame choice is that

the spin connection can be written as an explicit function of the Dirac bilinears. This

work constitutes a novel formulation of the self-coupled Einstein-Cartan-Dirac equations

in terms of Dirac bilinears, and may provide new insights into the nature of the interaction

of Dirac matter with gravity.

1 Introduction

The Dirac equation, the relativistic wave equation for spin-1/2 fermions, can be made
to describe particles interacting with a gauge field by replacing the partial derivative
with the covariant derivative for the particular field. For a gauge potential of a given
form, the Dirac equation may be solved for the spinor field corresponding to the fermion
state. One example solution for an electron in an external field is that for the hydrogen
atom, where the Dirac equation correctly predicts fine structure as a result of relativistic
corrections to the Hamiltonian [20]. However, the external Dirac-Coulomb solution itself
does not explain the famous Lamb shift, which requires a consideration of how radiative
corrections provided by the Maxwell field affect the energy of the bound electron [3].

An inversion of the Dirac equation can be performed via algebraic rearrangement,
such that the gauge potential is written as a rational, explicit function of the spinors [8].
Substituting the inverted Dirac equation into the equations of motion for the gauge field
results in a self-coupled system, where the charged fermion field interacts with itself in
an internally consistent way. A central aspect of the algebraic inversion procedure is that
the spinors do not appear as stand-alone objects, but rather as bilinear combinations. An
early proponent of using the bilinear description of Dirac states as the objects of primary
interest was Takabayasi [24], who promoted the idea of a relativistic hydrodynamical
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model of Dirac matter. The states of this model were not spinors or wavefunctions, but
tensors corresponding to quantum observables, such as current and spin densities. This
in effect was an early substantial attempt to formulate a semi-classical fluid model of
relativistic quantum electrodynamics.

There exists a rich set of interrelationships between quadratic combinations of Dirac
bilinears, known as Fierz identities [9], [21] (alternatively, Fierz-Pauli-Kofink identities
[2]); derived via a successive set of Fierz expansions over a Dirac Clifford algebra primitive
set of sixteen basis elements. Using a similar process, Crawford showed that [6], given a
set of sixteen bilinears formed from this set, the spinor field is recoverable up to a constant
spinor with arbitrary phase. Additionally, there are two U(1) gauge-dependent bilinears
with four-vector Lorentz indices, which appear in bilinear forms of gauge-dependent terms
(such as the inverted Dirac equation), and comprise a locally orthonormal tetrad frame
along with the standard Lorentz four-vector and axial-vector fields.

In the electromagnetic case, the self-coupled Maxwell-Dirac equations were shown
to be describable in terms of the gauge independent bilinears only, by Inglis and Jarvis
[16], manifestly reflecting the physical gauge invariance of the system. Furthermore, these
equations were able to be greatly simplified via the applications of infinitesimal invariance
under several subgroups of the Poincaré group. These subgroups were chosen from a set of
158 given by Patera, Winternitz & Zassenhaus [22], where a comprehensive list of all the
Poincaré Lie subalgebras and their corresponding generators are given. These symmetry
reductions aid in the search for solutions to an otherwise intractable set of non-linear
equations.

The ability to invert the Dirac equation is not limited to the electromagnetic case ei-
ther, and we showed in a previous publication [15] that an inversion can be performed for
the non-Abelian gauge field SU(2). We found that the algebraic process was very similar
to the Abelian case, but with some extra difficulty, and the inverted form was given im-
plicitly. It is currently unclear whether a similar generalisation exists for the strong SU(3)
case, although the U(1) × SUL(2) electroweak case appears to be promising. Substitu-
tion into the Yang-Mills equations yields a fully non-linear self-interactive non-Abelian
hydrodynamical theory, relevant to the study of non-perturbative high-energy plasmas.
Another, simpler approach to modelling aspects of non-Abelian hydrodynamics, is to
generalize the classical fluid mechanical equations to include local internal symmetries.
A description of the non-Abelian Lorentz force involving chromoelectric and chromomag-
netic field couplings was obtained this way in [4].

In this paper, we demonstrate how the Dirac equation in curved spacetime can be al-
gebraically inverted, in an analogous manner to the U(1) and SU(2) cases. The covariant
derivative we use contains the spin connection contracted with the generator for Lorentz
transformations. In section 2 we demonstrate how the Dirac equation can be rearranged
such that we obtain two gravitational “vector potentials” Ωa and Ω5a in analogy with the
electromagnetic vector potential Aa, and which are functions of the spin connection.

In section 3, we give our definition of the tensor fields resulting from sandwiching
elements of the Dirac Clifford algebra basis between Dirac spinors. Using this notation,
we then show that by left-multiplying the curved spacetime Dirac equation and its charge
conjugate with four different spinors, the resulting set of four equations can be solved
explicitly for the two gravitational vector potentials. These expressions are rational func-
tions of bilinears and their first derivatives, but are not able to be expressed in terms of
our tensor field set without further calculations.

The process by which we can write the inverted expressions in terms of tensor fields is
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given in 4. Here, we give a brief outline of the process by which Fierz expansions, where
an outer product of two Dirac spinors is expanded in the Dirac Clifford algebra basis, are
used to derive Fierz identities which are quadratic in the bilinears. These identities are
then used to eliminate the explicit appearance of Dirac spinors in the inverted forms of
the Dirac equation, replacing them with pure tensor expressions.

Section 5 is given in four parts. In the first part we demonstrate how an irreducible
decomposition of the spin connection in GL(4), when taking into account how the grav-
itational vector potentials are defined, allows it to be written as a sum of three terms.
The trace term is a function of Ωa, and the two traceless terms are a fully antisymmetric
function of Ω5a and residual term of mixed symmetry, wabc. In the next two parts, we
describe the field equations of the Einstein-Cartan system, for the gravitational dynamics
of space-time curvature and spin-torsion respectively. Expressions for the Ricci tensor,
scalar, and the torsion are given in terms of the spin connection and the object of an-
holonomity. In the final part, we show how the algebraic torsion field equation can be
used to place constraints on Ωa and Ω5a, and to derive an explicit expression for wabc in
terms of the object of anholonomity.

A summary is given in Section 6. We show that a self-coupled Einstein-Cartan-Dirac
system can be obtained by replacing the spin connection terms with their decomposition,
including the inverted Dirac equation and torsion constraint equations. A convenient
locally orthonormal vierbein frame to use is provided by the set of four four-vector bi-
linears jµ, mµ, nµ and kµ, with a scalar and pseudoscalar field-dependent normalising
coefficient. As a result, the spin connection can be replaced by Dirac bilinears entirely. A
set of constraints provided by the torsion field equation are also given. Further analysis
of this system is left for future publications.

2 The curved spacetime Dirac equation and conven-

tions

The Dirac equation in curved spacetime has the form

(iγaea
µ(x)∇µ −m)ψ = 0, (1)

where Greek and Latin indices run from 0 to 3, and correspond to coordinate and locally
orthonormal frames respectively. The vierbein field ea

µ(x) relates these two frames locally
at each point x, and is quadratically related to the metric, according to

gµν(x) = eaµ(x)e
b
ν(x)ηab. (2)

For the Minkowski flat spacetime metric we use the particle physics sign convention,
whereby the signature of the flat spacetime metric is negative in the spatial components:

ηab ≡ diag(1,−1,−1,−1). (3)

For Dirac spinor fields, the covariant derivative is of the form [7], [25]

∇µψ = ∂µψ + Γµψ, (4)

where the spinor connection coefficients are

Γµ =
1

2
ωµ

abSab = −
i

2
ωµ

abσab. (5)
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We shall refer to ωµ
ab as the spin connection. Under the assumption that the tetrad

postulate holds

∇µebν = ∂µebν − Γσ
µνebσ − ωµ

c
becν = 0, (6)

using the orthonormality of eaµ, we can write the spin connection in terms of the vierbein
and affine connection as

ωµab = ea
ν(∂µebν − Γσ

µνebσ). (7)

Note that because of the intrinsic spin of the Dirac field, Γσ
µν is in general asymmetric in

µ, ν, resulting in a non-vanishing spacetime torsion [19], [13]. The infinitesimal Lorentz
generators in the Dirac spinor representation are

Sab = −
i

2
σab =

1

4
[γa, γb], (8)

where γa are the Dirac matrices, and σab ≡ i/2[γa, γb]. Taking account of the Dirac matrix
anticommutator

{γa, γb} = 2ηab, (9)

it can be shown that the right-hand side of (8) satisfies the Lie bracket identity for Lorentz
generators

[Sab, Scd] = ηadSbc + ηbcSad − ηacSbd − ηbdSac. (10)

Using (5) and (8), we can rewrite the covariant derivative of the Dirac spinor as

∇µψ = ∂µψ +
1

8
ωµ

ab[γa, γb]ψ. (11)

Substituting this into (1), then absorbing the vierbeins and rearranging, the Dirac equa-
tion becomes

i

8
ωabcγa[γb, γc]ψ = −∆fψ, (12)

where ∆f is an abbreviated form of the flat spacetime Dirac operator

∆fψ ≡ (iγa∂a −m)ψ. (13)

Using the Dirac identity

γaγbγc = ηabγc + ηbcγa − ηacγb − iǫabcdγ5γ
d, (14)

we can write the commutator in the last two indices as

γa[γb, γc] = 2(ηabγc − ηacγb − iǫabcdγ5γ
d). (15)

The conventions we use for γ5 and the Levi-Civita symbol are those of Itzykson and Zuber
[18]:

ǫabcd = −ǫabcd =











+1 if {a, b, c, d} even

−1 odd

0 otherwise,

(16)

γ5 = γ5 = −(i/4!)ǫµνρσγ
µγνγργσ = iγ0γ1γ2γ3 = −iγ0γ1γ2γ3. (17)
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The left-hand side operator of (12) therefore becomes

i

8
ωabcγa[γb, γc] =

i

4
ωabc(ηabγc − ηacγb − iǫabcdγ5γ

d)

=
i

4
(ηabηcd − ηacηbd)ω

abcγd +
1

4
ǫabcdω

abcγ5γ
d

= Ωdγ
d + Ω5dγ5γ

d, (18)

where we define the gravitational vector potentials as

Ωd ≡
1

4
δadbcω

abc, (19)

Ω5d ≡
1

4
ǫabcdω

abc, (20)

with the mixed symmetry tensor

δabcd ≡ i(ηacηbd − ηadηbc). (21)

In terms of the Ω-potentials, the Dirac equation now reads

(Ωaγ
a + Ω5aγ5γ

a)ψ = −∆fψ. (22)

This can be compared with the electromagnetically covariant Dirac equation in flat space-
time

−qAaγ
aψ = −∆fψ. (23)

We can see that there is an analogy between Ωa and −qAa, in the sense that these terms
are coupled to γaψ. However, in electromagnetism there is no equivalent potential to
Ω5a, say −qA5a, which couples to γ5γ

a. Such an analogous term could in principle arise
in an Abelian chiral generalization of the electromagnetic gauge group, such as local
U(1)L × U(1)R symmetry.

3 The inversion procedure

The inversion of the Dirac equation for the components of the spin connection which cou-
ple to spin-1/2 fermions proceeds in a similar fashion to the analogous U(1) electromag-
netic [16] and non-Abelian SU(2) [15] cases. In all of these cases, the procedure involves
the formation of spinor bilinears, which in the tradition of Takabayasi [24], Zhelnorovich
[26], and Halbwachs [11], we can write as a set of 16 tensor fields: scalar, psuedoscalar,
four-vector, axial four-vector, and rank-2 tensor

σ = ψψ, (24a)

ω = ψγ5ψ, (24b)

ja = ψγaψ, (24c)

ka = ψγ5γ
aψ, (24d)

sab = ψσabψ. (24e)
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In addition, we also have the dual rank-2 tensor

∗sab =
i

2
ǫabcdscd = ψγ5σ

abψ, (25)

as well as the U(1) gauge dependent four-vectors

ma + ina = ψcγaψ (26a)

ma = Re{ψcγaψ} =
1

2
(ψcγaψ + ψγaψc) (26b)

na = Im{ψcγaψ} =
i

2
(ψγaψc − ψcγaψ), (26c)

where ψ and ψc are the Dirac and charge conjugate spinors respectively. The bilinear set
are all real, except for ω and ∗sab, which are pure imaginary; this is just a conventional
choice, which can be altered by defining the new real bilinears −iω and −i∗sab. Now,
left-multiplying (22) by ψγb gives

Ωaψγ
bγaψ + Ω5aψγ

bγ5γ
aψ = −iψγbγa(∂aψ) +mψγbψ. (27)

Applying the Dirac identities

γbγa = ηba − iσba, (28a)

{γ5, γ
a} = 0, (28b)

and writing closed-form bilinears in tensor notation, we get

(σηba − isba)Ωa + (−ωηba + i∗sba)Ω5a = −iψ(∂bψ)− ψσba(∂aψ) +mjb. (29)

Likewise, left-multiplying (22) by ψγ5γ
b, and applying the same Dirac identities yields

(ωηba − i∗sba)Ωa + (−σηba + isba)Ω5a = −iψγ5(∂
bψ)− ψγ5σ

ba(∂aψ) +mkb. (30)

In order to proceed, we require the Dirac equation for the charge conjugated spinor. It
can be shown [23] that in the absence of electromagnetic fields, this equation has exactly
the same form as (1), such that

(Ωaγ
a + Ω5aγ5γ

a)ψc = −∆fψ
c. (31)

Following the same steps as above, left-multiplying by ψcγb and ψcγ5γ
b yields the respec-

tive equations

(ψcψcηba− iψcσbaψc)Ωa+ (−ψcγ5ψ
cηba+ iψcγ5σ

baψc)Ω5a

= −iψc(∂bψc)− ψcσba(∂aψ
c) +mψcγbψc, (32)

(ψcγ5ψ
cηba− iψcγ5σ

baψc)Ωa + (−ψcψcηba+ iψcσbaψc)Ω5a

= −iψcγ5(∂
bψc)− ψcγ5σ

ba(∂aψ
c) +mψcγ5γ

bψc. (33)

Using the definition for the charge conjugate spinor

ψc = CψT = iγ2γ0ψT, (34)
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we can derive a relationship between bilinears with non-Grassmann1 charge conjugate
spinors and regular spinors

ψcΓχc = −χC−1ΓTCψ, (35)

where the spinor χ may have tensor indices (ie. χ = ∂aψ), and Γ is an element of
the same Dirac-Clifford algebra defining the set (24a)-(24e). Applying the Dirac matrix
charge conjugation identities [18]

C−1γaTC = −γa, (36a)

C−1γT5 C = γ5, (36b)

C−1(γ5γ
a)TC = γ5γ

a, (36c)

C−1σabTC = −σab, (36d)

C−1(γ5σ
ab)TC = −γ5σ

ab, (36e)

we can rewrite (32) and (33) as

(−σηba − isba)Ωa + (ωηba + i∗sba)Ω5a = i(∂bψ)ψ − (∂aψ)σ
baψ +mjb, (37)

(−ωηba − i∗sba)Ωa + (σηba + isba)Ω5a = i(∂bψ)γ5ψ − (∂aψ)γ5σ
baψ −mkb (38)

respectively. Subtracting (37) from (29), and (38) from (37), yields the respective equa-
tions

2σΩa − 2ωΩa
5 = −i∂aσ − [ψσab(∂bψ)− (∂bψ)σ

abψ], (39)

2ωΩa − 2σΩa
5 = −i∂aω − [ψγ5σ

ab(∂bψ)− (∂bψ)γ5σ
abψ] + 2mka, (40)

where we have relabelled the indices. Multiplying (39) and (40) by (σ, ω) and (ω, σ)
respectively, then subtracting the second equation from the first gives

Ωa =
1

2
(σ2 − ω2)−1{i[ω(∂aω)− σ(∂aσ)] + ω[ψγ5σ

ab(∂bψ)− (∂bψ)γ5σ
abψ]

− σ[ψσab(∂bψ)− (∂bψ)σ
abψ]− 2mωka}, (41)

Ωa
5 =

1

2
(σ2 − ω2)−1{i[σ(∂aω)− ω(∂aσ)] + σ[ψγ5σ

ab(∂bψ)− (∂bψ)γ5σ
abψ]

− ω[ψσab(∂bψ)− (∂bψ)σ
abψ]− 2mσka}, (42)

the inverted form of the Dirac equation in curved spacetime.

4 Bilinear refinement using Fierz identities

It is apparent however, that the bracketed second and third terms in (41) and (42) are not
closed-form bilinears, due to the minus sign preventing a simple application of the Leibniz

1In the Maxwell-Dirac system, an inconsistency arises if one raises both sides of the inhomogeneous
Maxwell equations to a power ≥ 5. If the Dirac spinor components are assumed to be Grassmann, then
the source term vanishes: (∂νF

νµ)5 = 0, due to each term in the spinor expansion of (jµ)5 containing
(ψα)

2 = 0 (α = 1, 2, 3, 4). We therefore do not introduce the usual “by hand” sign-reversal of the right-
hand side of (35), for Grassmann Dirac spinors under the Fermi statistics rule. The result is an overall
sign change compared with the usual transformation of bilinears under a charge conjugation operation
[20], however the end result of the inversion process does not depend upon this technicality since both
sides of (32) and (33) are equally affected.
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rule for derivatives. It is possible to show through a very lengthy algebraic process that
Fierz expansions can be used to re-write these terms in closed tensor form. Due to the
sheer length and tediousness of these calculations, they are not given here, however their
derivation follows a similar process to Appendix C in [16] and Appendix B in [17].

The Fierz expansion can be used to write the outer product of two spinors ψχ, which
is a 4 × 4 matrix in the spinor degrees of freedom, as a sum of terms over the basis of
Dirac-Clifford matrices with bilinear coefficients

ψχ =
1

4
(χψ)I +

1

4
(χγaψ)γ

a +
1

8
(χσabψ)σ

ab −
1

4
(χγ5γaψ)γ5γ

a +
1

4
(χγ5ψ)γ5, (43)

which can be derived from the more formal expression

ψχ =

16
∑

R=1

aRΓR (44)

where R = 1, ..., 16 runs over all of the elements of the Dirac-Clifford algebra. Multiplying
(44) from the right by Dirac matrix ΓB [where B runs over the types: scalar, ..., rank-2
tensor in (24a)-(24e)], and using the trace identities

Tr(ΓRΓB) =

{

Tr(Γ2
B), if R = B,

0 otherwise,
(45)

Tr(ψχΓB) = χΓBψ, (46)

along with the trace properties of the Dirac matrices, one can easily derive (43).
Following a very tedious process of applying (43) to the terms in (41) and (42) where

the spinors are visible, we obtain the purely bilinear expressions

ω[ψγ5σ
ab(∂bψ)− (∂bψ)γ5σ

abψ]− σ[ψσab(∂bψ)− (∂bψ)σ
abψ]

= (σ2 − ω2)−1{sab[ωjc(∂bkc) + iσmc(∂bnc)]−
∗sab[σjc(∂bkc) + iωmc(∂bnc)]}

+ δabcd[kc(∂bkd)− jc(∂bjd)], (47)

σ[ψγ5σ
ab(∂bψ)− (∂bψ)γ5σ

abψ]− ω[ψσab(∂bψ)− (∂bψ)σ
abψ]

= (σ2 − ω2)−1{sab[σjc(∂bkc) + iωmc(∂bnc)]−
∗sab[ωjc(∂bkc) + iσmc(∂bnc)]}

+ ǫabcd[kc(∂bkd)− jc(∂bjd)]. (48)

Using the Fierz identities [6]

sab = (σ2 − ω2)−1(σǫabcd − ωδabcd)jckd (49a)
∗sab = (σ2 − ω2)−1(ωǫabcd − σδabcd)jckd, (49b)

iǫabcdjckd = i(manb −mbna) = δabcdmcnd, (49c)

iδabcdjckd = −jakb + jbka = ǫabcdmcnd, (49d)

the expressions within the curved braces can be recast as

sab[ωjc(∂bkc) + iσmc(∂bnc)]−
∗sab[σjc(∂bkc) + iωmc(∂bnc)]

= δabcd[jcj
ekd(∂bke) +mcm

end(∂bne)], (50)

sab[σjc(∂bkc) + iωmc(∂bnc)]−
∗sab[ωjc(∂bkc) + iσmc(∂bnc)]

= ǫabcd[jcj
ekd(∂bke) +mcm

end(∂bne)]. (51)
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To proceed further, we require the tetrad frame of four-vector bilinears, with scalar nor-
malizing factor:

taα = (σ2 − ω2)−1/2[ja, ma, na, ka], (52)

where α = 0, 1, 2, 3 labels the columns. The tetrad orthonormality implies

taαt
α
b = δab = (σ2 − ω2)−1(jajb −mamb − nanb − kakb), (53)

and taking the derivative yields

taα(∂btaβ) = −taβ(∂btaα), (54)

which provides the freedom to switch what bilinear the derivative operator acts on, when
the Lorentz index is summed over. In the special case where α = β, we can replace
four-vectors entirely via

ja(∂bja) = −ma(∂bma) = −na(∂bna) = −ka(∂bka) = σ(∂bσ)− ω(∂bω), (55)

which is just the derivative of the invariant length squared Fierz identity [6]. Note that
(55) is consistent with (53), when setting a = b and summing. Applying these identities
to the square brackets in (50) and (51) gives, after some manipulation

jcj
ekd(∂bke) +mcm

end(∂bne)

=
1

2
(σ2 − ω2)[jc(∂bjd)− kc(∂bkd) + nc(∂bnd) +mc(∂bmd)]. (56)

We now write a much simpler form of (47) and (48):

ω[ψγ5σ
ab(∂bψ)− (∂bψ)γ5σ

abψ]− σ[ψσab(∂bψ)− (∂bψ)σ
abψ]

=
1

2
δabcd[−jc(∂bjd) + kc(∂bkd) + nc(∂bnd) +mc(∂bmd)], (57)

σ[ψγ5σ
ab(∂bψ)− (∂bψ)γ5σ

abψ]− ω[ψσab(∂bψ)− (∂bψ)σ
abψ]

=
1

2
ǫabcd[−jc(∂bjd) + kc(∂bkd) + nc(∂bnd) +mc(∂bmd)]. (58)

Finally, substituting into (41) and (42), we obtain the gravitational four-vector potentials
in terms of closed-form bilinears only

Ωa =
1

2
(σ2 − ω2)−1{i[ω(∂aω)− σ(∂aσ)]− 2mωka

+
1

2
δabcd[−jc(∂bjd) + kc(∂bkd) + nc(∂bnd) +mc(∂bmd)]}, (59)

Ωa
5 =

1

2
(σ2 − ω2)−1{i[σ(∂aω)− ω(∂aσ)]− 2mσka

+
1

2
ǫabcd[−jc(∂bjd) + kc(∂bkd) + nc(∂bnd) +mc(∂bmd)]}. (60)

Comparing with the inverted Dirac equation in the electromagnetic case [16]

Aa =
1

2q
(σ2 − ω2)−1{ǫabcd[jc(∂bkd)− kc(∂bjd)] +mb(∂anb)− 2mσja}

+
1

2q
(σ2 − ω2)−2{δabcdjckd[ω(∂bσ)− σ(∂bω)] + ǫabcdjckd[ω(∂bω)− σ(∂bσ)]},

(61)

where the totality of the U(1) gauge dependence is represented by the mb(∂anb) term, we
can see that there are some interesting structural similarities.
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5 The Einstein-Cartan-Dirac self-coupled system

5.1 Spin Connection Decomposition

From the definitions (19) and (20), we can see that the gravitational vector potentials
correspond to components of the spin connection ωabc. Now, since the latter corresponds
to a rank-3 tensor representation of the local Lorentz group SO(1, 3), we can write it as
the sum of a traceless component, plus a component belonging to the orthogonal subspace
of trace terms [12]. Taking account of the spin connection antisymmetry in the second
and third indices, we have

ωabc = ω
(t)
abc +

1

3
ηabωd

d
c −

1

3
ηacωd

d
b

= ω
(t)
abc −

i

3
δaebcωd

de. (62)

Expanding (19), we can make the replacement

ωd
de = −2iΩe, (63)

thus obtaining for the decomposition into the traceless, plus irreducible trace part (with
Young pattern [1])

ωabc = ω
(t)
abc −

2

3
δadbcΩ

d. (64)

Now due to its antisymmetry in the second two indices, the traceless term ω
(t)
abc can be

split into two further irreducible parts: a fully antisymmetric term ω
(a)
abc and a mixed

symmetry term wabc with Young patterns [13] and [21] respectively, such that

ωabc = (ω
(a)
abc + wabc)−

2

3
δadbcΩ

d. (65)

Note that the first two terms on the right-hand side can be written in terms of the spin
connection as

ω
(a)
abc =

1

3
(ωabc + ωbca + ωcab), (66)

wabc =
1

3
(2ωabc − ωbca − ωcab) +

2

3
δadbcΩ

d. (67)

Contracting both sides by ǫabce/4, and using the definition (20), we find

Ωe
5 =

1

4
ǫabceω

(a)
abc, (68)

since the other terms vanish. Contracting again, but by ǫa′b′c′e, and using the Levi-Civita
contraction identity

ǫa′b′c′eǫ
abce = − δa′

aδb′
bδc′

c + δa′
aδb′

cδc′
b − δa′

bδb′
cδc′

a + δa′
bδb′

aδc′
c

− δa′
cδb′

aδc′
b + δa′

cδb′
bδc′

a, (69)

we find on rearrangement

ω
(a)
abc = −

2

3
ǫabcdΩ

d
5, (70)
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which yields upon substitution

ωabc = wabc −
2

3
δadbcΩ

d −
2

3
ǫabcdΩ

d
5. (71)

We have thus obtained an expression for the spin connection which allows for its replace-
ment in terms of the bilinear Dirac matter states, via the inverted forms of the Dirac
equation (59) and (60), with the exception of the residual term wabc. As we shall see in
the final subsection, wabc can be replaced by the irreducible traceless mixed-symmetry
component of the object of anholonomity (78), which itself can be replaced by Dirac
bilinears when the vierbein is chosen to be the bilinear tetrad (52). Thus, we are able to
obtain an expression for the spin connection entirely in terms of Dirac bilinears.

5.2 Curvature Field Equations

Now consider Einstein’s equations coupled to a source term with generally non-vanishing
cosmological constant:

Rµν −
1

2
gµνR + Λgµν = 8πGTµν . (72)

In the present case, where the gravitational field couples to the Dirac field, the asymmetric
canonical stress-energy tensor on the right hand side is given by [10]

Tµν =
i

2
[ψγµ(∇νψ)− (∇νψ)γµψ]. (73)

This can be rewritten in terms of Dirac bilinears with the use of Fierz identities [17],
which yields

Tµν =
1

2
(σ2 − ω2)−1[ikµ(ω∂νσ − σ∂νω)− g−1/2ǫµσρǫ(∇νj

σ)jρkǫ + jµm
σ(∇νnσ)]. (74)

One the other side of the equation, we have the contractions of the curvature tensor,
which in terms of the spin connection is given by [19], [1]

Ra
bµν = ∂νωµ

a
b − ∂µων

a
b − ωµ

a
eων

e
b + ων

a
eωµ

e
b. (75)

It is important to note that the curvature tensor we use is not the Riemannian one from
standard general relativity, due to the presence of a non-vanishing torsion field. The
non-Riemannian component of Ra

bµν vanishes in the limit where the torsion vanishes.
An expression in terms of locally orthonormal components is obtained, as usual, via
contraction with the vierbein

Rab
cd ≡ eµce

ν
dR

ab
µν

= [eµc(∂deµ
e)− eµd(∂ceµ

e)]ωe
ab + ∂dωc

ab − ∂cωd
ab − ωc

a
eωd

eb + ωd
a
eωc

eb. (76)

Switching the derivatives on the vierbein terms (which reverses the sign), we can write
the curvature tensor as

Rab
cd = Θe

cdωe
ab + ∂dωc

ab − ∂cωd
ab − ωc

a
eωd

eb + ωd
a
eωc

eb, (77)

where we define the objects of anholonomity as

Θabc ≡ eµa(∂be
µ
c − ∂ce

µ
b), (78)
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which are representative of the non-commutativity of the tetrad basis [13]. Contracting
b and d in the curvature tensor yields the Ricci tensor

Ra
b = Θc

bdωc
ad + ∂cωb

ac − ∂bωc
ac − ωb

a
cωd

cd + ωd
a
cωb

cd, (79)

with the final contraction yielding the Ricci scalar

R = Θabcω
abc + 2∂aωb

ba − ωa
a
bωc

bc + ωabcω
bca. (80)

5.3 Torsion Field Equations

The torsion tensor is defined as the degree to which the affine connection fails to be
symmetric:

Υµν
λ = Γλ

µν − Γλ
νµ. (81)

A particle field with intrinsic quantum spin will act as the source of a non-vanishing
torsion field, in an analogous manner to stress-energy acting as the source of curvature
[13]. The torsion field equation is given by

Υµν
γ + δγµΥνσ

σ − δγνΥµσ
σ = 8πGΣµν

γ. (82)

Together, the curvature and torsion gravitational field equations, (72) and (82), comprise
the Einstein-Cartan(-Sciama-Kibble) equations.

In terms of the spinor field, the canonical spin momentum tensor in a locally orthonor-
mal frame is

Σabc =
i

4
ψγ[aγbγc]ψ. (83)

Given that

γ[aγbγc] =
1

6
(γaγbγc − γaγcγb + γbγcγa − γbγaγc + γcγaγb − γcγbγa), (84)

we can apply the Dirac identities

γaγb = 2ηab − γbγa (85a)

γaσbc = iηabγc − iηacγb + ǫabcdγ5γd (85b)

to obtain

γ[aγbγc] = −iǫabcdγ5γd. (86)

Substituting into (83), we find

Σabc =
1

4
ǫabcdkd, (87)

the spin angular momentum tensor of the Dirac field is proportional to the rank-3 dual
of the axial vector bilinear. With regards to the left-hand side of (82), using the tetrad
postulate (6), we can write the torsion in terms of the object of anholonomity and spin
connection

Υabc ≡ Υµν
λeµae

ν
beλc = Θcba − ωabc + ωbac. (88)
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Alternatively, taking an appropriate cyclic combination of the torsion, the spin connection
can be written as [5], [1]

ωabc = Kabc +
1

2
(Θabc −Θbca −Θcab), (89)

where we define the contorsion tensor to be

Kabc ≡
1

2
(−Υabc +Υbca −Υcab). (90)

5.4 Constraints Arising From Torsion

We shall now demonstrate how the torsion field equation can be used to obtain a further,
very useful set of constraints on the Einstein-Cartan-Dirac system. For convenience, we
shall consider the torsion field equation in a local frame

Υabc + ηacΥb
d
d − ηbcΥa

d
d = 8πGΣabc. (91)

Now, substituting the irreducible decomposition of the spin connection (71) into the
torsion (88), we obtain

Υabc = −Θcab + wcab −
2

3
δcdabΩ

d +
4

3
ǫcdabΩ

d
5, (92)

where we have used the cyclic identities

δadbc − δbdac = −δcdab, (93)

−wabc + wbac = wcab. (94)

Taking the trace of (92) in the last two indices, the w and Ω5 terms vanish, and we find

Υa
b
b = Θb

b
a + 2iΩa, (95)

where we have used the antisymmetry of Θabc in bc. Substituting (92), (95), and (87)
into (91), then gathering terms and rearranging, we obtain an explicit expression for the
remaining component of the spin connection

wabc = Θabc + iδadbcΘe
ed −

4

3
δadbcΩ

d −
4

3
ǫabcdΩ

d
5 + 2πGǫabcdk

d. (96)

Taking the trace of (96), the left-hand side and Levi-Civita terms vanish, and we obtain
the constraint on the gravitational vector potential

Ωa =
i

2
Θb

b
a. (97)

Similarly, when we fully contract both sides of (96) with the Levi-Civita tensor, the
left-hand side and δ-dependent terms vanish. Using the Levi-Civita contraction identity

ǫabcdǫ
abcf = −6δd

f , (98)

we obtain the constraint on the dual gravitational potential

Ωd
5 = −

1

8
Θabcǫ

abcd +
3π

2
Gkd. (99)
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Substituting our constraints (95) and (99) back into (96), and using the Levi-Civita
identity (69), we obtain the expression

wabc =
1

3
(2Θabc −Θbca −Θcab) +

i

3
δadbcΘe

ed. (100)

This expression can be interpreted as that due to the constraints imposed by the torsion
equation, the traceless mixed symmetry irreducible component of the spin connection
is equal to the traceless mixed symmetry irreducible component of the object of an-
holonomity. If the local vierbein frame is chosen to be the bilinear tetrad (52), such that

eµa = tµa ≡ (σ2 − ω2)−1/2[jµ, mµ, nµ, kµ], (101)

the entire spin connection (71) can be written in terms of Dirac bilinears, when the
inverted forms of the Dirac equation (59) and (60) are taken into account. Therefore, in
principle Einstein’s equation can also be written in terms of Dirac bilinears only.

Now, substituting the constraints (97), (99), and (100) into (92), we obtain the simple
form of the torsion

Υabc = 8πGΣabc, (102)

which is obviously a solution of (91) due to the vanishing trace of the fully antisymmetric
spin tensor. Substituting the same constraints into the spin connection (71) we obtain

ωabc = −4πGΣabc +
1

2
(Θabc −Θbca −Θcab), (103)

which is consistent with (89), and the contorsion solution

Kabc = −4πGΣabc. (104)

6 Summary and conclusions

For the sake of clarity, we shall collate our main results. We have Einstein’s equations

Rµν −
1

2
gµνR + Λgµν = 8πGTµν , (105)

where on the right-hand side, we have the Dirac matter stress-energy tensor

Tµν =
1

2
(σ2 − ω2)−1[ikµ(ω∂νσ− σ∂νω)− g−1/2ǫµσρǫ(∇νj

σ)jρkǫ + jµm
σ(∇νnσ)], (106)

and on the left, we have the Ricci tensor

Ra
b = Θc

bdωc
ad + ∂cωb

ac − ∂bωc
ac − ωb

a
cωd

cd + ωd
a
cωb

cd, (107)

and Ricci scalar

R = Θabcω
abc + 2∂aωb

ba − ωa
a
bωc

bc + ωabcω
bca. (108)

Note that our curvature terms implicitly contain a non-zero torsion component. The
covariant derivatives in the stress-energy tensor contain the affine connection, which due
to the tetrad postulate can be written as

Γλ
µν = Γσ

µνebσe
bλ = ebλ(∂µebν)− ωµ

c
becνe

bλ. (109)
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The spin connection can be replaced by its decomposition into irreducible terms

ωabc = wabc −
2

3
δadbcΩ

d −
2

3
ǫabcdΩ

d
5, (110)

where the first term can be replaced by the torsion equation constrained expression

wabc =
1

3
(2Θabc −Θbca −Θcab) +

i

3
δadbcΘe

ed, (111)

and the second two terms can be written in terms of Dirac bilinears, via the gravitational
vector potentials obtained by inverting the Dirac equation:

Ωa =
1

2
(σ2 − ω2)−1{i[ω(∂aω)− σ(∂aσ)]− 2mωka

+
1

2
δabcd[−jc(∂bjd) + kc(∂bkd) + nc(∂bnd) +mc(∂bmd)]}, (112)

Ωa
5 =

1

2
(σ2 − ω2)−1{i[σ(∂aω)− ω(∂aσ)]− 2mσka

+
1

2
ǫabcd[−jc(∂bjd) + kc(∂bkd) + nc(∂bnd) +mc(∂bmd)]}, (113)

The object of anholonomity is given in terms of the vierbein as

Θabc ≡ eµa(∂be
µ
c − ∂ce

µ
b), (114)

which can all be replaced by Dirac bilinears by breaking local Lorentz invariance, and as
before, choosing the vierbein frame to be the tetrad of Dirac bilinears

eµa = tµa ≡ (σ2 − ω2)−1/2[jµ, mµ, nµ, kµ]. (115)

Furthermore, the torsion field equation provides us with the constraints

Ωa =
i

2
Θb

b
a, (116)

Ωd
5 = −

1

8
Θabcǫ

abcd +
3π

2
Gkd, (117)

ωabc = −πGǫabcdk
d +

1

2
(Θabc −Θbca −Θcab). (118)

Taken together, the equations (105)-(118) describe the gravitationally self-interacting
Einstein-Cartan-Dirac equations, in terms of the Lorentz covariant observables of the
Dirac field: the Dirac bilinears. We believe the inverted forms of the Dirac equation
(112) and (113), the Fierz identities (57) and (58) that lead to their description in terms
of Dirac bilinears as opposed to spinors, and their application to the Einstein-Cartan-
Dirac system, to be new results.

In the electromagnetic case of the self-coupled Maxwell-Dirac equations, we showed
that this system is able to be reduced in the presence of global spacetime symmetries
corresponding to subgroups of the Poincaré group, and we gave four specific examples
[16]. The approach we used was an infinitesimal method, which involved using the Lie
generators of a particular Poincaré subalgebra, provided by Patera, Winternitz & Zassen-
haus [22], to calculate joint invariant scalar and vector fields, which were then applied
to the physical equations to obtain new exact and numerical solutions [14]. Due to the
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similar complexity of the Einstein-Cartan-Dirac equations, global symmetry reduction
using the same techniques is one way in which solutions to this system can be pursued.

Another avenue of study which the results of this paper highlight is that of the ex-
tended Fierz algebra. In order to manipulate expressions involving Dirac bilinears, which
emerge naturally in the Dirac equation inversion programme, knowledge of how these bi-
linears are algebraically related to each other is required. The derivation of Fierz identities
is generally straightforward, but it is tedious and time-consuming to do the calculations
by hand. Much of the work that has been done to obtain Fierz identities is relevant to
the case where the spinors have no tensor indices. However the Dirac equation contains
partial derivatives of spinor fields, so a new class of “rank-1” Fierz identities must be
obtained; (57) and (58) are two such examples of a much broader set of identities.
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