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ABSTRACT

Compton wavelength and Schwarzschild radius are considered here as limiting cases of a

unified length scale. Using this length, it is shown that the Dirac equation and the Einstein

equations for a point mass are limiting cases of an underlying theory which includes torsion.

We show that in this underlying theory the gravitational interaction between small masses

is weaker than in Newtonian gravity. We explain as to why the Kerr-Newman black hole

and the electron both have the same non-classical gyromagnetic ratio. We propose a duality

between curvature and torsion and show that general relativity and teleparallel gravity are

respectively the large mass and small mass limit of the ECSK theory. We demonstrate that

small scale effects of torsion can be tested with current technology.
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It is often stated that when the special theory of relativity is generalized to include general

coordinate transformations and non-inertial observers, the equivalence principle leads to

the general theory of relativity. There is a little oddity in this statement. The symmetry

group of special relativity is the Poincaré group, which includes the Lorentz group as well

as space-time translations. However, the local symmetry group of general relativity is not

the Poincaré group, but the Lorentz group. Translations are not included. If one makes

the rather natural assumption that the local symmetry group of space-time should be the

Poincaré group, one gets a Poincaré gauge theory of gravity, which includes torsion, besides

curvature. The Lorentz group corresponds to curvature and mass-energy. Translations

correspond to torsion and spin. An elegant example of Poincaré gauge gravity is the Einstein-

Cartan-Sciama-Kibble [ECSK] theory [1], which is a minimal generalisation of GR which

incorporates torsion via the anti-symmetric part of the connection. Poincaré gauge gravity

is closer in spirit to particle physics than GR is, because elementary particles are irreducible

representations of the Poincaré group [not the Lorentz group], and are labelled by both mass

and spin [not just mass], and spin couples naturally to torsion.

Why do we then not observe torsion in the universe around us? In the ECSK theory,

torsion vanishes outside of matter, so that in free space ECSK is the same as GR. Inside

matter, say in a fluid of particles of mass m, torsion becomes comparable to curvature only

at length scales smaller than the Einstein-Cartan radius rc = (λcL
2
Pl)

1/3, and at densities

higher than m/r3c , where λc = ~/mc and LPl are Compton wavelength and Planck length

respectively. For nucleons, the Einstein-Cartan radius is about 10−27 cms, and the density

above which torsion becomes important is about 1054 gms/cc [1]. These scales are beyond

current technology, and since GR is in excellent agreement with observations, it is said that

torsion can be safely neglected in today’s universe. This is the conventional wisdom.

In this essay we question this conventional wisdom, by noting that there is a part of the

mass parameter space where GR actually does not agree with experiments! For instance,

GR claims to describe the dynamics and space-time geometry of a particle of mass m by

the Schwarzschild space-time, for arbitrary values of m, including m as small as the mass

of the electron. But we know that the correct description of the electron is given by the

Dirac equation, not by GR. One might of course object and say that GR is not intended

for small masses. But how small is small? There is no mass scale in GR. Similarly, there

is no mass scale in the Dirac equation, which claims to hold for all masses; and we know

this claim contradicts the dynamics of large masses, which are correctly described by GR.

To resolve this conflict between GR and the Dirac equation, we introduce a mass scale,

namely the Planck mass mPl, and propose a new theory, to which the Dirac equation and

GR are small mass and large mass approximations respectively. Doing so compels us to

incorporate torsion, and introduces an elegant symmetry and duality between torsion and
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curvature. Furthermore, we show that torsion is indeed important in the present universe,

on microscopic scales of the order of Compton wavelength of elementary particles.

We define a new length scale LCS, dependent onm, and dubbed the Compton-Schwarzschild

wavelength [2], having the property that LCS remains unchanged under the map m →
m2
Pl/4m. For m � mPl, LCS = λc/2; for m � mPl, LCS = 2Gm/c2, and LCS has a

minimum value LPl at m = mPl/2 [3]. Using this length scale, we construct the following

action for the interaction of a Dirac field ψ with its own gravitational field [4]

L2
Pl

~
S =

∫
d4x
√
−g
[

1

8π
R − 1

2
LCS ψψ + L2

CS

{
i

2
ψγµ ∇µψ −

i

2
(∇µψ)γµψ

} ]
(1)

where the symbols have their usual meaning. For masses much smaller than Planck mass,

assuming the gravitational field can be neglected, this action yields the Dirac equation on

Minkowski space-time. For masses much larger than Planck mass, this action yields Einstein

field equations for a point mass, assuming that the Dirac kinetic term can be neglected, and

ψψ in the mass term can be replaced by a spatial delta-function [we justify this below]. Thus

this action provides GR and the Dirac equation as limiting cases for a point mass. For an

arbitrary value of the mass, the action yields the Einstein-Dirac equations, but now with the

new coupling constant LCS. This new coupling constant leads to an unexpected consequence.

In the Einstein equations, for small masses, the matter-gravity coupling constant LCS goes

to ~/2mc, and no longer depends on Newton’s constant G. The gravitational field on the

left hand side can be expected to vanish [no G]. However the matter energy-momentum on

the right hand side is non-vanishing. To overcome this contradiction, a natural resolution

is to include torsion: for small masses the left hand side is dominated by the contribution

of torsion to curvature, and the right hand side is dominated by the [now to be added]

contribution of spin angular momentum density to the total matter energy-momentum-spin

tensor. Torsion now couples to spin through ~ (not G), which seems rather natural. Hence

we generalize the above action to minimally include torsion via the antisymmetric connection

in the covariant derivative, just as in the ECSK theory. Variation of the action with respect

to the metric, the torsion (more precisely, the contortion), and the Dirac state yields the

Einstein-Cartan-Dirac [ECD] equations but now with LCS instead of LPl and λc:

Gij = 8π L2
CS

1

~c
Σij (2)

T ijk = 8π L2
CS

1

~c
τ ijk (3)

iγα∇{}α ψ +
3

8
L2
CS (ψγ5γ

αψ)γ5γαψ −
1

2LCS
ψ = 0 (4)
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In Eqn. (2) the Gij on the left hand side is the asymmetric Einstein tensor built from the

asymmetric connection, which in turn is made from the symmetric Levi-Civita connection

and the antisymmetric connection, i.e. the torsion tensor. The Σij on the right hand

side is the asymmetric canonical total energy momentum tensor, which is made from the

symmetric matter stress-energy-momentum, and from the spin angular momentum tensor.

In Eqn. (3), the so-called modified torsion T ijk is the traceless part of the torsion tensor,

and it is algebraically related to the τ ijk on the right, which is the spin angular momentum

tensor, which results from varying the matter Lagrangian with respect to the contortion

tensor. Thus, torsion couples to spin in a very natural manner. Eqn (4) is the non-linear

Dirac equation, also known as the Hehl-Datta equation [6], with the non-linear term coming

because of the torsion dependent part of the covariant derivative, and because torsion can

be algebraically related to spin, which in turn is expressed in terms of the Dirac state. This

system of equations is the same as the standard ECD equations, except that in Eqns. (2)

and (3) LPl is replaced by LCS, and in Eqn. (4) the LPl in the nonlinear term, and the λc

in the mass term are both replaced by LCS. These equations hold for all values of the mass

m, and it is then only natural that the coupling constant should be LCS, instead of LPl and

λc, for why should the latter two appear in the ECD equations for a large mass?

For m � mPl, torsion and spin are negligible, and these equations reduce to Einstein

equations for a point mass. For m � mPl, spin dominates mass, and a novelty emerges,

which we describe later below. From the structure of these equations it is evident that

the Einstein-Cartan radius, where torsion becomes important, and which was earlier rc =

(λcL
2
Pl)

1/3, is now simply LCS. This is of the order of Compton wavelength, for elementary

particles, and it would be worthwhile to investigate what effect torsion has on these and

smaller scales. It is worth noting that known experimental and theoretical bounds on torsion

which have been investigated thus far all seem to be on scales comparable to or larger than

Compton wavelength [7]. One now needs to look into possible effects on smaller length

scales.

Because of LCS, these equations have some important consequences and predictions,

which we now describe. Firstly, there is the curious fact that the Kerr-Newman black hole,

despite being a classical object, has a non-classical gyromagnetic ratio γ, equal to that of

the Dirac electron, both being twice the classical value q/2m, where q is the electric charge

of the object [5]. This profound fact, for which there is no explanation, strongly hints at

some possible connection between Dirac fermions on the one hand, and Kerr-Newman black

holes on the other. In our work, since a Dirac fermion of mass mq and its dual black hole

of mass mh = m2
Pl/4mq are both described by the same LCS, and since the same set of

field equations (2-4) describe both Dirac fermions and black holes, an explanation becomes
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possible. For a Kerr-Newman black hole of mass mh and charge qh we can write

γ = 2.qh/2mh =
2qh
mPl

LPl
LCS

=
2qh
mPl

LPl
~/2mqc

= 2.
qh.4m

2
q

2mq

.
cLPl
~mPl

= 2.
qh.4Gm

2
q/~c

2mq

= 2.q/2mq

(5)

where q = qh.~c/4Gm2
h. Thus the gyromagnetic ratio of a black hole of mass mh and charge

qh is the same as that of a Dirac fermion with dual mass mq and dual charge q = qh.~c/4Gm2
h.

This explains why the Kerr-Newman black hole naturally has a g-ratio twice the classical

value.

We next consider the non-relativistic limit of the ECD equations (2-4) by substituting

therein the following series expansion for the metric and the quantum state, in terms of the

expansion parameter
√
~/c [8, 9]:

ψ(r, t) = e
ic2

~ S(r,t)

∞∑
n=0

(√
~
c

)n
an(r, t); gµν(r, t) = ηµν +

∞∑
n=1

(√
~
c

)n
g[n]µν (r, t) (6)

Since the dependence of LCS on c is different in the large mass limit and in the small mass

limit, we must consider the two cases separately. In the large mass limit we get, at the

leading order 1/c2, the Schrödinger-Newton equation

i~
∂a0
∂t

= − ~2

2m
∇2a0 +mφ(r, t)a0 (7)

∇2φ(r, t) = 4πGm |a0|2 ≡ 4πGρ(r, t) (8)

i~
∂a0
∂t

= − ~2

2m
∇2a0 −Gm2

∫
|a0(r

′
, t)|2

|r− r′ |
d3r

′
a0 (9)

where g00 = 1 + 2φ/c2 defines the Newtonian gravitational potential φ. The Schrödinger-

Newton equation is known to provide a spatial localization of wave-packets of large masses

because of the gravitational self-interaction: a gravitationally induced inhibition of disper-

sion [10]. Hence, for m � mPl one is justified in replacing the probability density |a0|2

by a spatial delta function in the above Poisson equation, giving rise to the classical limit

we alluded to below Eqn. (1). Thus the ECD equations have a built in mechanism for

macroscopic localization because gravity becomes stronger with increasing mass.

In the small mass limit however, since LCS ∼ ~/mc goes as 1/c [instead of as 1/c2 in the

large mass limit], we get the surprising result that at orders 1/c and 1/c2

∇2φ(r, t) = 0; a0 = 0 (10)

For m� mPl the gravitational field as well as the quantum state vanish at order 1/c. This
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is an in principle falsifiable prediction of the idea of a unified length LCS. An experimental

test of the inverse square law for a pair of very small masses would show gravity to be weaker

than what is predicted by general relativity.

We notice from the above that curvature vanishes in the small mass limit, whereas in

the large mass limit it is torsion that vanishes, because GR holds in the large mass limit.

This motivates us to ask if this kind of curvature - torsion duality could be generic. Indeed,

we have remarked earlier that since LCS is the only coupling constant in the theory, it will

label a large mass solution of the field equations, and also label its dual small mass solution.

However, we expect the large mass solution to be gravity dominated, and the small mass

solution to be torsion dominated. This is possible only if for a given LCS there are two

solutions, one that is curvature dominated, and another that is torsion dominated. We call

this the curvature - torsion duality, and construct it as follows. The total curvature R on

a space-time manifold can be written as a sum of the Reimannean curvature
0

R made from

the symmetric Levi-Civita connection, and an additional contribution Q because of torsion:

Rρ
θµν =

0

Rρ
θµν +Qρ

θµν (11)

where

Qρ
θµν = ∇{}µ K

ρ
θν −∇

{}
ν K

ρ
θµ +Kσ

θνK
ρ
σµ −Kσ

θµK
ρ
σν (12)

K is the contortion tensor and the covariant derivative is with respect to the Levi-Civita

connection.

Suppose we have a curvature dominated large mass solution S1 with a given LCS and

the set of curvature parameters [R(1),
0

R(1), Q(1)]. We define the dual torsion dominated

solution S2 having the same LCS and the set of curvature parameters [R(2),
0

R(2), Q(2)] by

the following map:

R(1)−Q(1) = Q(2)−R(2) (13)

which means that the excess of curvature over torsion for S1 equals the excess of torsion

over curvature for S2. This duality implies that
0

R(1) = −
0

R(2). In the large mass limit,

Q(1) is zero and we have the pure curvature solution R(1) =
0

R(1). This is general relativity.

In the small mass limit, R(2) is zero, and we have the solution Q(2) = −
0

R(2). Since R(2) is

zero, this is teleparallel gravity, and the duality map implies that R(1) = Q(2). This duality

provides an intriguing connection between GR, ECSK theory, and teleparallel gravity. The

first and third theories are respectively the large mass and small mass limit of the ECSK

theory and are connected by a duality. We have provided a symmetry between curvature

and torsion, and provided a physical basis for Poincaré gauge gravity.
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This is qualitatively depicted in Fig. 1 where R−Q is plotted against z ≡ ln(m/mPl). The

dual masses M and m have the same value of LCS, and the curvature dominated solution S1

in the first quadrant is mapped to the torsion dominated solution S2 in the third quadrant.

As the mass is reduced, a solution ‘rolls down’ from the first quadrant to the origin mPl and

transits to the solution set in the third quadrant. There is also a ‘mirror universe’ whose

significance remains to be investigated: For a given LCS the curvature dominated large mass

solution is also realized for the dual small mass. This provides the mirror solution which

rolls down from the second to the fourth quadrant, and where small masses are curvature

dominated, while large masses are torsion dominated. At the transition point m = mPl we

have R−Q = 0 so that
0

R = 0: this is a Minkowski flat space-time where the total curvature

is sourced only by torsion.

FIG. 1. The curvature - torsion duality

In the small mass limit, where total curvature is zero, torsion balances Reimann curvature.

Instead of the Dirac equation, we now have a very special Hehl-Datta equation (4), and

additonally, as follows from (2), Σij = 0, so that mass-energy is balanced by spin. We

propose this as a starting point for second quantization of the Dirac field, so that one may

investigate if the non-vanishing torsion and Reimann curvature can avoid the infinites of

quantum field theory.

One might ask if it is justified to couple the quantum mechanical Dirac field with classical

curvature. The answer is that the Dirac field is quantum only when curvature and torsion

are neglected. Soon as coupling to gravity is included, its purely quantum nature is lost, and
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the quantum to classical transition begins! Furthermore, as we saw, the coupling constant

G arises only when the mass becomes large, as if to suggest that gravity emerges only when

sufficient mass has accumulated, and then gravity is strictly classical. Only torsion has to

be second quantized, which makes sense, because torsion is explicitly expressed in terms of

the Dirac state.

The duality map m ↔ m2
Pl/4m can equivalently be thought of as the map ~/2 ↔

2Gm2/c from the quantum spin parameter ~/2 to the gravitational spin parameter 2Gm2/c.

Their ratio is the dimensionless gravitational fine structure parameter 4Gm2/~c. When this

ratio is much larger than one, curvature dominates torsion, and when this ratio is much

smaller than one, torsion dominates curvature. The transition from torsion dominance

to curvature dominance is marked by the transition from quantum spin to gravitational

spin. The suggested relevance of torsion for the Dirac equation opens up a new avenue for

research into the relation between space-time geometry and particle physics, at energy scales

accessible by current technology.
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